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The space of labels characterizing the elements of Schwinger's basis for unitary quantum 
operators is endowed with a structure of symplectic type. This structure is embodied in a 
certain algebraic cocycle, whose main features are inherited by the symplectic form of 
classical phase space. In consequence, the label space may be taken as the quantum phase 
space: It plays, in the quantum case, the same role played by phase space in classical 
mechanics, some differences coming inevitably from its nonlinear character. 

I. INTRODUCTION 

The recent extension of Weyl-Wigner transformations 
to discrete quantum spectra) has drawn attention to a cer­
tain discrete space with some characteristics of a "quantum 
phase space" (QPS).2 The extension makes use of 
Schwinger's complete basis3 of unitary operators for 
Weyl's realization of the Heisenberg group. Unlike usual 
classical phase spaces, QPS is not a linear space: Its points, 
besides being isolated, display themselves on the surface of 
a torus. The continuum quantum case may be obtained by 
a standard procedure that corresponds to stretching the 
torus radii to infinity while bringing the spacing between 
neighboring points to zero in a suitable way. This 
C-number representation of QPS closely parallels the clas­
sical picture, its quantum character being signaled by the 
presence of Planck's constant fI in the expressions involved. 
It is of basic interest to examine the main properties ofQPS 
and their relations to the well-known characteristics of the 
classical phase space. We would of course expect to obtain 
the classical case as a fI ..... O limit of the quantum case. 

The basic feature of a classical phase space is its sym­
plectic structure, embodied in a differential two-form 0 
which is closed (a cocycle) and nondegenerate. The fun­
damental role of this symplectic form is especially visible in 
the Hamiltonian formulation of mechanics. So strongly 
does the symplectic structure stick to the very notion of 
phase space that QPS will only deserve its name if it in­
cludes a structure of similar nature. Although we may not 
expect the presence of a complete analog to 0 on QPS, our 
objective here is to show that a certain structure exists 
indeed which plays on QPS a role as similar to a symplectic 
structure as could be expected. Such a "presympletic" 
structure is actualized in a certain two-cochain (also a 
cocycle) acting on the unitary operators, a purely algebraic 
object which acquires, in the continuous limit, a geometri­
cal nature and tends, in the classical limit, to the symplec­
tic form. The two-cochain marks in reality the projective 
character of Weyl's realization of the Heisenberg group. 

We start in Sec. II with a sketchy presentation of 
Hamiltonian mechanics4 intended to fix notation for later 
comparison, special emphasis being given to the role of the 
symplectic structure.s We then address ourselves to quan­
tum kinematics and give a resume on Schwinger's complete 
basis of unitary operators in Sec. III. A crucial point will 

be that the basis provides in reality not a linear but a 
projective representation of the Heisenberg group. Prepar­
ing to establish that, Sec. IV is a short introduction to the 
subject of projective representations6 from the cohomolog­
ical point of view 7 which, being closer to the formalism of 
differential forms, is specially convenient to our purposes. 8 

The meaning of ray representations becomes specially clear 
in this language. The results are then applied in Sec. V to 
the Schwinger basis for the Weyl representation, emphasis 
being given to the emergence of the mentioned cocycle and 
to some of its properties. The continuum limit is examined 
and comparison is made with another C-number represen­
tation of quantum mechanism, the Weyl-Wigner-MoyaI9 

approach. The meaning of the "presymplectic" fundamen­
tal cocycle is clarified in terms of well-known features of 
that approach. 

II. CLASSICAL PHASE SPACE 

In the classical description of a system with n degrees 
of freedom, physical states constitute a differentiable sym­
plectic manifold M of dimension 2n. The fundamental geo­
metrical characteristic of this phase space is the symplectic 
two-form O. In terms of the generalized coordinates q 
= (qI,l, .. ·,qn) and momenta p = (P),P2, ... ,Pn)' 0 is writ­
ten 

(2.1) 

It is clearly a closed form (that is, dO = 0), or cocyc/e, and 
can be shown also to be nondegenerate. Here, 0 is also an 
exact form (a coboundary, or a trivial cocycle) as it is, up 
to a sign, the differential of the canonical form 

(2.2) 

The structure defined by a closed nondegenerate two-form 
is called a symplectic structure and a manifold endowed 
with such a structure is a symplectic manifold. In reality, 
phase spaces are very particular cases of symplectic mani­
folds. On general, topologically nontrivial symplectic man­
ifolds there are no global coordinates such as the (qi,p;) 
supposed above and the basic closed nondegenerate two­
form is not necessarily exact. Notice that every coboundary 
is a cocycle but not vice versa. A theorem by Darboux 
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ensures the existence of a chart (of "canonical," or "sym­
plectic" coordinates) around any point on a (2n)­
dimensional manifold M in which a closed nondegenerate 
two-form can be written as in (2.1), so that the equations 
here written in components hold locally. Notice, however, 
that 11 is globally defined and the equations written in the 
invariant language of forms are valid globally. 

