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Abstract

A minimum time problem with a nonlinear smooth dynamics and a target sat-
isfying an internal sphere condition is considered. Under the assumption that the
minimum time T be continuous and the normal cone to the hypograph of T ,Nhypo(T ),
be pointed, we show that hypo(T ) is ϕ-convex, i.e. satisfies a strong external sphere
condition. Consequently, T is a.e. twice differentiable and satisfies some further reg-
ularity properties. Our results are based on a representation of Clarke generalized
gradient of T . An example is provided, showing that if Nhypo(T ) is not pointed then
the result may fail.

Keywords and phrases: normal vectors, ϕ-convex (prox-regular, positive reach) sets,
internal sphere condition, small time controllability, adjoint flow.

1 Introduction

This paper is concerned with a rather general class of minimum time problems with
a nonlinear dynamics and with a target which is not a singleton. More precisely, the
dynamics







ẏ(t) = f(y(t), u(t)) a.e.
u(t) ∈ U a.e.
y(0) = x,

is considered, where the function f : R
N × U −→ R

N is (for simplicity) C2 and the
control set U is a compact nonempty subset of R

m. The target S is assumed to be a
closed subset of the state space R

N and the minimum time to reach S subject to the
above dynamics is denoted by T .
Minimum time problems are widely studied from several viewpoints (see, e. g., [1,
Chapter IV], [2], [6, Chapter 8] and references therein). In particular, it is well known
that in general the minimum time function T is not everywhere differentiable. It is also
well known that suitable controllability conditions imply the Hölder continuity of T (see,
e.g., [1, Chapter IV] and references therein), which however does not provide information
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on differentiability.
In a 1995 paper (see [5] and also Chapter 8 in the book [6]), Cannarsa and Sinestrari
found a connection between the dynamics and the target which actually implies the
semiconcavity (or the semiconvexity) of T . Semiconcave functions are – essentially – C2-
perturbations of concave functions and therefore inherit several regularity properties from
convexity. Several features of semiconcavity were thoroughly studied (see Chapters 3, 4,
5 in [6] and references therein), thus providing a rich set of information on the structure
of the minimum time function and suggesting semiconcavity/semiconvexity as a good
regularity class for such value functions. The main result in [5] shows that if the target
satisfies a uniform internal ball condition (see Definition 2.2 below) and the dynamics
is smooth enough, then T is semiconcave, provided a strong controllability assumption,
called Petrov condition, holds. A partially symmetric result, contained in [5], states
that if the target is convex and the dynamics is linear, then T is semiconvex, provided,
again, Petrov condition holds. The latter requires that the minimized Hamiltonian at
all boundary points of S, computed along unit normal vectors, be bounded away from
zero locally uniformly, i.e., for all R > 0 there exists µ > 0 such that

min
u∈U

〈f(x, u), ζ〉 < −µ, for all x ∈ bdryS ∩B(0, R), for all ζ ∈ NS(x), ‖ζ‖ = 1. (1.1)

It is well known that Petrov condition is equivalent to the local Lipschitz continuity of
T (see, e.g., [6, Section 8.2]).

In an entirely different setting, a class which includes both convex and C2-sets was
studied independently by several authors (including Federer [13], Canino [4], Clarke,
Stern and Wolenski [7], Poliquin, Rockafellar and Thibault [18]) under different names,
for example sets with positive reach [13], ϕ-convex sets [4], proximally smooth sets [7],
and prox-regular sets [18]. This class, which we prefer to name with ϕ-convexity, is
characterized by a strong external sphere condition (see Definition 2.1 below): every
normal vector must be realized by a locally uniform ball. By observing that a convex set
satisfies the same type of external sphere condition with an arbitrarily large radius, it
is natural to expect that ϕ-convex sets enjoy locally several properties that are enjoyed
globally by convex set. In particular, this is the case for the metric projection, which
is unique in a neighborhood of a ϕ-convex set K. This fact is used in proving all the
regularity properties which are satisfied by ϕ-convex sets (see, e.g., [13, Section 4]).
Semiconcave functions and ϕ-convex sets are linked together through the hypograph
(see, e.g., Theorem 5.2 in [7], where semiconvex functions are called lower–C2): a locally
Lipchitz function is semiconcave if and only if there exists ϕ0 > 0 such that its hypograph
is ϕ0-convex. Of course an entirely symmetric characterization for semiconvex functions
can be expressed using the epigraph. Trying to generalize to functions with ϕ-convex
hypo/epigraph some regularity properties enjoyed by semiconcave/convex functions was
therefore a natural challenge. Some results on this line were obtained in [9, 10], including
the a.e. twice differentiability (see Theorem 2.2 below) together with an analysis of the
structure of singularities (i.e., nondifferentiability points).

In several minimum time problems, controllability assumptions weaker than Petrov
condition hold, and therefore T is not locally Lipschitz. A natural question therefore
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is trying to understand whether the structure of the minimum time function remains
unchanged if in the above setting the controllability assumptions are weakened. In other
words it is natural to investigate whether the hypograph/epigraph of T is ϕ-convex if
T is supposed to be only continuous. For a linear dynamics and a convex target the
answer is positive, as proved in [11]. This paper is devoted to the nonlinear analogue:
we assume that the dynamics is (essentially) C2, the target S satisfies an internal sphere
condition, and T is continuous, and study the hypograph of T in the complement of S.
Here the situation is more complicated than in the Lipschitz case: the results depend on
the pointedness of the normal cone to the hypograph. More precisely, we show (Theorem
3.3) that if the normal cone to the hypograph is pointed in the complement of S, then
the hypograph of T is ϕ-convex for a suitable ϕ (Theorem 3.3), so that the minimum
time function satisfies the regularity properties contained in Theorem 2.2 below and in
[10]. Our result is based on a representation of the generalized gradient of T in terms
of suitable adjoint vectors (Theorems 3.1 and 3.2). Here the pointedness assumption
plays a major role: actually exposed rays of the normal cone to the hypograph are
special normals, as they can be approximated by normals at differentiability points of
T (Lemma 4.7). Moreover, the pointedness is used in Theorem 3.3 in order to obtain a
uniform estimate for radii of the balls realizing proximal normals to the hypograph. We
show also through an example (Example 2 in Section 7) that if the normal cone is not
pointed, then Theorem 3.3 may fail. An analysis of such general case is postponed to
the forthcoming paper [16].

The paper is organized as follows: §2 is devoted to definitions and basic facts, while
§3 contains assumptions and statement of the main results. Detailed arguments begin
in §4, which contains several lemmas whose geometrical meaning is illustrated, and ends
with a result (Theorem 4.1) giving a representation of the normal cone to the hypograph
of (T ), under the pointedness assumption. Section 5 is devoted to the conclusion of the
proof of the main theorems, which is now only a simple use of the lemmas contained in §4.
Section 6 is dedicated to an improvement of Theorems 3.1 and 3.2 for an optimal point,
i.e. a point which is crossed by a time-optimal trajectory, while §7 contains examples
and §8 some general basic estimates.

2 Preliminaries

2.1 Nonsmooth analysis

Let C ⊂ R
N be a cone (i.e., if x ∈ C and λ ≥ 0, then λx ∈ C). We say that C is pointed

if C ∩ (−C) = {0}. In [19, Corollary 18.7.1, p. 169] it is proved that

if C is closed, convex, and pointed,

then it is the closed convex hull of its exposed rays.
(2.1)

We recall (see [19, p.163]) that an exposed ray R
+v of a convex cone C is defined by

the property that there exists a linear functional h which is zero on it and is such that
if h(p) = 0 and p ∈ C then p ∈ R

+v.
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Let K ⊂ R
N be closed. Its boundary will be denoted by bdryK and its interior by intK.

Let now x ∈ K and v ∈ R
N . We say that v is a proximal normal to K at x (and we will

denote this fact by v ∈ NP
K(x)) if there exists σ = σ(v, x) ≥ 0 such that

〈v, y − x〉 ≤ σ ‖y − x‖2 for all y ∈ K; (2.2)

equivalently v ∈ NP
K(x) iff there exists λ > 0 such that πK(x+ λv) = {x}. We say that

the proximal normal v is realized by a ball of radius ρ > 0 if ρ is the supremum of all λ
such that πK(x+ λv) = {x}. In this case the best constant σ such that (2.2) holds true
is ‖v‖ /(2ρ). The following further concepts of normal vectors will be used (see [8, Ch.
1] and [20, Ch. 6]). Let x ∈ K and v ∈ R

N . We say that:

1. v is a Fréchet normal (or Bouligand normal) to K at x (v ∈ NF
K(x)) if

lim sup
K∋y→x

〈v, y − x

‖y − x‖〉 ≤ 0;

2. v is a limiting, or Mordukhovich, normal to K at x (v ∈ NL
K(x)) if

v ∈ {w|w = limwn, wn ∈ NP
K(xn), xn → x}

and is a Clarke normal (v ∈ NC
K(x)) if v ∈ coNL

K(x). It is well known that NP
K(x)

is convex.

Let f : R
N → R ∪ {+∞} be a lower semicontinuous function. By using epi(f) :=

{(x, ξ)| ξ ≥ f(x)} and hypo(f) := {(x, ξ)| ξ ≤ f(x)} one can define some concepts of
generalized differential for f at x ∈ dom(f) = {x ∈ R

N | f(x) < +∞}. Let x ∈ dom(f),
v ∈ R

N . We say that:

1. v is a proximal subgradient of f at x (v ∈ ∂P f(x)) if (v,−1) ∈ NP
epi(f)(x, f(x));

equivalently (see [8, Theorem 1.2.5]), v ∈ ∂Pf(x) iff there exist σ, η > 0 such that

f(y) ≥ f(x) + 〈v, y − x〉 − σ ‖y − x‖2 for all y ∈ B(x, η) ∩ dom (f); (2.3)

2. v is a proximal supergradient of f at x (v ∈ ∂P f(x)) if (−v, 1) ∈ NP
hypo(f)(x, f(x));

equivalently v ∈ ∂P f(x) iff −v ∈ ∂P (−f)(x), i.e., iff there exist σ, η > 0 such that

f(y) ≤ f(x) + 〈v, y − x〉 + σ ‖y − x‖2 for all y ∈ B(x, η) ∩ dom (f); (2.4)

3. v is a Fréchet subgradient of f at x (v ∈ ∂F f(x)) if (v,−1) ∈ NF
epi(f)(x, f(x)), i.e.,

lim inf
y→x

f(y) − f(x) − 〈v, y − x〉
‖y − x‖ ≥ 0;

4. v is a Fréchet supergradient of f at x (v ∈ ∂F f(x)) if (−v, 1) ∈ NF
hypo(f)(x, f(x));
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5. v is a limiting subgradient of f at x (v ∈ ∂Lf(x)) if (v,−1) ∈ NL
epi(f)(x, f(x)).

6. v is a limiting supergradient of f at x (v ∈ ∂Lf(x)) if (−v, 1) ∈ NL
hypo(f)(x, f(x)).

7. v is a Clarke generalized gradient of f at x (v ∈ ∂f(x)) if (v,−1) ∈ NC
epi(f)(x, f(x)).

We recall that if f is Lipschitz continuous in a neighborhood of x, then v ∈ ∂f(x)
if and only if v ∈ co{ζ| ζ = limDf(xi), xi ∈ dom(Df), xi → x} (see [8, Theorem
8.1]).

It follows readily from the definitions that the inclusions

NP
K(x) ⊆ NF

K(x) ⊆ NL
K(x) ⊆ NC

K(x)

hold, together with their analogues for the sub- and supergradient. Moreover, if a vec-
tor v belongs to both the Fréchet sub- and supergradient of f at x, then f is Fréchet
differentiable at x and Df(x) = v.
For a not necessarily Lipschitz function f , the horizon subgradient ∂∞f plays an impor-
tant role. This is defined as

∂∞f(x) = {v ∈ R
N | (v, 0) ∈ NC

epi(f)(x, f(x))},

and is clearly a closed convex cone. In particular, if f is not locally Lipschitz in a
neighborhood of x, then ∂f(x) may be represented using ∂∞, namely (see [15, Prop. 2.6]
or [20, Theorem 8.49])

∂f(x) = cl (co ∂Lf(x) + co ∂∞f(x)) . (2.5)

Finally, we also consider a notion of proximal horizon supergradient, namely the convex
cone

∂∞f(x) = {v ∈ R
N | (−v, 0) ∈ NP

hypo(T )(x, f(x))}.
We introduce now two classes of sets which will be used throughout the paper.

