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1 Introduction

We consider the following nonlinear partial differential equation:

1

2
Di(a

ijDjW ) +
1

2
âijDiWDjW + b · ∇W + V = Λ in R

N (1.1)

or equivalently

1

2
aijDijW +

1

2
âijDiWDjW + b̃ · ∇W + V = Λ, b̃i(x) ≡ bi(x) +

1

2
Dja

ij(x), (1.2)

where a(x) = [aij(x)], â(x) = [âij(x)] are symmetric matrices, b(x) = (b1(x), · · · , bN(x))
is mapping of R

N into R
N , V (x) is function on R

N . Here we utilize the notations
Dij = ∂2/∂xi∂xj , Di = ∂/∂xi and summation convention for multiple indexes. We think
of a pair (W, Λ) of function W (x) and constant Λ as a solution of (1.1). (1.1) is called
ergodic type Bellman equation. This kind of equations is treated in ergodic control
problems (cf. [1]). In the ergodic control problems, â is negative-definite and more
general forms of (1.1) have been studied under rather general conditions (cf. [2]). On the
other hand, (1.1) also appears in risk-sensitive control problems in infinite time horizon
and has been studied under certain conditions (cf. [5], [8], [9], [13]). One of the main
features of (1.1) in risk-sensitive control is that â might be positive-definite. Recently,
it is also known that this case happens in some investment problems in mathematical
finance (cf. [3], [4], [6], [7], [14]). We shall study the solutions of (1.1) in the case that â
is positive-definite.

The studies of solutions for Bellman equations from analytical point of view are con-
sidered to be fundamental to determine an optimal control for control problems (see the
explanation later in this section). Note that solutions of (1.1) have ambiguity of addi-
tive constant, i.e., if (W, Λ) is a solution of (1.1), W (x) + c still satisfies (1.1) for each
constant c. As some examples show, it is known that (1.1) has multiple solutions even
if we identify the solutions up to additive constants. So, it is important to study how
we pick up a particular solution of (1.1) which gives an optimal control for the problems
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at hand. A common way to obtain a particular solution for ergodic type Bellman equa-
tions is to study the discounted type equations. The discounted type Bellman equation
corresponding to (1.1) is as follows:

1

2
Di(a

ijDjWα) +
1

2
âijDiWαDjWα + b · ∇Wα + V = αWα

α > 0 is called discount factor. Under certain conditions, it is shown that Wα(x)−Wα(x0)
normalized at some point x0 ∈ R

N and αWα converge to some function W (x) and some
constant Λ respectively. Furthermore (W, Λ) satisfies (1.1) (cf. [5], [8], [9]). Under the
conditions including Linear Exponential Quadratic Gaussian (LEQG) control problem,
we need to consider the case that b(x) (resp. V (x)) is at most linearly growing (resp.
quadratic growing). Under such a kind of settings, W is characterized to meet some
growth condition and (W, Λ) obtained by this process is considered to be the right solution
(cf. [8], [9]).

In the present paper, we directly tackle (1.1) without the procedure using discounted
type equation under the conditions including LEQG case. We shall specify the set of Λ
for which (1.1) has a smooth solution. Furthermore we shall characterize the set of Λ by
noting the global behavior of diffusion process which is related to some control problem.
One of our advantages is that we can treat more general b(x) compared to [8], [9].

To explain how we relate (1.1) to a control problem, we shall give a control interpre-
tation to (1.1). Let (Ω,F , P, {Ft}) be a probability space with filtration. Consider the
following controlled stochastic differential equation (SDE):

dXt = (b̃(Xt) + ut)dt + σ(Xt)dBt, X0 = x ∈ R
N , σ(x) ≡ a(x)1/2

where Bt is N -dimensional Ft-Brownian motion and ut is Ft-progressively measurable
process taking its value in R

N . {ut} is considered as control process. We define the value
function as follows:

v(t, x) = sup
u.

Ex

[∫ T−t

0

V (Xs) − 1

2
â−1

ij (Xs)u
i
su

j
sds

]
,

where â−1
ij is (i, j)-component in inverse of â. By using Bellman principle, we see that

v(t, x) satisfies the following equation formally:

∂v

∂t
+

1

2
aijDijv + sup

u∈ N

{
(b̃(x) + u) · ∇W − 1

2
â−1

ij uiuj

}
+ V = 0 in (0, T ) × R

N (1.3)

v(T, x) = 0, x ∈ R
N . (1.4)

Since supu∈ N{(b̃ + u) · ∇W − (1/2)â−1
ij uiuj} = (1/2)âijDivDjv + b̃ · ∇v, (1.3) reduces to

the following:
∂v

∂t
+

1

2
aijDijv +

1

2
âijDivDjv + b̃ · ∇W + V = 0.

Note that the supremum is attained at ū(x) = â∇W (x). If (∂v/∂t)(0, x) converges to
some constant Λ and v(0, x) − v(0, x0) normalized at some point x0 ∈ R

N converges to
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some function W (x) as T → ∞, we have formally the following equation which we shall
discuss in this paper:

1

2
aijDijW +

1

2
âijDiWDjW + b̃ · ∇W + V = Λ.

This is considered to characterize the long-time average cost defined as following:

Λ = lim
T→∞

sup
u.

1

T
Ex

[∫ T

0

V (Xs) − 1

2
â−1

ij (Xs)u
i
su

j
sds

]
. (1.5)

Following Bellman principle, we can expect that ūt = â(Xt)∇W (Xt) should be an can-
didate of optimal control for (1.5), where Xt is defined by the controlled SDE with
ut = ūt = â(Xt)∇W (Xt):

dXt = (b̃(Xt) + â∇W (Xt))dt + σ(Xt)dBt, X0 = x. (1.6)

We shall study the structure of solutions of (1.1) by relating to (1.6) under condi-
tions which include LEQG case, i.e., b(x) (resp. V (x)) has at most linear growth (resp.
quadratic growth).

The paper is organized as follows.

In §2, we shall specify the set of Λ for which (1.1) has a solution under rather general
conditions on b(x) and V (x). Indeed, it is proved that the set of Λ is equal to closed
half-line [Λ∗,∞) for some Λ∗ ∈ (−∞,∞).

In §3, we shall classify Λ according to the global property of the diffusion process
defined by (1.6) under certain stability condition for b(x) (see (A1)

′′
). We shall prove

that for Λ > Λ∗, the diffusion process {Xt} in (1.6) corresponding to solution (W, Λ) is
transient and for Λ = Λ∗, {Xt} is ergodic. Moreover, we shall show that solution W (x)
corresponding to Λ∗ is unique up to additive constant.