The fundamental point about the symplectic structure 
is that 11 establishes a one-to-one relationship between one­
forms and vector fields on the manifold M. The simplest 
example is the phase space velocity field, 

dqi a dpi a 
X H= dt aqi + dt api' (2.3 ) 

The time evolution of the state point (q,p) will take place 
along the integral curves of X H' Hamilton's equations put 
this evolution field into the form 

(2.4 ) 

The differential operator X H generates a one-parameter 
group of transformations, the Hamiltonian flow. On the 
other hand, the Hamiltonian function H(q,p) will have as 
differential the one-form 

aH aH. 
dH=-a dpi + -a i dql. 

'Pi q 
(2.5) 

The relationship for which 11 is responsible involves 
the interior product of a field by a form. The interior prod­
uct of a field X by a one-form a, denoted ixa, is simply 
a(X). The interior product of a field X by a two-form 11, 
denoted ix11, is defined as that one-form satisfying 
ix11( y) = 11(X,Y) for any field Y. This is directly gener­
alized to higher-order forms. We find easily that 

(2.6) 

Besides being a particular case of the general one-to-one 
relationship between fields (vectors) and one-forms (co­
vectors) on M, this is also an example of relationship be­
tween a transformation generator and the corresponding 
generating function. The Hamiltonian presides over the 
time evolution of the physical system under consideration: 
H(q,p) is the generating function of the velocity field 
X H' Applying X H to any given differentiable function 
F(q,p) on M, we find that 

aFaH aFaH 
XHF=-a i-a --a -a i={F,H}, 

q 'Pi 'Pi q 
(2.7) 

the Poisson bracket of F and H, so that its equation of 
motion is the Liouville equation 

(2.8) 

X H is frequently called Liouvillian operator. Functions like 
F(q,p) are the classical observables, or dynamical func­
tions. To each such a function will correspond a field 
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aF a aF a 
X--- --

F- api aqi - aqi api 

through the relation 

ixF11=dF. 

(2.9) 

(2.10) 

Given another function G(q,p) and its corresponding field 
X G, it is immediate to verify that 

aFaG aFaG 
11(XF ,xG)=-a i-a -a--a i={F,G}. 

q 'Pi 'Pi q 
(2.11 ) 

Each field on M is the local generator of a one­
dimensional group of transformations. The response of a 
tensor to the local transformations generated by a field is 
measured by the Lie derivative of the tensor with respect to 
the field. Of course, F (which is a zero-order tensor) is an 
integral of motion if its Lie derivative Lx)" = XHF van­
ishes, or {F,H} =0. The Lie derivative of ti with respect to 
X H vanishes: 

Lx 11=0, 
H 

(2.12 ) 

because Lx = dOix + ixod. This means thatthe two-form 11 
is preserved by the Hamiltonian flow, or by the time evo­
lution. This and the property Lx(11/\ 11) = (Lx11) /\ 11 
+ 11/\ (Lx11) of Lie derivatives establish the invariance of 
the whole series of Poincare invariants 11/\ 11· .. /\ 11, in­
cluding that with a number of n of 11's, which is propor­
tional to the volume form of M. The preservation of the 
volume form by the Hamiltonian flow is of course Liou­
ville's theorem. 

For any field X F related to a dynamical function F, 

LxF11 =0. (2.13 ) 

This happens because 

Lx 11=doix 11 + ix od11=d2F=0. F F F 

Such transformations leaving 11 invariant are the canonical 
transformations, X F is said to be a Hamiltonian field and F 
its generating function. In a more usual language, F is the 
generating function of the corresponding canonical trans­
formation. The simplest examples of generating functions 
are given by F(q,p) = qi, corresponding to the field X F 

- wapi; and G(q,p) = Pi> whose field is XG 
= a/aqi. Both lead to {qi,pj} = ~ii Next in simplicity are 
the dynamical functions of the type 

fab=aq+ bp, (2.14 ) 

with a, b real constants. The corresponding fields are 
Jab = - a a/ap + b a/aq. The commutator of two such 
fields is [Jab,Jed] = 0 and consequently the corresponding 
generating function F[J J ] = Fo is a constant. On the 

abo cd 
other hand, the Poisson brackets are determinants 

{fab,fed} = 11 (Jab,Jed ) =ad - bc. 

With the fields written as 

_ (Xqi) 
X- X ' 

Pi 

R. Aldrovandi and G. Galetti 
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.0. and .0. - ) may be seen as matrices: 

[ 0 In] _) [0 
.0. = _ In 0 ; .0. = In 

- In] 
o ' (2.16 ) 

where In is the n-dimensional unit matrix and n.(X,Y) 
=XTn.y. 

Most fields do not correspond to a generating function, 
as i xn. is not always exact. In general, a generating func­
tion exists only locally. The one-form corresponding to any 
field preserving .0. will be closed, d(ixn.) = Lxn. = O. As 
a closed form is always locally exact, around any point of 
M there is a neighborhood where some F(q,p) satisfies 
ixn. = dF. 

The action of the two-form .0. on two contravariant 
fields X and Y will give 

(2.17) 

This is twice the area of the triangle defined on M by X and 
Y, as it is still easier to see from (2.14) and (2.15). 