Definition 2.1 Let K ⊂ RN be closed and let ϕ : K → [0,∞] be continuous. We say
that K is ϕ-convex if for all x, y ∈ K, v ∈ NP

K(x), the inequality

〈v, y − x〉 ≤ ϕ(x) ‖v‖ ‖x− y‖2

holds. By ϕ0-convexity we mean ϕ-convexity with ϕ ≡ ϕ0.

It is clear that every closed and convex set is ϕ0-convex, with ϕ0 = 0, and every closed
set with a C1,1-boundary is L/2-convex, where L is the Lipschitz constant of a suitable
parametrization of bdryK. Some properties of the distance from a ϕ-convex set K and
the metric projection onto K are important features of this class of sets.

Theorem 2.1 Let K ⊂ R
N be a ϕ-convex set. Then there exists an open set U ⊃ K

such that
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(1) dK ∈ C1,1(U \K) and DdK(y) = y−πK(y)
dK(y) for every y ∈ U \K;

(2) πK : U → K is a locally Lipschitz single-valued map. In particular, if K is ϕ0-
convex (with ϕ0 > 0), then πK : {x ∈ R

N | d(x,K) < 1/(4ϕ0)} → K is Lipschitz
with Lipschitz ratio 2.

Moreover,

(3) K has finite perimeter in R
N (provided it is compact);

(4) for every x ∈ K, NP
K(x) = NC

K(x);

(5) the set valued map NP
K(·) has closed graph in bdryK × R

N .

Proof. The proof of (1) and (2) can be found in [4, Proposition 2.6, 2.9, Remark 2.10]
or in [13, §4]. The proof of (3) is in [9, §5], while (4) and (5) can be found in several
papers, including [18]. �

Remark 2.1 Conditions (1) and (2) in Theorem 2.1 are actually equivalent to ϕ-convex-
ity, as it is proved, e.g., in [13, §4]. Examples of finite dimensional ϕ-convex sets can
be found, e.g., in [13].

In both optimal control and partial differential equations theory, semiconcave functions
play an important role (see, e.g., [1, 6]). Let Ω ⊂ R

N be open: a function f : Ω −→ R is
said to be semiconcave if for every x ∈ Ω and every δ > 0 there exists a constant C > 0
such that

f(x) − C ‖x‖2 is concave in B(x, δ).

Semiconcave functions are therefore locally Lipschitz. Moreover, thanks to Theorem 5.2
in [7], the hypograph of such functions is ϕ0-convex for a suitable ϕ0 ≥ 0.
More in general, upper semicontinuous functions with ϕ-convex hypograph (or l.s.c. func-
tions with ϕ-convex epigraph) enjoy several of the regularity properties, except Lipschitz
continuity, that semiconcave functions satisfy. Such functions identify the class which we
want to show that our minimum time belongs to. To this aim, we state a result which
collects the main properties. We denote by LN the Lebesgue N -dimensional measure in
R

N and by Hk the k-dimensional Hausdorff measure, 0 ≤ k ≤ N . For basic concepts of
geometric measure theory we refer to [12].

Theorem 2.2 Let Ω ⊂ R
N be open, and let f : Ω → R ∪ {+∞} be proper, upper

semicontinuous, and such that hypo(f) is ϕ-convex for a suitable continuous ϕ. Then
there exists a sequence of sets Ωh ⊆ Ω such that Ωh is compact in dom(f) and

(1) the union of Ωh covers LN -almost all dom(f);

(2) for all x ∈ ⋃h Ωh there exist δ = δ(x) > 0, L = L(x) > 0 such that

f is Lipschitz on B(x, δ) with ratio L, and hence semiconcave on B(x, δ). (2.6)
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Consequently,

(3) f is a.e. Fréchet differentiable and admits a second order Taylor expansion around
a.e. point of its domain.

Moreover, the set of points where the graph of f is nonsmooth has small Hausdorff dimen-
sion. More precisely, for every k = 1, . . . ,N , the set {x ∈ int dom(f) | the dimension of
∂P f(x) is ≥ k} is countably HN−k-rectifiable.

This result is essentially Theorem 5.1 in [9].
For any set K ⊂ R

N , we denote by Kc the complement of K, i.e., R
N \K.

Definition 2.2 Let K ⊂ R
N be closed and let ρ > 0 be given. We say that K satisfies

the external sphere condition with radius ρ if for all x ∈ bdryK there exists v ∈ NP
K(x),

v 6= 0, which is realized by a ball of radius ρ. We say also that K satisfies the internal
sphere condition with radius ρ if Kc satisfies the external sphere condition with radius
ρ, namely for all x ∈ bdryK there exists v ∈ NP

Kc
(x), v 6= 0, which is realized by a ball

of radius ρ.

Obviously the complement of an open convex set satisfies the internal sphere condition
of radius ρ for any ρ > 0. A comparison between the external sphere condition and
ϕ-convexity was performed in [17].

2.2 Control Theory: Generalities.

We consider throughout the paper a nonlinear control system of the form






ẏ(t) = f(y(t), u(t)) a.e.
u(t) ∈ U a.e.
y(0) = x,

(2.7)

where the Lipschitz function f : R
N × U −→ R

N and the control set U , a compact
nonempty subset of R

m, are given. We denote by Uad the set of admissible controls, i.e.,
the measurable functions u : R → R

m, such that u(t) ∈ U a.e. For any u(·) ∈ Uad, the
unique Carathéodory solution of (2.7) is denoted by yx,u(·).
The adjoint vectors associated with a trajectory yx,u(·) can be represented using the
fundamental solution matrix M(·, x, u) of the linear equation

ṗ(t) = Dxf(yx,u(t), u(t)) p(t), p(0) = I
N×N . (2.8)

We also define M−1(·, x, u) to be the fundamental solution matrix of the time reversed
adjoint equation

q̇(t) = −q(t) Dxf(yx,u(t), u(t)), q(0) = I
N×N . (2.9)

Suppose we are now given a closed nonempty set S ⊂ R
N , which is called the target.

For a fixed x ∈ R
N \ S, we define

θ(x, u) := min {t ≥ 0 | yx,u(t) ∈ S}.

7



Of course, θ(x, u) ∈ (0,+∞], and θ(x, u) is the time taken for the trajectory yx,u(·) to
reach S, provided θ(x, u) < +∞. The minimum time T (x) to reach S from x is defined
by

T (x) := inf {θ(x, u) | u(·) ∈ Uad}. (2.10)

In general, an optimal trajectory, i.e., a trajectory which attains the infimum in (2.10)
does not exist. Therefore, we need also to consider minimizing sequences and limiting
optimal trajectories steering x to the target S. In particular, we will consider the limits of
end-points (thus belonging to S) of minimizing sequences of trajectories. More precisely,

Sx = {x̄ ∈ S | there exist sequences {xn} ⊂ Sc and {ūn(·)} ⊂ Uad such that

xn → x, θ(xn, ūn) → T (x), yxn,ūn(θ(xn, ūn)) → x̄}.
Observe that if T (x) < +∞, then ∅ 6= Sx ⊆ bdryS.
For any x̄ ∈ Sx we define also

Ux̄ = {{ūn(·)} ⊂ Uad | there exists a sequence {xn} satisfying

xn → x, θ(xn, ūn) → T (x), and yxn,ūn(θ(xn, ūn)) → x̄},

i. e., the set of minimizing sequences of controls steering x to x̄. Together with Ux̄ we
define also

Tx̄ = {{yxn,ūn(·)} | xn → x, ūn ∈ Uad,

θ(xn, ūn) → T (x), and yxn,ūn(θ(xn, ūn)) → x̄},
i. e., the set of trajectories corresponding to minimizing sequences of controls steering x
to x̄.
Correspondingly, the limiting adjoint trajectories related to minimizing sequences of
controls are defined by the following

Mx̄ = {M : [0, T (x)] → M
N×N | ∃ {yxn,ūn(·)} ⊂ Tx̄ such that

M(·) is uniform limit on [0, T (x)] of M(·, xn, ūn)}. (2.11)

Remark 2.2 If T (·) is everywhere finite, both Sx, Tx̄ are nonempty. By compactness,
Mx̄ is nonempty as well for all x̄ ∈ Sx. Moreover, if F (x) := {f(x, u)|u ∈ U} is convex
for all x, then the infimum is attained and the sets Sx, Ux̄, and Tx̄ can be substituted by
the simpler sets

Sx = {x̄ ∈ S | there exists ū ∈ Uad such that

θ(x, ū) = T (x), x̄ = yx,ū(T (x))}
Ux̄ = {ū ∈ Uad | θ(x, ū) = T (x), yx,ū(T (x)) = x̄}
Tx̄ = {yx,ū | ū ∈ Ux̄}.

Finally, the Maximized Hamiltonian, namely the function

H : R
N × R

N −→ R, H(x, p) = max
u∈U

〈f(x, u), p〉 ,

will be important in our analysis.
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3 Statement of the main results

We repeat first the setting we are concerned with and specify our assumptions.
We consider the nonlinear system (2.7) under the following assumptions:

(H1) U ⊂ R
N is compact.

(H2) f : R
N × U → R

N is continuous and satisfies:

‖f(x, u) − f(y, u)‖ ≤ L ‖x− y‖ ∀ x, y ∈ R
N , u ∈ U ,

for a positive constant L. Moreover, the differential of f with respect to the x
variable, Dxf , exists everywhere, is continuous with respect to both x and u and
satisfies the following Lipschitz condition:

‖Dxf(x, u) −Dxf(y, u)‖ ≤ L1 ‖x− y‖ ∀ x, y ∈ R
N , u ∈ U ,

for a positive constant L1.

(H3) The minimum time function T : R
N −→ [0,+∞) is everywhere finite and continu-

ous, (i.e. controllability and small time controllability hold).

(H4) The target S is nonempty, closed, and satisfies the internal sphere condition of
radius ρ > 0.

Remark 3.1 Conditions ensuring small time controllability when the target is not nec-
essarily a singleton can be found, e.g., in [1, Chapter IV], [6, Chapter 8], and [14].

Our analysis will be based on the transportation of certain vectors, normal to the closure
of the complement of the target S, by means of the (limiting) adjoint flow. More precisely,
two sets of transported normals will be considered, according with the Hamiltonian:

N0(x) = {MT (r)v | M(·) ∈ Mx̄, v ∈ NP
Sc

(x̄), x̄ ∈ Sx and H(MT (r)v, x) = 0}

N1(x) = {MT (r)v | M(·) ∈ Mx̄, v ∈ NP
Sc

(x̄), x̄ ∈ Sx and H(MT (r)v, x) = 1}
Our main results are the following three theorems, together with the corollary.

Theorem 3.1 Let x ∈ Sc and r = T (x). Under the conditions (H1), (H2) , (H3), and
(H4), together with the further assumption

NP
hypo(T )(x, T (x)) is pointed, (3.1)

the (proximal) horizontal supergradient of the minimum time function T (·) at the point
x can be computed as follows:

∂∞T (x) = −co(N0(x)). (3.2)

9



Theorem 3.2 Let x ∈ Sc and r = T (x). Under the same assumptions of Theorem 3.1,
the proximal supergradient of the minimum time function at the point x can be computed
as follows:

∂PT (x) = −[co(N1(x)) + co(N0(x))]. (3.3)

Theorem 3.3 Let the assumptions of Theorem 3.1 hold for all x ∈ Sc. Then there
exists a continuous function ϕ : hypo(T ) ∩ (Sc × R) −→ [0,+∞) such that, for every
closed set S ′ ⊂ Sc, hypo(T ) ∩ (S ′ × R) is ϕ-convex.

Corollary 3.1 Let the assumptions of Theorem 3.1 hold. Then the minimum time func-
tion T satisfies all the properties listed in Theorem 2.2.

The last result is concerned with the case where the pointedness assumption (3.1) does
not hold. We will present here, for the sake of brevity, only a partial result together with
two examples, a thorough analysis being postponed to a forthcoming paper.

Proposition 3.1 Let the assumptions (H1), (H2) , (H3), and (H4) hold. Then the
hypograph of the minimum time function T satisfies the external sphere condition with a
locally uniform radius, namely for every x ∈ Sc there exists a unit proximal normal v to
hypo(T ) at (x, T (x)) which is realized by a sphere with a locally constant radius σ > 0.

Remark 3.2 Both ϕ and σ can be explicitly computed, and depend only on x, on f and
U , and on the constants L, L1 and ρ appearing in the assumptions (H2) and (H4).

4 Some preparatory lemmas

This section is devoted to several partial results which are needed to prove Theorem 3.2
and Theorem 3.2. In particular, the proof of “⊇” inclusions in (3.1) and (3.2) will be
based on Lemma 4.2 and Lemma 4.3 below.

In the first three lemmas we do not assume that S satisfies the internal sphere con-
dition, nor that the normal cone to the hypograph of T (·) at (x, T (x)) is pointed.

