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On the Structure of Solutions to
the Static Vacuum Einstein Equations
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0 Introduction

The static vacuum Einstein equations are the equations

ur = D2u, (0.1)

∆u = 0,

on a Riemannian 3-manifold (M,g), with u a positive function on M . Here r
denotes the Ricci curvature, D2 the Hessian, and ∆ = trD2 the Laplacian on
(M,g). Solutions of these equations define a Ricci-flat 4-manifold N , of the form
N = M ×u S

1 or N = M ×u R, with Riemannian or Lorentzian metric of the form

gN = gM ± u2dt2. (0.2)

These equations are the simplest equations for Ricci-flat 4-manifolds. They
have been extensively studied in the physics literature on classical relativity, where
the solutions represent space-times outside regions of matter which are translation
and reflection invariant in the time direction t. However, with the exception of
some notable instances, (c.f. Theorem 0.1 below), many of the global properties of
solutions have not been rigorously examined, either from mathematical or physical
points of view, c.f. [Br] for example.

This paper is also motivated by the fact that solutions of the static vacuum
equations arise in the study of degenerations of Yamabe metrics (or metrics of con-
stant scalar curvature) on 3-manifolds, c.f. [A1]. Because of this and other related
applications of these equations to the geometry of 3-manifolds, we are interested
in general mathematical aspects of the equations and their solutions which might
not be physically relevant; for example, we allow solutions with negative mass.

In this paper, we will be mostly concerned with the geometry of the 3-
manifold solutions (M,g, u) of (0.1), (i.e. the space-like hypersurfaces), and not
with the 4-manifold metric. Thus, the choice of Riemannian or Lorentzian geom-
etry on N in (0.2) will play no role. This considerably simplifies the discussion of
singularities and boundary structure, but still allows for a large variety of behav-
iors; c.f. [ES] for a survey on singularities of space-times.

Obviously, there are no non-flat solutions to (0.1) on closed manifolds, and
so it will be assumed that M is an open, connected oriented 3-manifold. Let M̄
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be the metric (or Cauchy) completion of M and ∂M the metric boundary, so that
M̄ = M ∪ ∂M is complete as a metric space.

In order to avoid trivial ambiguities, we will only consider maximal solutions
of the equations (0.1). For example any domain Ω in R

3 with the flat metric,
and u a positive constant, satisfies (0.1). In this case, the metric boundary ∂Ω
is artificial, and has no intrinsic relation with the geometry of the solution. The
solution obviously extends to a larger domain, i.e. R

3. Thus, we only consider
maximal solutions (M,g, u), in the sense that (M,g, u) does not extend to a larger
domain (M ′, g′) ⊃ (M,g) with u > 0 on M ′. It follows that at the metric boundary
∂M of M , either the metric or u degenerates in some way or u approaches 0 in
some way, (or a combination of such).

A classical result of Lichnerowicz [L1, p.137] implies that if the metric (M,g)
satisfying (0.1) is complete, (i.e. ∂M = ∅), and u → 1 at infinity, then u ≡ 1 and
M is flat, i.e. R

3 or a quotient of R
3. More generally, it is proved in [A1, Thm.3.2]

that if (M,g) is a complete solution to (0.1), (hence u > 0 everywhere), then
(M,g) is flat and u is constant, i.e. the assumption on the asymptotic behavior of
u is not necessary, c.f. also Theorem 1.1 below.

Thus, there are no complete non-trivial solutions to (0.1) and hence ∂M must
be non-empty. The set formally given by

Σ = {u = 0} ⊂ M̄,

is called the horizon. It is closely related to the notion of event horizon in general
relativity. More precisely, Σ may be defined as the set of limit points of Cauchy
sequences on (M,g) on which u converges to 0. Although ∂M �= ∅, it is possible
that Σ = ∅. However, most solutions of physical interest do have Σ �= ∅. In the
framework of classical relativity, the non-triviality of a static vacuum solution, i.e.
the non-vanishing of its curvature, is due to the presence of matter or field sources
at ∂M, or ’inside‘ the horizon Σ in case (M,g) extends as a vacuum solution past
Σ.

It is natural to consider the situation where (M,g) is not complete and for
which the metric boundary ∂M of M coincides with the horizon Σ. More precisely,
we will say that (M,g) is complete away from the horizon Σ if for any sequence
pi → p ∈ ∂M in the metric topology on M̄ = M ∪ ∂M one has u(pi) → 0.
Conversely if {pi} is a bounded sequence in M with u(pi) → 0, then the definition
of (M,g, u) implies that a subsequence of {pi} converges to a point p ∈ ∂M. Thus,
∂M = Σ is given by the Hausdorff limit of the ε -levels Lε of u as ε → 0.

While most solutions (M,g) of physical interest are complete away from Σ,
there are many solutions for which this is not the case, c.f. §2 for further discussion.
In such examples, the curvature typically blows up within a finite distance to Σ.
Among the solutions which are complete away from Σ, most all are singular at Σ,
again in the sense that the curvature of the metric g blows up on approach to Σ.
This is closely related to the fact that the equations (0.1) are formally degenerate at
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Σ. Thus, in general, even when M is complete away from Σ, the metric completion
M ∪ Σ need not be a smooth manifold with boundary.

We will say that (M,g, u) extends smoothly to Σ, if (i): the set Σ is a smooth
surface and the partial completion M ′ = M ∪ Σ ⊂ M̄ is a smooth manifold with
boundary, (ii): the metric g extends smoothly to a smooth Riemannian metric on
M ′, and (iii): the potential u extends smoothly to Σ with Σ = {u = 0}; smoothness
here means at least C2. Note that it might be possible that Σ has infinitely many
components, or non-compact components of infinite topological type. In any case,
one immediate strong consequence of (0.1) is that if g extends smoothly to Σ, then
at Σ one has

D2u|Σ = 0. (0.3)

Thus, Σ is a totally geodesic surface in M̄ and |∇u| is a non-zero constant on each
component of Σ, c.f. Remark 1.5 below. Observe that if (M,g) is smooth up to Σ,
and complete away from Σ, then the isometric double of M across Σ is a smooth
complete Riemannian manifold. The harmonic function u extends smoothly across
Σ as harmonic function, odd w.r.t. reflection in Σ.

By far the most significant solution of the static vacuum equations is the
Schwarzschild metric, of mass m, given on the space-like hypersurface M by

gS = (1 − 2m
r

)−1dr2 + r2ds2S2 , u = (1 − 2m
r

)1/2, r > 2m. (0.4)

This metric models the vacuum exterior region of an isolated static star or
black hole. It is a spherically symmetric metric on M = (2m,∞) × S2 and has Σ
given by a (totally geodesic) symmetric S2, of radius 2m. The mass m is usually
assumed to be positive, but we will not make this assumption here. Thus, we allow
m ≤ 0. Of course if m = 0, then gS is just the flat metric with u = 1. If m < 0,
(0.4) is understood to be defined for r > 0.

The Schwarzschild metric is asymptotically flat in the sense that there is a
compact set K in M such that M \ K is diffeomorphic to R

3 \ B(R), and in a
suitable chart on M \K, the metric approaches the Euclidean metric at a rate of
1/r, i.e.

gij = (1 +
2m
r

)δij + O(1/r2), (0.5)

with curvature decay of order 1/r3, r = |x|, and with m ∈ R. The function u (up to
a multiplicative constant) has the asymptotic form u = 1 −m

r +O(r−2) with |∇u| =
O(1/r2). A triple (M,g, u) satisfying these conditions is called asymptotically flat.
We note the following remarkable characterization of the Schwarzschild metric.

Theorem 0.1. (Black-hole uniqueness),[I1],[Ro],[BM]
Let (M,g, u) be a solution of the static vacuum Einstein equations, which is

smooth up to Σ and complete away from Σ. If Σ is a compact, (possibly discon-
nected) surface and (M,g, u) is asymptotically flat, then (M,g, u) is the Schwarz-
schild metric, with m > 0.
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The hypothesis that the space-like hypersurface (M,g, u) is asymptotically
flat is very common in physics. Namely, in modeling a static space-time outside
an isolated, i.e. compact, field or matter source, it is natural to assume that in
regions far away from the source the geometry of space approximates that of R3,
i.e. empty space.

Nevertheless, mathematically the asymptotically flat assumption is quite
strong in that it severely restricts both the topology and geometry of (M,g) out-
side a large compact set. Further, the physical reasoning above presupposes that
there are no complete non-flat solutions to the vacuum equations (0.1), i.e. that a
static gravitational field is non-empty solely due the presence of matter somewhere.

Remark 0.2. This latter issue in fact led Einstein to hypothesize that space M
is compact, in order to avoid dealing with ’artificial‘ boundary value problems at
infinity, c.f. [E, p.98ff.]. This issue, closely related to Mach’s Principle, is discussed
in some detail in work of Lichnerowicz, (Propositions A and B of [L1, §31] and
[L2, Ch.II]); c.f. also [MTW, §21.12,],[Ri, §9.12] for instance.

As remarked above, there are in fact no complete non-trivial static vacuum
solutions, so that the asymptotically flat assumption in Theorem 0.1 may not be
unreasonable, c.f. however [El], [G]. In fact, the main result of this paper is that
this hypothesis is not necessary in most circumstances; it follows from much weaker
assumptions.

To explain this, we first need to consider a weakening of the condition that
∂M is compact. Let

t(x) = dist(x, ∂M). (0.6)

Define ∂M to be pseudo-compact if there is a tubular neighborhood U of ∂M
whose boundary ∂U in M , ∂U ∩M , is compact, i.e. {t(x) = so} is compact, for
some so > 0, (and hence all 0 < so < ∞). As will be seen in §2, there are numerous
examples of static vacuum solutions with ∂M pseudo-compact but not compact.

Let E be an end, i.e. an unbounded component, of M̄ \ U. The mass of E
may be defined by

mE = lims→∞mE(s) = lims→∞
1

4π

∫
SE(s)

< ∇ log u,∇t > dA, (0.7)

where SE(s) = t−1(s) ∩ E. Since u is harmonic, log u is superharmonic, so that
the divergence theorem implies that mE(s) is monotone decreasing in s. Hence the
limit (0.7) is well-defined, (possibly −∞). Note that the static vacuum equations
are invariant under multiplication of u by positive constants. We use the log u term
in (0.7) in place of u so that the mass is independent of this rescaling in u.

The following is the main result of this paper.
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Theorem 0.3. Let (M,g, u) be a solution of the static vacuum Einstein equations.
(i). Suppose ∂M is pseudo-compact.

Then M̄ \U has only finitely many ends {Ei}, 0 ≤ i ≤ q < ∞. Supposing q >
0 and (i) holds, let E ∈ {Ei} be any end of M satisfying
(ii). u(xi) ≥ uo, for some constant uo > 0 and some sequence xi ∈ E with t(xi) →
∞.

Then the end (E, g, u) is either asymptotically flat, or small, in the sense that
the area growth of geodesic spheres satisfies∫ ∞ 1

areaSE(s)
ds = ∞. (0.8)

Further, if mE �= 0 and supEu < ∞, then the end E is asymptotically flat.

We make several remarks on this result. First, if ∂M is not pseudo-compact,
then it is easy to construct static vacuum solutions for which M̄ \U has infinitely
many ends, c.f. the end of §1 or §2(I). Further, there are examples of ends E with
compact boundary, on which (ii) does not hold and which are neither asymptoti-
cally flat nor small in the sense of (0.8), c.f. Example 2.11. Thus, both hypotheses
(i) and (ii) are necessary in Theorem 0.3. There are also examples with M̄ compact,
c.f. §2(I), so that M̄ \ U may have no ends, (q = 0).

On the other hand, both alternatives in Theorem 0.3, namely asymptotically
flat or small ends, do occur. Asymptotically flat ends satisfy areaSE(s) ∼ 4πs2 as
s → ∞, while small ends have small area growth. For example, (0.8) implies, at
least, that there is a sequence si → ∞ such that

areaSE(si) ≤ si · (log si)1+ε,

for any fixed ε > 0. All known examples of solutions satisfying (0.8) are topolog-
ically of the form (R2 \ B) × S1 outside a compact set and the geodesic spheres
have at most linear area growth. The main example of a static vacuum solution
with a small end is the family of Kasner metrics, c.f. Example 2.11 below.

To illustrate the sharpness of the last statement in Theorem 0.3, we construct
in Remark 3.8 a (dipole-type) static vacuum solution (M,g, u) with a single end
E on which mE = 0, supE < ∞, and which satisfies (0.8). Similarly, Example 2.11
provides static vacuum solutions with mE > 0, supEu = ∞ and satisfying (0.8).
Thus, the last result is also sharp.

Assuming ∂M is pseudo-compact, it is easy to see that if mE > 0 then (ii)
holds, so that (ii) may be replaced by the assumption mE > 0. Thus, for the
physically very reasonable class of solutions such that ∂M is pseudo-compact,
mE > 0 for all ends E, and u is bounded, all ends E of M are asymptotically flat.
We also point out that if M is complete away from Σ, then (ii) holds at least on
some end E.

The proof of Theorem 0.3 gives some further information on the asymptotic
structure of the small ends. For instance, the curvature in such ends decays at least
quadratically, c.f. (1.3), and in the geodesic annuli AE(1

2si, 2si) in E, the metric
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approaches in a natural sense that of a Weyl solution, i.e. a static axisymmetric
solution, as si → ∞. Thus, asymptotically, small ends have at least one non-trivial
Killing field. However, it is not known for example if the metric is asymptotic to
a unique Weyl solution, or even if small ends are necessarily of finite topological
type.

It would also be of interest to prove that (M,g, u) has a unique end if ∂M
is pseudo-compact. However, we have not been able to do this without further
assumptions, c.f. Remark 3.10.

The definition of asymptotically flat rules out the possibility that M is smooth
up to Σ and complete away from Σ, with Σ non-compact, since for example u = 0
on Σ while u → 1 on any asymptotically flat end. Consider however the following
(B1) solution,

gB1 = (1 − 2m
r

)−1dr2 + (1 − 2m
r

)dφ2 + r2dθ2, (0.9)

where φ/4m ∈ [0, 2π], θ ∈ [0, π], r ≥ 2m > 0, with u = r · sin(θ). Note that the
potential u is unbounded.

The B1 metric is just a 3-dimensional slice of the 4-dimensional Schwarzschild
metric (N, gS + u2dθ2), (t changed to θ in (0.2)), obtained by dividing N by an
S1 ⊂ Isom(S2) orthogonal to dθ; this is the slice ’orthogonal’ to the usual slice
giving the Schwarzschild metric (0.4). This metric has Σ given by two disjoint,
isometric copies of R

2, each of positive Gauss curvature and asymptotic to a flat
cylinder. It is smooth up to Σ and complete away from Σ. The metric is globally
asymptotic to the flat metric on R2 × S1, again with curvature decay of order
O(1/r3) and with u of linear growth in distance to Σ. Such solutions will be
called asymptotically cylindrical. In fact a large class of Weyl solutions have ’dual‘
solutions in this sense which are asymptotically cylindrical, c.f. Remark 2.9.