An n-dimensional subspace of the 2n-dimensional 
phase space M is a Lagrange manifold if n.(X,Y) = 0 for 
any two vectors X, Y tangent to it. Examples are the con­
figuration space and the momentum space. Canonical 
transformations preserve such subs paces of M, that is, they 
take a Lagrange manifold into another Lagrange manifold. 

The symplectic form being a cocycle is equivalent to 
the Jacobi identity for the Poisson brackets. In fact, it is 
not difficult to find that 

3 dn.(X,Y,Z) = - {Fx,{Fy,Fz}} - {Fz,{Fx,Fy}} 

- {Fy,{Fz,Fx}} =0. (2.18) 

There would be of course much more to be said about 
phase space. This brief outline, however, seems enough to 
establish notation and stress the basic role of the cocycle .0.. 
We shall see in Sec. V that on quantum phase space a 
cocycle is also defined which, even in the discrete case, has 
a comparably fundamental role. 

III. QUANTUM KINEMATICS 

The quantum description of a physical system requires 
a complete set of observables. Still better, it requires a 
complete set of operators in terms of which all dynamical 
operators can be built up. Kinematics is governed by 
Heisenberg's group,1O whose elements may be represented 
by real triples (a,b,r) obeying the group product rule)) 

(a,b,r)*(e,d,s) = (a + e,b + d,r + s + Had - be]). 

Weyl introduced a realization in terms of powers of two 
unitary operators U(a) and V(b) satisfying 

and 

U(a) U(a') = U(a + a'l, 

V(b) V(b' ) = V(b + b'), 

U(a) V(b) = V(b) U(a)ei/lab• 

A particular example is given by V = /bp, U = eiaq, which 
lead to the usual formulation of Heisenberg's algebra using 
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the basic operators p and q. Schwinger3 has recognized the 
fact that the above U and V generate a complete basis for 
all unitary operators and provided a classification of all the 
possible physical degrees of freedom. We shall here be in­
terested only in some aspects of Schwinger'S work. What 
follows is a short presentation of them. 

Consider a space of quantum states of which a basis is 
given by orthonormalized kets IVk) with k = 1, 2, ... , N. A 
unitary operator U can be defined which shifts these kets 
through cyclic permutations as 

(3.1 ) 

Through the repeated action of U, a set of linearly inde­
pendent unitary operators Um can be obtained whose ac­
tion is given by 

(3.2) 

As UN = 1, the eigenvalues of U are Uk = ei(2rrIN)k, corre­
sponding to another set of kets fixed by 

UIUk) =ukluk)' 

Another operator V exists such that 

VIUk)=luk_l) 

and 

(3.3 ) 

(3.4) 

vnIUk)=luk_n), withluk_N)=luk)' (3.5) 

Here, also, VN = 1 and the V eigenvalues are Vk 
= ei(2rrIN)k. The miracle of Schwinger'S basis is that the 
eigenkets I Vk) such that 

(3.6) 

are just those from which we have started. Of course, 

VnlVk) =ei(2rrIN)knlvk)' (3.7) 

A direct calculation in any basis shows that 

(3.8) 

Now, Schwinger'S final point: The set of operators 

(3.9) 

constitute a complete orthogonal basis in terms of which 
any dynamical quantity 0 can be constructed as 

m,n 

the Omn's being coefficients given by 

Omn=tr[S~nO]. 

(3.10) 

(3.11) 

Here, U and V are each one a generator of the cyclic group 
Z N' The operators S mn give a peculiar combination of the 
two ZN'S, providing a discrete version of Weyl's represen­
tation of the Heisenberg group. 

The following results are easily obtained: (i) the action 
of the basic operators on the kets: 

S Iv) =ei(rrIN)(2k + m)nl v ). mn k k+ m , (3.12) 

(ii) the group product: 

R. Aldrovandi and G. Galetti 2989 
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S ~ i(1rIN)(ms - nr)S . 
r~mn=e (m+r)(n+s)' 

(iii) the group identity: 

Soo=l; 

(iv) the inverse to a given element: 

(v) behavior under a similarity transformation: 

S ~ ~-) =e- i (21TIN)(ms nr)Srs' 
mfl"JrSJ mn 

(vi) associativity: 

(S mnSrs)S kl=S mn(Sr,s kl)' 

(3.13 ) 

(3.14 ) 

(3.15) 

(3.16) 

(3.17) 

With the periodicity conditions in (3.1) and (3.5), the 
numbers m, n, etc. take values on a torus lattice. It is this 
lattice who plays the role of a quantum phase space. The 
points of QPS are so labels of elements of a discrete gr?up. 
The operators S mn' obeying the product rule (3.13), give a 
projective representation of the group of transformati.ons 
on this space, which will be examined in the next section. 
Notice that they are themselves only semi periodical: S Np 

( - )PSo; S N = { - )PSpO' The quantum continuum 
limit, whic': h:s only been studied in detail in some 
cases,I,3 is in such cases attained by taking both the torus 
radii to be infinite while making the spacing between neigh­
boring points go to zero, in such a way that 
[.J21T/Nm]-+some real constant a, [.J21T/Nn]-another 
real constant b, etc. In this limit, a particular realization of 
the above operators is 