The following notation for sublevels of the minimum time function will be used: for
r > 0 we set

S(r) := {x ∈ R
N | T (x) < r}

Sc(r) := {x ∈ R
N | T (x) ≥ r}

We state first a technical lemma, showing that the limiting adjoint flow transports prox-
imal normals to the complement of the target to proximal normals to the complement
of sublevels of T . Moreover, the radius of the ball which realizes the transported normal
can be explicity estimated.

Lemma 4.1 Assume that S is closed and let the assumptions (H1), (H2), and (H3)
hold. Let x ∈ Sc and set r = T (x) > 0. Fix x̄ ∈ Sx, v ∈ NP

Sc
(x̄) and M(·) ∈ Mx̄. Then

MT (r)v ∈ NP
Sc(r)(x).
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More precisely, assume that v is realized by a ball of radius ρ > 0. Then there exists an
explicitly computable continuous function K depending only on r, ‖x‖, ρ such that for
all z ∈ Sc(r), it holds

〈

MT (r)v, z − x
〉

≤ K(r, ‖x‖ , ρ)
∥

∥MT (r)v
∥

∥ ‖z − x‖2 . (4.1)

Proof. Let xn → x, x̄ ∈ Sx, and {ūn} ⊂ Uad be such that {yxn,ūn(·)} ∈ Tx̄ and
M(·, xn, ūn) converges to M(·) uniformly on [0, T (x)]. By definition of proximal normal
realized by a ρ-ball,

〈v , z̄ − x̄〉 ≤ ‖v‖
2ρ

‖z̄ − x̄‖2 for all z̄ ∈ Sc.

Fix z ∈ Sc(r). We define

x̄n = yxn,ūn(θ(xn, ūn)), z̄n = yz,ūn(θ(xn, ūn)),

and observe that x̄n ∈ S, x̄n → x̄ and we can assume without loss of generality that z̄n
converges to a point z̄ which belongs to Sc since θ(xn, ūn) → r ≤ T (z).

We set for simplicity αn(·) = yxn,ūn(·), βn(·) = yz,ūn(·), tn = θ(xn, ūn), so that

x̄n = xn +

∫ tn

0
f(αn(s), ūn(s))ds , z̄n = z +

∫ tn

0
f(βn(s), ūn(s))ds,

whence

z̄n − x̄n = z − xn+

∫ tn

0

(
∫ 1

0
Dxf(αn(s) + τ(βn(s) − αn(s)), ūn(s))dτ

)

(βn(s) − αn(s))ds.

We define now

A1
n(s) = Dxf(αn(s), ūn(s)),

A2
n(s) =

∫ 1

0
Dxf(αn(s) + τ(βn(s) − αn(s)), ūn(s))dτ,

and observe that, thanks to (H2), for all s ∈ [0, tn] we have

∥

∥A2
n(s) − A1

n(s)
∥

∥ ≤ L1

2
‖βn(s) − αn(s)‖ . (4.2)

Using (iv) in Lemma 8.1 and the definition of L2 in (8.1), we obtain

∥

∥A1
n(s)

∥

∥ ≤ L2(s, ‖xn‖) (4.3)

for all s ∈ [0, tn]. Thus

∥

∥A2
n(s)

∥

∥ ≤ L2(s, ‖xn‖) +
L1

2
‖βn(s) − αn(s)‖ (4.4)

11



for all s ∈ [0, tn]. Now, Gronwall’s Lemma yields

‖βn(s) − αn(s)‖ ≤ eLs ‖z − xn‖ , (4.5)

so that combining (4.4) and (4.5) we obtain

∥

∥A2
n(s)

∥

∥ ≤ L2(s, ‖xn‖) +
L1

2
eLs ‖z − xn‖ . (4.6)

Define M2
n(·) to be the solution of the problem

ṗ(s) = A2
n(t)p(s), p(0) = I

N×N .

Recalling that M(·, x, u) is the fundamental solution of (2.8) set M1
n(·) = M(·, xn, ūn),

z1
n(s) = M1

n(s)(z − xn) and z2
n(s) = M2

n(s)(z − xn), for all s ∈ [0, tn]. Using these
notations, we can write

〈v, z̄n − x̄n〉 =
〈

v, z2
n(tn)

〉

=
〈

v, z1
n(tn)

〉

+
〈

v, z2
n(tn) − z1

n(tn)
〉

=
〈

v,M1
n(tn)(z − xn)

〉

+
〈

v, (M2
n(tn) −M1

n(tn))(z − xn)
〉

≥
〈

v,M1
n(tn)(z − xn)

〉

− ‖v‖
∥

∥(M2
n(tn) −M1

n(tn))(z − xn)
∥

∥ .

(4.7)

To simplify our writing, we set, for all s ≥ 0 and y, z ∈ R
N , L3(s, y, z) = L1

2 e
Ls ‖z − y‖.

By (4.3), (4.6), Lemma 8.3, and (4.2), it holds
∥

∥(M2
n(tn) −M1

n(tn))(z − xn)
∥

∥ ≤

≤ e[2L2(tn,‖xn‖)+L3(tn,xn,z)]tn

∫ tn

0

∥

∥A2
n(s) −A1

n(s)
∥

∥ ds ‖z − xn‖

≤ L1

2
e[2L2(tn,‖xn‖)+L3(tn,xn,z)]tn

∫ tn

0
‖βn(s) − αn(s)‖ ds ‖z − xn‖ .

Recalling (4.5), we obtain
∥

∥(M2
n(tn) −M1

n(tn))(z − xn)
∥

∥ ≤

≤ L1

2
e[2L2(tn,‖xn‖)+L3(tn,xn,z)+L]tn ‖z − xn‖2 .

(4.8)

Therefore, by passing to the limit in (4.7) and (4.8) (recall thatM1
n(·) →M(·) uniformly),

we have

〈

MT (r)v, z − x
〉

≤ 〈v, z̄ − x̄〉 + ‖v‖ L1

2
e[2L2(r,‖x‖)+L3(r,x,z)+L]r ‖z − x‖2

≤ ‖v‖
2ρ

‖z̄ − x̄‖2 + ‖v‖ L1

2
e[2L2(r,‖x‖)+L3(r,x,z)+L]r ‖z − x‖2 .

Moreover, from (4.5) we have ‖z̄ − x̄‖ ≤ eLr ‖z − x‖. Therefore,

〈

MT (r)v, z − x
〉

≤
(

L1

2
e[2L2(r,‖x‖)+L3(r,x,z)+L]r +

e2Lr

2ρ

)

‖v‖ ‖z − x‖2 (4.9)
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for all z ∈ Sc(r).
Observe that

‖v‖ =
∥

∥(MT (r))−1MT (r)v
∥

∥

≤
∥

∥M(r)−1
∥

∥

∥

∥MT (r)v
∥

∥ .

By (ii) in Lemma 8.2 we obtain

∥

∥M(r)−1
∥

∥ ≤ eL2(r,‖x‖)r.

Combining the above inequalities with (4.9) we thus have

〈

MT (r)v, z − x
〉

≤
(

L1

2
e[3L2(r,‖x‖)+L3(r,x,z)+L]r +

e2Lr+L2(r,‖x‖)

2ρ

)

∥

∥MT (r)v
∥

∥ ‖z − x‖2 .
(4.10)

In order to complete the proof, we consider two cases.
If ‖z − x‖ < 1, then L3(r, x, z) ≤ L1

2 e
Lr. Thus, by (4.10) we have

〈

MT (r)v, z − x
〉

≤
(

L1

2
e[3L2(r,‖x‖)+ L1

2
eLr+L]r +

e2Lr+L2(r,‖x‖)

2ρ

)

·

·
∥

∥MT (r)v
∥

∥ ‖z − x‖2 .

(4.11)

If instead ‖z − x‖ ≥ 1, then
〈

MT (r)v, z − x
〉

≤
∥

∥MT (r)v
∥

∥ ‖z − x‖2.
Therefore, in both cases we have that

〈

MT (r)v, z − x
〉

≤ K(r, ‖x‖ , ρ)
∥

∥MT (r)v
∥

∥ ‖z − x‖2 for all z ∈ Sc(r), (4.12)

where the continuous function K, defined for r, δ ≥ 0 and ρ > 0 as

K(r, δ, ρ) := max

{

1,
L1

2
e[3L2(r,δ)+

L1
2

eLr+L]r +
e2Lr+L2(r,δ)

2ρ

}

, (4.13)

depends only on the variables r, δ, ρ and on the constants L, L1, K1, K2.
The proof is complete. �

Remark 4.1 It follows from (4.13) that K(r, δ, ρ) is nondecreasing with respect to both
r and δ.

The next lemma establishes that normals transported along the limiting adjoint flow gen-
erate horizontal proximal normals to the hypograph of T (·), provided their Hamiltonian
is zero. Moreover, the radius of the ball realizing them can be explicitly estimated.
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Lemma 4.2 Let S is closed and let the assumptions (H1), (H2), and (H3) hold. Let
x ∈ Sc, set r := T (x) > 0, and let ξ ∈ N0(x). Then −ξ ∈ ∂∞T (x), or, equivalently,
(ξ, 0) ∈ NP

hypo(T (x))(x, T (x)).

More precisely, let x̄ ∈ Sx and let v ∈ NP
Sc

(x̄), M(·) ∈ Mx̄ be such that H(MT (r)v, x)
= 0. Assume that v is realized by a ball of radius ρ. Then there exists an explicitly
computable continuous function K3(r, x, ρ), depending only on r, x, ρ, such that for all
z ∈ Sc and all β ≤ T (z) it holds

〈

MT (r)v, z − x
〉

≤ K3(r, x, ρ)
∥

∥MT (r)v
∥

∥

(

‖z − x‖2 + |β − T (x)|2
)

. (4.14)

Proof. Let v ∈ NP
Sc

(x̄) be such that

〈v, z̄ − x̄〉 ≤ ‖v‖
2ρ

‖z̄ − x̄‖2 ∀z̄ ∈ Sc. (4.15)

Recalling Lemma 4.1, for all z ∈ Sc(r) it holds

〈

MT (r)v, z − x
〉

≤ K(r, ‖x‖ , ρ)
∥

∥MT (r)v
∥

∥ ‖z − x‖2 . (4.16)

Let z ∈ Sc. Two cases may occur:
(i) T (z) ≥ T (x),
(ii) T (z) < T (x).
In the first case, (4.14) follows immediately from (4.16).
In the second case, define r1 = T (z) and take sequences {xn}, with xn → x, {ūn} ⊂
Uad and {αn(·) := yxn,ūn(·)} corresponding to M(·), according to the definition given in
(2.11). For all n large enough there exists r1n < r for which

x̄1
n := αn(r − r1n) = xn +

∫ r−r1
n

0
f(αn(s), ūn(s))ds

is such that T (x̄1
n) = r1. We can assume without loss of generality that αn(·) converges

uniformly to some α(·) and that r1n → r̄1. Observe that r̄1 < r.
Setting x̄1 = α(r − r̄1)(= lim x̄1

n), one can easily see that T (x̄1) = r1 by the continuity
of T (x). Then, by Lemma 4.1 we obtain that

〈

MT (r1)v, z − x̄1
〉

≤ K(r1,
∥

∥x̄1
∥

∥ , ρ)
∥

∥MT (r1)v
∥

∥

∥

∥z − x̄1
∥

∥

2
. (4.17)

We write
〈

MT (r)v, z − x
〉

=
〈

MT (r)v, z − x̄1
〉

+
〈

MT (r)v, x̄1 − x
〉

and perform some estimates.
First, we consider

〈

MT (r)v, z − x̄1
〉

=
〈

MT (r1)v, z − x̄1
〉

+
〈

(MT (r) −MT (r1))v, z − x̄1
〉

.
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By (4.17) we have

〈

MT (r)v, z − x̄1
〉

≤ K(r1,
∥

∥x̄1
∥

∥ , ρ)
∥

∥MT (r1)v
∥

∥

∥

∥z − x̄1
∥

∥

2

+
∥

∥(MT (r) −MT (r1))v
∥

∥

∥

∥z − x̄1
∥

∥ .

Moreover from (ii) in Lemma 8.2 we have
∥

∥MT (r1)v
∥

∥ ≤
∥

∥(MT (r − r1))
−1
∥

∥

∥

∥MT (r)v
∥

∥

≤ eL2(r−r1,‖x‖)(r−r1)
∥

∥MT (r)v
∥

∥

≤ eL2(r,‖x‖)r ∥
∥MT (r)v)

∥

∥ .