We note that the structure of Λ specified in this paper is considered to be a gener-
alization in the theory of positive harmonic function for linear differential operators (cf.
[15]).

2 The set of Λ having a solution

In the present section, we shall consider the set of Λ for which (1.1) has a classical solution
W under rather general conditions. In the next section, under certain stability property
of b(x), we shall classify Λ by following the global behavior of the diffusion process related
to the solution W corresponding to Λ.

We define the following set:

A ≡ {Λ : there exists smooth function W satisfying (1.1) for Λ}.
Under the assumptions given below, we can prove that A has the following form for some
Λ∗ ∈ (−∞,∞) :

A = [Λ∗,∞)
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For simplicity, we always assume aij, âij , b, V are sufficiently smooth. We shall give the
following assumptions :

(A1) Daij(x) is bounded and there exist c1, c2 > 0 and m ≥ 1 such that

|b(x)| ≤ c1(1 + |x|m), |Db(x)| ≤ c1(1 + |x|m−1),

|V (x)| ≤ c2(1 + |x|2m), |DV (x)| ≤ c2(1 + |x|2m−1).

(A2) There exist 0 < ν1 < ν2 such that

ν1|ξ|2 ≤ aij(x)ξiξj ≤ ν2|ξ|2 ∀x, ξ ∈ R
N .

(A3) There exist 0 < µ1 < µ2 such that

µ1|ξ|2 ≤ âij(x)ξiξj ≤ µ2|ξ|2 ∀x, ξ ∈ R
N .

(A4) There exists some function W0(x) such that

1

2
Di(a

ijDjW0) +
1

2
âijDiW0DjW0 + b · ∇W0 + V → −∞ as |x| → ∞.

Remark 2.1. Note that it follows from (A2), (A3) that there exist c, c̄ > 0 such that

ca(x) ≤ â(x) ≤ c̄a(x), x ∈ R
N . (2.1)

Remark 2.2. For the purpose of discussion in the present section, we can replace (A4)
with the existence of a super-solution of (1.1) for some Λ to ensure that A 	= ∅. We need
(A4) to classify Λ in the next section

As for sub-solutions, under (A1)–(A3), we can show that for arbitrary Λ, there exists
W̃0(x) such that

1

2
Di(a

ijDjW̃0) +
1

2
âijDiW̃0DjW̃0 + b · ∇W̃0 + V ≥ Λ in R

N .

Indeed, we can take W̃0(x) = α|x|m+1 + β|x|2 and choose α, β satisfying the above
inequality.

In order to see A 	= ∅, consider the following Dirichlet problem :

1

2
Di(a

ijDjWR) +
1

2
âijDiWRDjWR + b · ∇WR + V = Λ in BR, (2.2)

WR = W0 on ∂BR, (2.3)

where BR is open ball with radius R centered at 0 and W0 is taken from (A4). Note that
(2.2) is equivalent to

1

2
aijDijWR +

1

2
âijDiWRDjWR + b̃ · ∇WR + V = Λ in BR, (2.4)

By (A4), W0 satisfies the following inequality for some Λ :

1

2
Di(a

ijDjW0) +
1

2
âijDiW0DjW0 + b · ∇W0 + V ≤ Λ in R

N .

4



Also, from Remark 2.2, we have

1

2
Di(a

ijDjW̃0) +
1

2
âijDiW̃0DjW̃0 + b · ∇W̃0 + V ≥ Λ in R

N .

Then, under (A1)–(A4), there exists WR ∈ C2,α(B̄R) satisfying (2.2), (2.3) (cf. [10],
Chapter 4, Theorem 8.4).

We need a uniform bound for ∇WR in compact sets to obtain a solution W of (1.1)
by sending the radius R to ∞. The following gradient estimate is also useful in the later
discussions.

Lemma 2.3. Let WR be a smooth function satisfying (2.2). Under (A1)–(A3), we have
for each r > 0 and R > 2r

sup
Br

|∇WR| ≤ C(Λ)(1 + |r|m), (2.5)

where C(Λ) is a constant independent of r and R and non-decreasing on Λ.

Proof. (1.1) has the nonlinear term similar to those treated in [8], [9] and we can follow
the same arguments to obtain the gradient estimate. However, we shall give a proof to
specify the dependence of Λ and growth order on r.

We set W = WR for simplicity. By differentiating each side of (2.4) on xk, we have

1

2
Dka

ijDijW +
1

2
aijDijkW +

1

2
Dkâ

ijDiWDjW + âijDiWDjkW

+ Dk b̃
iDiW + b̃iDikW + DkV = 0. (2.6)

Let us set G ≡ (1/2)
∑

k(DkW )2. Then, using (2.6)

− 1

2
aijDijG − âijDiWDjG − b̃iDiG

= −1

2
aijDkWDijkW − 1

2
aijDkiWDkjW − âijDiWDkWDjkW − b̃iDkWDikW

=
1

2
Dka

ijDkWDijW +
1

2
Dkâ

ijDiWDjWDkW

+ Dk b̃
iDiWDkW + DkV DkW − 1

2
aijDkjWDkjW. (2.7)

We note the second order derivative terms. Then, we have

RHS of (2.7) ≤ 1

4δ
(
∑
i,j

|Daij|2)|DW |2 +
δ

4
|D2W |2

+
1

2
Dkâ

ijDiWDjWDkW + Dkb̃
iDiWDkW

+ DkV DkW − 1

4
aijDkiWDkjW − 1

4
aijDkiWDkjW

≤ 1

4δ
(
∑
i,j

|Daij|2)|DW |2 +
1

2
Dkâ

ijDiWDjWDkW + Dkb̃
iDiWDkW

+ DkV DkW − 1

4
aijDkiWDkjW,
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where δ > 0 is a small constant. Indeed, we can take δ satisfying δ < ν1. From matrix
inequality (trAB)2 ≤ Nν2(trAB2) where A, B are N ×N -symmetric matrices, A is non-
negative definite and ν2 is the maximum eigenvalue of A, we finally obtain the following
inequality by using (A1):

− 1

2
aijDijG − âijDiWDjG − b̃iDiG

≤ C(1 + |x|2m−1)|DW |+ C(1 + |x|m−1)|DW |2 + C|DW |3 − 1

4Nν2
(aijDijW )2 in B2r,

(2.8)

Here and in the proof below, we suppose that C is constant independent of r and R.