(3.18 ) 

(3.19 ) 

where the operators p and q have eigenvalues .J21T/Nk. In 
this case, 

S S _ei(aq + hp) 
mn --+ ab- . (3.20) 

The expression (3.13) takes the form 

S -~ (i/2l[ad- chls 
ctfJah=e (a+c)(h+d)' (3.21) 

The exponent in Sah is the quantum. version of the dyna~­
ical functions (2.14) and the phase m the group product IS 

just (half) the Poisson bracket (2.15). . 
To a given degree of freedom corresponds a paIr of 

operators U, V satisfying (3.8) which will provide a basis 
for a realization of the Heisenberg group. A curious and 
important example is given by the nonlocal order and dis­
order operators determining the confined and unconfined 
phases in quarkionic matterY The algebra (3.8) appears 
then because of the crucial role attributed to the center of 
the group SU(N), which is precisely ZN' 

The above considerations on the continuum limit sug­
gest that each pair of operators U, V satisfying (3.8) is 
related to a pair of (exponentiated) canonically conjugate 
variables and, so, to a degree of freedom. This is true only 
when N is a prime number.3 Otherwise, the representation 
involved is reducible. When N is prime, (3.8) is the only 
possible combination of powers of U and V leading to such 
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a kind of expression. When N is not prime, however, things 
are different; N can be written in terms of its prime factors, 
N=N1N 2" 'Njand particular powers of U and V combine 
to give expressions like (3.8) with N replaced by each one 
of the factors N;. The basis can then be redefined to become 
a direct product.3 In the continuous limit, N goes to in­
finity through prime values. 

IV. PROJECTIVE REPRESENTATIONS 

Projective representations6 are treated, even in the best 
of older physicists' texts, in a rather involved way. The 
modem, homological approach 7 of which a brief account is 
given in the following has many advantages, not the least 
being its assignment of the subjet's correct place in the 

8 h' wider chapter of group extensions. In our case t e mam 
advantage is that the evident analogy with the formalism of 
differential forms allows a clearer view of the connections 
between Schwinger'S basis and classical phase space. 

Let us consider, to fix the ideas, a group G of elements 
g, h, etc., acting through their representative operators 
U(g}, U(h), etc. on kets l'Px), ItPy ), etc. The indices x, y 
include not only configuration or momentum space coor­
dinates but also spin and/or isospin indices and any other 
necessary state labels. We shall call them parameters. We 
might alternatively talk of the corresponding wave func­
tions 'P(r} = (ri'P), etc., but will use kets to keep in pace 
with previous notation. The space {1'Px)} ofkets will be the 
carrier space of the representation. 

Suppose to begin with that we have 

(4.1 ) 

where "xg" is the set of labels as transformed by the action 
of g. Suppose further that, by composition, 

(4.2) 

meaning, in particular, that the composition by itself is 
independent of the point x in parameter space. This is what 
is usually called a representation, but will in the present 
context be called a linear representation. The mapping 
U:g- U(g) is in this case a homomorphism. 

We may next suppose that, instead of (4.1), the action 
of a transformation is given by 

(4.3) 

The wave function acquires a phase a) (x;g) which de­
pends both on the transformation and the point in param­
eter space. The transformation will operate differently at 
different x. In quantum mechanics, of course, a state is 
fixed by a ray (a wave function with any phase factor). A 
representation acting according to (4.3) has been called a 
ray representation. It is a particular case of projective rep­
resentation, as will be seen in the following. 

Suppose condition (4.2) holds, 

U(h) U(g) itPx> U(gh) itPx)' 
A direct calculation shows that this implies 

at(xg;h) - al(x;gh) + al(x;g) =0, (4.4) 

R. Aldrovandi and G. Galetti 2990 
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another form of the homomorphic condition. If a function 
ao(x) exists such that al(x;g) can be written in the form 

al (x;g) =ao(xg) - ao(x), 

then (4.4) holds automatically, (4.3) becomes 

U(g)eiao(x) Il/Ix) =eiao(xg) Il/Ixg) 

and phases can be eliminated by redefining 

l'Px) =eiao(x) Il/Ix), 

(4.5) 

which brings the group action back to the form (4.1). 
In the cohomological theory of group representations, 

phases such as the above ao(x) and al (x;g) are considered 
as results of the action of cochains on the group G. Co­
chains are antisymmetric mappings on the group, purely 
defined by their action. They have much in common with 
differential forms (which are in reality special cochains) 
but it should be kept in mind that here they are not nec­
essarily acting on elements of a linear space. Here they take 
one, two, or more group elements to give numbers. The 
group elements have the role vectors have in the case of 
differential forms. Cochains may be defined on any group, 
even discrete ones-which is just the case of our interest. 
Here, ao is a zero-cochain, a function on parameter space 
whose value at point x is the phase ao(x); at is a one­
cochain because it operates on one element g of G at point 
x of the parameter space to give al (x;g); a cochain taking 
two group elements as arguments will be a two-cochain, 
etc. An operation analogous to the exterior differentiation 
of differential forms is definedB on cochains: it is the deriv­
ative operation fJ taking a p-cochain a p into a (p + 1)­
cochain /3 p + I according to 13 

fJ:ap-+some/3p+ l=fJap, 

fJap(x;gbg2, ... ,gp + I) 