Also, using (iv) in Lemma 8.1 we obtain

∥

∥(MT (r) −MT (r1))v
∥

∥ ≤
∫ r

r1

∥

∥

∥ṀT (s)v
∥

∥

∥ ds

≤
∫ r

r1

eL2(r,‖x‖)r ∥
∥MT (r)v)

∥

∥ ds

= eL2(r,‖x‖)r ∥
∥MT (r)v)

∥

∥ |r − r1|.

Therefore,

〈

MT (r)v, z − x̄1
〉

≤ K(r1,
∥

∥x̄1
∥

∥ , ρ) eL2(r,‖x‖)r ∥
∥MT (r)v

∥

∥

∥

∥z − x̄1
∥

∥

2

+eL2(r,‖x‖)r ∥
∥(MT (r)v)

∥

∥ |r − r1|
∥

∥z − x̄1
∥

∥ .

Recalling (i) in Lemma 8.1 for α(·) = yxn,ūn(·), t = r − r1, and then taking n → ∞, we
obtain

∥

∥x̄1 − x
∥

∥ ≤ (L ‖x‖ +K1)(e
L(r−r1) − 1)

L
≤ (L ‖x‖ +K1)(e

Lr − 1)

L
, (4.18)

from which it follows that
∥

∥x̄1
∥

∥ ≤ eLr ‖x‖ + (eLt−1)K1

L
. Hence,

〈

MT (r)v, z − x̄1
〉

≤ R1(r, ‖x‖ , ρ) eL2(r,‖x‖)r ∥
∥MT (r)v

∥

∥

∥

∥z − x̄1
∥

∥

2

+ eL2(r,‖x‖)r ∥
∥MT (r)v)

∥

∥ |r − r1|
∥

∥z − x̄1
∥

∥ ,
(4.19)

where

R1(r, δ, ρ) = K

(

r, eLrδ +
(eLt − 1)K1

L
, ρ

)

, for r, δ ≥ 0, ρ > 0.

Observe also that we obtain from (iii) in Lemma 8.1 that

∥

∥z − x̄1
∥

∥ ≤ lim
n→∞

(

‖z − xn‖ +

∫ r−r1
n

0
‖f(αn(s), ūn(s))‖ ds

)

≤ lim
n→∞

(

‖z − xn‖ +

∫ r−r1
n

0

(

LeLs ‖xn‖ + eLsK1

)

ds

)

≤ ‖z − x‖ + L4(r, ‖x‖) |r − r1|,
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where L4(s, δ) = LeLsδ + eLsK1 for s, δ ≥ 0.
Combining the above inequality and (4.19), we obtain

〈

MT (r)v, z − x̄1
〉

≤ R2(r, ‖x‖ , ρ)
∥

∥MT (r)v
∥

∥ (‖z − x‖2 + |r − r1|2), (4.20)

where we have defined, for r, δ ≥ 0, ρ > 0,

R2(r, δ, ρ) = eL2(r,δ)r

(

2R1(r, δ, ρ)
(3

2
+ L2

4(r, δ)
)

+ L4(r, δ)

)

. (4.21)

Second, we consider

〈

MT (r)v, x̄1
n − x

〉

=
〈

MT (r)v, xn − x
〉

+

〈

MT (r)v,

∫ r−r1
n

0
f(αn(s), ūn(s))ds

〉

=
〈

MT (r)v, xn − x
〉

+

〈

MT (r)v,

∫ r−r1
n

0
f(x, ūn(s))ds

〉

+

〈

MT (r)v,

∫ r−r1
n

0
(f(αn(s), ūn(s)) − f(x, ūn(s))) ds

〉

.

Recalling that H(MT (r)v, x) = 0, we obtain from the above expression that
〈

MT (r)v, x̄1
n − x

〉

≤
〈

MT (r)v, xn − x
〉

+

〈

MT (r)v,

∫ r−r1
n

0
(f(αn(s), ūn(s)) − f(x, ūn(s))) ds

〉

≤
∥

∥MT (r)v
∥

∥

(

‖xn − x‖

+

∫ r−r1
n

0
‖f(αn(s), ūn(s)) − f(x, ūn(s))‖ ds

)

≤
∥

∥MT (r)v
∥

∥

(

‖xn − x‖ + L

∫ r−r1
n

0
‖αn(s) − x‖ ds

)

≤
∥

∥MT (r)v
∥

∥

(

‖xn − x‖ + L ‖xn − x‖

+L

∫ r−r1
n

0

∫ s

0
‖f(αn(τ), ūn(τ))‖ dτds

)

.

By (iii) in Lemma 8.1, recalling that r̄1 < r we now obtain that
〈

MT (r)v, x̄1
n − x

〉

≤

≤
∥

∥MT (r)v
∥

∥

(

(L+ 1) ‖xn − x‖ + L

∫ r−r1

0

∫ s

0

(

LeLr ‖xn‖ + eLrK1

)

dτds

)

,

whence, taking n→ ∞,

〈

MT (r)v, x̄1 − x
〉

≤ L(LeLr ‖x‖ + eLrK1)

2

∥

∥MT (r)v
∥

∥ |r − r1|2. (4.22)
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Set now, for r, δ ≥ 0, ρ > 0,

K3(r, δ, ρ) = R2(r, δ, ρ) +
L(LeLrδ + eLrK1)

2
. (4.23)

Recalling (4.20) and (4.22), the proof is complete. �

Now we prove a similar result for normals such that the Hamiltonian along the
limiting adjoint flow is 1. Actually, if ξ is such a vector, we show that (ξ, 1) is a proximal
normal to the hypograph of T (·), and again the radius of the sphere which realizes it can
be explicitly estimated.

Lemma 4.3 Let S be closed and let the assumptions (H1), (H2), and (H3) hold. Let
x ∈ Sc, set r := T (x) > 0, and let ξ ∈ N1(x). Then −ξ ∈ ∂PT (x), or, equivalently,
(ξ, 1) ∈ NP

hypo(T (x))(x, T (x)).

More precisely, let x̄ ∈ Sx and let v ∈ NP
Sc

(x̄), M(·) ∈ Mx̄ be such that H(MT (r)v, x) = 1
and assume that v is realized by a ball of radius ρ > 0. Then there exists an explicitly
computable continuous function K6(r, ‖x‖ , ρ) depending only on r, ‖x‖, ρ such that for
all z ∈ Sc and all β ≤ T (z) it holds
〈

MT (r)v, z − x
〉

+ β − r ≤ K6(r, ‖x‖ , ρ)
∥

∥(MT (r)v, 1)
∥

∥ (‖z − x‖2 + |β − r|2). (4.24)

Proof. Let v ∈ NP
Sc

(x̄) be such that

〈v, z̄ − x̄〉 ≤ ‖v‖
2ρ

‖z̄ − x̄‖2 ∀z̄ ∈ Sc.

Let z ∈ Sc. Two cases may occur:
(i) T (z) ≥ T (x),
(ii) T (z) < T (x).
First case. Recalling that H(MT (r)v, x) = 1, one can find ū ∈ U such that

〈

MT (r)v, f(x, ū)
〉

= 1.

Set zū(·) := yz,ū(·) to be the trajectory starting from z with the constant control ū,
namely zū(t) = z +

∫ t

0 f(zū(s), ū)ds.
Taking T (x) ≤ r1 ≤ T (z), we have that zū(r1 − r) ∈ Sc(r). Recalling Lemma 4.1, we

obtain that
〈

MT (r)v, zū(r1 − r) − x
〉

≤ K(r, ‖x‖ , ρ)
∥

∥MT (r)v
∥

∥ ‖zū(r1 − r) − x‖2 . (4.25)

We estimate

〈

MT (r)v, z − zū(r1 − r)
〉

=

〈

MT (r)v,−
∫ r1−r

0
f(zū(t), ū)dt

〉

=

〈

MT (r)v,−
∫ r1−r

0
f(x, ū)dt

〉

+

〈

MT (r)v,

∫ r1−r

0
(f(x, ū) − f(zū(t), ū)) dt

〉

≤ r − r1 + L
∥

∥MT (r)v
∥

∥

∫ r1−r

0
‖zū(t) − x‖ dt.
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Combining the above inequality with (4.25) we get

〈

MT (r)v, z − x
〉

≤ r − r1 + L
∥

∥MT (r)v
∥

∥

∫ r1−r

0
‖zū(t) − x‖ dt

+K(r, ‖x‖ , ρ)
∥

∥MT (r)v
∥

∥ ‖zū(r1 − r) − x‖2 .

(4.26)

Moreover,

‖zū(s) − x‖ ≤ ‖z − x‖ +

∫ s

0
‖f(zū(τ), ū)‖ dt

≤ ‖z − x‖ + K̃(‖x‖)s + L

∫ s

0
‖zū(τ) − x‖ dτ,

where we set, for δ ≥ 0, K̃(δ) := Lδ + K1. Thus, Gronwall’s inequality yields, for all
0 ≤ s ≤ r1 − r,

‖zū(s) − x‖ ≤ eLs ‖z − x‖ + K̃(‖x‖)
(

s+
eLs − Ls− 1

L

)

. (4.27)

Since eLs − Ls− 1 ≤ L(eL − 1)s for all s ∈ [0, 1], we obtain from (4.27)

‖zū(s) − x‖ ≤ eL ‖z − x‖ + K̃(‖x‖)eLs for all s ∈ [0, 1]. (4.28)

Now we consider two subcases.
First subcase: 0 ≤ r1 − r ≤ 1. Combining (4.28) with (4.26) we obtain

〈

MT (r)v, z − x
〉

+ r1 − r ≤ K5(r, ‖x‖ , ρ)
∥

∥MT (r)v
∥

∥ (‖z − x‖2 + |r1 − r|2), (4.29)

where for r, δ ≥ 0, ρ > 0 we set

K5(r, δ, ρ) = eL

(

L

2
+ 2eLK(r, δ, ρ)

(

1 + K̃(δ)2
)

+
K̃(δ)

2

)

. (4.30)

Second subcase: r1 − r > 1. Recalling Lemma 4.1, we obtain

〈

MT (r)v, z − x
〉

+ r1 − r

≤ (K(r, ‖x‖ , ρ) + 1)
∥

∥(MT (r)v, 1)
∥

∥ (‖z − x‖2 + |r1 − r|2).
(4.31)

Observe now that, if β ≤ T (x), recalling Lemma 4.1 we have

〈

MT (r)v, z − x
〉

+ β − T (x) ≤ K(r, ‖x‖ , ρ)
∥

∥MT (r)v
∥

∥ (‖z − x‖2 + |β − T (x)|2). (4.32)

We are now ready to conclude the first case. Indeed, it suffices to combine (4.29), (4.32),
and (4.31) and recall (4.30), obtaining, for all z ∈ Sc(r) and β ≤ T (z),

〈

MT (r)v, z − x
〉

+ β − T (x)

≤ (K5(r, ‖x‖ , ρ) + 1)
∥

∥(MT (r)v, 1)
∥

∥ (‖z − x‖2 + |β − T (x)|2).
(4.33)
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Second case. It is entirely similar to the proof of the second case of Lemma (4.2).
Indeed, by using the condition H(MT (r)v, x) = 1 we can replace (4.22) with

〈

MT (r)v, x̄1 − x
〉

≤ T (x) − T (z) +
L(LeLr ‖x‖ + eLrK1)

2
|r − r1|2. (4.34)

Then, combining (4.20) and (4.34) we obtain

〈

MT (r)v, z − x
〉

+β− T (x) ≤ K3(r, ‖x‖ , ρ)
∥

∥MT (r)v
∥

∥ (‖z − x‖2 + |β− T (x)|2) (4.35)

for all β ≤ T (z), z ∈ Sc and T (z) ≤ T (x).
To conclude the proof of the Lemma we recall (4.35), (4.33), (4.30) and set, for r, δ ≥ 0,
ρ > 0,

K6(r, δ, ρ) = max{K5(r, δ, ρ) + 1,K3(r, δ, ρ)}. (4.36)

�

The next result is a crucial step in order to show that singularities of T may be only
of “upwards type”. Assuming that the target satisfies the internal sphere condition of
radius ρ, we show that if ξ belongs to the proximal subgradient of T (·) at x, then it
belongs also to the proximal supergradient. Moreover −ξ is the transported vector by
the limiting adjoint flow of a normal to Sc, which is realized by ρ, and the radius of the
sphere realizing (−ξ, 1) as a proximal normal to the hypograph of T (·) can be explicitly
estimated. In this lemma, the internal sphere condition (H4) is used for the first time.