This paper is organized as follows. Following discussion of some general topics
on static space-times in §1, we analyze in some detail the class of Weyl vacuum
solutions in §2. Several new results on the structure of these solutions are given; for
instance Proposition 2.2 gives a new characterization of Weyl metrics. In addition,
some efforts have been made to give a reasonably clear and organized account of
the breadth of possibilities and behavior of Weyl metrics, since their treatment in
the literature is rather sketchy and since they serve as a large class of models on
which to test Theorem 0.3. Theorem 0.3 is proved in §3, and the paper concludes
with several remarks on generalizations, and some open questions.

I would like to thank the referee for suggesting a number of improvements in
the exposition of the paper.

1 Background Discussion

Let (M,g, u) be an open, connected oriented Riemannian 3-manifold and N =
M ×u R or N = M ×u S

1, as in (0.2). Thus N represents a static space-time and



Vol. 1, 2000 On the Structure of Solutions to the Static Vacuum Einstein Equations 1001

M ⊂ N is totally geodesic. The Einstein field equations on N are

rN − sN
2

· gN = T, (1.1)

where T is the (R or S1-invariant) stress-energy tensor. (We are ignoring physical
constants here). These equations may be expressed on the space-like hypersurface
M as the system

r − u−1D2u + (u−1∆u− 1
2
s) · g = TH , (1.2)

1
2
s = TV ,

where TH is the horizontal or space-like part of T and TV is the vertical or time-like
part of T . These are the equations on M for a Lorentzian space-time N ; in case N
is Riemannian, the first equation is the same while the second is -1

2s = TV . When
T = 0, one obtains the vacuum equations (0.1), which are the same for Lorentzian
or Riemannian signature. A common example, with T �= 0 is a static perfect fluid,
c.f. [Wd, Ch.4], with T given by

T = (µ + ρ)dt2 + ρg,

where µ, ρ are time independent scalar fields representing the energy density and
pressure respectively. The equations (1.2) imply that the full Riemann curvature
RN of N is determined by r, u and T .

The horizon Σ = {u = 0} corresponds formally to the fixed point set of
the S1 action on N and requires special consideration. For example, even if M is
smooth up to Σ the Riemannian 4-manifold (N, gN ) might not be smooth across
Σ, even though the curvature RN is smooth. Namely, assuming the S1 parameter
t ∈ [0, 2π), if |∇u|Σ �= 1, then N has cone singularities (with constant angle by
(0.3)) along and normal to the totally geodesic submanifold Σ ⊂ N. (This issue
does not arise for Lorentzian metrics). By multiplying the potential function u by a
suitable constant, one can make the metric gN smooth across any given component
of Σ; one cannot expect however in general that this can be done simultaneously
for all components of Σ, if there are more than one. This issue will reappear in §2.

The following result is proved in [A1, Cor.A.3]. It implies, (by letting t → ∞),
that if (M,g, u) is a complete solution to the static vacuum equations with u > 0
everywhere, then M is flat, and u is constant.

Theorem 1.1. Let (M, g, u) be a solution to static vacuum equations (0.1). Let
t(x) = dist(x, ∂M) as in (0.6). Then there is a constant K < ∞, independent of
(M, g, u), such that

|r|(x) ≤ K

t(x)2
, |∇ log u|(x) ≤ K

t(x)
. (1.3)
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Remark 1.2. The same result has recently been proved for stationary vacuum
solutions, i.e. space-times admitting a complete time-like Killing field, c.f. [A2].
We will discuss elsewhere to what extent Theorem 0.3 generalizes to stationary
vacuum solutions.

Recall from §0 that the potential function u of a static vacuum solution may
be freely renormalized by arbitrary positive constants; hence the appearance of
log u in (1.3), as in (0.7).

Theorem 1.1 implies that the curvature of (M,g) is controlled away from
∂M, and hence the local geometry of solutions is controlled away from ∂M by
lower bounds on the local volume or injectivity radius. More precisely, we have
the following results which are essentially a standard application of the Cheeger-
Gromov theory of convergence/collapse of Riemannian manifolds, c.f. [CG], [A3,
§2], or also [P, Ch.12] for an introduction to these results. Further details of the
proofs of these results are given in [A2], (for the more general class of stationary
space-times), and also in [A1,App.].

Lemma 1.3. (Non-Collapse). Let (Mi, gi, ui) be a sequence of solutions to the static
vacuum equations (0.1). Suppose

|ri| ≤ Λ, diamMi ≤ D, volMi ≥ νo,

and
dist(xi, ∂Mi) ≥ δ,

for some xi ∈ Mi and positive constants νo,Λ, D, δ. Assume also that ui is nor-
malized so that ui(xi) = 1.

Then, for any ε > 0 sufficiently small, there are domains Ui ⊂ Mi, with
ε/2 ≤ dist(∂Ui, ∂Mi) ≤ ε, and xi ∈ Ui such that a subsequence of the Riemannian
manifolds (Ui, gi) converges, in the C∞ topology, modulo diffeomorphisms, to a
limit manifold (U, g), with limit function u and base point x = lim xi. The triple
(U, g, u) is a smooth solution of the static equations with u(x) = 1.

Lemma 1.4. (Collapse). Let (Mi, gi, ui) be a sequence of solutions to the static
vacuum equations (0.1). Suppose

|ri| ≤ Λ, diamMi ≤ D, volMi → 0

and
dist(xi, ∂Mi) ≥ δ,

for some xi ∈ Mi and constants Λ, D, δ. Assume also that ui is normalized so that
ui(xi) = 1.

Then, for any ε > 0 sufficiently small, there are domains Ui ⊂ Mi, with
ε/2 ≤ dist(∂Ui, ∂Mi) ≤ ε with xi ∈ Ui, such that Ui is either a Seifert fibered
space or a torus bundle over an interval. In both cases, the gi-diameter of any
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fiber F, (necessarily a circle S1 or torus T 2), goes to 0 as i → ∞, and π1(F )
injects in π1(Ui).

Consequently, there are infinite Z or Z ⊕ Z covers Ũi of Ui, such that
{Ũi, gi, xi} does not collapse and hence has a subsequence converging smoothly
to a limit (Ũ , g, x) of the static vacuum equations with x = lim x′i, x

′
i a lift of xi to

Ũi. The limit (Ũ , g, x) admits a free isometric R or R⊕R action, (c.f. §2), which
also leaves the potential function u invariant, and u(x) = 1.

In studying static solutions, it is often very useful to consider the conformally
equivalent metric g̃ = u2 · g on M . An easy calculation using the behavior of Ricci
curvature under conformal deformations, c.f. [Bes, p.59], shows that the Ricci
curvature r̃ of g̃, in the vacuum case (0.1), is given by

r̃ = 2(d log u)2 ≥ 0. (1.4)

Further, if ∆̃ denotes the Laplacian of g̃, then

∆̃ log u = 0. (1.5)

The equations (1.4)-(1.5) are equivalent to the static vacuum equations (0.1).
Since these equations are invariant under the substitution u → −u, it follows that
if (M,g, u) is a static vacuum solution, then so is (M,g′, u−1), with g′ given by

g′ = u4 · g.

Similarly, observe that if (N, gN ) is the associated Ricci-flat 4-manifold (0.2),
then

∆N log u = 0. (1.6)

Here and below, log always denotes the natural logarithm.
We discuss briefly some of the simplest static vacuum solutions:

Levi-Civita Solutions.
There are 7 classes of so-called degenerate static vacuum solutions, where

the eigenvalues λi of the Ricci curvature r satisfy λ1 = λ2 = −2λ3, called A1-A3,
B1-B3, C, c.f. [EK, §2-3.6]. The B metrics are dual to the A metrics, as mentioned
in §0, c.f. §2 for details. The A1 metric is the Schwarzschild metric. It is of interest
to examine the A2 metric, given in standard cylindrical coordinates on R

3 by

gA2 = z2(dr2 + (sinh2r)dφ2) + (
2m
z

− 1)−1dz2, (1.7)

with u = (2m
z − 1)1/2 and z ∈ [0, 2m],m > 0. The horizon Σ = {u = 0} is given by

the set {z = 2m} and hence is the complete hyperbolic metric H2, with curvature
−(2m)−2. It is easily verified that the A2 metric is smooth up to Σ. However,
Σ �= ∂M ; the set {z = 0} is at finite distance to Σ, and so ∂M has another
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(singular) component obtained by crushing (compact subsets of) the hyperbolic
metric to a point.

Let Γ be any discrete group of hyperbolic isometries. Then Γ extends in
an obvious way to a group of isometries of gA2. The uniformization theorem for
surfaces implies that any orientable surface except S2 and T 2, including surfaces
of infinite topological type and infinitely many ends, admits a complete hyper-
bolic metric, i.e. is the quotient H2/Γ, for some Γ. Hence, any such surface and
hyperbolic metric can be realized as the horizon Σ of a static vacuum solution.

Topologically, for Σ = H2/Γ, we have M = Σ × I. Hence for example if Σ
has infinitely many ends, then M also has infinitely many ends; in particular, this
shows that the hypothesis that ∂M is pseudo-compact in Theorem 0.3 is necessary.

The A3 metric is

gA3 = z2(dr2 + r2dφ2) + zdz2, (1.8)

with u = z−1/2 > 0, r > 0. Hence Σ is empty in this case - it occurs at infinity
in the metric. This metric may be realized as a pointed limit of the A2 metric as
m → ∞ and also as a limit, in a certain sense, of the A1 metric, c.f. Example 2.11.

Remark 1.5. The discussion above raises the natural question if any orientable
connected Riemannian surface (Σ, g) can be realized as the horizon of a static
vacuum solution, smooth up to Σ, which is defined at least in a neighborhood of
Σ. In general, this appears to be unknown.

Observe that any complete constant curvature metric on an orientable surface
can be realized in this way. The Schwarzschild metric gives the constant curvature
metric on S2, the quotients of the A2 metric give all hyperbolic surfaces, and
quotients of the flat metric, with u a linear function, give all flat metrics on a
surface, (T 2, S1 × R, or R

2).
Geroch-Hartle show in [GH] that any rotation-invariant metric on S2 or T 2

can be realized at the horizon. Except for the Schwarzschild metric, such solutions
are not complete away from Σ.

Observe that the full 1-jet of (M,g) at Σ (assumed connected) is determined
solely by the surface metric (Σ, g), since Σ is totally geodesic and, renormalizing u
if necessary, |∇u| ≡ 1 on Σ by (0.3). Observe also that one cannot have |∇u| ≡ 0 on
Σ, since u is harmonic and the divergence theorem applied to a small neighborhood
U of Σ would imply that u ≡ 0 on U , which is ruled out.

On the other hand, the metric (M,g) is not uniquely determined by its bound-
ary values (Σ, g). Namely, the flat metric on T 2 is realized by the flat vacuum so-
lution M = T 2 ×R+, u = t = dist(Σ, ·) and also (locally) by a non-flat metric, c.f.
[T],[P]. Similar remarks hold for local perturbations of the Schwarzschild metric,
c.f. [GH].
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2 Weyl Solutions

A large and very interesting class of explicit solutions of the static vacuum
equations are given by the Weyl solutions [W], c.f. also [EK,§2.3-9] or [Kr, Ch.16-
18]. In fact, it appears that essentially all known explicit solutions of the static
vacuum equations are of this form. Since the literature on these solutions is not
very organized or rigorous, especially regarding their global structure, we discuss
these solutions in some detail. These metrics will also illustrate the necessity of
the hypotheses in Theorem 0.3.

Definition 2.1. A Weyl solution is a solution (M,g, u) of the static vacuum equa-
tions (0.1) which admits an isometric R-action, i.e. a non-zero homomorphism
R → Isom(M), leaving u invariant.

A priori, the topology of a Weyl solution could be quite non-trivial; for ex-
ample M could be any Seifert fibered space. The first result shows that only the
simplest topology (and geometry) is possible. For the moment, we exclude any
possible fixed point set of the R-action from the discussion.

Proposition 2.2. Let (M,g,u) be a Weyl solution with R-action without fixed points,
which does not admit a (local) free isometric R×R action. Then the universal cover
(M̃, g) of (M,g) is a warped product of the form

M̃ = V ×f R, g = gV + f2dφ2, (2.1)

with (V, gV ) a Riemannian surface and f a positive function on V. The R-action
on M̃ is by translation on the second factor.

Proof. This result, whose proof is purely local, is a strengthening in this sit-
uation of a well-known result in general relativity, Papapetrou’s theorem, c.f.
[Wd,Thm.7.1.1], which requires certain global assumptions, (e.g. smoothness up
to Σ).

Let K denote the (complete) Killing field generated by the R-action on M ,
and f = |K|. We may assume that u is not a constant function on M , since
if u is constant, the metric is flat, and so admits a local R × R action. Since
(M,g, u) is real-analytic, u is not constant on any open set in M . We thus choose
a neighborhood U of any point p where ∇u(p) �= 0 on which |∇u| > 0. Define e1
by e1 = ∇u/|∇u|, and extend it to a local orthonormal frame e1, e2, e3 for which
e3 = K/|K| = K/f . Note that this is possible since u is required to be invariant
under the flow of K, so that

< ∇u,K >= 0. (2.2)

In U , the metric g may be written as

g = π∗gV + f2(dφ + θ)2, (2.3)
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where π : U → V is a Riemannian submersion onto a local surface (V, gV ), θ is a
connection 1-form, K = ∂/∂φ and f is a function on the orbit space V . If θ = 0,
then the result follows. Thus, we assume |θ| > 0 in U and show this implies that
g has a free isometric local R × R action.

Consider the 1-parameter family of metrics

gs = π∗gV + s2f2(dφ + s−2θ)2, (2.4)

for s > 0, with g1 = g. Geometrically, this corresponds to rescaling the length of
the fibers of π and changing the horizontal distribution of π, (when θ �= 0). Now
it is a standard fact that the 1-parameter family of 4-metrics

g4
s = gs ± u2dt2 (2.5)

remains Ricci-flat for all s. This can be seen from standard formulas for Rieman-
nian line bundles, c.f. [Bes, 9.36, 9G], [Kr, 16.1-3] or [A2, §1.2]. Thus, the metrics
gs all satisfy the static vacuum equations

urs = D2
su

from (0.1), with the same potential u. Equivalently, the conformal metrics g̃s =
u2gs satisfy

r̃s = 2(d log u)2, (2.6)

for all s, c.f. (1.4) The right side of (2.6) is of course independent of s.
We claim that the metrics gs on U are all locally isometric. While this could

be proved by a lengthy direct computation, we argue more conceptually as follows.
Let esi be a local orthonormal frame for gs, determined as above for g. We then
have es1 = e1, e

s
3 = s−1e3 while es2 varies in the plane < e2, e3 > . The same

relations hold w.r.t. g̃s. Recall also that the full curvature tensor is determined
by the Ricci curvature in dimension 3. It then follows from these remarks and
(2.6) that for each q ∈ U and s > 0, there is a sectional curvature preserving
isomorphism Fs : TqM → TqM, i.e.