=ap(xgl;g2, .. ·,gp+ I) - a p(x;glg2, ... ,gp+ I) 

+ ... + ( - )P+ lap(x;gbg2, ... ,gp)' (4.6) 

An important property is the Poincare lemma fJ2 = 0, 
which can be verified directly from this expression. The 
first examples are 

(4.7) 

fJal(x;g,h)=al(xg;h) -al(x;gh) +al(x;g); (4.8) 

fJa2(x;g,h,j) =a2(xg;h,j) - a2(x;gh,j) 

+ a2(x;g,hf) - a2(x;g,h). (4.9) 

A cochain a p satisfying fJap = 0 is a closed p-cochain, or a 
p-cocycle, and a cochain a p for which a cochain ap_t exists 
such that a p = fJap _ I is exact, or a coboundary (or trivial 
cocycle). An exact cochain is automatically closed. We see 
that condition (4.4) means that at is closed, 

(4.10) 

still another form of the homomorphic condition. As to 
(4.5), it says simply that at is exact: 

(4.11 ) 
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Summing up, the composition rule (4.2) implies the 
closedness of at; if in addition at is a derivative, a redefi­
nition of the functions exists such that it simply disappears. 
When at is closed but not exact, it cannot be eliminated 
but the representation is still equivalent to a linear repre­
sentation. A pure projective representation appears when, 
instead of (4.2), we only require 

U(h) U(g) Il/Ix> =eia2 (x;g,h) U(gh) Il/Ix), ( 4.12) 

allowing the composition to depend on the "position" x 
through a phase factor. The mapping U:g-+ U(g) is no 
more a homomorphism. Applying (4.3) successively, we 
have 

U(h)U(g) Il/Ix) 

=ei[a\(xg;h) - a\(x;gh) + a\(x;g)] U(gh) Il/Ix). (4.13 ) 

Consequently, 

fJal (x;g,h) =a2(x;g,h). (4.14 ) 

In this case at is not closed and the representation is no 
more equivalent to a linear one. The cochain a2 is an ob­
struction to homomorphism. On the other hand, ray rep­
resentations like (4.3) require a2 to be exact. 

Let us see what comes out from the imposition of as­
sociativity: equaling 

U( f) [U(h) U(g) )Il/Ix) 

=eia2 (x;g.h) U( f) U(gh) Il/Ix) 

and 

[U( f )U(h») [U(g)ll/Ix») 

=eia2(xg;h,j) U(hf ) U(g) Il/Ix) 
=eia2 (xg;h,j )eia2 (x;g,hj) U(ghf ) Il/Ix> 

brings forth, from (4.9), just the closedness of a20 

fJa2=0. 

(4.15 ) 

( 4.16) 

( 4.17) 

This "associativity condition" is of course coherent with 
(4.14). 

Condition (4.14) has an interesting consequence. Sup­
pose it holds and let us proceed to a redefinition of the 
operators U: define new operators u* by 

U*(g) =e - ia\(x;g) U(g). (4.18 ) 

They depend, through the phase, on the point x at which 
they will operate and are, in this sense, "gaugefied" ver­
sions of the previous U(g). In terms of such operators, 
( 4.13) becomes 

U*(h) U*(g) Il/Ix) = U*(gh) Il/Ix), 

which is just of the form (4.2). 
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Concerning only the group operator representatives 
(and not the particular carrier space), it is expression 
( 4.12) which characterizes a projective representation. As­
sociativity implies that a2 is a cocycle. If it is also exact, 
there exists a al satisfying (4.14) which will appear as a 
ket phase and a2 can be absorbed by the procedure just 
described into the "gaugefied" operators, in terms of which 
the representation reduces (but only locally in parameter 
space) to a linear one. We will say in this case that the 
representation is locally linear but globally projective. The 
unitary quantum operators to be studied in next section 
will be of this type. If a2 is closed but not exact, there exists 
no a 1 as in (4.14) and a2 cannot be eliminated. The pro­
jective representation is not even locally equivalent to a 
linear representation and is not of the form (4.3). Conse­
quently, it is better to reserve the name "ray representa­
tions" to locally linear representations. 

If an exact cochain ~f11 is added to a2, the exact part 
can be eliminated but the nonexact "core" cannot. Adding 
an exact cochain is an equivalence relation, the corre­
sponding classes being the elements of the quotient space of 
the closed by the exact cochains. This quotient space is the 
additive cohomology group H2( G). There is a one-to-one 
relation between the inequivalent projective representa­
tions and the elements of H2( G), which thereby "classi­
fies" them. 7,8 

To obtain condition (4.17), we have taken associativ­
ity for granted in its usual way. If we are enough of a free 
thinker to accept that it holds up only to a phase factor, 

[U( f) U(h)] U(g) ItPx) 

= eiu) (x;g,h,f) U( f ) [ U(h) U(g») I tPx) (4.20) 

then 

(4.21 ) 

instead of (4.17). Here, a3 is a three-cochain, as it takes 
three elements of G to give the number a3 (x;g,h,J ). When 
it is non vanishing, a2 is no more a cocycle and there is no 
associativity: a3 is an obstruction to associativity. In prin­
ciple, we can proceed with such successive steps of require­
ments and a corresponding hierarchy of closed and exact 
cochains. Nevertheless, associativity is part of the defini­
tion of a group and so desirable a property for a represen­
tation that it is usual to stop at this point. We say then 
simply that a3 is an obstruction to the construction of 
projective representations. 