In order to simplify our writing, we will replace the functions K, K3, and K6 appear-
ing respectively in Lemma 4.1, Lemma 4.2, and Lemma 4.3 by the explicit (continuous)
function

k(r, ‖x‖ , ρ) = max{K6(r, ‖x‖ , ρ),K(r, ‖x‖ , ρ)}. (4.37)

Lemma 4.4 Let the assumptions (H1) – (H4) hold and let x ∈ Sc and let ξ ∈ ∂PT (x).
Then
(i) ξ ∈ ∂PT (x) and therefore T is differentiable at x;
(ii) −ξ ∈ N1(x).
Moreover, for all z ∈ Sc and for all β ≤ T (z),

〈−ξ, z − x〉 + β − T (x) ≤ k(T (x), ‖x‖ , ρ) ‖(−ξ, 1)‖ (‖z − x‖2 + |β − T (x)|2). (4.38)

Proof. Set r = T (x) and let ξ ∈ ∂PT (x). By Proposition IV.2.3 in [1], H(x,−ξ) ≥ 1,
so that ξ 6= 0. It follows from the definition of proximal subgradient that there exists
σ ≥ 0 such that

〈ξ, z − x〉 ≤ σ ‖z − x‖2 , ∀z ∈ S(r). (4.39)

Let x̄ ∈ Sx and M(·) ∈ Mx̄, and take a sequence {yxn,ūn(·)} ⊂ Tx̄ such that M(·) is the
uniform limit of M(·, xn, ūn). We claim that (MT (r))−1ξ ∈ NP

S (x̄).
Indeed, take z̄ ∈ S and set z̄−n (·) = y−(·, z̄, ūn) where y−(·, z̄, ūn) is the solution of

{

ẏ(t) = −f(y(t), ūn(r − t)) a.e.
y(0) = z̄.
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We set zn = z−n (θ(xn, ūn)) and consider z̄n = yzn,ūn(θ(xn, ūn)). We can assume without
loss of generality that {zn} converges to some z, which is easily seen belonging to S(r).
To simplify our writing, we set tn = θ(xn, ūn), αn(·) = yxn,ūn(·), x̄n = αn(tn), and
M1

n(·) = M(·, xn, ūn). Let also βn(·) = yzn,ūn(·), An(t) =
∫ 1
0 Dxf(αn(t) + τ(βn(t) −

αn(t)), ūn(t)) dτ and let M2
n(·) be the fundamental solution of ṗ(t) = An(t)p(t), p(0) =

I
N×N . Finally, we set wi

n(t) = M i
n(zn − xn) for i ∈ {1, 2}.

Using Lemma 8.2 and the same argument leading to (4.8) we can perform the following
estimate:

〈

MT (r)−1ξ, z̄n − x̄n

〉

=
〈

MT (r)−1ξ, w2
n(tn)

〉

=
〈

MT (r)−1ξ, w1
n(tn)

〉

+
〈

MT (r)−1ξ, w2
n(tn) − w1

n(tn)
〉

≤
〈

MT (r)−1ξ, w1
n(tn)

〉

+
∥

∥MT (r)−1
∥

∥ ‖ξ‖
∥

∥w2
n(tn) − w1

n(tn)
∥

∥

≤
〈

MT (r)−1ξ, w1
n(tn)

〉

+ K̃0 ‖zn − xn‖2

≤
〈

MT (r)−1ξ, w1
n(tn)

〉

+ K̃1 ‖z̄ − x̄n‖2 ,

where K̃0 and K̃1 are suitable constants. Taking n → ∞ in the above inequalities, we
obtain

〈

MT (r)−1ξ, z̄ − x̄
〉

≤
〈

MT (r)−1ξ,MT (r)(z − x)
〉

+ K̃1 ‖z̄ − x̄‖2

= 〈ξ, z − x〉 + K̃1 ‖z̄ − x̄‖2 .

Recalling (4.39) and Lemma 8.2, we thus obtain

〈

MT (r)−1ξ, z̄ − x̄
〉

≤ σ ‖ξ‖ ‖z − x‖2 + K̃1 ‖z̄ − x̄‖2

≤ K̃2 ‖z̄ − x̄‖2 ,

for a suitable constant K̃2. The above inequality in turn implies that

(MT (r))−1ξ ∈ NP
S (x̄). (4.40)

Thanks to (H4), there exists 0 6= ζ ∈ NP
Sc

(x̄). Therefore, both S and Sc admit at x̄ an
external nonzero proximal normal. This means that S is smooth at x̄, and so, by (H4),
the unique external normal to Sc at x̄, namely −MT (r)−1ξ, must be realized by a ball
of radius ρ.
Using Proposition IV.2.3 in [1] we see that H(x,−ξ) ≥ 1, and so we can choose λ ∈ (0, 1)
such that H(−λξ, x) = 1. Applying Lemma 4.3 for v = λMT (r)−1ξ, we obtain that
λξ ∈ ∂PT (x). Therefore, T is differentiable at x and so λξ = ξ. Thus both (i) and (ii)
are proved.
In order to complete the proof, we apply the last statement of Lemma 4.3. �

The next lemma classifies limiting normals, and shows that limiting subgradients gen-
erate proximal normals to the hypograph which are horizontal/non-horizontal according
to the unboundedness/boundedness of the corresponding sequence of proximal subgra-
dients. Also, the radius of the sphere realizing the limiting vector can be explicitly
estimated.
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Lemma 4.5 Let the assumptions (H1) – (H4) hold, and let {xn} be a sequence converg-
ing to x ∈ Sc. Assume that there exists a sequence {ξn} satisfying ξn ∈ ∂PT (xn).
Then the following alternatives hold true:
(i) If lim supn→∞ ‖ξn‖ < +∞ then there exists a subsequence {ξnk

} converging to a vec-
tor ξ such that −ξ ∈ N1(x). Moreover, (−ξ, 1) ∈ NP

hypo(T )(x, T (x)) and, for all z ∈ Sc

and all β ≤ T (z) the inequality

〈−ξ, z − x〉 + β − T (x) ≤ k(T (x), ‖x‖ , ρ) ‖(−ξ, 1)‖ (‖z − x‖2 + |β − T (x)|2) (4.41)

holds.
(ii) If lim supn→∞ ‖ξn‖ = +∞ then there exists a subsequence of {ξn/ ‖ξ‖n} converging
to a vector ξ such that −ξ ∈ N0(x). Moreover, (−ξ, 0) ∈ NP

hypo(T )(x, T (x)) and for all

z ∈ Sc and all β ≤ T (z), the inequality

〈−ξ, z − x〉 ≤ k(T (x), ‖x‖ , ρ)(‖z − x‖2 + |β − T (x)|2) (4.42)

holds.

Proof. Set r = T (x). Recalling Lemma (4.4), the function T (·) is differentiable at xn.
Taking x̄n ∈ Sxn

and Mn(·) ∈ Mx̄n
, it follows from Lemma 4.4 that for all n ∈ N

a) −MT
n (T (xn))−1ξn ∈ NP

Sc
(x̄n) and each −MT

n (T (xn))−1ξn is realized by a ball of radius
ρ, namely

〈

−MT
n (T (xn))−1ξn, z̄ − x̄n

〉

≤
∥

∥MT
n (T (xn))−1ξn

∥

∥

2ρ
‖z̄ − x̄n‖2 , ∀z̄ ∈ Sc. (4.43)

b) H(−ξn, xn) = 1.
If lim supn→∞ ‖ξn‖ < +∞, we choose subsequences {x̄nk

} and {ξnk
} converging

respectively to x̄ ∈ S and ξ̄. By compactness, without loss of generality we can assume
that {Mnk

(·)} converges uniformly to M(·). We now take nk → ∞ in (4.43) and obtain

〈

−MT (r)−1ξ̄, z̄ − x̄
〉

≤
∥

∥MT (r)−1ξ̄
∥

∥

2ρ
‖z̄ − x̄‖2 . (4.44)

Thus −MT (r)−1ξ̄ ∈ NP
Sc

(x̄) and −MT (r)−1ξ̄ is realized by a ball of radius ρ .

On the other hand, we also take nk → ∞ in b) and obtain H(−ξ̄, x) = 1.
One can also easily show that MT (·) ∈ Mx̄, so that −ξ̄ ∈ N1(x). Recalling Lemma 4.3
and setting ξ := ξ̄ the proof of (i) is concluded.

Analogously, if lim supn→∞ ‖ξn‖ = +∞, we can assume that −ξ̄ = − limnk→∞
ξnk

‖ξnk
‖ ,

together with −MT (r)−1ξ̄ ∈ NP
Sc

(x̄) and H(−ξ̄, x) = 0. Thus −ξ̄ ∈ N0(x). Finally,

recalling Lemma 4.2 and setting ξ := ξ̄ we conclude the proof of (ii). �

The final results of this section use for the first time the pointedness assumption for
the normal cone NP

hypo(T )(x, T (x)). They show essentially that NP
hypo(T )(x, T (x)) is a

closed cone, and that horizontal (resp. non-horizontal) exposed rays of NP
hypo(T )(x, T (x))

belong to N0(x) (resp. N1(x)). As a byproduct of our argument we obtain a represen-
tation of NP

hypo(T )(x, T (x)) through N0(x) and N1(x) (see Theorem 4.1).
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Lemma 4.6 Let s ∈ Sc and let the assumptions (H1) - H(4) hold. Assume that
NP

hypo(T )(x, T (x)) is pointed and set

Ñ0(x) = {(ξ, 0) | ξ ∈ N0(x)},
Ñ1(x) = {λ(ξ, 1) | ξ ∈ N1(x), λ ≥ 0},
N(x) = coÑ0(x) + coÑ1(x).

Then N(x) is a closed, convex, and pointed cone contained in NP
hypo(T )(x, T (x)).

Proof. Thanks to Lemmas 4.2 and 4.3 and the definition of k in (4.37), every ζ ∈
Ñ0(x)∪ Ñ1(x) satisfies the following property: for every y ∈ Sc and every β ≤ T (y), the
inequality

〈ζ, (y − x, β − T (x))〉 ≤ k(T (x), ‖x‖ , ρ) ‖ζ‖
(

‖y − x‖2 + |β − T (x)|2
)

(4.45)

holds. It follows immediately from the above property that both Ñ0(x) and Ñ1(x)
are cones contained in NP

hypo(T )(x, T (x)). Thus coÑ0(x) and coÑ1(x) are contained in

NP
hypo(T )(x, T (x)), and so they are pointed. Set N1

0 = {ξ ∈ R
N | ξ ∈ N0(x), ‖ξ‖ = 1},

and observe that on one hand Ñ0(x) = {λ(ξ, 0) | ξ ∈ N1
0 , λ ≥ 0}, on the other N1

0 (by
the continuity of the Hamiltonian) is compact and 0 6∈ N1

0 . Analogously, observe that
N1(x) is compact and does not contain zero. Therefore, using Lemma 8.4, we obtain
that both coÑ0(x) and coÑ1(x) are closed, and the proof is concluded. �

Lemma 4.7 Let x ∈ Sc and let the assumptions of Theorem 3.1 hold. Let Ñ be a closed
convex cone in R

N+1 with the property

N(x) ⊆ Ñ ⊆ NP
hypo(T )(x, T (x)). (4.46)

Let ζ belong to an exposed ray of Ñ . The following statements hold true:

(i) if ζ = (ξ, 0), with ξ ∈ R
N , then ξ ∈ N0(x);

(ii) if ζ = (ξ, λ), with ξ ∈ R
N and λ > 0, then ξ/λ ∈ N1(x).

Moreover, ζ satisfies (4.45) for all y ∈ Sc and all β ≤ T (y).

Proof. By our assumption on ζ, there exists v̄ = (v0, λ0) satisfying v0 ∈ R
N , ‖v0‖ = 1,

and λ0 ∈ R such that










〈(v0, λ0), ζ〉 = 0

〈(v0, λ0), w〉 ≤ 0 ∀w ∈ Ñ

〈(v0, λ0), w〉 = 0, and 0 6= w ∈ Ñ ⇒ w
‖w‖ = ζ

‖ζ‖ .
(4.47)

We now begin proving (i). Since ζ = (ξ, 0) ∈ NP
hypo(T )(x, T (x)), there exists a constant

σ ≥ 0 such that, for all z ∈ Sc and all β ≤ T (z), the inequality

〈ξ, z − x〉 ≤ σ(‖z − x‖2 + |β − T (x)|2) (4.48)
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holds. Set now xn = x + v0
n

+ ξ

n
√

n
. Then, by the Density Theorem (see [8, Theorem

1.3.1]), for each n there exists zn such that

∂PT (zn) 6= ∅, (4.49)

‖zn − xn‖ ≤ 1

n2
. (4.50)

First, we show that
T (zn) ≤ T (x) for all n large enough. (4.51)

Indeed, assume by contradiction that T (zn) > T (x). Taking z = zn and β = T (x) in
(4.48), we obtain

〈ξ, zn − x〉 ≤ σ ‖zn − x‖2 .