K̃s(Fs(P )) = K̃1(P ),

where P is any 2-plane and K̃s is the sectional curvature w.r.t. g̃s. Clearly Fs

varies smoothly with q and s. Using the expression (2.6), a result of Kulkarni [Ku]
then implies that the metrics g̃s are locally isometric and hence so are the metrics
gs.

Let Ω = dθ be the curvature form of the line bundle π. Then w.r.t. the
metric g, |Ω| = |Ω(e1, e2)| = | < ∇e1e2, e3 > |. The same equalities hold w.r.t.
Ωs = dθs = s−2dθ and the gs metric. A short computation then gives

|Ωs|gs → 0, as s → ∞. (2.7)
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Hence consider the behavior of the metrics gs as s → ∞. We are then ex-
panding or blowing up the metric in the fiber direction, at a given base point.
Since the metrics gs are isometric, there are (local) diffeomorphisms ψs such that
ψ∗
sgs converges to a limit metric g∞. At a given base point, the diffeomorphisms

ψs expand or blow up smaller and smaller intervals of the parameter φ to unit
size, giving rise to a limit parameter φ∞. When θ = 0, this is the only change; the
limit metric g∞ is the same as g with the parameter φ replaced by φ∞. (This is
completely analogous to passing from the flat metric on R

2 \{0} to the flat metric
on its universal cover, i.e. unwrapping the circles to lines).

However, when θ �= 0, the e2 direction is also being expanded or blown-up in
a similar way. The function u is left invariant under the family {ψs}.

It follows from (2.7) that the limit metric g∞ is a static vacuum solution of
the form

g∞ = π∗gV∞ + f2
∞(dφ∞)2, (2.8)

i.e. the 1-form θ∞ = 0 in the limit. Further, since the e2 direction has been blown
up, the function f∞ varies only in the e1 direction, i.e. f∞ = f∞(u).

Metrics of the form (2.8) are analyzed in detail below. Referring to (2.10), let
r = f∞·u = h(u). In a possibly smaller open subset of U , we may invert h and write
u = u(r), where r is a local coordinate on V∞. It is easy to see, (c.f. (2.12)-(2.13)
below for example), that g∞ admits a non-vanishing Killing field ∂/∂z, tangent
to V∞ but orthogonal to ∂/∂r, and hence g∞ admits a free isometric local R × R

action. The metrics gs are all locally isometric and so the metric g = g1 also has
a free isometric local R × R action. �

Since the proof above is completely local, Proposition 2.2 holds locally, (in
suitably modified form), even if (M,g) admits only a local or partial R -action.

Static vacuum solutions admitting a free isometric local R × R action are
completely classified; they are either flat or belong to the family of Kasner metrics,
c.f. Example 2.11 below or [EK, Thm.2-3.12]. Such solutions do have Killing fields
K which are not hypersurface orthogonal, i.e. dθ �= 0 in (2.3). For example, if
∂/∂ψ and ∂/∂z are standard generators of the (local) R × R action, then linear
combinations such as K = ∂/∂ψ + ∂/∂z are non-hypersurface orthogonal Killing
fields.

Nevertheless, all such solutions do admit, of course, hypersurface orthogonal
Killing fields and so may be written in the form (2.1). For the remainder of the
paper, we thus assume that a Weyl solution has the form (2.1) locally. In addition,
we will always work with the Z-quotient of the metric (2.1) and so consider Weyl
solutions as warped products of the form V ×f S

1; it will not be assumed in general
that V is simply connected.

Duality. Observe that Weyl solutions naturally come in ’dual’ pairs. Namely the
Ricci-flat 4-manifold (N, gN ) has the form

gN = gV + f2dφ2 + u2dt2, (2.9)
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and so both Mu = V ×f S
1 and Mf = V ×u S

1 are static vacuum solutions on
the 3-manifolds, with potentials u, resp. f . Consider the product of the lengths of
circles, or equivalently, the area of the torus fiber in N ,

r = f · u. (2.10)

This is a globally defined positive harmonic function on (V, gV ). To see this, on
M = Mu, by (2.5), we have

0 = ∆u = ∆V u+ < ∇ log f,∇u >,

and the same formula, with u and f reversed, holds on Mf . Hence

∆V fu = f∆V u + u∆V f + 2 < ∇u,∇f >= 0.

Charts. We now describe a collection of preferred charts in which to express the
Weyl solution (M,g); this description is due to Weyl [Wl]. The surface V may
be partitioned into a collection of maximal domains Vi on which the harmonic
conjugate z of r is single-valued, so that F = r + iz is a well-defined holomorphic
function from Vi into the right half-plane C

+ = {(r, z): r > 0, z ∈ R}. One might
also pass to a suitable cover, for instance the universal cover, of V to obtain a
globally defined conjugate harmonic function, but it is preferable not to do so.

Now each Vi may be further partitioned into a collection of domains Vij on
which F is a conformal embedding into C

+, so that g|Vij = F ∗(dr2 +dz2). We will
thus simply view Vij as a domain in C

+, with gV a metric pointwise conformal to
the flat metric dr2 + dz2.

It follows that the corresponding domain Mij = Vij ×f S
1 is embedded as a

domain Ω = Ωij in R
3 endowed with cylindrical coordinates (r, z, φ), φ ∈ [0, 2π)

with the background (unphysical) complete flat metric dr2 + dz2 + r2dφ2. We
note that all the data above are canonically determined by the two Killing fields
on N and thus the coordinates (r, z, φ) are called canonical cylindrical or Weyl
coordinates for (M,g). Of course Ω is axially symmetric, i.e. symmetric w.r.t.
rotation about the z-axis.

To express the metric g|Ω in these coordinates, the field equations (0.1) imply
that the function

ν = log u (2.11)

is an axially symmetric (independent of φ) harmonic function on Ω ⊂ R
3; this

again follows in a straightforward way from computation of the Laplacian of u
and f on Mf and Mu as above. A computation of the conformal factor for the
metric gV , c.f. [Wd,Ch.7.1], then leads to the expression of g in these coordinates:

g = u−2(e2λ(dr2 + dz2) + r2dφ2), (2.12)

where λ is determined by ν as a solution to the integrability equations

λr = r(ν2
r − ν2

z ), λz = 2rνrνz. (2.13)
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The equations (2.13) mean that the 1-form ω = r(ν2
r − ν2

z )dr + 2rνrνzdz is closed
on Ω.

Conversely, given any axially symmetric harmonic function ν on a connected
open set Ω in R

3, if the closed 1-form ω is exact, (for example if π1(Ω∩C
+) = 0),

the equations (2.13) determine λ up to a constant and the metric (2.12) gives
a solution to the static vacuum equations with S1 symmetry. (The addition of
constants to ν or λ changes the metric at most by diffeomorphism or homothety).

It is remarkable that solutions to the non-linear vacuum equations (0.1) can
be generated in this way by solutions to the linear Laplace equation on R3.

Remark 2.3. (i) The Levi-Civita solutions in §1 are all Weyl solutions. However,
the expressions for the A1-A3 metrics in (0.4),(1.7),(1.8) and the B1 metric in (0.9)
are not in Weyl canonical coordinates. Note that the quotients of the A2 metric
discussed above are no longer Weyl solutions, although they could be considered
as local Weyl solutions; the R-action is only locally defined on the quotients.

(ii) There seems to be no known Weyl solutions which cannot be expressed
globally in the form (2.12).

Fixed Point Set. The behavior of solutions at the part of ∂M where either one
of the two S1 or R actions on N has fixed points requires special considerations.
This is of course the locus where u = 0 or f = 0, and hence includes the part Ω̄∩A
of the z-axis A = {r = 0} in any canonical coordinate chart. It is not necessarily
the case however that this locus is contained in A, c.f. the end of Example 2.10.

Note that given any Weyl solution (2.12), any covering of R
3 \ A induces

another solution of the form (2.12), but with φ parametrizing a circle of length
2πk. For the universal cover (k = ∞), the φ-circle is replaced by a line. In fact,
(2.12) is well-defined when φ runs over any parameter interval [0, 2πα). Observe
however that any asymptotically flat Weyl solution must have α = 1, since the
metric must be smooth near infinity. Thus, we will assume α = 1 in the following,
unless stated otherwise.

Now suppose there is an open interval J in A such that the functions u and
λ, and hence the form (2.12) extend continuously to J . The form g then represents
a continuous metric in a neighborhood of J if and only if the elementary flatness
condition

λ = 0, (2.14)

is satisfied on J . On intervals where (2.14) does not hold, the metric g has cone
singularities, so that it is not locally Euclidean. From (2.13), it is clear that if λ
has a C1 extension to J , then λ is constant on J . However, such constants may
vary over differing components of Ω̄∩A. This will be analyzed further in Remark
2.8.

For the remainder of §2, we assume that

M = Ω,
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so that the Weyl solution is given globally in the form (2.12). Let I be the set
where ν = −∞, i.e. the Gδ set in Ω ⊂ R

3 given by

I =
⋂
n

ν−1(−∞, n), (2.15)

where n runs over negative integers. It is usually assumed in physics that I is non-
empty, although this need not be the case; this will also be discussed further below.
The set I corresponds to the horizon Σ of the Weyl solution (M,g), since u = 0
on I. This correspondence is formal however, since the geometry and topology of
I ⊂ R3 is very different than that of Σ ⊂ (M̄, g), c.f. most of the examples below.
For the same reasons, although M = Ω topologically, the metric boundary ∂M of
(M,g) is (most always) very different than the Euclidean boundary of Ω ⊂ R

3.
In the following, we discuss some of the most significant possible behaviors for

the potential function u, and the associated Weyl solution, in order to illustrate the
breadth of these solutions. The discussion is by no means complete or exhaustive.

(I) Ω̄ compact.
Let M = Ω be any bounded, C∞ smooth axisymmetric domain (i.e. con-

nected open set with smooth compact boundary) in R
3 and let φ be any Ck,α

function on ∂Ω, k ≥ 0, α ∈ (0,1), which is axially symmetric about the z-axis. For
simplicity, assume that Ω ∩ C+ is simply connected. Let ν be the solution to the
Dirichlet problem

∆ν = 0, ν|∂Ω = φ.

Then ν is also axi-symmetric about the z-axis, and hence ν generates a Weyl
solution as in (2.12).

Suppose that for a given k ≥ 1 α ∈ (0,1), φ as above is Ck,α on ∂Ω, but is
nowhere Ck+1 on ∂Ω. Then ν extends to a Ck,α function on the Euclidean closure
Ω̄ and hence, from (2.13), the function λ in (2.12) is also uniformly bounded. This
means that the metric g is quasi-isometric to the flat metric on Ω, and hence
the metric boundary of Ω w.r.t. the Weyl metric g is the same as its Euclidean
boundary. Since ν is not Ck+1 anywhere on ∂Ω, this solution M = Ω is maximal,
i.e. admits no larger static vacuum extension; C2 smooth solutions of the static
vacuum equations are analytic. Further ν is bounded, so that u = eν is bounded
away from 0, and hence the solution (Ω, g) has no horizon.

As noted in §0, the presence of the boundary ∂M is physically assumed due
to the presence of matter or field sources. Thus, at least when k ≥ 2, the vacuum
solution (M,g) can be extended to a larger space-like domain (M ′, g′) ⊃ (M,g)
with non-zero stress-energy T in M ′ \M.

On the other hand, if k = 0 above, then the geometry of the metric boundary
(∂M, g) will in general be very different than the smooth geometry of ∂Ω in R3.
Further, one can of course consider non-smooth domains Ω ⊂ R3 in this situation.
These remarks indicate that the structure of the metric boundary ∂M seemingly
can be quite arbitrary.
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For the remainder of this section, we assume that Ω̄ is non-compact in R
3.

The same remarks as above hold for non-compact domains with smooth (surface)
boundary. Thus for example M = Ω might have infinitely many ends if ∂Ω is
non-compact, showing that the assumption (i) in Theorem 0.3 is necessary. For
simplicity, we only consider the following situation from now on.

(II) Suppose
dimH∂Ω ≤ 1, (2.16)

where the boundary is in the topology of R
3 and dimH is the Hausdorff dimension.

Thus ∂Ω is a closed set of capacity 0, c.f. [H, Thm.5.14], and so in particular is a
polar set. Clearly Ω̄ = R

3.

(A) (Positive Case). Suppose that ν is locally bounded above, i.e.

sup
Bx(1)

ν < ∞,∀x ∈ ∂Ω. (2.17)

It follows, c.f. [H, Thm.5.18] that ν extends uniquely to a globally defined
subharmonic function on R

3. Hence, one may use the value distribution theory of
subharmonic functions on R

3 to analyze the geometry of Weyl solutions.
The Riesz representation theorem c.f. [H,Thm.3.9], implies that any subhar-

monic function ν on R
3 may be represented semi-globally, i.e. on B(R) = B0(R) ⊂

R3 for any R < ∞, as

ν(x) = −
∫
B(R)

1
|x− ξ|dµξ + h(x), (2.18)

where dµξ is a positive Radon measure on B(R) called the Riesz measure of ν and
h is a harmonic function on B(R); both dµ and h are axi-symmetric if ν is. (A
Radon measure is a Borel measure which is finite on compact subsets). For the
moment, we only consider the situation where there exists K < ∞, independent
of R, s.t. ∫

B(R)

1
|x− ξ|dµξ ≤ K. (2.19)

In this case, one obtains a global representation of ν as

ν(x) = −
∫

R3

1
|x− ξ|dµξ + h(x), (2.20)

where dµξ is a positive measure and h a harmonic function on R
3. (In (D) below,

we briefly discuss the situation where (2.19) is not assumed). In particular, if ν is
uniformly bounded above, say sup ν = 0, then the Liouville theorem for harmonic
functions implies that h ≡ 0, and one has the expression

ν(x) = −
∫

R3

1
|x− ξ|dµξ. (2.21)
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Note that since ν is harmonic on Ω,

Ī ⊂ suppdµ ⊆ ∂Ω, (2.22)

but in many situations, as will be seen below, the first inclusion is strict.

(A)(i) Pure harmonic potentials.
Suppose that ν is a smooth harmonic function defined on all of R3, so that

ν = h in (2.20). It is clear that in this case Σ = ∅ in the sense that I = ∅ in R3.
Since ν is axisymmetric, ν may be viewed as an expansion in Legendre polynomials,
i.e.