It is also possible to introduce a notion akin to the 
interior product: Given the p-cochain ap, its "interior 
product" with hEG is that (p - 1) -cochain thap satisfying 

(4.22) 

for all gl,g20'''' gp_ I' A natural further step is to introduce 
a formal "Lie derivative" with respect to a hEG by 

(4.23) 

Some of its formal properties, again analogous to those of 
differential forms, are 

(4.24a) 
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(AhaO)(x)=ao(xh) -ao(x)=~ao(x;h); (4.24b) 

(Ahal)(x;g)=al(xg;h) -al(x;hg) +al(xh;g); (4.24c) 

(Aha 2) (x;gJ) =a2(xh;gJ) - a2(x;hgJ) 

( 4.24d) 

The limited character of such analogies should how­
ever be stressed. Unlike differential forms, the above co­
chains are not acting on a linear space and consequently 
share with them only some of their properties. They lack a 
tensorial character and, as a consequence, all the qualities 
coming with it. For example, there are no basis in terms of 
which any p-cochain can be written. 

v. THE FUNDAMENTAL COCYCLE 

As said in Sec. III, it is the toroidal lattice formed by 
the labels (m,n) of Schwinger'S operators Smn that consti­
tute quantum phase space. Our objective, to which we fi­
nally arrive, is to show that indeed a certain cocycle (a2 
below) exists which endows the space of a structure similar 
to the symplectic structure of classical phase space and 
tends to the symplectic form in the classical limit. Consider 
the unitary operators of Sec. III. It comes directly from 
(3.12) and (4.3) that 

al (k;Smn) = (rrlN) [(2k + m)n), 

of which two particular cases are 

a.(k;V)=(2rrIN)k 

and 

We need the two expressions 

a.(kSmn;Srs) =a.(k + m;Srs) 

(5.1) 

(5.2) 

(5.3 ) 

=(rrIN)[2(k+m) +r)s, (5.4) 

and 

a.(k;SmnSrs) = (rrIN)[(2k + m + r)(n +s»), (5.5) 

to verify, using (4.8), that 

~a.(k;SmmSrs) =a.(kSmn;Srs) - a.(k;SmnSrs) 

+ a.(k;Smn) 

= (rrIN)[ms - nr). (5.6) 

This is nonvanishing in general, hinting, after the discus­
sion of the previous section, to a globally projective char­
acter. Indeed, from (3.13) we obtain 

a2(k;SmmSrs) = (rrIN) [ms - nr), 

so that a2 is exact: 

a2(k;SmmSrs) =~a.(k;SmmSrs)' 

(5.7) 

(5.8) 

for any pair S mmS rs' This means that the representation 
only reduces to a linear one if we want to pay the price of 
"gaugefying" it as in (4.18): it is a ray representation, 
locally linear although globally projective. 
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Notice that a2(k;SmmSrs) is independent of the state 
label k. A particular value of interest is 

(5.9) 

That the cochain a2 is a cocycle is a consequence of the 
associativity condition (3.17): 

(5.10) 

Of course, this was already implied by the triviality (5.8) 
of a2 and actually contained in the product rules (3.13). 
We should call attention to an obvious but important as­
pect. The cochains act on group elements to produce 
phases, exponentiated numbers. Unitary operators are not 
observables, only their Hermitian exponents are. The pa­
rameters m, n appear always exponentiated also, as in 
(3.9) and in the continuum limit [as in (3.19)] they do 
seem to tend to observables with classical counterparts. It 
is as if the parameters belonged not to the group but to its 
algebra. We must consequently be prepared to the fact that 
the relation between a2 and n is exponential and, for fa­
cility, compare the results of their respective actions. There 
is no obvious correlation between associativity and the 
property related to the closedness of n, the Jacobi identity 
(2.18) for the Poisson bracket. Associativity is a much 
more general condition, a property of every group while 
Jacobi identity, typically an integrability condition, 
appears (exponentiated, as a property of the generators) 
only for Lie groups. Presumably this general property gets 
somehow weakened in the limiting process. An analogy 
may, however, help to shed some light on this point. There 
is a strong similarity of the formalism above with the basic 
structure of gauge theories: al recalls the gauge potential 
A, fJ the covariant derivative D, a2 the field strength 
F=DA. Or, it happens that in gauge theories the closed­
ness of F, DF=O (the Bianchi identity) is precisely equiv­
alent to the Jacobi identity for the gauge group genera­
tors. 14 We might conjecture that the closed ness of a2 is 
somehow related to that of n. 