Fix arbitrary ξ ∈ Br and take a cut-off function ϕ ∈ C∞
0 (RN) satisfying the following:

0 ≤ ϕ ≤ 1 in R
N , ϕ(ξ) = 1, ϕ ≡ 0 in Br(ξ)

c,

|∇ϕ| ≤ Cϕ, |D2ϕ| ≤ C,
(2.9)

where Br(ξ) is open ball with radius r centered at ξ. Let x0 be a maximum point of ϕG
in B̄r(ξ). By maximum principle, we can see

0 ≤ −1

2
aijDij(ϕG) − âijDiWDj(ϕG) − b̃iDi(ϕG)

= ϕ

{
−1

2
aijDijG − âijDiWDjG − b̃iDiG

}

− 1

2
aij(Dijϕ)G − aijDiϕDjG − âijDjϕ(DiW )G − b̃i(Diϕ)G

≤ ϕ

{
−1

2
aijDijG − âijDiWDjG − b̃iDiG

}
+ C(1 + |x|m)G + Cϕ1/2G3/2 at x0,

(2.10)

where we used 0 = D(ϕG) = GDϕ + ϕDG and (2.9). From (2.4) and (2.8), it implies

RHS of (2.10)

≤ ϕ

{
C(1 + |x|2m−1)G1/2 + C(1 + |x|m−1)G + CG3/2 − 1

4Nν2
(aijDijW )2

}

+ C(1 + |x|m)G + Cϕ1/2G3/2

= ϕ

{
C(1 + |x|2m−1)G1/2 + C(1 + |x|m−1)G + CG3/2

− 1

Nν2

(
−1

2
âijDiWDjW − b̃iDiW − V + Λ

)2 }

+ C(1 + |x|m)G + Cϕ1/2G3/2 at x0. (2.11)

Noting (A1), (A3), then, the following inequalities hold for some positive constants κ
depending on µ1

−1

2
âijDiWDjW − b̃iDiW − V + Λ ≤ −µ1

2
|DW |2 + C(1 + |x|m)|DW | − V + Λ

≤ −κ|DW |2 + C(1 + |x|2m) − V + Λ. (2.12)
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In the case that −κ|DW |2 + C(1 + |x|2m) − V + Λ ≥ 0 at x0, we have

κ|DW |2(x0) ≤ C(1 + |x0|2m) − V (x0) + Λ

≤ C(1 + |x0|2m) + Λ ≤ C(1 + |r|2m) + Λ,

where we used (A1) and x0 ∈ B2r. Since (1/2)|DW |2(ξ) = (1/2)|DW |2(ξ)ϕ(ξ) ≤
G(x0)ϕ(x0), we obtain the following gradient estimate at ξ:

|DW |2(ξ) ≤ C(1 + |r|2m) + Λ.

We next consider the case that −κ|DW |2 +C(1+ |x|2m)−V +Λ ≤ 0 at x0. By (2.12),

RHS of (2.11)

≤ ϕ

{
C(1 + |x|2m−1)G1/2 + C(1 + |x|m−1)G + CG3/2

− 1

Nν2

(−κ|DW |2 + C(1 + |x|2m) − V + Λ
)2

}
+ C(1 + |x|m)G + Cϕ1/2G3/2

≤ ϕ

{
C(1 + |x|2m−1)G1/2 + C(1 + |x|m−1)G + CG3/2

− 4κ2

Nν2
G2 +

8κ

Nν2
G(C(1 + |x|2m) − V + Λ)

}
+ C(1 + |x|m)G + Cϕ1/2G3/2 (2.13)

If C(1 + |x0|2m) − V + Λ ≥ κG(x0)/4 or C(1 + |x0|2m−1) ≥ G(x0) we have the bound
|DW |2(ξ) ≤ C(1 + |r|2m) + Λ in the same way as the above case. We shall consider the
case that C(1+ |x0|2m)−V +Λ ≤ κG(x0)/4 and C(1+ |x0|2m−1) ≤ G. Then, from (2.13),
we have

0 ≤ ϕ

{
CG3/2 + C(1 + |x|m−1)G + CG3/2 − 4κ2

Nν2
G2 +

2κ2

Nν2
G2

}

+ C(1 + |x|m)G + Cϕ1/2G3/2

≤ −C1ϕG2 + C2ϕ
1/2G3/2 + C3(1 + rm)G

≡ −C1ϕG2 + C2ϕ
1/2G3/2 + C̃3G at x0, C̃3 ≡ C3(1 + rm)

where C1, C2, C3 are positive constants independent of r, R and Λ. By setting X ≡
ϕ1/2G1/2, we have

0 ≤ −C1X
2 + C2X + C3.

Therefore, we have

X2 = ϕG(x0) ≤ C2
2

C2
1

+
2C̃3

C1

≤ C2
2

C2
1

+
2C3(1 + rm)

C1

Since (1/2)|DW |2(ξ) = (1/2)|DW |2(ξ)ϕ2(ξ) ≤ G(x0)ϕ(x0), we obtain the bound for
|DW |(ξ).

We may normalize WR as WR(0) = 0 because (1.1) does not include zeroth term on
WR. Then, from Lemma 2.3, there exists W ∈ C(RN) such that WR converges to W on
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each compact sets as R → ∞ by taking a subsequence if necessary. Also, since {WR}R>2r

is bounded in H1(Br) by Lemma 2.3, WR converges to W L2
loc-strongly and H1

loc-weakly.
Furthermore, we can see that ∇WR converges L2

loc-strongly in a similar way to [9], [13],

We rewrite (2.2), (2.3) in integral form :

− 1

2

∫
aijDiWRDjϕ dx +

1

2

∫
âijDiWRDjWRϕ dx

+

∫
b · ∇WR ϕ dx +

∫
V ϕ dx =

∫
Λϕ dx, ϕ ∈ C∞

0 (BR).

Fix r > 0. Since WR converges to W H1
loc-strongly, we obtain the following by sending

R to ∞ :

− 1

2

∫
aijDiWDjϕ dx +

1

2

∫
âijDiWDjWϕ dx

+

∫
b · ∇W ϕ dx +

∫
V ϕ dx =

∫
Λϕ dx, ϕ ∈ C∞

0 (Br), r > 0.

Owing to the regularity theorem of elliptic equations and imbedding theorem, we have
W as a classical solution of (1.1). Therefore, we have proved that A 	= ∅.

We shall state and prove the form of the set of Λ.

Theorem 2.4. Under the assumptions (A1)–(A4), there exists Λ∗ ∈ (−∞,∞) such that
A = [Λ∗,∞).