It follows from the above inequality, (4.47), and (4.50) that there exists a suitable con-
stant σ1 for which

‖ξ‖2

n
√
n

≤ σ1

n2

for all n large enough, a contradiction.
Second, we claim that there exists σ2 such that

|T (zn) − T (x)| > σ2n
− 3

4 for all n large enough. (4.52)

Indeed, taking z = zn and β = T (zn) in (4.48) we obtain

〈ξ, zn − x〉 ≤ σ (‖zn − x‖2 + |T (zn) − T (x)|2).

From the above inequality, (4.47), and (4.50), one can easily see that (4.52) holds.
On the other hand, by (4.49) and Lemma 4.4 we know that T is differentiable at zn and
we write ξn = DT (zn). Recalling (4.38), for all z ∈ Sc and all β ≤ T (z) the inequality

〈−ξn, z − zn〉+β−T (zn) ≤ k(T (zn), ‖zn‖ , ρ) ‖(−ξn, 1)‖ (‖z − zn‖2+|β−T (zn)|2) (4.53)

holds.
We claim that ‖ξn‖ → +∞.
Assume by contradiction that there exists a constant Q such that ‖ξn‖ ≤ Q for all n.
Taking z = x, β = T (x) in (4.53) and recalling (4.51), we obtain that

(T (x) − T (zn))
(

1 − k(T (zn), ‖zn‖ , ρ)
√

Q2 + 1|T (x) − T (zn)|
)

≤

‖x− zn‖
(

Q+ k(T (zn), ‖zn‖ , ρ)
√

Q2 + 1 ‖x− zn‖
)

.

By the continuity of T (·) and k(·) and by (4.51), (4.50), and (4.52), there exists a constant
Q1 > 0 such that

Q1

n
3
4

≤ 1

n
for all n large enough,
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a contradiction.
Now, recalling (ii) in Lemma 4.5 and assuming without loss of generaliy that limn→∞− ξn

‖ξn‖
= −ξ̄, we see that (−ξ̄, 0) ∈ Ñ0(x) ⊆ Ñ . By (4.51) we can take z = x and β = T (zn) in
(4.53), obtaining

〈

− ξn
‖(−ξn, 1)‖

,
x− zn

‖x− zn‖

〉

≤ k(T (zn), ‖zn‖ , ρ) ‖x− zn‖ .

Taking n→ ∞ in the above inequality and recalling (4.50) we obtain
〈

−ξ̄,−v0
〉

≤ 0,

or, equivalently,
〈

(−ξ̄, 0), (v0, λ0)
〉

≥ 0. Therefore, we obtain from (4.47) that (−ξ̄, 0) =
(ξ,0)
‖ξ‖ . Thus ξ = −ξ̄ and the proof of claim (i) is concluded .

Ad (ii). We now take ζ = (ξ, 1) and take v̄ = (v0, λ0) satisfying (4.47). Set xn =
x+ v0

n
. Then by the Density Theorem (see Theorem 1.3.1 in [8]) for each n there exists

zn such that

∂PT (zn) 6= ∅, (4.54)

‖zn − xn‖ ≤ 1

n2
. (4.55)

Recalling Lemma 4.4, (4.54) implies that T (·) is differentiable at zn. Moreover, if we set
ξn = DT (zn) then −ξn ∈ N1(zn) and for all z ∈ Sc and β ≤ T (z), it holds

〈−ξn, z − zn〉 + β − T (zn)

≤ k(T (zn), ‖zn‖ , ρ) ‖(−ξn, 1)‖ (‖z − zn‖2 + |β − T (zn)|2).
(4.56)

We claim that the sequence {ξn} is bounded.
Suppose by contradiction that lim supn→∞ ‖ξn‖ = +∞. Then assuming without loss of
generality that − ξn

‖ξn‖ → −ξ̄, (ii) of Lemma 4.5 yields that −ξ̄ ∈ N0(x) and (−ξ̄, 0) ∈
Ñ0(x).
In order to obtain a contradiction, we consider two cases:
a) T (x) ≥ T (zn) for infinitely many n;
b) T (x) < T (zn) for infinitely many n.

In the first case, we can choose z = x, β = T (zn) in (4.56), obtaining
〈

− ξn
‖(−ξn, 1)‖

,
x− zn
‖x− zn‖

〉

≤ k(T (zn), zn, ρ) ‖x− zn‖ .

Taking n→ ∞ and recalling (4.55) we get
〈

−ξ̄ , −v0
〉

≤ 0, (4.57)

which implies
〈

(−ξ̄, 0), (v0, λ0)
〉

≥ 0. Thus, combining (−ξ̄, 0) ∈ Ñ0(x) with (4.47) we

obtain (−ξ̄,0)

‖−ξ̄‖ = (ξ,1)
‖(ξ,1)‖ , a contradiction.

In the second case, since (ξ, 1) ∈ NP
hypo(T )(x, T (x)) there exists σ ≥ 0 such that

〈ξ, zn − x〉 + T (zn) − T (x) ≤ σ (‖zn − x‖2 + |T (zn) − T (x)|2) for all n. (4.58)
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The above inequality implies that there exists σ1 such that, for all n large enough,

T (zn) − T (x) = |T (zn) − T (x)| ≤ σ1 ‖zn − x‖ . (4.59)

Recalling (4.56) and taking z = x, β = T (x), we have, for all n large enough,

〈 −ξn
‖(−ξn, 1)‖

,
x− zn

‖zn − x‖

〉

+
T (x) − T (zn)

‖(−ξn, 1)‖ ‖zn − x‖ ≤

≤ k(T (zn), ‖zn‖ , ρ)
(

‖x− zn‖ +
|T (x) − T (zn)|2

‖x− zn‖

)

.

(4.60)

Taking n→ ∞ in both (4.59) and (4.60) we obtain

〈

−ξ̄ , v0
〉

≥ 0, (4.61)

which implies in turn that
〈

(−ξ̄, 0), (v0, λ0)
〉

≥ 0. Thus, combining the condition

(−ξ̄, 0) ∈ Ñ0(x) with (4.47), we obtain (−ξ̄,0)

‖ξ̄‖ = (ξ,1)
‖(ξ,1)‖ , a contradiction.

We can now assume that
‖ξn‖ ≤ Q for all n, (4.62)

for a suitable constant Q, and without loss of generality that

lim
n→∞

ξn = ξ̄. (4.63)

From (i) of Lemma 4.5 we have that −ξ̄ ∈ N1(x), (−ξ̄, 1) ∈ Ñ1(x), and (4.41) with ξ̄ in
place of ξ holds.
We claim that there exists a constant σ2 such that

|T (zn) − T (x)| ≤ σ2 ‖zn − x‖ ∀n. (4.64)

In the case T (x) < T (zn), this was already proved (see (4.59)).
Assume now T (x) ≥ T (zn). Then, using (4.56) with z = x and β = T (x), we obtain, for
all n large enough,

〈−ξn, x− zn〉 + T (x) − T (zn)

≤ k(T (zn), ‖zn‖ , ρ) ‖(−ξn, 1)‖ (‖x− zn‖2 + |T (x) − T (zn)|2).
(4.65)

The above inequality and (4.62) imply, for all n large enough,

T (x) − T (zn) ≤ k(T (zn), ‖zn‖ , ρ)
√

Q2 + 1(‖x− zn‖2 + |T (x) − T (zn)|2) +Q ‖zn − x‖ ,

from which, by the local boundedness of k, the inequality (4.64) follows.
Summing (4.58) and (4.65) we obtain, for a suitable constant σ3 ≥ 0 that for all n large
enough

〈

ξn + ξ,
zn − x

‖zn − x‖

〉

≤ σ3

(

‖zn − x‖ +
|T (zn) − T (x)|2

‖zn − x‖

)

.
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Taking n→ ∞ in the above inequality and using (4.64), (4.55) we obtain

〈

ξ̄ + ξ , v0
〉

≤ 0,

or, equivalently,
〈(ξ, 1) , (v0, λ0)〉 ≤

〈

(−ξ̄, 1) , (v0, λ0)
〉

.

Recalling (4.47), we have 〈(ξ, 1) , (v0, λ0)〉 = 0, whence
〈

(−ξ̄, 1) , (v0, λ0)
〉

≥ 0. Note

that (−ξ̄, 1) ∈ Ñ1(x), so that
〈

(−ξ̄, 1) , (v0, λ0)
〉

= 0 by (4.47). Moreover, using again
(4.47), we finally arrive to

(−ξ̄, 1)
∥

∥(−ξ̄, 1)
∥

∥

=
(ξ, 1)

‖(−ξ, 1)‖ .

Therefore we see that ξ = −ξ̄ ∈ N1(x) and the proof is concluded. �

The lemmas contained in this section yield immediately the following result.

Theorem 4.1 Let x ∈ Sc and let the assumptions of Theorem 3.1 hold. Then

NP
hypo(T )(x, T (x)) = N(x),

where N(x) was defined in the statement of Lemma 4.6, so that NP
hypo(T )(x, T (x)) is a

closed (convex) cone.

Proof. Assume by contradiction that there exists ζ ∈ NP
hypo(T )(x, T (x)) \N(x). Set

Ñ = co (N(x) ∪ {λζ | λ ≥ 0})

and observe that Ñ is a closed convex cone which satisfies (4.46). Clearly, ζ belongs to
an exposed ray of Ñ , so that, by Lemma 4.7, ζ ∈ Ñ0(x) ∪ Ñ1(x), a contradiction. �

5 Proof of the main results

Proof of Theorem 3.1. It is clear that the “⊇” inclusion in (3.2) follows from Lemma
4.2 and the convexity of ∂∞T (x).

In order to prove the “⊆” inclusion, take ξ ∈ ∂∞T (x), i.e, (−ξ, 0) ∈ NP
hypo(T )(x, T (x)).

Since NP
hypo(T )(x, T (x)) is pointed and closed (see Theorem 4.1), recalling (2.1) we can

find numbers αi, βi ≥ 0 and vectors ξi, ζi ∈ R
N , i ∈ {1, . . . ,N + 2}, such that











(−ξi, 1) belongs to an exposed ray of NP
hypo(T )(x, T (x))

(−ζi, 0) belongs to an exposed ray of NP
hypo(T )(x, T (x))

(−ξ, 0) =
∑N+2

i=1 αi(−ξi, 1) +
∑N+2

i=1 βi(−ζi, 0).
(5.1)

From the above equality we deduce that αi = 0 for all i ∈ {1, . . . ,N + 2}. Thus, we have

(−ξ, 0) =

N+2
∑

i=1

βi(−ζi, 0). (5.2)
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Recalling (i) in Lemma 4.7 we obtain −ζi ∈ N0(x). Setting ζ̄i = (
∑N+2

j=1 βj)ζi and

β̄i = βi
P

N+2
i=1 βi

, one can easily see −ζ̄i ∈ N0(x) and
∑N+2

i=1 β̄i = 1.

From (5.2), we obtain

ξ = −
N+2
∑

i=1

β̄i(−ζ̄i).

The proof is concluded. �

Proof of Theorem 3.2. Observe that from the very definition it follows that if ξ ∈
∂PT (x) and ζ ∈ ∂∞T (x) then ξ + ζ ∈ ∂PT (x). Thus the “⊇” inclusion in (3.3) follows
from Lemma 4.3, Lemma 4.2 and the above observation.
In order to prove the “⊆” inclusion, take ξ ∈ ∂PT (x), i.e, (−ξ, 1) ∈ NP

hypo(T )(x, T (x)).

Since NP
hypo(T )(x, T (x)) is pointed and closed (see Theorem 4.1), recalling (2.1) we can

find numbers αi, βi ≥ 0 and vectors ξi, ζi ∈ R
N , i ∈ {1, ...,N + 2}, such that











(−ξi, 1) belongs to an exposed ray of NP
hypo(T )(x, T (x))

(−ζi, 0) belongs to an exposed ray of NP
hypo(T )(x, T (x))

(−ξ, 1) =
∑N+2

i=1 αi(−ξi, 1) +
∑N+2

i=1 βi(−ζi, 0).
(5.3)

From the above equality we deduce that
∑N+2

i=1 αi = 1. Thus, recalling (ii) in Lemma

4.7 we obtain that
∑N+2

i=1 αi(−ξi) ∈ co(N1(x)).

On the other hand, arguing similarly to the above proof we see that
∑N+2

i=1 βi(−ζi) ∈
co(N0(x)). Therefore,

ξ = −
(

N+2
∑

i=1

αi(−ξi) +
N+2
∑

i=1

β̄i(−ζ̄i)
)

∈ −[co(N1(x)) + co(N0(x))].