ν =
∑
k≥0

akR
k · Pk(

z

R
),

where R2 = r2 + z2. For instance, R · P1( z
R ) = z, R2 · P2( z

R ) = 3z2 −R2.
While these solutions are defined on all of R

3, no such solution gives a com-
plete Weyl metric g on M = R

3, by Theorem 1.1. For instance, for ν = z, the
Weyl metric is

g = e−2z(e−r2
(dr2 + dz2) + r2dφ2)), u = ez.

Any straight ray in the (r, z) half-plane has finite length in this metric, except a
ray parallel to the negative z-axis. The horizon Σ occurs formally at {z = −∞},
of infinite g-distance to any point in R

3.

(A)(ii) Newtonian potentials.
Suppose that h = 0 in (2.20), so that ν is the Newtonian potential of an

axisymmetric positive mass distribution dµ as in (2.21). This situation corresponds
exactly to the Newtonian theory of gravity, (or equivalently the electrostatics of a
positively charged distribution). While there is a vast classical literature on this
subject, we will only consider the most interesting situation where

supp dµ = Ī , (2.23)

so that ν approaches −∞ on a dense set in supp dµ.
The following Lemma characterizes this situation.

Lemma 2.4. Let dµ be an axi-symmetric positive Radon measure on R
3. Then

supp dµ = Ī ⇔ supp dµ ⊂ A. (2.24)

Proof. Suppose first that supp dµ is not contained in A. Since dµ is axially sym-
metric, part of supp dµ, namely the part not contained in A, is then given by a
union of circles about the z-axis. Suppose first that there is a circle C which is an
isolated component of supp dµ, so that dµ|C is a multiple of Lebesgue measure on
C. This case has been examined in [Wl],[BW], and we refer there for details. In
particular in this case the potential ν is bounded below on and near C, and hence
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supp dµ �= Ī . If C is not isolated, then using (2.21), the same reasoning holds,
since the measure dµ is then even less concentrated on the circles.

On the other hand, if supp dµ ⊂ A, then dµ is a positive Radon measure on
A. Standard measure theory implies that the upper density of dµ w.r.t. Lebesgue
measure dA at a ∈ A, i.e. lim supr→0

µ(Ba(r))
r , is positive, for Lebesgue almost all

a ∈ supp dµ. From the expression (2.21), it is clear that for any such a, ν(x) → −∞
as x → a. This gives the converse. �

For the remainder of the discussion in (A), we assume (2.23) holds. From
the theory of subharmonic functions on R

3, the set I given by (2.15) may be an
arbitrary Gδ set in A ⊂ R

3, i.e. a polar set in A. Since countable unions of polar
sets are polar, note that I is not necessarily closed in A ⊂ R3. (For example,
let {zi} ∈ A be an increasing sequence converging to a limit point z, with say
dist(zi, zi+1) = i−2, and let dµ =

∑
2−iδzi , where δzi is the Dirac measure based

at zi. Then I = {zi} and supp dµ = {zi ∪ z}).
Given any x ∈ R

3, let mx(r) be the mass of the measure dµ in the ball Bx(r),
i.e.

mx(r) =
∫
Bx(r)

dµ. (2.25)

This is a non-negative increasing function on R
+, for any given x and the limit

m = limr→∞mx(r) > 0, (2.26)

is the total mass of dµ. This agrees, up to a universal constant factor, with the
(ADM or Komar) mass in general relativity, when the latter is defined, and with
(0.7) for solutions with pseudo-compact boundary. Note that one may have m =
+∞.

Lemma 2.4 and a standard result from potential theory, c.f. [H, Thm.3.20],
characterize the possible Riesz measures satisfying (2.23).

Lemma 2.5. A necessary and sufficient condition that a positive Radon measure
dµ is the Riesz measure of an axi-symmetric subharmonic function ν on R

3 with
sup ν = 0 and supp dµ = Ī is that supp dµ ⊂ A, and, for any given x ∈ A,∫ ∞

1

mx(r)
r2

dr < ∞. (2.27)

�
It is easy to see that a Weyl solution (M,g) generated by a potential ν as in

(2.21) for which supp dµ = Ī is a compact subset of the axis A, is asymptotically
flat, in the sense preceding Theorem 0.1. Further, the simplest or most natural
surfaces enclosing any finite number of compact components of Ī , and intersecting
A outside Ī , are 2-spheres in M . Of course if supp dµ ⊂ A is non-compact, then the
solution cannot be asymptotically flat. A simple example is the solution generated
by the measure

dµ =
1

1 + |ζ|dAζ ,
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where ζ parametrizes A and dA is Lebesgue measure on A. Observe also that such
solutions do not have pseudo-compact boundary.

It is worthwhile to discuss some standard examples of Weyl solutions and
their corresponding measures.

Example 2.6. (i) (Curzon Solution). From the point of view of the Riesz measure,
perhaps the simplest example is the measure dµ given by a multiple of the Dirac
measure at some point on A, so that ν = −m/R, R(x) = |x|, is a multiple of the
Green’s function on R

3. This gives rise to the Curzon (or monopole) solution, c.f.
[Kr,(18.4)],

gC = e2m/R[e−m2r2/R4
(dr2 + dz2) + r2dφ2], (2.28)

with u = e−m/R. Here Ω = R
3 \ {0}, ∂Ω = {0}, and it is often stated that gC has

a point-like singularity (monopole) at the origin. However the geometry of ∂M is
very different than that of a point. Namely the circles about the z-axis have length
diverging to infinity as R → 0. Thus, small spheres R = ε about {0} become very
long in the φ direction, and very short in the transverse θ direction, forming a very
long, thin cigar. In particular, as a metric space, ∂M = R. This is the first example
where ∂M is non-compact but pseudo-compact. Of course ∂M = Σ, so that (M,g)
is complete away from Σ. A more detailed analysis of the Curzon singularity is
given in [SS].

Note that one could not have solutions with both directions expanding at
∂M, so that area ∂M = ∞, with ∂M pseudo-compact. This can be seen by use of
minimal surface arguments, c.f. [G].

(ii) (Schwarzschild Solution).The Schwarzschild metric (0.4) is a Weyl metric,
with measure dµ = 1

2dA on [−m,m], where dA is the standard Lebesgue measure
on A. The resulting potential ν in (2.21) is the Newtonian potential of a rod on
the z-axis with mass density 1

2 , given by

νS =
1
2

log(
R+ + R− − 2m
R+ + R− + 2m

), where R2
± = r2 + (z ±m)2. (2.29)

As mentioned before, the horizon Σ here is a smooth totally geodesic 2-sphere
of radius 2m and ∂M = Σ.

The Weyl solution generated by the potential a · νS , for νS as in (2.29) with
a > 0 and a �= 1, is not isometric or homothetic to the Schwarzschild metric. The
associated Weyl metric is no longer smooth up to the horizon; in fact Σ is not even
a 2-sphere unless a = 1.

Remark 2.7. More generally, consider any Weyl solution generated by a Riesz
measure dµ satisfying (2.23). Observe that f = r

u , the length of the φ circles in
the Weyl metric, stays bounded away from 0 and ∞ on approach to supp dµ, if
and only if

log r − C ≤ ν ≤ log r + C, (2.30)
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for some C < ∞, since ν = log u. From the expression (2.21), this occurs only
for the Schwarzschild potential νS. Briefly, the reason for this is as follows. The
estimate (2.30) implies that the potential υ = ν − νS is bounded and given by
convolution of dist−1 with a signed Radon measure dλ. However, as in the proof
of Lemma 2.4, if υ is bounded then one sees that necessarily dλ << dA and further
the Radon-Nikodym derivative dλ/dA is 0, a.e. (dA). In other words, any point of
non-zero density for dλ w.r.t. dA gives rise to approximating points on which ν is
unbounded. It follows that dλ = 0, and hence υ = 0.

In all other cases, where f → 0 on approach to a region in supp dµ, the length
of the φ circles goes to 0, and hence this portion of Σ is singular, of dimension ≤
1, while where f → ∞, the length of the circles goes to ∞ and the corresponding
portion of Σ is singular and non-compact, (as in the Curzon solution). Note that
if supp dµ is compact, then in all cases, ∂M is pseudo-compact.

Thus among the Weyl solutions given by a Newtonian potential, only the
Schwarzschild metric is smooth up to Σ. This gives a very simple (local) confir-
mation of Theorem 0.1 in this special case.

Example 2.6.(iii) (Superposition/Multiple Holes). Subharmonic functions of the
form (2.21) form a convex cone. In particular, one thus has a natural linear super-
position principle for Weyl solutions. This feature is another remarkable property
of Weyl solutions.

For example, one may choose the measure dµ = 1
2dA on two, or any number

of disjoint intervals {Ij} on the axis A, provided (2.27) holds. These correspond
to solutions with ’multiple black holes’, each interval Ij giving a component of Σ
which is a 2-sphere of radius equal to the length of Ij . Although such solutions are
essentially smooth up to Σ, they do not define smooth vacuum solutions on R

3 \
∪Bj . There are cone singularities, (called struts or rods in the physics literature),
along geodesics (corresponding to A \ {Ij}) joining the 2-spheres of Σ, so that the
metric g is not locally Euclidean along such curves. Thus, the elementary flatness
condition (2.14) is violated on A\∪Ij . Nevertheless, the curvature of such metrics
is uniformly bounded everywhere. These cone singularities must be considered part
of ∂M, so ∂M in this case is a union of 2-spheres joined by a collection of curves
and thus connected.

Of course, the black hole uniqueness theorem, Theorem 0.1, also implies that
such solutions cannot be smooth everywhere, when the number of intervals is finite.
However, the proof of this result strongly uses the asymptotically flat assumption.
It seems to be unknown whether there are any Schwarzschild type metrics with
infinitely many black holes, i.e. metrics complete away from Σ and smooth up to Σ
with Σ consisting of infinitely many 2-spheres, and which satisfy (2.17) or (2.21).
It is natural to conjecture that such solutions do not exist, c.f. however the end of
Remark 2.8 below.

Remark 2.8. Whenever supp dµ ⊂ A is not connected but compact, there will
exist such cone singularities on A\ supp dµ. When supp dµ, or a sufficiently
small smoothing of supp dµ, is interpreted to represent a matter source, then
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this statement corresponds exactly to the fact that there are no equilibrium (i.e.
time-independent) many-body solutions in Newtonian gravity of this character,
c.f. [Bn]. Even when supp dµ is non-compact and disconnected, this seems very
likely to be true, c.f. the expressions for sums of Schwarzschild rods (2.29) in [IK,
p.336-337], which generalize to infinitely many rods.

The components {Ci} of A\ supp dµ represent idealized matter sources
(struts or rods) keeping the components of supp dµ apart in static equilibrium.
The cone angle α = αi is constant on each C = Ci, and corresponds to a concen-
tration of scalar curvature on C ⊂ M̄ given by a multiple of the Lebesgue measure
on C

s = (1 − α)dAC ,

Thus the vacuum equations (0.1) are not satisfied across {Ci}. If a very small
tubular neighborhood of radius r of such a rod is smoothly filled in with a perfect
fluid source of constant pressure ρ and energy density µ, then one has the relation
limr→0rρ = −limr→0rµ > 0. The effective mass of such rods is zero, i.e. they do
not contribute to the gravitational potential ν, c.f. [I2] for a detailed discussion.

By passing to covering spaces, it is always possible to create such cone sin-
gularities in Weyl solutions, even if none existed to begin with. For instance, for
the Schwarzschild solution (0.4), with potential (2.29), take any covering, includ-
ing the universal covering, of R

3 \ A = (S2 \ {a ∪ −a}) × R
+, where {a, −a} are

two antipodal points on S2. This gives a solution whose metric completion has
cone singularities along two (radial) geodesics starting at the antipodal points on
S2 = Σ and going to infinity.

Note that this discussion assumes that ν is given by a Newtonian potential
(2.21). In fact, there are Weyl solutions (M,g, u) everywhere smooth up to the axis
A, with Σ = ∂M disconnected, with no cone singularities or struts keeping the
components of Σ apart. Namely, the B1 solution (0.9), dual to the Schwarzschild
solution, has this property.

Another, more remarkable, example is given in [KN]. These authors construct
a Weyl solution of the form (2.12), which is complete away from Σ and smooth
up to Σ, with Σ consisting of infinitely many Schwarzschild-like 2-spheres. In fact,
the solution is periodic in the z-direction. This metric is not of the form (2.21),
but is a limit of a sequence of solutions of the form (2.20), c.f. (D) below.

Remark 2.9. If (M,g, u) is a Weyl solution of the form (2.12) with ν = νu = log u,
then the dual solution (M ′, g′, f), discussed in (2.9), is also a Weyl solution of the
form (2.12), with potential νf = log f given by

νf = log r − νu. (2.31)

Hence if one potential is Newtonian, the dual one is not. Note that the sets Iu, If
where νu and νf are −∞ are disjoint, with Īu ∪ Īf = A. Hence, if νu is a New-
tonian potential with supp dµ compact, so that the associated Weyl solution is
asymptotically flat, then the dual Weyl solution is asymptotically cylindrical.
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Another example of a potential where both terms in (2.20) are non-trivial is
the situation considered (locally) in [GH], where h is a smooth axi-symmetric har-
monic function defined on a neighborhood of supp dµ, c.f. Remark 1.5. As vacuum
solutions, these metrics cannot be complete away from Σ, as in the discussion on
pure harmonic potentials.

This completes our discussion of the Positive Case.

(B) (Negative Case). Under the assumption (2.16), suppose now instead that
ν is locally bounded below in R

3, i.e.

inf
Bx(1)

ν > −∞,∀x ∈ ∂Ω. (2.32)

Then ν extends uniquely to a globally defined superharmonic function on R
3.

Exactly the same discussion as in (A) above holds here, under the substitution
ν → −ν. (This corresponds to the transformation u → u−1 following (1.5)). In
this case, the Riesz measure is a negative measure, so that one has solutions with
negative mass. Note that here the potentials ν or u are unbounded above within
supp dµ, i.e. u or ν go to +∞.

(C) (Mixed Case). Next, one may superimpose Weyl solutions with positive
and negative measures dµ, i.e. consider ν of the form (2.21), with dµ a signed Radon
measure. For example, one may form dipole-type solutions with potential of the
form ν = ν+ + ν− where ν+ and ν− are (for instance) Curzon or Schwarzschild
solutions of positive and negative mass placed at different regions on the axis. This
gives for instance examples of asymptotically flat solutions with mass m assuming
any value in R.

More generally, since positivity is no longer assumed, the measure dµ may
be replaced by distributions, for example weak derivatives of measures.