Proof. In order to show inf A > −∞, we suppose inf A = −∞, i.e., there exists
{Λn} ⊂ A such that Λn tends to −∞ as n → ∞. Let Wn be a solution of (1.1)
corresponding to Λn. Then, by the integral form of (1.1), we have

− 1

2

∫
aijDiWnDjϕ dx +

1

2

∫
âijDiWnDjWn ϕ dx

+

∫
b · ∇Wn ϕ dx +

∫
V ϕ dx =

∫
Λnϕ dx, ϕ ∈ C∞

0 (RN). (2.14)

Take ϕ ∈ C∞
0 (RN) such that

∫
ϕdx 	= 0. Since {Λn} is bounded from above, it implies

from Lemma 2.3 that
sup
Br

|∇Wn| ≤ Cr, (2.15)

where Cr is a constant independent of n and r is taken such that supp ϕ ⊂ Br. Therefore,
the left hand side of (2.14) is bounded on n. On the other hand, the right hand side of
(2.14) is unbounded because of the assumption which we made above. This leads to a
contradiction.

We shall next prove if Λ̃ ∈ A, then [Λ̃,∞) ⊂ A . Let W̃ be a solution corresponding
to Λ̃. For arbitrary Λ ≥ Λ̃, we have

1

2
Di(a

ijDjW̃ ) +
1

2
âijDiW̃DjW̃ + b · ∇W̃ + V = Λ̃ ≤ Λ in R

N . (2.16)
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By Remark 2.2, there exists W̃0 such that

1

2
Di(a

ijDjW̃0) +
1

2
âijDiW̃0DjW̃0 + b · ∇W̃0 + V ≥ Λ̃ in R

N . (2.17)

Consider the Dirichlet problem (2.2) with boundary condition WR = W̃0 on ∂BR. From
(2.16), (2.17), the existence of a classical solution for this Dirichlet problem is guaranteed
by [10]. In the same manner as that right after the proof of Lemma 2.3, we can see that
there exists a smooth function W satisfying (1.1) for Λ.

We shall prove that Λ∗ ≡ inf A actually belongs to A. {Λn} is a sequence in A such
that Λn → Λ∗ and Wn is a solution of (1.1) corresponding to Λn normalized as Wn(0) = 0.
Then, Wn satisfies (2.14). Since {Λn} is bounded, it follows from Lemma 2.3 that (2.15)
holds for some constant Cr independent of n. Following the same way as the discussion
after Lemma 2.3, we can see that Wn converges to W ∗ ∈ C(RN) uniformly on compact
sets and H1

loc-strongly. By taking a limit in (2.14) as n → ∞, we have

− 1

2

∫
aijDiW

∗Djϕ dx +
1

2

∫
âDiW

∗DjW
∗ ϕ dx

+

∫
b · ∇W ∗ϕ dx +

∫
V ϕ dx =

∫
Λ∗ϕ dx, ∀ϕ ∈ C∞

0 (RN ).

Therefore, the existence of a classical solution W ∗ of (1.1) for Λ∗ follows from the regu-
larity theorems of elliptic equation and imbedding theorem.

3 Classification of solutions

3.1 Transience and ergodicity of diffusion processes

In the last section, we proved that the set of Λ for which (1.1) has a smooth solution
is A = [Λ∗,∞) for some Λ∗ ∈ (−∞,∞). In the present section, we shall study the
classification of Λ by global behavior of {Xt} defined by (1.6) under stronger conditions.
Instead of (A1), we assume the following:

(A1)
′

Daij is bounded and there exists c1, c2 > 0 such that

|b(x)| ≤ c1(1 + |x|), |Db(x)| ≤ c1,

|V (x)| ≤ c2(1 + |x|2), |DV (x)| ≤ c2(1 + |x|).

(A1)
′′

There exist γ1, γ2 > 0 such that

x · b(x) ≤ −γ1|x|2 + γ2, x ∈ R
N .

Let (Ω,F , P, {Ft}) be a filtered probability space on which N -dimensional Brownian
motion {Bt} is defined. For given Λ ∈ [Λ∗,∞), consider the SDE:

dXt = (b̃(Xt) + â∇W (Xt))dt + σ(Xt)dBt, X0 = x, (3.1)
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where W (x) is a solution of (1.1) corresponding to Λ. We shall classify Λ according to
the global properties of {Xt}. More precisely, we shall prove that for Λ > Λ∗, {Xt} is
transient and for Λ = Λ∗, {Xt} is ergodic.

First of all, we shall see that diffusion process {Xt} defined in (3.1) does not explode
in finite time. Let us define diffusion process {Yt} governed by the following SDE:

dYt = b(Yt)dt + σ(Yt)dBt, Y0 = x.

Under (A1)
′
, {Yt} is well-defined on [0,∞). Let us introduce a new measure as follows:

dP̄

dP

∣∣∣∣
FT

≡ exp

[∫ T

0

σ∇W (Yt)dBt − 1

2

∫ T

0

a∇W · ∇W (Yt)dt

]
. (3.2)

Indeed, as proved below, it implies from (A1)
′
, (A1)

′′
, (A2), (A3) that P̄ is a probability

measure. Therefore, (3.1) has a solution on each closed interval [0, T ] by change of drift
under P̄ .

Lemma 3.1. Suppose that (W, Λ) is a solution of (1.1) and {Xt} is a solution of (3.1).
Under (A1)

′
, (A1)

′′
, (A2), (A3), P̄ defined in (3.2) is a probability measure on FT .

Proof. It is sufficient to prove that there exists θ > 0 such that

sup
0≤t≤T

Ex

[
eθ|∇W (Yt)|2

]
< ∞.

See [11], p.220. By Lemma 2.3, ∇W is at most linearly growing on x, i.e., there exists
C1 > 0 such that

|∇W (x)| ≤ C1(1 + |x|), x ∈ R
N . (3.3)

Therefore, we need to see that for some θ > 0,

sup
0≤t≤T

Ex

[
eθ|Yt|2

]
< ∞. (3.4)

The way to prove (3.4) is relatively standard by using (A1)
′
, (A1)

′′
and its proof is given

in Appendix.

We shall next discuss transience of {Xt} for Λ ∈ (Λ∗,∞). We introduce the operator
associated to solution (W, Λ) of (1.1):

T W,Λ
t f(x) ≡ Ex[f(Xt)], f ∈ C0(R

N),

where {Xt} is a solution of (3.1) corresponding to (W, Λ).