The proof is concluded. �

Proof of Theorem 3.3.

We need the following technical lemma.

Lemma 5.1 Assume that NP
hypo(T )(x, T (x)) is pointed for all x ∈ Sc. Then for each

continuous function θ : Sc → [0,∞), there exists a continuous function ψθ : Sc → (0, 1]
such that

〈ζ1, ζ2〉 ≥ ψθ(x) − 1 (5.4)

for all x ∈ Sc and for all ζ1, ζ2 ∈ NP
hypo(T )(x, T (x)) satisfying both ‖ζ1‖ = ‖ζ2‖ = 1 and

〈ζj , (z − x, β − T (x))〉 ≤ θ(x)(‖z − x‖2 + |β − T (x)|2) (5.5)

for all z ∈ Sc, β ≤ T (x), and j = 1, 2.

Proof. We only need to show that for every n ∈ N there exists a continuous function
ψn : B(0, n)∩ Sc → (0, 1] satisfying (5.4) with ψθ(x) replaced by ψn(x). It is easy to see
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that the following statement is sufficient to this aim.
Let, for all m,n ∈ N, Km

n = B(0, n) ∩ Sc( 1
m

), and observe that, by the continuity
of T (·), Km

n is compact. Fix n. We claim that for each m ∈ N there exists a constant
km ∈ (0, 1] such that

〈ζ1 , ζ2〉 ≥ km − 1, (5.6)

for all x ∈ Km
n , ζ1, ζ2 ∈ NP

hypo(T )(x, T (x)) satisfying ‖ζ1‖ = ‖ζ2‖ = 1 and (5.5).

Indeed, assume by contradiction that there exists a sequence {xi} ⊂ Km
n together

with vectors ζi
1, ζ

i
2 ∈ NP

hypo(T )(xi, T (xi)) satisfying
∥

∥ζi
1

∥

∥ =
∥

∥ζi
2

∥

∥ = 1 and

〈

ζi
j , (z − xi, β − T (xi))

〉

≤ θ(xi)(‖z − xi‖2 + |β − T (xi)|2), (5.7)

for all z ∈ Sc, β ≤ T (xi) and j ∈ {1, 2}, but such that

lim
i→∞

〈

ζi
1 , ζ

i
2

〉

= −1. (5.8)

We can assume without loss of generality that {xi}, {ζi
1} and {ζi

2} converge respectively
to x̄ ∈ Km

n , ζ̄1 and ζ̄2. By the continuity of T (·), θ(·) and (5.7) we obtain

ζ̄i ∈ NP
hypo(T )(x̄, T (x̄)) for i ∈ {1, 2}.

On the other hand, from
∥

∥ζi
1

∥

∥ =
∥

∥ζi
2

∥

∥ = 1 and (5.8) we get

ζ̄1 = −ζ̄2.

But then the normal cone NP
hypo(T )(x̄, T (x̄)) contains a line, and this is a contradiction.

�

End of the proof of Theorem 3.3.
We need to find a continuous function ϕ : Sc → [0,∞) such that for all x ∈ Sc,

ζ ∈ NP
hypo(T )(x, T (x)) and for all z ∈ Sc, β ≤ T (z) we have

〈ζ, (z − x, β − T (x))〉 ≤ ϕ(x) ‖ζ‖ (‖z − x‖2 + |β − T (x)|2). (5.9)

Observe that for every ζ ∈ NP
hypo(T )(x, T (x)), by the pointedness assumption and recall-

ing Theorem 4.1, we have

ζ =
N+2
∑

i=1

ζi, (5.10)

where each ζi belongs to an exposed ray of NP
hypo(T )(x, T (x)). For k ∈ {1, 2, ..,N + 2},

we set

NP
k (x) =

{

ζ | ζ =
k
∑

i=1

ζi,

where ζi belongs to an exposed ray of NP
hypo(T )(x, T (x))

}

.

(5.11)
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Of course NP
k (x) ⊆ NP

hypo(T )(x, T (x)) and NP
N+2(x) = NP

hypo(T )(x, T (x)).

Now, we are going to construct by induction a continuous function ϕk(·) such that
〈

ζk, (z − x, β − T (x))
〉

≤ ϕk(x)
∥

∥

∥
ζk
∥

∥

∥
(‖z − x‖2 + |β − T (x)|2), (5.12)

for all x ∈ Sc, ζk ∈ NP
k (x) and for all z ∈ Sc, β ≤ T (z).

For k = 1 we choose ϕ1(x) := k(T (x), ‖x‖ , ρ). Recalling Lemma 4.7 and Lemma 4.3,
4.2, we obtain that for all ζ1 ∈ NP

1 (x) and for all z ∈ Sc, β ≤ T (z)
〈

ζ1, (z − x, β − T (x))
〉

≤ ϕ1(x)
∥

∥ζ1
∥

∥ (‖z − x‖2 + |β − T (x)|2). (5.13)

Thus (5.12) holds.
Assume now that (5.12) is satisfied for k = h ≥ 1. We want to show that (5.12) holds
for k = h+ 1, with

ϕh+1(x) =

√

ϕh(x)2 + ϕ1(x)2

ψmax{ϕ1,ϕh}(x)
, (5.14)

where the funtion ψmax{ϕ1,ϕh}(·) is given by Lemma 5.1 for θ(·) = max{ϕ1(·), ϕh(·)}.
Indeed, given ζh+1 ∈ NP

h+1(x), one can write

ζh+1 = ζh + ζ1,

where ζh ∈ NP
h (x) and ζ1 ∈ NP

1 (x). From (5.13) and the inductive assumption, one can
easily see that
〈

ζh+1, (z − x, β − T (x))
〉

≤
(

ϕ1(x)
∥

∥ζ1
∥

∥+ϕh(x)
∥

∥

∥
ζh
∥

∥

∥

)

(‖z − x‖2 + |β−T (x)|2), (5.15)

for all z ∈ Sc, β ≤ T (z).
On the other hand, by inductive assumption, (5.13) and Lemma 5.1 applied for θ(·) =
max{ϕ1(·), ϕh(·)}, we obtain

〈

ζh

‖ζh‖ ,
ζ1

‖ζ1‖

〉

≥ ψmax{ϕ1,ϕh}(x) − 1.

Thus, since ψ(x) ∈ (0, 1], we see that
∥

∥

∥
ζh + ζ1

∥

∥

∥

2
≥ ψmax{ϕ1,ϕh}(x)

( ∥

∥

∥
ζh
∥

∥

∥

2
+
∥

∥ζ1
∥

∥

2
)

.

Therefore,
∥

∥

∥
ζh + ζ1

∥

∥

∥

2
≥ ψmax{ϕ1,ϕh}(x)

ϕh(x)2 + ϕ1(x)2

(

ϕh(x)
∥

∥

∥
ζh
∥

∥

∥
+ ϕ1(x)

∥

∥ζ1
∥

∥

)2
.

Combining the above inequality, (5.14) and (5.15) we obtain that
〈

ζh+1, (z − x, β − T (x))
〉

≤ ϕh+1(x)
∥

∥

∥
ζh+1

∥

∥

∥

(

‖z − x‖2 + |β − T (x)|2
)

,

for all z ∈ Sc, β ≤ T (z).
To conclude the proof, we choose ϕ(·) = ϕN+2(·). �

Proof of Proposition 3.1.
It is a straightforward consequence of Lemmas 4.2 and 4.3. �
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6 The case of optimal points

This section is devoted to the representation of supergradient and horizontal gradient at
optimal points. The corresponding formulas are easier than in the general case and the
structure of the Hamiltonian is peculiar.

The definition of optimal points here is based on the classical definition (see, e.g.,
Definition 2.24, p. 119 in [1]), but is adapted to limiting optimal trajectories, since
optimal trajectories may not exist.

Definition 6.1 Let x ∈ Sc and set r = T (x). The point x is called an optimal point if
there exist τ > 0 and xτ ∈ Sc such that

(i) T (xτ ) = r + τ ;

(ii) there exist x̄τ ∈ Sxτ
and {ūn} ⊂ Ux̄τ

, together with the corresponding sequence
xn → xτ , such that yxn,ūn(τ) → x.

At optimal points, the Hamiltonian has a special behavior. More precisely, let x be an
optimal point with T (x) = r > 0. Then the Hamiltonian H(x, ·) is additive on the
proximal normal cone to Sc(r). It follows from this property that the supergradient and
horizontal supergradient of T are contained, respectively, in the 1-level set and the 0-level
set of the Hamiltonian.

Theorem 6.1 Let x ∈ Sc be an optimal point. Under the same assumptions of Theo-
rem 3.1, the (proximal) horizontal gradient and the supergradient of the minimum time
function T (·) at the point x can be computed as follows:

(a) ∂∞T (x) = [−co(N(x))] ∩ {−ξ | H(ξ, x) = 0},

(b) ∂PT (x) = [−co(N(x))] ∩ {−ξ | H(ξ, x) = 1},

where
N(x) = {MT (r)v | M(·) ∈ Mx̄, v ∈ NP

Sc(x̄), x̄ ∈ Sx}. (6.1)

The proof of Theorem 6.1 requires some preliminary lemmas. The first one gives an
information on a lower bound of the Hamiltonian computed at a proximal normal of the
sublevel of T at an optimal point.

Lemma 6.1 Let x ∈ Sc be an optimal point, and let ξ ∈ NP
Sc(T (x))(x). Then H(x, ξ) ≥ 0.

Proof. Set r = T (x). Let τ , xτ , x̄τ , ūn and xn be with the properties stated in
Definition 6.1. To simplify our writing, we set γn(·) = yxn,ūn(·). Assuming without loss
of generality that γn(·) converges uniformly to γ(·), one can easily check that γ(t) ∈ Sc(r)
for all t ∈ [0, τ ]. For, should t̄ ∈ (0, τ ] exist such that T (γ(t̄)) < r, then one would have
T (xτ ) < r + τ , a contradiction. Now, since ξ ∈ NP

Sc(r)(x) there exists σ > 0 such that

for all t ∈ [0, τ ] we have

〈ξ , γ(t) − x〉 ≤ σ ‖γ(t) − x‖2 , (6.2)
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namely, for all t ∈ [0, τ ],

lim
n→∞

〈ξ, γn(t) − x〉 ≤ σ lim
n→∞

‖γn(t) − x‖2 .

Equivalently, for all t ∈ [0, τ ]

lim
n→∞

〈

ξ, γn(τ) −
∫ τ

τ−t

f(γn(s), ūn(s))ds − x

〉

≤

≤ σ lim
n→∞

∥

∥

∥

∥

γn(τ) −
∫ τ

τ−t

f(γn(s), ūn(s))ds − x

∥

∥

∥

∥

2

.

Recalling (ii) in Definition 6.1, we obtain that for all t ∈ [0, τ ]

lim
n→∞

〈

ξ , −
∫ τ

τ−t

f(γn(s), ūn(s))ds

〉

≤ σ lim
n→∞

∥

∥

∥

∥

∫ τ

τ−t

f(γn(s), ūn(s))ds

∥

∥

∥

∥

2

.

From (iii) of Lemma 8.1 and (i), (ii) in Definition 6.1, one can see that

lim
n→∞

〈

ξ , −
∫ τ

τ−t

f(γn(s), ūn(s))ds

〉

≤ O(t2) for t→ 0+.

Thus, for t→ 0+,

lim sup
n→∞

〈

ξ,−
∫ τ

τ−t

f(x, ūn(s))ds

〉

≤

≤ O(t2) + lim sup
n→∞

〈

ξ,

∫ τ

τ−t

(

f(γn(s), ūn(s)) − f(x, ūn(s))
)

ds

〉

.

Applying the Lipschitz condition of the function f(·, ·) and (iii) of Lemma 8.1 we easily
obtain that

lim sup
n→∞

〈

ξ,−
∫ τ

τ−t

f(x, ūn(s))ds

〉

≤ O(t2) for t→ 0+.

Therefore, there exists a constant Q > 0 such that for each t ∈ [0, τ ] one can find nt ∈ N

with the property
〈

ξ,−
∫ τ

τ−t
f(x, ūnt

(s))ds

t

〉

≤ Qt.

Set f̄t =
R

τ

τ−t
f(x,ūnt

(s))ds

t
. Since f̄t ∈ co(f(x,U)), by the compactness of U , there exits a

sequence {tn} ⊆ [0, τ ] converging to 0 and f̄ ∈ cof(x,U) such that both

f̄ = lim
n→∞

f̄tn

and
〈

ξ , f̄
〉

≥ 0
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hold. Since
H(x, ξ) = max{〈ξ , f〉 | f ∈ cof(x,U)},

the proof is concluded. �

The next Lemma is the key point in order to obtain the additivity of the Hamiltonian.