Example 2.10. (Multipole Solutions). As a typical example, one may take poten-
tials corresponding to derivatives of the Dirac measure based at a point a ∈ A, i.e.
the multipole potentials,

R−n−1 · Pn(
z

R
),

where Pn is the nth Legendre polynomial, or arbitrary linear combinations of such;
c.f. [MF, p.1276ff].

Such potentials are limits of combinations of Newtonian potentials with posi-
tive and negative mass. Thus, it is reasonable to expect that there are (Newtonian)
equilibrium solutions, i.e. solutions with no cone singularities on the axis. This is
proved in [Sz], where explicit equilibrium conditions are given. Note that one may
have infinitely many multipole ’particles‘ in equilibrium.

Another example is the potential of a dipole ring

ν(x) = −
∫
C

z(x)
|x− ξ|3 dξ,
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where x = (r, z, φ) and dξ is the Lebesgue measure on the unit circle C = {r = 1}
in the z = 0 plane. Here ν(x) → −∞, as x → C along the rays r = 1, z > 0.
Hence, in this case, the set I = C is not contained in the axis A.

(D) (Limits). Finally, one may consider potentials which are limits of poten-
tials of the type (A)-(C) above, (besides those in Remark 2.9, Example 2.10). We
consider just one important instance of this here.

Example 2.11. (Kasner Metric). It is easily seen that the potential ν = log r gen-
erates the flat metric

g = dr2 + dz2 + dφ2,

on (R3)+, with potential u = r. Observe that since the φ-lines have constant
length, the function r is now an affine (in fact linear) function on (R3)+.

On the other hand, an equally simple computation shows that the potential
ν = a · log r, for any a ∈ R, generates the metric

g = r2a
2−2a(dr2 + dz2) + r2−2adφ2, u = ra.

Equivalently, setting s = ra
2−a+1,

g = ds2 + sαdz2 + sβdφ2, u = sγ , (2.33)

where α = (2a−2)/(a−1+a−1), β = (2a−1−2)/(a−1+a−1), γ = (a−1+a−1)−1.
Here s ∈ R

+, z ∈ R and φ ∈ [0, 2π] or any other interval, including R, (by passing
to covering and quotient spaces). These metrics are all non-homothetic, provided
a ∈ [−1, 0) ∪ (0, 1]; a = 0 gives the flat metric with u = 1 while a = −1 gives the
A3 metric (1.8).

The potential ν = a · log r can be considered as the limit

ν = limm→∞a[νS(m) − log 2m], (2.34)

where νS(m) is the Schwarzschild potential (2.29) of mass m. Thus it is a limit of
potentials of the form (2.18), where both terms are non-zero, (the harmonic term
h is of course constant here).

These metrics are dual, in the sense discussed in (2.9) to the Kasner (or
Bianchi I) vacuum cosmological models, with homogeneous (flat) but anisotropic
space-like hypersurfaces, c.f. [Wd, Ch.7.2]. It is easy to see that the Kasner metrics
are the only Weyl solutions (M,g) which have an isometric R × R action, even
locally. (The axisymmetric potential ν on Ω ⊂ R

3 must be invariant under an
orthogonal R-action, hence giving a rotationally invariant harmonic function on
R

2. Thus the potential must be a multiple of log r).
Consider these metrics on the quotient M = R

+ × S1 × S1. In case a > 0,
we have α < 0, β > 0, γ > 0 and so Σ = ∂M. As in the discussion with the
Curzon metric, the z-circles have unbounded length as s → 0, so that ∂M = R

and the levels t = ε, (t(x) = distg(x, ∂M)), are long, thin cigars. Thus, ∂M is
non-compact, but pseudo-compact. The end of M̄ \ U is obviously small.
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If a < 0, then α > 0, β > 0, γ < 0 and so Σ = ∅, (it occurs at infinity),
with ∂M = {pt}. In this case, the end of M̄ \ U is not small; the area growth of
geodesic spheres is O(r1−γ).

However, none of these solutions are asymptotically flat even in a weak sense,
except of course when a = 1. Namely, the curvature decays only quadratically in
the g-distance to ∂M, i.e.

|r| = O(t−2),

and not any faster. Hence, the case a > 0 shows that the conclusion of Theorem 0.3,
(asymptotically flat or small ends), cannot be strengthened to only asymptotically
flat ends, while the case a < 0 shows that the assumption (ii) on u in Theorem
0.3 is necessary.

Another metric of this (limit) type is that constructed in [KN], referred to in
Example 2.8. This metric has the same asymptotics as the Kasner metric.

3 Characterization of Asymptotically Flat Solutions

In this section, we prove Theorem 0.3. The proof of the first statement on
finiteness of the number of ends is quite easy, so we begin with this.

Throughout this section, let (M,g, u) be a static vacuum solution with ∂M
pseudo-compact. We recall from §0 that M is connected and oriented. As in §0,
let

t(x) = distg(x, ∂M),

and suppose U = t−1(0, so), so that ∂U ∩ M is compact. For r, s ≥ so, let
S(s) = t−1(s), A(r, s) = t−1(r, s) be the geodesic spheres and annuli about ∂U. It
is important to note that neither S(s) nor A(r, s) are necessarily connected, even
if M has only one end. (Of course if E is a given end of M , then SE(s) = S(s)∩E
must be connected for some sequence s = sj → ∞). Let Sc(s) and Ac(r, s) denote
any component of S(s) resp. A(r, s), so that S(s) = ∪Sc(s), A(r, s) = ∪Ac(r, s). Of
course t is a proper exhaustion function on M̄ \U, so that these sets have compact
closure in M .

Let diamiAc(r, s) denote the intrinsic diameter of Ac(r, s), i.e. the diameter
of the connected metric space (Ac(r, s), g).

Lemma 3.1. There exists a constant do < ∞, independent of s, such that the
number of components of A(1

2s, 2s) is at most do and

diamiAc(
1
2
s, 2s) ≤ do · s. (3.1)

In particular, the manifold (M̄ \ U, g) has a finite number of ends {Ei}.

Proof. Consider first the 4-manifold (N, gN ), as in (0.2) which is smooth and Ricci-
flat outside Ū = π−1(U), where π : N → M is projection on the first factor. Since
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∂Ū ∩N is compact, it follows from results of [Lu] that Lemma 3.1 holds on N , so
that in particular N has a finite number of ends. Since N = M × S1, M̄ \ U also
has a finite number of ends.

The choice of the time parameter on N defines a totally geodesic embedding
M ⊂ N and we have tN |M = t where tN (x) = distN (x, ∂M), ∂M ⊂ N̄ . A geodesic
ball or annulus in M embeds in the geodesic ball or annulus of the same size in
N . Hence (3.1) also holds for M . �

Lemma 3.1 of course proves the first statement of Theorem 0.3. Observe that
the estimate (3.1) is invariant under rescaling of the metric g.

For the remainder of the proof, we (usually) work with a given end E from
the finite collection {Ei}. The main statement of Theorem 0.3 is that if∫ ∞ 1

areaSE(s)
ds < ∞, (3.2)

then the end E is asymptotically flat. The proof of this result is rather long, so we
outline here the overall strategy. The asymptotic behavior of (E, g, u) is studied
in general by examining the structure of the possible tangent cones at infinity,
defined below. Basically, tangent cones at infinity fall into two classes, according to
whether the asymptotic geometry near a given divergent sequence of base points
is non-collapsing or collapsing, c.f. Lemmas 1.3-1.4. The main point is to prove
that under the bound (3.2), all tangent cones at infinity are flat manifolds, and
further that no collapse behavior is possible. Once this is established, the proof
that (E, g, u) is asymptotically flat is relatively straightforward.

A priori, the end E may be very complicated topologically, for instance of
infinite topological type; consider for instance that E might be of the form S∞×S1,
where S∞ is any non-compact surface of infinite topological type and one end. A
main idea is to use the behavior of the potential function u, in particular its value
distribution theory, to control the topology and geometry of E in the large. We
have already seen in §2 that the potential u controls quite strongly the geometry
of Weyl solutions. Lemma 3.6 below is the key technical lemma which expresses
this control for general static vacuum solutions (with pseudo-compact boundary).
Further remarks on the strategy of proof precede the Lemmas below.

The discussion to follow, until the end of Lemma 3.6, holds in general for
ends E of static vacuum solutions with compact boundary. The estimate (3.2) will
only be used after this.

We now define the tangent cones at infinity of a given end E. (While this is
a commonly used terminology, such limit metric spaces are not necessarily metric
cones in general).

First, we recall by Theorem 1.1 that there is a constant K < ∞ such that,
∀x ∈ M,

|r|(x) ≤ K

t2(x)
, |d log u|(x) ≤ K

t(x)
. (3.3)
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The scale-invariant estimates (3.3) give quite strong initial control on the asymp-
totic geometry of (E, g, u) which allows one to get started. Observe that an im-
mediate consequence of (3.1) and (3.3), by integration along paths in Ac(1

3s, 3s),
is the following Harnack inequality:

supu

infu
≤ K1, (3.4)

where the sup and inf are taken over any component Ac(1
2s, 2s) and K1 is inde-

pendent of Ac(1
2s, 2s).

Let xi be any divergent sequence of points in E, with ti = t(xi) → ∞.
Consider the connected geodesic annuli Ai = Ai(κ) = Ac(κ−1ti, κti), xi ∈ Ai,
w.r.t. the rescaled or blow-down metric

gi = t−2
i · g; (3.5)

here κ is any fixed positive constant > 1. By the curvature estimate (3.3), the
metrics gi have uniformly bounded curvature on Ai - the curvature bound depends
only on K and κ. Further, by (3.1), the diameter of Ai w.r.t. gi is also uniformly
bounded.

Hence, if the sequence is non-collapsing, i.e. if there is a lower volume bound
volgAi≥νo ·t3i , for some νo> 0, (equivalent to volgiAi≥νo by scaling), then Lemma
1.3 implies that a subsequence of the pointed sequence {(Ai, gi, xi)}, converges
smoothly, away from the boundary, to a limiting smooth metric (A∞(κ), g∞, x∞).
The limit is a solution of the static vacuum equations; as noted in Lemma 1.3, the
potential u is renormalized to ui = u/u(xi), so that the limit potential u∞ satisfies
u∞(x∞) = 1, c.f. also (3.4). Choosing a sequence κj → ∞ and a suitable diagonal
subsequence, gives the maximal static vacuum solution (A∞, g∞, u∞, x∞). Observe
here also that the estimate (3.1) implies that ∂A∞ = {pt}.

On the other hand, if the sequence (Ai, gi) is collapsing, in the sense that
volgAi << t3i , as ti → ∞, (equivalent to volgiAi → 0), then Lemma 1.4 im-
plies that Ai is a Seifert fibered space or torus bundle over an interval. As dis-
cussed there, one may then pass to Z or Z ⊕ Z covers Ãi(κ) of Ai(κ) (or more
precisely smooth interior approximations to Ai(κ)) to obtain a non-collapsing se-
quence (Ãi(κ), gi, xi), smoothly convergent to a limit (Ã∞(κ), g∞, x∞); (gi here is
lifted to the cover Ãi, as is xi). As above, one may then choose a sequence κj → ∞
and pass to a diagonal subsequence to obtain a maximal limit (Ã∞, g∞, u∞). This
limit static vacuum solution has an isometric R action, or R ⊕ R action in the
case of a rank 2 collapse. Hence by Proposition 2.2 it is a Weyl solution. In the
latter case, the solution is then a (possibly flat) Kasner metric, c.f. Example 2.11.
Topologically, the limit Ã∞ is a trivial R, (or R⊕R), bundle over a surface V , (or
interval), again by Proposition 2.2.

As in §2, we will always work in a Z-quotient Ā∞ of Ã∞, (or Z⊕Z quotient in
the case of rank 2 collapse), and finite covers Āi(κ) converging to Ā∞(κ). For any
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fixed κ > 0, the manifolds (Āi(κ), gi, xi) thus have uniformly bounded curvature
and diameter, a uniform lower bound on their volume, and converge smoothly to
the limit (Ā∞(κ), g∞) ⊂ (Ā∞, g∞). The limit has a free isometric S1 or S1 × S1

action, and so in particular is an S1 or T 2 bundle. Hence Āi(κ) is also topologically
an S1 or T 2 bundle, (although not metrically).

To be definite, the finite covers are chosen so that the length of the S1 factor
or factors at the base point xi ∈ Āi(κ) converge to 1 in the limit.

Recall by Lemma 1.4 that the inclusion map of the fibers induces an injection
on π1. The coverings Āi(κ) are obtained by taking large finite unwrappings of the
S1 or T 2 fibers, (corresponding to taking subgroups of π1(S1) or π1(T 2) of large
but finite index). All finite covering spaces of S1 or T 2 are still S1 or T 2, and
hence we may, and do, choose the unwrappings so that, as smooth manifolds,

Āi(κ) = Ai(κ),

for any κ > 0. In the limit, the unwrapping of the collapse thus just corresponds
to expanding the length of the collapsing S1 factor (or factors), preserving the
holonomy, if any, of the S1 bundle; compare with the proof of Proposition 2.2.

The limit spaces (A∞, g∞, u∞, x∞) or (Ā∞, g∞, u∞, x∞) constructed above
are called tangent cones at infinity of (E, g, u). Note that such tangent cones are
only attached to some subsequence of a given divergent sequence of base points
{xi}. Hence, a priori, the tangent cones at infinity could be highly non-unique as
Riemannian manifolds. In general, there may be no relation between the geometry
of different tangent cones based on (subsequences of) distinct divergent sequences
{xi}; for example, tangent cones based on sequences with t(xi) = 2i

2
and t(xi) =

2i
3
. The tangent cones only detect behavior of the end E in gi-bounded distance

to the base points xi.
On the other hand, since tangent cones at infinity attached to any divergent

sequence always exist, for any s sufficiently large, say s ≥ so, the geometry of
(Ac(1

2 , 2), gs) or (Āc(1
2 , 2), gs) is always close to that of some tangent cone at infin-

ity A∞ or Ā∞. Further, by construction, the tangent cones are always connected
and, since M is oriented, so is each tangent cone.

The following lemma is a typical application of the use of tangent cones at
infinity.

Lemma 3.2. Suppose the curvature r decays faster than quadratically in the end
(E, g, u), i.e.

|r|(x) ≤ ε(t)
t2(x)

, (3.6)

where ε(t) → 0 as t → ∞. Then there is a compact set K ⊂ E such that E \K
is diffeomorphic either to R3 \ B or to (R2 \ B) × S1, where B is a 3-ball, (resp.
a 2-ball), i.e. E is of standard topological type. Further, the annuli AE(1

2s, 2s) are
connected, for all s ≥ so, for some so < ∞.
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Proof. By the preceding discussion, the condition (3.6) is equivalent to the state-
ment that all tangent cones at infinity (A∞, g∞) or (Ā∞, g∞) of E are flat, (as well
as connected and oriented). The two possible conclusions of Lemma 3.2 correspond
to the two possibilities of non-collapse and collapse in the formation of the tangent
cones.