It is instructive to consider on the parameter space of 
the numbers m, n, r, etc. column vectors 

with them as components. The row vectors X~m X~ will 
behave as dual vectors by simple scalar product. Then, 
with the usual product of rows, matrices, and columns, 

a2 (k;S mmSrs) = ('TTl N) [ms - nr] =X~nnXrS' (5.11) 

where n is the symplectic matrix (2.16). On the toroidal 
grid formed by the parameters a2(k;SmmSrs) is propor­
tional to the "area" defined by the vectors (m,n) and (r,s), 
as was the case for n in (2.17). We may also check that 
ts a2 is closed and takes a column vector X mn into 

mn 

X -n,m' 

[ts a2] (k;Srs) =N'TT ( _ n,m) (r) . 
mil S 

(5.12 ) 
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u2 
u- f 

V V -fO 
~ U k+t 

(a) 

ffi· -I 
2 ! V V - .. _. 

__ .J 
Cb) 

Ie Ie+! k+Z 
(c) 

FIG. I. The simplest loops on QPS: (a) an elementary loop; (b) a double 
loop with negative sense; (c) a triple loop. Each enclosed elementary cell 
contributes a phase 2rr/Nto Smw 

This duality corresponds to relation established by n be­
tween vectors and forms. Furthermore, putting together 
the considerations on the continuum limit at the end of 
Sec. III and Eqs. (2.14) and (2.15), we see that a2 plays 
on the lattice torus a role quite analogous to that of the 
symplectic form: from (3.21), we see that in the contin­
uum limit a2 gives (minus) half the value (2.15) of n 
applied to the corresponding vectors: 

a2(k;Sab,Scd) = - Had - cb] = - ~n(Jab,Jcd)' 

Using (4.23) we find that 

(AS a2) (k;Srs,Spq) =0, 
mn 

(5.13 ) 

for all Smm SrS' and Spq, stating the invariance of a2 under 
all transformations of the Weyl group. In this sense, all of 
them are "canonical transformations." Another analogy, 
trivial to obtain but interesting, comes from the very defi­
nition of a2: It vanishes when applied to two commuting 
elements, just as n vanishes when applied to two fields 
corresponding to dynamical functions whose Poisson 
bracket vanishes. Such two fields are tangent to the same 
Lagrange manifold. On QPS, this corresponds to subsets of 
intercom muting operators. Finally, from (5.8), we see that 
the role of the canonical form a is played by the cochain 
al' 

Points in QPS can be attained from each other by suc­
cessive applications of the operators U and V. Operators 
Smn will meanwhile acquire phases. This is better seen if we 
start with some state IUk) and look such successive trans­
formations as forming paths on QPS. Each time U is ap­
plied the state is shifted and each time V is applied the ket 
gains a phase. This phase depends on the state arrived at. 
In Fig. l(a), operator V acts at "k + I", but its inverse 
U - I acts at "k." As a consequence of this point depen­
dence, closed loops give a net result phase. Going around 
the loop in Fig. 1 (a), for example, will give to IUk) a phase 
~ = (2'TTIN). This ~ is the unit phase: It comes each time 
a unit cell in QPS is surrounded. The sum of phases is 
algebraic: Going around the unit loop in the inverse sense 
changes its sign. In our convention, positive sign is given 
by counterclockwise motion. So, the path of Fig. 1 (b) con­
tributes a phase (- 2102

), that of Fig. 1 (c) a phase 
( - 3102

), etc. Closed loops may give vanishing phases. 
This is trivial for the two closed paths generated by UN and 
VN

, which simply close around the torus, but there are 
nontrivial cases: In Fig. 2, the contributions from the two 
unit loops cancel each other. As a2 measures just (half) 
the areas in units of 10, there is at work here a version of 
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cE 
k Ic+' 1c+2 

FIG. 2. A loop giving a vanishing contribution to the phase of Smw 

Gauss theorem: the total (algebraic) area circumvented by 
a loop is obtained by just following the loop step by step, at 
each step summing the corresponding al> as given by (5.2) 
and (5.3). As exhibited in Fig. 3, the product Sm"srs is 
equivalent to taking Smn then Srs only when 
a2(k;SmmSrs) = O. The closed paths of Figs. 1 and 2 are 
projections of paths in the space of the operators S mm 
where the paths are, as a rule, open. A kind of nonintegra­
bility appears: Starting from a given point, the phase at 
another point will depend on the path, unless the "flux" of 
a2 through the surface defined by any two paths is zero. In 
this sense al is a nonintegrable phase like those of gauge 
theories l5 and a2 would act as the corresponding "curva­
ture." As already mentioned, there are many aspects in 
common with gauge theories in the present formalism, but 
we shall not discuss them here. Neither shall we consider 
the possible relation of al to a generalized l6 Berry's 
phase,17 a subject deserving further study. 