Lemma 3.2. Under (A1)
′
, (A1)

′′
, (A2)–(A4), the following inequality holds for each

solution (W, Λ) of (1.1)

TW,Λ
t f(x) ≤ ke−c(Λ−Λ∗)t, f ∈ C0(R

N), f ≥ 0,

where c is in Remark 2.1 and k is a constant independent of t.
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Proof. Let W ∗ be a solution of (1.1) corresponding to Λ∗. We set Wc ≡ cW , W ∗
c ≡ cW ∗,

where c > 0 is taken from Remark 2.1. Then, we have from (1.2)

1

2
aijDijWc +

1

2c
âijDiWcDjWc + b̃ · ∇Wc + cV = cΛ, (3.5)

1

2
aijDijW

∗
c +

1

2c
âijDiW

∗
c DjW

∗
c + b̃ · ∇W ∗

c + cV = cΛ∗. (3.6)

Subtracting (3.6) from (3.5),

1

2
aijDij(Wc−W ∗

c )+(b̃+â∇W ∗)·∇(Wc−W ∗
c )+

1

2c
â∇(Wc−W ∗

c )·∇(Wc−W ∗
c ) = c(Λ−Λ∗).

Setting W̄ ≡ Wc − W ∗
c , we have

1

2
aijDijW̄ + (b + â∇W ∗) · ∇W̄ +

1

2c
â∇W̄ · ∇W̄ = c(Λ − Λ∗). (3.7)

Let us define diffusion process {X̃t} satisfying the following SDE:

dX̃t = (b̃(X̃t) + â∇W (X̃t))dt − a∇W̄ (X̃t)dt + σ(X̃t)dBt

= (b̃(X̃t) + â∇W ∗(X̃t))dt +

(
1

c
â∇W̄ (X̃t) − a∇W̄ (X̃t)

)
dt + σ(X̃t)dBt

X̃0 = x.

By Girsanov theorem,

T W,Λ
t f(x) = Ex[f(Xt)] = Ex

[
f(X̃t)e

t
0

σ∇W̄ (X̃s)dBs− 1
2

t
0

a∇W̄ ·∇W̄ (X̃s)ds
]

(3.8)

Applying Ito formula to W̄ (X̃t),

dW̄ (X̃t)

= ∇W̄ ·
(

b̃ + â∇W ∗ +
1

c
â∇W̄ − a∇W̄

)
(X̃t)dt +

1

2
aijDijW̄ (X̃t)dt + σ∇W̄ (X̃t)dBt

=

(
1

2
aijDijW̄ + (b̃ + â∇W ∗) · ∇W̄

)
(X̃t)dt +

(
1

c
â∇W̄ · ∇W̄ − a∇W̄ · ∇W̄

)
(X̃t)dt

+ σ∇W̄ (X̃t)dBt

=

(
− 1

2c
â∇W̄ · ∇W̄ + c(Λ − Λ∗)

)
(X̃t)dt +

(
1

c
â∇W̄ · ∇W̄ − a∇W̄ · ∇W̄

)
(X̃t)dt

+ σ∇W̄ (X̃t)dBt

= σ∇W̄ (X̃t)dBt − 1

2
a∇W̄ · ∇W̄ (X̃t)dt +

1

2

(
1

c
â − a

)
∇W̄ · ∇W̄ (X̃t)dt + c(Λ − Λ∗)dt

(3.9)

Here we used (3.7). Then, by (3.8) and (3.9), we have

T W,Λ
t f(x) = Ex

[
f(X̃t)e

−c(Λ−Λ∗)t+W̄ (X̃t)−W̄ (x)+ 1
2

t
0(a− 1

c
â)∇W̄ ·∇W̄ (X̃s)ds

]

≤ ‖f‖∞esup{W̄ (y)−W̄ (x): y∈supp f}e−c(Λ−Λ∗)tEx

[
e

1
2

t
0 (a− 1

c
â)∇W̄ ·∇W̄ (X̃s)ds

]
.
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Since ca(x) ≤ â(x), we have

TW,Λ
t f(x) ≤ ke−c(Λ−Λ∗)t, k = ‖f‖∞ exp( sup

y∈supp f
(W̄ (y) − W̄ (x))).

Now we have the result on transience.

Theorem 3.3. Let (W, Λ) be a solution of (1.1) and {Xt} be a solution of (3.1) corre-
sponding to (W, Λ). If (A1)

′
, (A1)

′′
, (A2)–(A4) hold, then for Λ > Λ∗, {Xt} is transient.

Proof. Let f ∈ C0(R
N) and f ≥ 0. Since Λ > Λ∗, we can see that by Lemma 3.2,∫ ∞

0

T W,Λ
t f(x)dt < ∞.

Therefore, {Xt} is transient.

We proved that for Λ > Λ∗, {Xt} defined by (3.1) is transient. We next show that if
Λ = Λ∗, the corresponding diffusion process {X∗

t } satisfying (3.1) is ergodic.

We have to show the following proposition

Proposition 3.4. Let (W, Λ) be a solution of (1.1) and {Xt} be the corresponding dif-
fusion process defined by (3.1). Assume (A1)

′
, (A1)

′′
, (A2)–(A4). If {Xt} is transient,

then there exists α > 0 such that

T W,Λ
t f(x) ≤ Ce−αt, f ∈ C0(R

N), f ≥ 0, x ∈ R
N ,

where C is a constant independent of t.

We prepare two lemmas to prove the above proposition.

Let (W, Λ) be a solution of (1.1) and {Xt} be a solution of (3.1). We define occupation
measure for {Xt} as follows:

µt(B) ≡ 1

t

∫ t

0

1B(Xs)ds, B ∈ B(RN ),

where B(RN) is Borel σ-field on R
N . Let M1(R

N) be the set of probability measures on
B(RN ). We think of M1(R

N) as the topological vector space with topology compatible
to weak convergence. Note that µt ∈ M1(R

N).

The following lemma on large deviation type estimate is useful.

Lemma 3.5. Let {Xt} be a solution of (3.1) with no explosion in finite time. Then, the
following estimate holds:

lim
t→∞

1

t
log P [µt ∈ K] ≤ − inf

µ∈K
IW (µ), K is compact set in M1(R

N). (3.10)

IW (µ) is defined as follows:

IW (µ) ≡ − inf
u∈U

∫
Lu

u
(x)µ(dx), L ≡ 1

2
aijDij + (b̃ + â∇W ) · ∇,

U ≡ {u ∈ C2(RN) : Du, D2u are bounded and ∃R > r > 0 s.t. r ≤ u(x) ≤ R}.
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Note that IW (µ) takes values on [0,∞] and is convex, lower semi-continuous on
M1(R

N). This type of estimate is well-known in large deviation theory. As noted in
[18], even if the state space of Xt is not compact, (3.10) holds for compact set K (cf. [17],
[18] §7).