Suppose first that g is non-collapsing on E, i.e. there exists νo > 0 such
that volgAc(1

2s, 2s) ≥ νo · s3, for all s large, and all components Ac. Recall that
∂A∞ = {pt} in this situation. It then follows that for s sufficiently large, each
Ac(1

2s, 2s) is diffeomorphic, and almost isometric to the standard flat annulus
A = r−1(1

2s, 2s) in R
3, r(x) = |x|, (away from the boundary). In fact, each tangent

cone at infinity A∞ is isometric to R
3 \{0} in this situation. Here we are implicitly

using the fact that the only complete oriented flat 3-manifold with an isolated
singularity is R

3 \ {0}, c.f. [AC] for example. Similarly, a smooth approximation
to Sc(s) is diffeomorphic and almost isometric to S2(s) ⊂ R3.

By the isotopy extension theorem, these diffeomorphisms from Ac(1
2s, 2s) to

the standard annulus may then be assembled to a global diffeomorphism, and
almost isometry, of E \ K into R3 \ B, for some compact set K ⊂ E. We refer
to [AC, Thm.1.18] for the proof of these statements, (in a slightly different but
equivalent form), which are now quite standard. The main point is of course that
since the family of annuli Ac(1

2s, 2s) as s varies is topologically rigid, i.e. one has
a unique topological type, there is no value of s at which the topology can change
or bifurcate.

Suppose on the other hand that g is collapsing on Ac(1
2si, 2si), for some

sequence si → ∞, and some sequence of components Ac. As discussed above, one
may then pass to suitable covers Āi = Āc(1

2si, 2si) so that, in a subsequence,
(Āi, gi) is diffeomorphic and almost isometric to its limit Ā∞(1

2 , 2) ⊂ Ā∞. The
maximal limit Ā∞ is a flat manifold with either a free isometric S1 or S1 × S1

action. Hence there are two possibilities for Ā∞, namely either V × S1 or R+ ×
S1 × S1, where V is a flat 2-manifold and the metric is a product metric on
each S1 factor. In the former case, the diameter estimate (3.1) implies, (as in
the non-collapse case above), that V is a complete flat cone, possibly with an
isolated singularity at {0}. Hence, although these two possibilities for the limiting
metric of Ā∞(1

2 , 2) are distinct, both are the same topologically, i.e. Ā∞(1
2 , 2) is

topologically I × S1 × S1.
Now recall from the discussion on tangent cones that Āi is diffeomorphic to

Ac(1
2si, 2si); metrically Āi approximates one of the types of flat manifolds above,

with S1 factors shrinking to very short circles. In both cases, (a smoothing of)
S̄c(si) is diffeomorphic and almost isometric to a flat torus T 2.

In particular, the topological type of Āi is distinct from that of the annuli
Ai above in the non-collapse case, which are topologically always of the form
I × S2 ⊂ R3 \ {0}, (for any choice of base point and component). This implies
first that the family {Ac(1

2s, 2s)} must be collapsing for all s, as s → ∞, and all
components Ac. Second, the topological type of the annuli Ās, and hence that of
As = Ac(1

2s, 2s) is unique, and given for all s large and all c by I × S1 × S1. Use
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of the isotopy extension theorem in the same way as above then proves that the
end E itself is diffeomorphic to (R2 \B) × S1. �

Remark 3.3. (i) It is easily seen from the vacuum equations (0.1) that the condi-
tion (3.6) is equivalent to

|∇ log u|(x) ≤ ε(t)
t(x)

, (3.7)

as t → ∞, c.f. also the proof of Theorem 1.1.
(ii). In the context of Lemma 3.2, the tangent cones at infinity (Ā∞, g∞)

may not be unique up to isometry in the collapse case, and so may vary within the
moduli space M1 of flat product metrics of the form V ×S1 or within the moduli
space M2 of flat product metrics of the form R+ × S1 × S1.

Note that the moduli space Mo of flat metrics on R
3 or R

3 \ {0} is just
one point, (c.f. again [AC] for the latter statement for example). Similarly, by
the normalization preceding Lemma 3.2 that the S1 factors have length 1, the
moduli space M′

2 ⊂ M2 normalized in this way is also just one point. The moduli
space M′

1 ⊂ M1 where the S1 factor has length 1 is naturally identified with R
+,

parametrized by the cone angle at {0}.
Observe however that these two moduli spaces M′

1 and M′
2 are disjoint; they

cannot be connected (or even approximated) by a curve of flat metrics. Now the
geometry of the annuli (AE(1

2s, 2s), gs) varies continuously with s. By the remarks
preceding Lemma 3.2, this induces a continuous variation of the possible tangent
cones (Ā∞, g∞) in M′

1 or M′
2. Hence, on a given end E, one cannot obtain two

different tangent cones, one of the form V×S1 and another of the form R
+×S1×S1;

c.f. also the proof of Lemma 3.7 below.
(iii). We will need a slight generalization of Lemma 3.2 for the next lemma

below. Thus let γ(s) be any properly embedded curve in E with t(γ(s)) → ∞ as
s → ∞, and suppose (3.6), (or (3.7)), holds in the balls Bγ(s)(δ · t(γ(s))), for some
fixed δ > 0. Then the conclusion of Lemma 3.2 also holds.

To see this, consider the blow-downs gs = t−2(γ(s)) · g, based at γ(s),
and the associated tangent cones at infinity. The scale invariant condition (3.6),
when applied to Bγ(s)(δ · t(γ(s))), implies that all such tangent cones are flat in
(Bx∞(δ), g∞), and thus flat everywhere in their maximal domain A∞, by the fact
that smooth solutions of the vacuum equations are real analytic. The proof then
proceeds exactly as in Lemma 3.2

To prove that the estimates (3.6) and (3.7) do in fact hold on E, we need
to understand in more detail the value distribution of the potential u. The main
result needed for this is given in Lemma 3.6, and then (3.6)-(3.7) follow rather
easily in (3.17)-(3.18) below. However, some preliminary results are required for
the proof of Lemma 3.6. The main difficulty is that u may not, in this generality,
be a proper function onto its image, (c.f. the remark following the proof of Lemma
3.4). Lemma 3.4 below is a slightly weaker substitute for this property.
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Let U = t−1(0, so) be a neighborhood of ∂M as in the beginning of §3. Let
γ(τ) be a maximal flow line of ∇u. We will say that γ is divergent if γ does not
intersect U at two different times, i.e. if γ(τ) exits U at some time, then γ(τ)
never reenters (a possibly distinct component of) U , and if further γ(τ) does not
terminate at a critical set of u in M̄ \U as τ → ±∞. It follows that if γ is divergent,
then γ is complete in at least one direction, (τ → +∞, τ → −∞ or both), and
in any such direction, γ(τ) diverges to infinity in M . Since the potential u has no
local maxima or minima in M , the set of flow lines terminating on a critical set of
u in M \ U is a closed set of measure 0 in M . This follows for instance from the
fact that the measure |du|dA, where dA is Lebesgue measure on the level sets of u,
is preserved under the gradient flow of u, and this measure tends to 0 on approach
to critical points of u. Thus among the set of flow lines not joining points of U ,
the divergent flow lines are generic in terms of measure on M . Of course the flow
lines are curves of steepest ascent for u as τ increases, and of steepest descent for
u as τ decreases.

Lemma 3.4. There exists a compact set K ⊂ M̄ , with Ū ⊂ K, such that any
divergent flow line γ(τ) intersects K.

Proof. Suppose that this were not the case, so that there exist, necessarily complete,
flow lines γ(τ), τ ∈ R, which do not intersect a given K ⊃ Ū . We may choose K
sufficiently large so that γ(τ) is then contained in a fixed end E ⊂ M̄ \ U, since
there are only finitely many ends.

Let Aγ(τ) = Aγ(1
2 t(γ(τ)), 2t(γ(τ))) be the component of the geodesic annulus

containing the base point γ(τ) and let Eγ be the part of E swept out by such annuli,
Eγ = ∪τAγ(τ) ⊂ E. As τ → ∞, the function u(γ(τ)) is monotone increasing.

If u(γ(τ)) increases to +∞, then u → ∞ uniformly as τ → ∞ in E+
γ =

∪τ>0Aγ(τ) ⊂ E, by the Harnack estimate (3.4). Since E is an end, there exists
some sequence τj → ∞ such that, for tj = t(γ(τj)), the spheres Sγ(tj) ⊂ Aγ(τj)
satisfy Sγ(tj) = SE(tj), i.e. the spheres SE(tj) are connected, and hence Aγ(τj) =
AE(τj). Thus, u becomes uniformly unbounded on AE(τj), as j → ∞. However, as
τ → −∞, the curve γ(τ) also diverges to infinity in E and u(γ(τ)) is decreasing,
(and so in particular bounded), as τ → −∞. This contradiction implies that
u(γ(τ)) → u+ < +∞, as τ → +∞. Of course u+ > 0.

Suppose first, (for simplicity), that limsupEu = u+, i.e. limt→∞m(t) = u+,
where m(t) = supSE(t)u. The maximum principle for the harmonic function u im-
plies that for t sufficiently large, the function m(t) is either monotone increasing or
monotone decreasing in t and hence approaches the value u+ as t → ∞. Consider
the annuli Aγ(τ) in the scale gt = t−2 · g, t = t(γ(τ)), as in (3.5). Any sequence
τi → ∞ has a subsequence such that the corresponding annuli (Aγ(τi), gti) con-
verge to a limiting domain A∞(1

2 , 2) in a tangent cone at infinity (A∞, g∞), or
(Ā∞, g∞), passing to covers as described above in the case of collapse. By con-
struction, we then see that the potential function u∞ for this limit static vacuum
solution achieves its maximal value u+ > 0 at an interior point. Since u∞ is har-
monic, the maximum principle implies that u∞ ≡ u+, and hence by the vacuum
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equations (0.1), the limit (A∞, g∞) or (Ā∞, g∞) is flat. This argument holds for
any subsequence, and since the convergence to the limit is smooth, we see that

t2 · r|Aγ( 1
2 t,2t)

→ 0, t = t(γ(τ)), as τ → +∞,

by the scale-invariance of this expression.
It follows from Lemma 3.2 and Remark 3.3(iii) that the end E is topologically

standard, and the annuli AE(1
2 t, 2t), t = t(γ(τ)), are connected in E, for all τ

sufficiently large. From the prior argument, this implies in particular that u → u+

uniformly at infinity in E.
However, as before, as τ → −∞, u(γ(τ)) is monotone decreasing to a value

u− ≥ 0. It follows that u+ = u−. This is of course impossible, and shows that γ(τ)
must have exited E at some (negative) time.

Thus it remains to prove that L ≡ limsupEu = u+. Since the annuli AE(τj)
above are connected, the Harnack inequality (3.4), together with the fact that
u+ < ∞, implies that L < ∞. Now choose points xj ∈ Sγ(tj) such that u(xj) → L.
As above, the functions u|AE(τj) have a subsequence converging to a limit harmonic
function u∞ on a tangent cone at infinity based at x∞ = limxj . Then as before u
has an interior maximum at x∞ and hence u∞ ≡ L; this gives L = u+. �

It follows from Lemma 3.4 and the discussion preceding it that any maximal
flow line of ∇u intersects an a priori given large compact set K ⊂ M , except those
exceptional flow lines which start or end at a critical point of u far out in M . In
particular, a set of full measure in any given level set L of u may be connected
to points in K by flow lines of ∇u. In this sense, u is ’almost proper‘, in that it
behaves almost like a proper function in terms of the gradient flow.

Observe that this does not necessarily imply that the level sets of u are
compact, i.e. that u is proper. For instance, the Weyl solution generated by the
dipole potential ν = ν+ + ν− considered in §2(IIC) satisfies (3.6), (it is even
asymptotically flat), but the 0-level of ν is non-compact if ν+ and ν− are chosen
so that the mass is 0. In this example, the only divergent flow lines of ∇u are the
two ends of the z-axis.

Next, as in §2, let
ν = log u.

The following result is quite standard.

Lemma 3.5. On (N, gN ) as in (0.2), with Riemannian metric, we have

∆N |∇ν| ≥ 0.

Proof. This standard estimate is a simple consequence of the Bochner-Lichnerowicz
formula

1
2

∆|∇ν|2 = |D2ν|2+ < ∇∆ν,∇ν > +r(∇ν,∇ν),
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on (N, gN ), where we have dropped the subscript N from the notation. Since ∆ν =
0, by (1.6), and since (N, gN ) is Ricci-flat, this gives

1
2

∆|∇ν|2 ≥ |D2ν|2.

One computes

∆|∇ν| =
1
2
|∇ν|−1∆|∇ν|2 − 1

4
|∇ν|−3|∇|∇ν|2|2,

and, by the Cauchy-Schwarz inequality |∇|∇ν|2|2 ≤ 4|D2ν|2|∇ν|2, so the result
follows. �

Lemmas 3.4 and 3.5 lead to the following key result relating the behavior of
|∇u| to the area growth of geodesic spheres. This result is a straightforward con-
sequence of the divergence theorem for proper harmonic functions u on manifolds
of non-negative Ricci curvature. Lemma 3.4 allows one to remove the assumption
that u is proper.