As an example, the commutator V-I u- I VU of Fig. 
1 (a) produces in operator space (see Fig. 4 ) an arc which 
fails to close precisely by the phase E2. Such trajectories in 
operator space only close when the unit cell is surrounded 
a multiple of N times, in which case it becomes a closed 
spiral. The role of a2, similar to a curvature on QPS, is 
different here: As it measures such defects in the operator 
space, it is reminiscent of that of torsion in differential 
geometry. 

In the continuum limit we must consider "large" re­
gions of sizes mE and nE tending to limits a and b and the 
operators (now putting fl back into our expressions 
U m -+ eiap/fz and vn -+ eibq1fz. The phase 

a2(k;Um,Vn ) = (rrIN)mn= (E2/2)mn 

tends to tab,just (half) the value of 0 (aXq,bXp). Actually, 
to examine the continuum limit, as well as to get some 

/ 

} _.111;5 ..... 5.,1 

011 It. m;S.,1 

8 .. s_y 
S_ 

OI l lk; ' ... 5" I 

" ... '" 
FIG. 3. The fundamental cocycle measures the phase difference between 
S m,,s yo; and the successive applications of S,"" and S ". 
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v .. 
m+1 

FIG. 4. An elementary loop in parameter space corresponds to an open 
trajectory in operator space. 

more insight on the role of the cocycle a2 it is convenient 
to apply the formula giving the Weyl-Wigner transform 
W (AB) = (AB) w of the product of two operators A and 
B in terms of their transforms W(A) = Aw(q,p) and 
W(B) = Bw(q,p), which is 

W(AB) =ei(fzIZ)[aA tDp - aApaDqlAw(q,p)Bw(q,p). 

! 5.14) 

The upper indices in iJA q' aB
p are reminders: iJA p is the 

derivative with respect to q but which applies only on 
Aw(q,p); aB

p derives with respect to p but only acts on 
Bw(q,p), etc. The Poisson bracket always comes up at first 
order in fl: 

W(AB) =Aw(q,p)Bw(q,p) - (flI2i) 

X {Aw(q,p),Bw(q,p)} + ... (5.15) 

but the Weyl-Wigner transformed functions Aw(q,p) and 
Bw(q,p) may still exhibit additional powers of fl, depend­
ing on their explicit form in terms of q and p. In fact, only 
in the strict classical (fl-+O) limit will such functions re­
duce to their classical counterparts. Getting the Poisson 
bracket from a quantum commutator is only achieved 
when we pass from a noncom mutative algebra to a com­
mutative one at the price of ignoring the cell structure of 
quantum phase space. 18 Only then (ilfl) 
X [A,B) ..... {Aclas.,Bclasj. To clarify this point, let us con­
sider the operators A = SaO = e(ilfz)aq and B = SOb 
= e(ilfz)bP. From the previous formalism, their product will 
be 

(5.16 ) 

The Weyl-Wigner transform of the right-hand side is 

(5.17 ) 

where now q and p behave like classical variables. On the 
other hand, (5.14) will say that 

W(AB) =ei(fzI2)[aA ~p - aA ~ql [e(ilfz)(aq + bp )]. (5.18 ) 

R. Aldrovandi and G. Galetti 2994 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

200.145.174.147 On: Mon, 17 Mar 2014 12:58:19



We see that in some way a2 sums up all the intricate action 
of the exponentiated operator. The present example is spe­
cially simple but reflects much of the fundamental struc­
ture of the continuum quantum phase space, as in this case 
Sab is a typical base element. The Poisson bracket is con­
stant and it is possible to write down the exact result, 

W(AB) =e- Ul2fi)abeU/fi)(aq+ bp), 

so that 

a2(A,B) = - (l/21i){A,B}. 

( 5.19) 

(5.20) 

An analogous result would come if we took operators of 
type (3.21). In such cases related to the harmonic oscilla­
tor, whose semiclassical approximation is exact, a2 gives 
the classical result up to a factor Ii - 1. This is indeed the 
hallmark of the quantum structure of phase space embod­
ied in a2, which is not at all a classical object. It is ex­
pressed above in terms of the Poisson bracket, but of 
Weyl-Wigner representatives of quantum objects. In this 
continuum case, a2 heralds the noncommutativity of the 
basic pair q-p. In the general case, it highlights the funda­
mental cellular structure of QPS. 

VI. SUMMARY 

Every feature of classical mechanics stems from some 
quantum mechanical feature. Let us try to review the anal­
ogies and differences between the cocycle a2 and the sym­
plectic form. To begin with, n is globally defined on the 
classical state space and az(k;SmmS,s) is independent of 
the state label k. The first is invariant under canonical 
transformations, the second under all unitary transforma­
tions. Both measure areas defined by vectors in the corre­
sponding spaces. The closedness of n guarantees the Jacobi 
identity for the Poisson brackets, that of az the projective 
character of the Weyl representation. Classical Lagrange 
manifolds are on QPS replaced by subsets of intercommut­
ing unitary operators. The symplectic form is a linear op­
erator, which we could not expect of az. Finally, az tends 
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to the symplectic form n when, in the continuum limit, the 
noncommutativity of dynamical variables is relaxed. The 
cocycle az is that feature of quantum mechanics on which 
the symplectic structure of classical mechanics casts its 
roots. 
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