We prove the following second lemma.

Lemma 3.6. Let {Xt} be a solution of (3.1). Suppose that {Xt} does not explode in
finite time. If IW (µ∗) = 0, then µ∗ is invariant measure for {Xt}.

Proof. Since IW (µ∗) = − infu∈U
∫

(Lu/u)(x)µ∗(dx) = 0,∫
Lu

u
(x)µ∗(dx) ≥ 0, ∀u ∈ U .

Setting w = log u, we have∫
Lw(x) +

1

2
|∇w|2(x)µ∗(dx) ≥ 0, u = ew ∈ U . (3.11)

It is easy to see that if u = ew ∈ U , then uλ ≡ eλw ∈ U for λ ∈ R. Therefore, applying
λw in (3.11) instead of w,∫

Lw(x) +
λ

2
|∇w|2(x)µ∗(dx) ≥ 0, u = ew ∈ U , λ > 0.

Taking the limit as λ → 0, we have∫
Lw(x)µ∗(dx) ≥ 0, u = ew ∈ U .

Since u = ew ∈ U implies u−1 ≡ e−w ∈ U , we obtain the following equation:∫
Lw(x)µ∗(dx) = 0, u = ew ∈ U .

Noting that C∞
0 (RN) is included in {w : u = ew ∈ U}, µ∗ satisfies the following partial

differential equation in distributional sense:

L∗µ∗ = 0 in R
N ,

where L∗ is formal adjoint of L. Since we assumed the coefficients of L are sufficiently
smooth, µ∗ has a density p∗(x) and p∗ satisfies

L∗p∗ = 0 in R
N .

Then, by slight modifications of Theorem in p.243, [16] to the case that second order
term of L is divergence form, µ∗(dx) = p∗(x)dx is actually invariant measure.

(Proof of Proposition 3.4) Let us define U0 as follows:

U0(x) = −
(

1

2
aijDijW0 +

1

2
â∇W0 · ∇W0 + b̃ · ∇W0 + V

)
,
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where we take W0 from (A4). By setting W0,c ≡ cW0 and Wc ≡ cW , we have

1

2
aijDijW0,c +

1

2c
â∇W0,c · ∇W0,c + b̃ · ∇W0,c + cV = −cU0,

1

2
aijDijWc +

1

2c
â∇Wc · ∇Wc + b̃ · ∇Wc + cV = cΛ

where c is in Remark 2.1. In the above equations, subtracting each side of the equations,

1

2
aijDij(W0,c − Wc) + (b̃ + â∇W ) · (∇W0,c −∇Wc)

+
1

2c
â(∇W0,c −∇Wc) · (∇W0,c −∇Wc) = −c(U0 + Λ).

Define φ̄ as φ̄ = eW0,c−Wc . Then, we have

1

2
aijDijφ̄ + (b̃ + â∇W ) · ∇φ̄ +

1

2c

(
(â − ca)∇φ̄ · ∇φ̄

) 1

φ̄
= −c(U0 + Λ)φ̄. (3.12)

Let {Xt} be a solution of (3.1). By Ito formula and (3.12),

d
(
φ̄(Xt)e

t
0

c(U0(Xs)+Λ)ds
)

=

[
1

2
aijDijφ̄ + (b̃ + â∇W ) · φ̄ + c(U0 + Λ)

]
(Xt)e

t
0 c(U0(Xs)+Λ)dsdt

+ σ∇φ̄(Xt)e
t
0 c(U0(Xs)+Λ)dsdBt

= − 1

2c

[
1

φ̄
(â − ca)∇φ̄ · ∇φ̄

]
(Xt)e

t
0

c(U0(Xs)+Λ)dsdt + σ∇φ̄(Xt)e
t
0

c(U0(Xs)+Λ)dsdBt.

Since ca(x) ≤ â(x) and φ̄ > 0, we obtain

φ̄(Xt)e
t
0

c(U0(Xs)+Λ)ds ≤ φ̄(x) +

∫ t

0

σ∇φ̄(Xs)e
s
0

c(U0(Xr)+Λ)drdBs. (3.13)

Note that the stochastic integral in the right-hand side of (3.13) is super-martingale
because the left-hand side of (3.13) is bounded from below. Then, we have

Ex

[
φ̄(Xt)e

t
0 c(U0(Xs)+Λ)ds

]
≤ φ̄(x). (3.14)

Let Cm be subset in M1(R
N ) defined as follows:

Cm ≡ {µ ∈ M1(R
N) : µ(Bn) ≥ 1 − δn, ∀n ≥ m}, m ≥ 1,

where {δn} is a sequence such that δn → 0 and determined later. Note that Cm is relative
compact set in M1(R

N) because Cm is tight. From the definition of T W,Λ
t f ,

T W,Λ
t f(x) ≤ Ex[f(Xt); µt ∈ Cm] + Ex[f(Xt); µt 	∈ Cm]

≤ ‖f‖∞Px[µt ∈ Cm] + Ex[f(Xt); µt /∈ Cm], f ∈ C0(R
N), f ≥ 0. (3.15)
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By Lemma 3.5,

lim
t→∞

1

t
log Px[µt ∈ Cm] ≤ − inf

µ∈C̄m

IW (µ)

where C̄m is the closure of Cm. Since IW (µ) is lower semi-continuous and C̄m is compact
in M1(R

N), infµ∈C̄m
IW (µ) is attained at some µ∗ ∈ C̄m. Since existence of invariant

measure implies recurrence, it follows from Lemma 3.6 and transience of {Xt}
inf

µ∈C̄m

IW (µ) > 0, ∀m.

Hence, we can find a positive constant αm > 0 such that

Px[µt ∈ Cm] ≤ Ce−αmt, t > 0. (3.16)

Then, from (3.15) and (3.16), we obtain

T W,Λ
t f(x) ≤ ‖f‖∞e−αmt + Ex[f(Xt); µt 	∈ Cm]

≤ ‖f‖∞e−αmt + ‖fφ̄−1‖∞Ex[φ̄(Xt); µt 	∈ Cm].