Lemma 3.6. There is a constant C < ∞ such that for any component Sc(s) of
S(s) ⊂ M , s ≥ 1,

supSc(s)|∇u| ≤ C · areaSc(s)−1. (3.8)

Proof. We work on the Riemannian 4-manifold (N, gN ) until the end of the proof.
Let Âc = Âc(s) = π−1(Ac(1

2s, 2s)) and Ŝc = Ŝc(s) = π−1(Sc(s)), where π : N →
M is projection on the first factor, with S1 fibers. From the coarea formula, we
have ∫

Âc

|∇ν|2 =
∫
v

∫
Lv∩Âc

|∇ν|dσvdv, (3.9)

where Lv is the v-level set of ν in N and the outer integral in (3.9) is over the
range of values in R of ν in Âc. Now as remarked following Lemma 3.4, up to a set
Ẑv of measure 0 in Lv ∩ Âc, all points in the set (Lv ∩ Âc) \ Ẑv may be joined by
flow lines of ∇ν to points in a fixed bounded hypersurface T̂ in K̂, independent of
v, s; here K is the compact set from Lemma 3.4, and T̂ = ∂K̂ for instance. Hence,
by the divergence theorem applied to the harmonic function ν on N ,∫

Lv∩Âc

|∇ν| ≤
∫
T̂

|∇ν| ≤ c1, (3.10)

for some c1 < ∞, independent of s and Âc.
Now |∇ν| is subharmonic on (N, gN ) by Lemma 3.5, and diami

N Âc ≤ c · s,
by (the proof of) Lemma 3.1. A standard sub-mean value inequality for manifolds
of non-negative Ricci curvature, c.f. [SY,Thm.II.6.2], then gives

supŜc(s)|∇ν|
2 ≤ c2

volÂc

∫
Âc

|∇ν|2. (3.11)
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Hence the estimates (3.9)-(3.11) imply

supŜc(s)|∇ν|
2 ≤ c3 · oscÂc

ν · (volÂc)−1. (3.12)

To estimate the right hand side of (3.12), again by (the proof of) Lemma 3.1, osc
ν ≤ c4 · sup|∇ν|s on Âc. Further, we claim that

supÂc(s)|∇ν| ≤ csupŜc(s)|∇ν|,

for some constant c independent of s and Âc. To see this, by scale-invariance, it
suffices to prove that supÂc(1)|∇ν| ≤ csupŜc(1)|∇ν| w.r.t. the rescaled metrics gs =
s−2g. By the curvature and diameter bounds (3.3) and (3.4) and Lemmas 1.3 and
1.4, the metrics (Âc(1), gs) form a compact family of metrics in the C∞ topology,
unwrapping in the case of collapse. Thus, one has uniform control on the metrics
gs on Âc(1). Similarly, when normalized if necessary by additive and multiplicative
constants so that supŜc(1)ν = supŜc(1)|∇ν| = 1, the positive harmonic functions

ν on (Âc(1), gs) also form a compact family of functions in the C∞ topology,
i.e. a normal family. This follows by the Harnack estimate (3.4) and the Harnack
principle (elliptic regularity) for harmonic functions, c.f. [GT, Thm 2.11, Ch. 8].
This compactness of the metrics and functions from elliptic theory proves the claim
above.

Similarly, the metric compactness above also implies there is a constant c < ∞
such that

c−1 · areaSc(1) ≤ volAc(1) ≤ c · areaSc(1),

w.r.t. the metrics gs. (This estimate can also be derived directly from the Bishop-
Gromov volume comparison theorem). Rescaling back to the metric g then gives

c−1
5 · s · areaSc(s) ≤ volAc ≤ c5 · s · areaSc(s), (3.13)

for some constant c5 < ∞. Note that by definition,

areaŜc(s) =
∫
Sc(s)

udA, (3.14)

and the same for volÂc. Hence by (3.4), the estimate (3.13) holds also for Ŝc(s)
and Âc in place of Sc(s) and Ac.

Thus, by combining these estimates above, (3.12) gives

supŜc(s)|∇ν| ≤ c6 · areaŜc(s)−1.

Using (3.14) and (3.4) again, this estimate implies (3.8). �
We are now in a position to begin the proof of Theorem 0.3 itself. Observe that

the previous results in §3 have not used the assumption (3.2), nor the assumption
(ii) in Theorem 0.3 that u does not approach 0 everywhere at infinity in E. Only
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the assumption that ∂M is pseudo-compact has been used. Hence, at this stage, we
do not even know that E has finite topological type. The main point initially is to
prove that the estimates (3.6)-(3.7) above do hold on E under these assumptions.

Recall that we have SE(s) = ∪Sc(s), for Sc(s) ⊂ E. Each geodesic ray σ(s)
in E, i.e. an integral curve of ∇t, with σ(s) ∈ SE(s), determines a component
Sσ(s) = Sc(s) s.t. σ(s) ∈ Sc(s); the union of such components sweep out a part
Eσ of the end E. Of course E is the union of Eσ among all (non-homotopic) rays
σ.

From Lemma 3.1 and from the obvious areaSE(s) =
∑

areaSc(s), we have∫ ∞
areaSE(s)−1ds < ∞ ⇔

∫ ∞
areaSσ(s)−1ds < ∞,

for some geodesic ray σ ⊂ E. (Here the integrals start at some fixed value s ≥ so >
0).

Hence, under the assumption (3.2), we have∫ ∞
areaSσ(s)−1ds ≤ K < ∞, (3.15)

for some ray σ ⊂ E and constant K.
By integrating along the curve σ, (3.15), Lemma 3.6 and the Harnack estimate

(3.4) imply that u is uniformly bounded in Eσ. In fact, we claim that

u∞ = limt(x)→∞u(x) < ∞ (3.16)

exists, where the limit is taken in Eσ. To see this, let γ(s) be any ”quasi-geodesic”
in Eσ, i.e. γ is a smooth curve with γ(s) ∈ Sσ(s) and |dγ/ds| ≤ C1, for some
C1 < ∞. By (3.8) and (3.15), we then have

∫∞ |du(γ(s))|ds ≤ C · C1 · K < ∞,
and so u(γ(s1)) − u(γ(s2)) → 0 whenever s1, s2 → ∞. Hence the limit u∞(γ)
is well-defined. The diameter estimate (3.1) implies that all points in Eσ lie on
quasi-geodesics, (with a fixed C1), in Eσ, starting on Sσ(so). Further, the limit
u∞(γ) is clearly independent of γ, since for instance (3.8) and (3.15) imply that

oscAσ( 1
2 sj ,2sj)

u → 0,

on some sequence sj → ∞. Hence (3.16) follows.
Next, since E is an end, there exists some sequence tj → ∞ such that the

geodesic spheres SE(tj) are connected, and hence Sσ(tj) = SE(tj). By (3.16),
u|SE(tj) → u∞ as tj → ∞. The maximum principle applied to the harmonic
function u thus implies that u|AE(tj ,tk) → u∞, whenever tj , tk → ∞. Thus, we see
that (3.16) holds where the limit is taken in the full end E, and not just in Eσ.

Now we use the assumption (ii) of Theorem 0.3, which says that u(xj) ≥ uo >
0, for some constant uo > 0 and some divergent sequence xj ∈ E. It follows from
this and the existence of the limit (3.16) in E that

u∞ > 0.
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Hence, we may, and will, renormalize the potential function u of the static vacuum
solution (M,g, u) so that, on E,

limt(x)→∞u(x) = 1. (3.17)

The estimate (3.17) essentially immediately implies the scale-invariant esti-
mates

supSE(s)|r| << s−2, supSE(s)|∇u| << s−1, as s → ∞, (3.18)

strengthening the bounds (3.3). For as discussed following (3.3), (3.18) is equivalent
to the statement that all tangent cones at infinity of E are flat, (c.f. also the proof
of Lemma 3.2). But, as noted above, all tangent cones at infinity are static vacuum
solutions, and (3.17) implies that the limit potential u∞ satisfies u∞ ≡ 1. Hence,
the static vacuum equations (0.1) of course imply the limit metrics are flat.

Lemma 3.2 now determines the topology of the end E, as one of two (stan-
dard) alternatives, according to non-collapse or collapse behavior at infinity.

Before proceeding to the analysis of these cases, note that (3.18) implies that
the metrics g and g̃ = u2 · g from (1.4) are quasi-isometric on E, and almost
isometric near infinity. Since g̃ has non-negative Ricci curvature on E, standard
volume comparison theory implies that the area and volume ratios

areag̃(S̃(s))
s2

,
volg̃(B̃(s))

s3
(3.19)

are monotone non-increasing in s. Hence, their limits at s = ∞ exist, and by the
equality of g and g̃ at infinity, the limits at s = ∞ of the ratios in (3.19) w.r.t. the
g metric and g-geodesic spheres and balls also exist, and equal the g̃ limits.

To proceed further, we now separate the discussion into non-collapse and
collapse cases.

Case A (Non-Collapse).
Suppose that E is non-collapsing at infinity, i.e. by the remarks above,

limsups→∞
v(s)
s3

= lims→∞
v(s)
s3

> 0, (3.20)

where v(s) denotes volg(BE(s)). This implies, via (3.13), that areaS(s)−1 ≤ c·s−2,
and hence, by Lemma 3.6,

supS(s)|∇u| ≤ cs−2. (3.21)

The volume condition (3.20) implies that all tangent cones at infinity A∞ of
(E, g) exist, without passing to covering spaces, and, as discussed above, are flat
solutions of the static vacuum equations with potential u∞ ≡ 1. As discussed in the
proof of Lemma 3.2, the tangent cone at infinity is unique, (up to isometry), and
given by R

3 \ {0}, and further E \K is diffeomorphic to R
3 \B, for some compact
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set K ⊂ E. The blow-down metrics gs = s−2 · g on all annuli AE(1
2s, 2s) converge

smoothly to the flat metric on A(1, 2) ⊂ R
3, uniformly as s → ∞, and hence

there are local (harmonic) coordinates on AE(1
2s, 2s) in which g has the expansion

gij = δij + γij , where |γij(x)| → 0 uniformly as s → ∞. Again as discussed in the
proof of Lemma 3.2, these local coordinates, e.g. on {AE(2i−1, 2i+1)}, i > 0, may
be assembled into a global chart, mapping E \K onto R

3 \B, c.f. [AC] for further
details if desired. With respect to such a chart, the metric gij has the form

gij = δij + γij , (3.22)

on all of E \K, with |γij| → 0 uniformly at infinity in E. In other words, g is Co

asymptotic to the flat metric at infinity.
To prove that the metric on E is (strongly) asymptotically flat, as defined

preceding Theorem 0.1, consider again the metric g̃ = u2 ·g. From (1.4) and (3.21),
the curvature of g̃ decays as

|r̃| ≤ Ct−4,

as t → ∞. (Note also that t and t̃ are approximately equal for t large).
It follows that the expansion (3.22) may be improved, for g̃, to

g̃ij = δij + O(t−2), (3.23)

in a suitable (harmonic) coordinate chart. We refer to [BKN] or [BM] for instance
for further details here. Briefly, elliptic regularity theory applied to the equations
(1.4)-(1.5), together with the curvature decay above, implies that the 2nd deriva-
tives of the metric g̃ in the coordinate chart decay as t−4, so that the metric g̃
decays to the flat metric at a rate of t−2. Hence

gij = u−2g̃ij = (1 + 2υ)δij + O(t−2), (3.24)

where υ = 1 − u. Here we are using that fact that since |∇u| = O(t−2), u has an
expansion of the form u = 1 +O(t−1). Further, since log u is harmonic w.r.t. g̃,
the decay (3.21) and (3.23) implies that ∆f log u = O(t−4) for t large, where ∆f is
the flat Laplacian on R

3. This means that u has an expansion u = 1 −m
t +O(t−2),

where m is the mass of E defined in (0.7).
In particular, these estimates show that the end E is asymptotically flat in

the sense preceding Theorem 0.1.
Note that, to first order in t−1, the function υ = 1 − u corresponds to the

Green’s function in R
3, i.e. the fundamental solution of the Laplacian, weighted

by the mass m. It is of course possible to have m = 0, as for instance for the
dipole-type Weyl solutions in §2(IIC), or also m < 0. Further, since u has been
normalized so that u → 1 at infinity in E, the expression (0.7) for the mass is
equivalent to the usual definition

mE =
1

4π

∫
SE(s)

< ∇u,∇t > dA, (3.25)
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where s is sufficiently large so that SE(s)∩∂E = ∅. This is because the expression
(3.25) is independent of s, since u is harmonic, and the fact that it is asymptotic
to the expression (0.7) as s → ∞.

This completes the analysis of Case A.

Case B (Collapse).
Under the standing assumption (3.15), suppose that the end E is collapsing

at infinity, i.e.

limsups→∞
v(s)
s3

= lims→∞
v(s)
s3

= 0. (3.26)

We will prove that this situation is impossible. The results preceding Case A
remain valid, so that (3.17)-(3.18) hold, all tangent cones at infinity Ā∞ of E are
flat products of the form V ×S1 or R

+ ×S1 ×S1, where V is a flat 2-dimensional
cone. Further E\K is diffeomorphic to (R2\B)×S1, for some compact set K ⊂ E.

By (3.15) and Lemma 3.6, we have∫ ∞
supS(s)|∇u|(s)ds ≤ K1 < ∞. (3.27)

The main point is now to show that (E, g) itself, (and not just its tangent
cones), is asymptotic to a flat quotient of R

3, and hence has at most quadratic
volume growth of geodesic balls or linear area growth of geodesic spheres. This is
done in the following result, which is a strengthening of Lemma 3.2.

Lemma 3.7. Under the assumptions (3.26) and (3.27) above, there is a compact
set K ⊂ E such that (E \K, g) is quasi-isometric to a flat product (R2 \B) × S1

or R
+ × S1 × S1.

Proof. As in Case A, it is useful to work with the metric g̃ = u2g; again, this
makes no significant difference, since (3.17) holds. All the metric quantities below
are thus in the g̃ metric. For notational simplicity however, we drop the tilde from
the notation.

Let t∞(x) = lims→∞(dist(x, SE(s))−s). As in the construction of Busemann
functions, the limit here exists, c.f. [Wu] for a discussion of such functions. By
construction, t∞ is a Lipschitz distance function, i.e. t∞ realizes everywhere the
distance between its level sets. Observe that on R

3, t∞ is just the distance function
to {0} ∈ R

3, on V × S1, t∞ is the distance function to {0} ∈ V pulled back to
V ×S1, for any cone V with vertex {0}, while on R

+ ×S1 ×S1, t∞ is the distance
function on R

+ pulled back to the total space.
By renormalization, (as with the potential u), t∞ induces a distance function

t̄∞ on each tangent cone Ā∞ by defining t̄∞(x) = lim(t∞(x)/t∞(xi)), where
t(xi) → ∞ and xi are the base points converging to the base point x∞ ∈ Ā∞.
Thus t̄∞ is the function above on V × S1 or R

+ × S1 × S1.
The map t∞ : (E, g̃) → R

+ is distance non-increasing, and preserves distance
along the integral curves of t∞; thus where smooth, it is a Riemannian submersion.
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We will show that t∞ gives rise to a Lipschitz quasi-isometry by examining the
asymptotics of the second fundamental form of its level sets.

Thus, let σ(s) be any geodesic ray in E which is an integral curve of ∇t∞,
and let B = Bσ(s) denote the second fundamental form of the level surface t −1

∞ (s)
at σ(s). The form B is well-defined and smooth along any such ray σ. Recall that
B satisfies the Riccati equation

B′ + B2 + RT = 0, (3.28)

where T is the unit tangent vector along σ. Consider the behavior of s · B(s)
as s → ∞. This quantity is scale-invariant, and thus converges smoothly, (in
subsequences), to the limiting expression s̄ ·B∞(s̄) on any tangent cone at infinity.
Since the parameters s and t∞|σ are the same up to additive constants, s̄ = t̄∞.
Similarly, by the definition of t̄∞, B∞ is the second fundamental form of the levels
t̄∞. Hence, either
(i): s̄ ·B∞(s̄) = (dθ/|dθ|)2, when the tangent cone is of the form V × S1, and θ is
the angle variable about {0} ∈ V, or
(ii): s̄ ·B∞(s̄) = 0, when the tangent cone is of the form R

+ × S1 × S1.

Thus s̄ · B∞(s̄) is either of rank 1, with eigenvalue 1, or identically 0. Note
that the expression in case (i) is independent of the cone V , i.e. the cone angle at
{0}.

As noted preceding Lemma 3.2 and in Remark 3.3(ii), the geometry of
Ā(1

2s, 2s) smoothly approximates that of a limit tangent cone Ā∞, for s large,
and varies continuously in s. Since the two alternatives (i) and (ii) above for the
structure of B∞ are rigid, it follows that all tangent cones Ā∞ are of the same
type, i.e. they are all of the form V × S1, or all of the form R

+ × S1 × S1.

The main task now is to show that the deviation of s · B(s) from its limit
s̄ · B∞(s̄) has bounded integral. To do this, we use the Riccati equation, and
estimate the decay of the curvature term RT , using basically standard methods in
comparison geometry, c.f. [P, Ch.6.2] for instance.

Thus, from (1.4), the sectional curvature K of (M, g̃) satisfies

KXZ = |∇ν|2 ≥ 0, KXY = −|∇ν|2 ≤ 0,

where Z = ∇u/|∇u|, X, Y are vectors orthogonal to Z, and ν = log u. Hence
|RT | ≤ |∇ν|2. Substituting this in (3.28) gives

|B′ + B2| ≤ |∇ν|2. (3.29)

Let λ be any eigenvalue of B, with unit eigenvector e; (note that B is symmetric).
Observe then that s · λ(s) converges either to 1 or to 0, as s → ∞. The estimate
(3.29) when applied to (e, e) gives

±(sλ′ + sλ2) ≤ s|∇ν|2.
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Integrate this by parts along any finite interval I to obtain

|sλ|∂I +
∫
I

(sλ2 − λ)ds| ≤
∫
I

s|∇ν|2ds.

If sλ → 0 as s → ∞, choose I to be any interval on which sλ = 0 at ∂I and sλ �= 0
on I, so that sλ has a definite sign on I. If there are no such boundary points,
choose I to be an infinite half-line. Similarly, if sλ → 1, choose I to be intervals
such that sλ = 1 at ∂I with sλ − 1 �= 0 on I. Then summing up the estimate
above over all such intervals gives∫

σ

|sλ2 − λ|ds ≤
∫
σ

s|∇ν|2ds + Co,

for some constant Co < ∞. Now the estimate (3.18), together with (3.27) gives∫
s|∇ν|2ds ≤ C1,

for some constant C1 < ∞.
Suppose first s · λ(s) → 1 as s → ∞. We then obtain∫

|sλ(λ− 1
s

)|ds ≤ C2 < ∞,

and hence ∫
|λ− 1

s
|ds ≤ C3 < ∞. (3.30)

Similarly, if s · λ(s) → 0 as s → ∞, one obtains∫
|λ|ds ≤ C3 < ∞. (3.31)

Now the second fundamental form B gives the logarithmic derivative of the
norm of Jacobi fields formed by the family of t∞-rays in E starting at some level
t−1
∞ (so). Thus, if J is any Jacobi field formed from the t∞-congruence, and v =
J/|J |, we have along any t∞-ray,

B(v, v) =
d

ds
(log |J |(s)).

Suppose first that the end E has tangent cones at infinity of the form R
+×S1×S1.

Then (3.31) implies the uniform bound

C−1
4 ≤ |J |(s) ≤ C4, (3.32)

with C4 = eC3 . This means that the geometry of the level surfaces of t∞ is uni-
formly bounded as s → ∞, i.e. the diameter and area of the level surfaces is
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uniformly bounded away from 0 and ∞. It is then clear that there is a Lipschitz
quasi-isometry of (E \K, g̃) to R

+ × S1 × S1 induced by t∞. Since g̃ and g are
also quasi-isometric, by (3.17), the lemma follows in this case.

If E has tangent cones at infinity of the form V ×S1, then there is a basis of
Jacobi fields whose elements satisfy either (3.32), or, from (3.30),

C−1
4 s ≤ |J |(s) ≤ C4s. (3.33)

As before, this implies that t∞ gives rise to a quasi-isometry of (E \ K, g) to
(R2 \B) × S1. �

Of course Lemma 3.7, in both cases, immediately implies that

areaSE(s) ≤ c · s, (3.34)

for some constant c < ∞. However, (3.34) violates the standing assumption (3.15),
(or (3.2)). It follows that no end (E, g) can satisfy the assumptions of Case B.

Together with Case A, this completes the proof of the second statement in
Theorem 0.3.

We now turn to the proof of the last statement in Theorem 0.3. We will
assume that the end E is small, i.e.∫

E

1
areaSE(s)

ds = ∞, (3.35)

and derive a contradiction from the assumptions supu < ∞ and mE �= 0.
The proof is based on a result of Varopoulos [V] which states that ends of

Riemannian manifolds satisfying (3.35) are parabolic, i.e. admit no non-constant
positive superharmonic functions v which tend uniformly toward their infimum at
infinity. (Actually, the result in [V] is a condition on the volume growth of geodesic
balls, but this is equivalent to the bound (3.35) under the estimate (3.13)). We
will prove that the potential u is such a non-constant function, giving the required
contradiction.

Thus, suppose first that
supEu < ∞, (3.36)

Arguing as in (3.9), but now on E ⊂ M in place of N , we have∫
E

|∇u|2 =
∫
v

∫
Lv∩E

|∇u|dAvdv, (3.37)

and as in (3.10), ∫
Lv∩E

|∇u| ≤
∫
T

|∇u| ≤ C.

Thus, these estimates imply that∫
E

|∇u|2 < ∞, (3.38)
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so that ∫
AE(s,∞)

|∇u|2 → 0 as s → ∞. (3.39)

On the other hand, again referring to the proof of Lemma 3.6, since almost
all (in terms of measure) points in Lv ∩ E may be joined by flow lines of ∇u to
a fixed bounded surface T in K, by the divergence theorem there is a subsurface
T ′ ⊂ T such that ∫

Lv∩E
|∇u| ≥

∫
T ′

|∇u| ≥ c, (3.40)

for some constant c > 0. It follows from (3.37)-(3.40) that

oscAE(s,∞)u → 0 as s → ∞. (3.41)

By assumption (ii) in Theorem 0.3, we may thus assume w.l.o.g. that

limt→∞u = 1, (3.42)

in E. Thus, as noted in (3.18), |r| ≤ ε(t)/t2, where ε(t) → 0 as t → ∞, and so
Lemma 3.2 holds on E.

Now choose a smooth approximation S to a large geodesic sphere SE(s) with
SE(s)∩∂E = ∅, so that S separates E into two components, one being the outside
containing the end E.

We claim that if, in addition to (3.36),

mE �= 0, (3.43)

then there is a set of flow lines γ of ∇u or −∇u, starting on S, of positive measure
on S, and pointing out of S, which never intersects S again at later times. Hence
such γ diverge to infinity in E, since up to a set of measure 0, γ does not terminate
in a critical point of u. (Compare with the earlier discussion regarding divergent
flow lines and Weyl dipole solutions concerning Lemma 3.4).

To see this, suppose instead that all flow lines say of ∇u which initially point
out of S eventually intersect S again, with the exception of those terminating in
critical points. Consider the measure

dµ =< ∇u, ν > dA, (3.44)

on S, where dA is the Lebesgue measure and ν is the unit outward normal on S;
dµ is absolutely continuous w.r.t. dA. Since u is harmonic, the divergence theorem
implies that the gradient flow of u preserves the measure dµ in the following sense.
Let D be a domain in S and let Ω be the domain in E formed by a collection of
flow lines outside S, whose endpoints form a smooth surface D′. If ν′ denotes the
unit outward normal to Ω at D′, then the flow from D to D′ carries the measure
dµ to the measure dµ′ =< ∇u, ν′ > dA′, where dA′ is Lebesgue measure on D′.
In particular, the flow preserves the masses of the measures.
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Thus, under the assumptions above, the gradient flow (with varying flow-
times), induces a homeomorphism of S \Z into itself, where Z is a set of Lebesgue
measure 0, corresponding to flow lines terminating in critical points. However, this
homeomorphism inverts the direction of ∇u w.r.t. the fixed normal ν, and hence
maps domains D+ on which the measure dµ is positive onto domains D− on which
dµ is negative, in such a way that that

mµ(D+) = |mµ(D−)|. (3.45)

This of course implies that the total mass of dµ on S is 0. However using (3.44)
and the remarks concerning (3.25), the mass mE of E equals the total mass of dµ.
This contradiction proves the claim.

We may now complete the proof as follows. Assuming E is an end satisfying
(3.36) and (3.43), there exists an open set O of flow lines γ = γ(τ) of either ∇u
or −∇u which start on a set of positive measure on S and diverge to infinity in
E. Consider the former case, which corresponds to mE > 0. A generic flow line of
∇u in E tends to the maximal value of u in E and hence a generic flow line in O
also tends this maximal value. By (3.42), it then follows that supE\Ku = 1, for
some compact set K ⊂ E. The function v = −u is thus a bounded (non-constant)
harmonic function on E, which tends uniformly to its infimum at infinity. Hence
E cannot be parabolic. This contradiction shows that (3.35) cannot hold for E,
and thus, by the proofs in Cases A and B above, the end E is asymptotically flat.
The proof in case mE < 0 is the same.

This completes the proof of Theorem 0.3. �

Remark 3.8 (i). There are (non-flat) static vacuum solutions with a small end,
namely the Kasner metrics (2.33), with a > 0. These solutions have volB(s) ∼
s2−δ, volS(s) ∼ s1−δ, where δ = (a + a−1 − 1)−1 ∈ (0, 1), and hence the end is
small. Note that u ∼ sδ is unbounded. There are other Weyl solutions which are
complete away from Σ with ∂M pseudo-compact and with one small end, (take for
instance the potential given by the Green’s function on R

2×S1, see (ii) below), but
all known examples with small ends are either asymptotic to the Kasner metric at
infinity or have faster than quadratic curvature decay, i.e. satisfy (3.18).

It is an open problem to understand in more detail the structure of small ends
of static vacuum solutions. It follows from the results above in §3 that all tangent
cones at infinity of E are collapsing, and hence they are all Weyl solutions. But
the metric uniqueness of tangent cones at infinity is unknown, as is the question
of whether small ends have finite topological type.

(ii).We construct an example which illustrates the sharpness of the last state-
ment of Theorem 0.3. Let G1 and G2 be the Green’s functions for the Laplacian
on the flat product R2 × S1, with poles at (0, pi), for p1,p2 distinct points in S1.
Here we consider S1 as the z-axis in R

3 quotiented out by an isometric Z-action.
As in (2.34), Gi(x) = G(x, pi), viewed as a function on the universal cover R

3,
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may be written as

Gi = limn→∞
[ n∑
j=−n

1
rj

− cn
]
, (3.46)

where rj is the Euclidean distance to the collection of lifts of pi in R
3 and cn is a

suitable normalizing constant with cn → ∞ as n → ∞, chosen so that G(x, pi) is
finite. Thus Gi is an axisymmetric and z-periodic harmonic function on (R2)+×S1,
where the S1 now means rotations about the z-axis in R

3. Hence the potential

ν = G1 −G2

generates a Weyl solution as in (2.12), with u = eν and which has an isometric
Z-action along the z-axis. Let M denote the Z quotient of this solution. Then the
metric boundary of M is pseudo-compact. Since Gi ∼ log r as r → ∞,

u → 1,

at infinity in M . The end E = R
+ × T 2 is small and has mass 0 in the sense

of (0.7). These solutions of course resemble the dipole-type solutions discussed in
§2(IIC), but with a collapsing end.

Remark 3.9 (i). Although we will not detail it here, an examination of the proof
shows that Theorem 0.3 holds for non-vacuum static solutions of the Einstein
field equations (1.2), provided suitable decay conditions are imposed on the stress-
energy tensor T .

This is the case for example, if T is any tensor with compact support, or more
generally if T satisfies an estimate of the form |T |(x) ≤ c · t−3(x), for some c > 0
and all x with t(x) ≥ so, together with 1

u∆u ∈ L1(M \U). This latter condition is
needed to obtain the bound (3.10). By (1.2), note that 1

u∆u = 1
2 trT. The starting

estimate (3.3) may be obtained by applying (a suitable version of) [An1,Thm.3.3].
(ii). Also, Theorem 0.3 can be given a finite or quantitative formulation, i.e.

one can relax the assumption of completeness, in basically the same way as the
local estimates (3.3) follow from the non-existence of global static vacuum solutions
with ∂M = ∅, c.f. [An1,App.].

Thus, if (3.15) holds and (M,g) is ’sufficiently large‘, depending on K, then
sufficiently far out in (M,g), the metric is close to a flat metric. We leave a precise
formulation and proof, (based on Theorem 0.3), to the reader.

Remark 3.10 As noted in §0, it would be of interest to prove that (M,g, u) has a
unique end. Under the hypotheses of Theorem 0.3, we conjecture this is the case
at least when M is complete away from Σ. If M is in addition smooth up to Σ,
this has been proved by Galloway [G]. Following essentially the same arguments
as in [G], it is not difficult to show that if M is complete away from Σ and if the
Riemannian 4-manifold N admits a compact smoothing of a neighborhood of Σ
having non-negative Ricci curvature, then M has a unique end.
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Remark 3.11 We point out that Theorem 0.3 and Theorem 0.1 are false in higher
dimensions, due to the existence of Einstein metrics on compact manifolds, which
are not of constant curvature, in dimensions ≥ 3. (The equations (0.1) on any
n-dimensional manifold Mn generate Ricci-flat manifolds on Nn+1).

Thus, let (Σ, g) be any compact (n− 2) dimensional Einstein manifold, with
Ricg = (n− 3) · g and define the warped product metric ḡ on R

2 × Σ by

ḡ = dt2 +
4(f ′(t))2

(n− 2)2
dφ2 + f2(t) · g,

where f is the unique function on [0,∞) such that f(0) = 1, f ′ > 0 and (f ′)2 = 1
−f1−n. A simple computation shows that (R2 × Σ, ḡ) is complete and Ricci-flat,
c.f. [Bes, p.271] and the space-like hypersurface R

+×Σ, with metric dt2 +f2(t) ·g,
is a solution to the static vacuum equations, with potential u = f ′, (up to a
multiplicative constant). Thus the horizon is Σ and the solution is smooth up to
Σ and complete away from Σ.

This metric is asymptotically conical, i.e. asymptotic to the complete (Eu-
clidean) cone on (Σ, g), but is asymptotically flat only in the case that (Σ, g) =
Sn−2(1), corresponding to the n-dimensional Schwarzschild metric.
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