We shall prove that Ex[φ̄(Xt); µ 	∈ Cm] exponentially decays as t → ∞. On the event
{µt 	∈ Cm}, there exists n ≥ m such that

µt(Bn) =
1

t

∫ t

0

1Bn(Xs)ds ≤ 1 − δn (3.17)

which is equivalent to

µt(B
c
n) =

1

t

∫ t

0

1Bc
n
(Xs)ds > δn. (3.18)

Then, we have

∫ t

0

c(U0(Xs) + Λ)ds =

∫ t

0

c(U0(Xs) + Λ)1Bn(Xs)ds +

∫ t

0

c(U0(Xs) + Λ)1Bc
n
(Xs)ds

≥ inf
x

c(U0(x) + Λ)

∫ t

0

1Bn(Xs)ds + inf
|x|≥n

c(U0(x) + Λ)

∫ t

0

1Bc
n
(Xs)ds

= β0µt(Bn)t + βnµt(B
c
n)t, (3.19)

where we set β0 = infx c(U0(x) + Λ), βn = inf |x|≥n c(U0(x) + Λ). By (A4), there exists
m ≥ 1 such that

βn > 0, ∀n ≥ m.

So, we obtain from (3.17), (3.18), (3.19),

∫ t

0

c(U0(Xs) + Λ)ds ≥ (−|β0|(1 − δn) + βnδn)t.

Take a positive constant M > 0. Then we choose δn such that M = −|β0|(1− δn)+βnδn.
Indeed, δn is defined by

δn ≡ M + |β0|
|β0| + βn

.
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Then, we have ∫ t

0

c(U0(Xs) + Λ)ds ≥ Mt on {µt 	∈ Cm}. (3.20)

By (3.14) and (3.20),

φ̄(x) ≥ Ex

[
φ̄(Xt)e

t
0

c(U0(Xs)+Λ)ds; µt 	∈ Cm

]
≥ eMtEx[φ̄(Xt); µt 	∈ Cm].

Therefore we obtain

Ex[φ̄(Xt); µt 	∈ Cm] ≤ φ̄(x)e−Mt, t > 0.

We are ready to prove that for Λ = Λ∗, the corresponding diffusion process {X∗
t } is

ergodic.

Theorem 3.7. Let (W ∗, Λ∗) be a solution of (1.1) corresponding to Λ∗ = inf A and {X∗
t }

be a solution of (3.1) for (W ∗, Λ∗). Under (A1)
′
, (A1)

′′
, (A2)–(A4), {Xt} is ergodic.

Proof. Suppose that {X∗
t } is transient. Then, by Proposition 3.4,

T W ∗,Λ∗
t f(x) ≤ Ce−αt, ∀f ∈ C0(R

N), f ≥ 0.

Note that α is a positive constant independent of f and x. Taking 0 < ε < α, we see
that ∫ ∞

0

Ex[f(X∗
t )eεt]dt =

∫ ∞

0

T W ∗,Λ∗
t f(x)eεtdt =

∫ ∞

0

Ce−(α−ε)tdt < ∞

Then, there exists Green function G(x, y) for (1/2)aijDij +(b̃+ â∇W ∗) ·∇+ε and G(x, y)
satisfies the following:

1

2
aijDijG(·, y) + (b̃ + â∇W ∗) · ∇G(·, y) + εG(·, y) = 0 in R\{y}. (3.21)

We take a sequence {yn} in R
N such that yn ∈ Bn+1\B̄n. Define φ̄n(x) as follows:

φ̄n(x) ≡ G(x, yn)

G(0, yn)
, x ∈ R

N\{yn}.

Then, we have from (3.21)

1

2
aijDijφ̄n + (b̃ + â∇W ∗) · ∇φ̄n + εφ̄n = 0 in R

N\{yn}. (3.22)

We note that by setting W̄n ≡ (1/c̄) log φ̄n, (3.22) is equivalent to the following:

1

2
aijDijW̄n +

c̄

2
aijDiW̄nDjW̄n + (b̃ + â∇W ∗) · ∇W̄n +

ε

c̄
= 0 in R

N\{yn},

where c̄ is taken from Remark 2.1. By Lemma 2.3, we have

sup
Br

|∇W̄n| ≤ Cr, r < n.
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Thus, in the similar way to the proof of existence of solutions of (1.1), we can see that
there exists smooth function W̄ such that

1

2
aijDijW̄ + (b̃ + â∇W ∗) · ∇W̄ +

c̄

2
a∇W̄ · ∇W̄ +

ε

c̄
= 0. (3.23)

Since (W ∗, Λ∗) is a solution of (1.2),

1

2
aijDijW

∗ + b̃ · ∇W ∗ +
1

2
â∇W ∗ · ∇W ∗ + V − Λ∗ = 0. (3.24)

Adding (3.23) to (3.24), it follows from Remark (2.1) that

0 =
1

2
aijDij(W

∗ + W̄ ) + b̃ · (∇W ∗ + ∇W̄ )

+
1

2
â∇W ∗ · ∇W ∗ + â∇W ∗ · ∇W̄ +

c̄

2
a∇W̄ · ∇W̄ + V −

(
Λ∗ − ε

c̄

)

≥ 1

2
aijDij(W

∗ + W̄ ) + b̃ · (∇W ∗ + ∇W̄ )

+
1

2
â∇W ∗ · ∇W ∗ + â∇W ∗ · ∇W̄ +

1

2
â∇W̄ · ∇W̄ + V −

(
Λ∗ − ε

c̄

)

=
1

2
aijDij(W

∗ + W̄ ) + b̃ · ∇(W ∗ + W̄ )

+
1

2
â∇(W ∗ + W̄ ) · ∇(W ∗ + W̄ ) + V −

(
Λ∗ − ε

c̄

)

Thus, W ∗ +W̄ is a super-solution of (1.1) for Λ = Λ∗− ε/c̄. In the same way as the proof
that A 	= ∅ given in §2, we can see that there exists a smooth function W̃ such that

1

2
aijDijW̃ +

1

2
â∇W̃ · ∇W̃ + b̃ · ∇W̃ + V = Λ∗ − ε

c̄
.

This contradicts to Λ∗ = inf A. Therefore, {X∗
t } is recurrent.

In order to see that {X∗
t } is actually ergodic, we recall the proof of Proposition 3.4. If

we suppose infµ∈C̄m
IW ∗

(µ) > 0 for each m, we can prove Proposition 3.4, which implies
that {X∗

t } is transient. Hence, there exists some m such that

inf
µ∈C̄m

IW ∗
(µ) = 0. (3.25)

Since C̄m is compact, (3.25) is attained at µ∗ ∈ C̄m. Then, it follows from Lemma 3.6
that µ∗ is invariant measure for {X∗

t }.

3.2 Uniqueness of solutions corresponding to the bottom

We proved that solution (W ∗, Λ∗) of (1.1) for Λ∗ = inf A corresponds to ergodicity to
{X∗

t } of (3.1). Now we shall show that solution corresponding to Λ∗ is unique up to
additive constant. Note that the solution of (1.1) has ambiguity on additive constant.

Theorem 3.8. Let W ∗
i , i = 1,2 be solutions of (1.1) corresponding to Λ∗ = inf A. Under

(A1)
′
, (A1)

′′
, (A2)–(A4), there exists constant k such that W ∗

2 (x) = W ∗
1 (x) + k.
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Proof. Since W ∗
i , i = 1, 2 are solutions of (1.2),

1

2
aijDijW

∗
1 +

1

2
â∇W ∗

1 · ∇W ∗
1 + b̃ · ∇W ∗

1 + V = Λ∗,

1

2
aijDijW

∗
2 +

1

2
â∇W ∗

2 · ∇W ∗
2 + b̃ · ∇W ∗

2 + V = Λ∗

Subtracting each side in the above equations, we have

1

2
aijDij(W

∗
1 −W ∗

2 )+ (b̃+ â∇W ∗
2 ) · (∇W ∗

1 −∇W ∗
2 )+

1

2
â(∇W ∗

1 −∇W ∗
2 ) · (∇W ∗

1 −W ∗
2 ) = 0

(3.26)
Let us set φ(x) ≡ ec(W ∗

1 (x)−W ∗
2 (x)) where c is in Remark 2.1. Rewriting (3.26) in terms of

φ, we have
1

2
aijDijφ + (b̃ + â∇W ∗

2 ) · ∇φ +
1

2c2
(â − ca)

∇φ

φ
· ∇φ = 0

Hence it implies from Remark 2.1 that

Lφ ≡ 1

2
aijDijφ + (b̃ + â∇W ∗

2 ) · ∇φ ≤ 0. (3.27)

Let us take x, y ∈ R
N and consider the SDE of (3.1) for W ∗

2 :

dX∗
t = (b̃(X∗

t ) + â∇W ∗
2 (X∗

t ))dt + σ(X∗
t )dBt, X∗

0 = x.

Define τBn = inf{t : X∗
t 	∈ Bn}, σBε(y) = inf{t : X∗

t ∈ Bε(y)}. Note that {X∗
t } is ergodic

from Theorem 3.7, especially recurrent. It follows from Ito formula and (3.27) that

φ(X∗
t∧τBn∧σBε(y)

) = φ(x) +

∫ t∧τBn∧σBε(y)

0

Lφ(X∗
s )ds +

∫ t∧τBn∧σBε(y)

0

∇φ(X∗
s ) · σ(X∗

s )dBs

≤ φ(x) +

∫ t∧τBn∧σBε(y)

0

∇φ(X∗
s ) · σ(X∗

s )dBs.

Thus we have Ex[φ(X∗
t∧τBn∧σBε(y)

)] ≤ φ(x). By taking the limit as n → ∞, it follows by

Fatou’s lemma that E[φ(X∗
t∧σBε(y)

)] ≤ φ(x). Noting that Px[σBε(y) < ∞] = 1, we have by

sending t → ∞,
Ex[φ(X∗

σBε(y)
)] ≤ φ(x).

We note again that {X∗
t } hits the boundary of Bε(y) in finite time with probability 1.

Hence we can see that
φ(x) ≥ Ex[φ(X∗

σBε(y)
)] ≥ inf

∂Bε(y)
φ.

Taking the limit as ε → 0, we obtain

φ(y) ≤ φ(x), x, y ∈ R
N

which implies φ is constant. Therefore W ∗
1 − W ∗

2 is also constant.
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Appendix. Proof of (3.4)

Applying Ito formula to eθ|Yt|2

eθ|Yt|2 = eθ|x|2 +

∫ t

0

2θYse
θ|Ys|2 · b̃(Ys)ds +

∫ t

0

2θYse
θ|Ys|2 · σ(Ys)dBs

+
1

2

∫ t

0

aij(Ys)(2θe
θ|Ys|2δij + 4θ2Y i

s Y j
s eθ|Ys|2)ds

=

∫ t

0

2θeθ|Ys|2Ys · b̃(Ys)ds +

∫ t

0

2θ2a(Ys)Ys · Yse
θ|Ys|2ds

+

∫ t

0

θ tr a(Ys)e
θ|Ys|2ds +

∫ t

0

2θeθ|Ys|2Ys · σ(Ys)dBs

≤
∫ t

0

2θeθ|Ys|2Ys · b̃(Ys)ds +

∫ t

0

2θ2ν2|Ys|2eθ|Ys|2ds

+

∫ t

0

Nθν2e
θ|Ys|2ds +

∫ t

0

2θeθ|Ys|2Ys · σ(Ys)dBs. (A.1)

Here we used (A2). By (A1)
′′
, it follows that

RHS of (A.1) ≤
∫ t

0

2(−γ1θ + ν2θ
2)|Ys|2eθ|Ys|2ds

+

∫ t

0

(2γ2θ + Nν2θ)e
θ|Ys|2ds +

∫ t

0

2θeθ|Ys|2Ys · σ(Ys)dBs

= δ1

∫ t

0

|Ys|2eθ|Ys|2ds + δ2

∫ t

0

eθ|Ys|2ds +

∫ t

0

2θeθ|Ys|2Ys · σ(Ys)dBs,

where δ1 ≡ 2(−γ1θ +ν2θ
2), δ2 ≡ 2γ2θ +Nν2θ. If we take θ as 0 < θ < γ1/ν2, then δ1 < 0.

Thus, we have

eθ|Yt|2 ≤ eθ|x|2 + δ2

∫ t

0

eθ|Ys|2ds +

∫ t

0

2θeθ|Ys|2Ys · σ(Ys)dBs.

Setting τBn = inf{t : Ys 	∈ Bn}, we obtain

Ex

[
eθ|Yt∧τBn

|2
]
≤ eθ|x|2 + δ2

∫ t

0

Ex

[
eθ|Ys∧τBn

|2
]
ds.

By Gronwall’s inequality, there exists some constant Cx,T > 0 such that

Ex

[
eθ|Yt∧τBn

|2
]
≤ Cx,T , 0 ≤ t ≤ T.

Taking the limit as n → ∞, we obtain

Ex

[
eθ|Yt|2

]
≤ Cx,T , 0 ≤ t ≤ T.
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