Lemma 6.2 Let x ∈ Sc be an optimal point, and set T (x) = r. Then there exists
f̄ ∈ cof(x,U) such that, for all ξ ∈ NP

Sc(r) and for all ξ ∈ NP
Sc(r),

H(x, ξ) =
〈

ξ , f̄
〉

.

Proof. Let τ , xτ , x̄τ , ūn and xn be with the properties stated in Definition 6.1.
To simplify our writing, we set γn(·) = yxn,ūn(·). Assuming without loss of generality
that γn(·) converges uniformly to γ(·), we see that γ(τ) = x and T (γ(τ − t)) = r + t for
all t ∈ [0, τ ]. Pick v ∈ U , and define, for each t ∈ [0, τ ], βv,t(·) = yγ(τ−t),v(·), where v(·)
is the constant control v(t) ≡ v. Observe that βv,t(t) ∈ Sc(r) for all t ∈ [0, τ ].

Let now ξ ∈ NP
Sc(r), together with a constant σ ≥ 0 such that for all t ∈ [0, τ ]

〈ξ , βv,t(t) − x〉 ≤ σ ‖βv,t(t) − x‖2 .

Recalling (ii) in Definition 6.1, the latter is equivalent to

lim
n→∞

〈

ξ,

∫ t

0
(f(βv,t(s), v) − f(γn(τ − t+ s), ūn(τ − t+ s))) ds

〉

≤ σ lim
n→∞

∥

∥

∥

∥

∫ t

0
(f(βv,t(s), v) − f(γn(τ − t+ s), ūn(τ − t+ s))) ds

∥

∥

∥

∥

2 (6.3)

for all t ∈ [0, τ ]. Moreover, by (iii) of Lemma 8.1, there exists a constant M such that,
for all n ∈ N, t ∈ [0, τ ] and s ∈ [0, t],

‖γn(τ − t+ s) − γn(τ)‖ ≤ Mt,

so that for all t ∈ [0, τ ] and s ∈ [0, t]

lim
n→∞

‖γn(τ − t+ s) − x‖ ≤ Mt.

Combining the above inequality with (6.3) and recalling the Lipschitz condition on f ,
we obtain that, for t→ 0+,

lim sup
n→∞

〈

ξ,

∫ t

0

(

f(x, v) − f(x, ūn(r − t+ s))
)

ds

〉

≤ O(t2),

or, equivalently,

lim sup
n→∞

〈

ξ, f(x, v) −
∫ t

0 f(x, ūn(r − t+ s))ds

t

〉

≤ O(t).
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By arguing as in the proof of Lemma 6.1, we can find f̄ ∈ co(f(x,U)) independent of ξ
and v such that

〈ξ, f(x, v)〉 ≤
〈

ξ, f̄
〉

.

The proof is therefore complete. �

The desired additivity property follows immediately from the above Lemma.

Corollary 6.1 Let x ∈ Sc be an optimal point, and set T (x) = r. Then for all ξ1, ξ2 ∈
NP

Sc(r)(x), the property

H(x, ξ1 + ξ2) = H(x, ξ1) +H(x, ξ2)

holds.

We are now ready to prove Theorem 6.1.
Proof of Theorem 6.1.

Proof of the part a). It is clear that the “⊆” inclusion of the equality in (a) follows from
Theorem 3.1 and Corollary 6.1.

To prove the “⊇” inclusion, take ξ ∈ [−co(N(x))] ∩ {−ξ | H(x, ξ) = 0}, namely,

ξ = −
m
∑

i=1

MT
i (r)vi, where MT

i (r)vi ∈ N(x) (6.4)

and

H(x,

m
∑

i=1

MT
i (r)vi, ) = 0. (6.5)

Applying Lemma 4.1 we get that MT
i (r)vi ∈ NP

Sc(r)(x) for all i ∈ {1, 2, ...,m}. Thus it
follows from Lemma 6.1 that

H(x,MT
i (r)vi) ≥ 0 for all i ∈ {1, 2, ...,m}. (6.6)

Combining (6.5) and (6.6), we obtain from Corollay 6.1 that H(x,MT
i (r)vi) = 0 for all

i ∈ {1, 2, ...,m}. Therefore MT
i (r)vi ∈ N0(x) for all i ∈ {1, 2, ...,m}. We conclude the

proof using (6.4) and Theorem 3.1.
Proof of part b). Similarly to part (a), that the “⊆” inclusion of the equality in (b)

follows from Theorem 3.2 and Corollary 6.1.
To show the “⊇” inclusion, let ξ ∈ [−co(N(x))] ∩ {−ξ | H(x, ξ) = 1}. Recalling

Lemma 6.1, ξ can be represented as

ξ = −
m
∑

i=1

αiM
T
0i(r)vi −

m
∑

j=1

βjM
T
1j(r)wj , (6.7)

where αi ≥ 0, βj ≥ 0 and MT
0i(r)vi ∈ N0(x), M

T
1j(r)wj ∈ N1(x).

From MT
0i(r)vi ∈ NP

Sc(r)(x), M
T
1j(r)wj ∈ NP

Sc(r)(x) and Corollary 6.1, we have

H(x, ξ) =
m
∑

i=1

αiH(x,MT
0i(r)vi) +

m
∑

j=1

βjH(x,MT
1j(r)wj) =

m
∑

j=1

βj , (6.8)

so that
∑m

j=1 βj = 1. The proof is concluded by using (6.8), (6.7), and Theorem 3.2. �
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7 Examples

In this section we present some examples which illustrate our results. In particular,
we provide an example showing that Theorem 3.3 is no longer valid if the pointedness
assumption (3.1) is dropped.
Example 1. Consider the dynamics x′′(·) ∈ [−1, 1] =: U , i.e.

(

ẋ1(t)
ẋ2(t)

)

= A

(

x1(t)
x2(t)

)

+

(

0
u

)

, u ∈ U , where A =

(

0 1
0 0

)

, (7.1)

with the initial conditions x1(0) = x0
1, x2(0) = x0

2. The target is the set (see Figure 1)

S = { (x1, x2) ∈ R
2 | x1 ≤ 0 } ∪ { (x1, x2) ∈ R

2 | x1 ≥ 0, x2 ≤ −x1}
∪ { (x1, x2) ∈ R

2 | 0 ≤ x1 ≤ 1, x2 ≥ x1}
∪ { (x1, x2) ∈ R

2 | x1 ≥ 1, x2 ≥ 1}.

S

H1

H2

H3

P1

P2

P3

Figure 1

Optimal trajectories are arcs of parabolas

x1 =
1

2
(x2)

2 − 1

2
(x0

2)
2 + x0

1 (corresponding to the control u ≡ 1),

and

x1 = −1

2
(x2)

2 +
1

2
(x0

2)
2 + x0

1 (corresponding to the control u ≡ −1).
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By direct computation, the minimum time funtion T is everywhere finite, continuous on
the whole of R

2, and the open set Sc can be divided into three regions, say H1, H2 and
H3, where T has a different explicit expression. More precisely, consider the curves

γ1(t) =
(√

2t(1 − t), t
)

, 0 < t ≤ 2 −
√

3,

γ2(t) =

(

1 + t2

2
, t

)

, 2 −
√

3 < t < 1,

γ3(t) =

(

3 − 8t+ 3t2

2
, t

)

, t ≥ 2 −
√

3.

Observe that γ1(2−
√

3) = γ2(2−
√

3) = γ3(2−
√

3) = 4− 2
√

3 and moreover all points
γ2(t), with 2 −

√
3 < t < 1, are optimal (according to Definition 6.1), while all points

γ1(t), γ2(t) are not optimal. Set

H1 = {(x1, x2) ∈ Sc | 0 ≤ x2 ≤ 2 −
√

3, γ1(x2) ≤ x1 ≤ γ3(x2)}
∪ {(x1, x2) ∈ Sc | x2 ≤ 0, −x2 ≤ γ3(x2)},

H2 = {(x1, x2) ∈ Sc | 0 ≤ x2 ≤ 2 −
√

3, x2 ≤ x1 ≤ γ1(x2)}
∪ {(x1, x2) ∈ Sc | 2 −

√
3 ≤ x2 ≤ 1, x2 ≤ x1 ≤ γ2(x2)},

H3 = {(x1, x2) ∈ Sc | 2 −
√

3 ≤ x2 ≤ 1, x1 ≥ γ2(x2)}
∪ {(x1, x2) ∈ Sc | x2 ≤ 2 −

√
3, x1 ≥ γ3(x2)}.

The minimum time funtion T : Sc → R can be explicitly computed as

T (x1, x2) =







x2 − 1 +
√

1 + 2x1 + (x2)2 := θ1(x1, x2), (x1, x2) ∈ H1

1 − x2 −
√

1 − 2x1 + (x2)2 := θ2(x1, x2), (x1, x2) ∈ H2

1 − x2 := θ3(x1, x2), (x1, x2) ∈ H3.

In the interior of each region Hi, i = 1, 2, 3, T is differentiable. Singularities appear of
each point of the curves γi, i = 1, 2, 3. Moreover T is Hölder continuous with exponent
1
2 .
In order to appreciate the role of nonsmoothness of the target, as well as optimality/non
optimality of a point and failure of Petrov condition (see (1.1), we compute the general-
ized differential of T at the three points

P1 =

(

7

16
,
1

8

)

, P2 =

(

5

8
,
1

2

)

, P3 =
(

4 − 2
√

3, 2 −
√

3
)

.

Observe that T (P1) = 1
2 , T (P2) = 1

2 , T (P3) =
√

3 − 1.
To this aim we compute the adjoint flow:

eA
T t =

(

1 0
t 1

)

,
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and the Hamiltonian
H ((x1, x2), (ξ1, ξ2)) = x2ξ1 + |ξ2|.

The point P1 belongs to the curve γ1, and is steered optimally in time 1
2 to both (5

8 ,
5
8 )

and (3
8 ,−3

8 ), where the normal cones to Sc are respectively R
+(−1, 1) and R

+(−1,−1),
while P2 belongs to the curve γ2, and is steered optimally to (1, 1) in time 1

2 , where
the normal cone to Sc is R

+co{(−1, 1), (0, 1)}. P2 is an optimal point. Finally, P3 is
steered optimally to both (2

√
3 − 3, 3 − 2

√
3) and (1, 1) in time

√
3 − 1. Observe that

H ((1, 1), (−1, 1)) = 0, i.e., Petrov condition fails, while at all other (nonzero) points P
of the boundary of S we have H(P, ζ) > 0 for all ζ ∈ NP

Sc
(P ), ζ 6= 0.

According to Theorem 3.2, and, of course, also to explicit computations from the
expression of T , we have

∂cT (P1) = ∂PT (P1)

= −co

{

eA
T 1

2 v | v =

(

−λ
λ

)

or v =

(

−λ
−λ

)

, H(P1, e
AT 1

2 ) = 1

}

= −co

{ (

8
3
−4

3

)

,

(

8
11
−12

11

) }

,

∂∞T (P1) = {0};

∂cT (P2) = ∂PT (P2)

= −co
{

eA
T 1

2 v | v ∈ NP
SC (1, 1),H(P2, e

AT 1
2
v) = 1

}

−co
{

eA
T 1

2 v | v ∈ NP
SC (1, 1),H(P2 , e

AT 1
2
v) = 0

}

=

(

0
−1

)

+

{

λ

(

1
−1

2

)

| λ ≥ 0

}

=

{ (

λ

−1 − λ
2

)

| λ ≥ 0

}

= [−N(P2)] ∩
{

ζ | H(P2,−ζ) = 1
}

(where N(P2) was defined in (6.1)),

∂∞T (P2) =

{

λ

(

1
−1

2

)

| λ ≥ 0

}

;

∂cT (P3) = ∂PT (P3)

= −co
{

eA
T (

√
3−1)v | v ∈ NP

Sc(1, 1) or v ∈ NP
Sc(2

√
3 − 3, 3 − 2

√
3),

and H(P3, v) = 1
}

= −co

{

(

0
1

)

,

( −1
2(
√

3−1)
−
√

3
2(
√

3−1)

) }

−
{ (

λ

(2 −
√

3)λ

)

| λ ≥ 0

}

,

∂∞T (P3) =

{ (

λ

(2 −
√

3)λ

)

| λ ≥ 0

}

.
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Observe that the vector f̄ ∈ co(f(P2,U)) appearing in the statement of Lemma 6.2 is
given by f̄ = (1/2,−1).

If the target is modified to become S ′ := S \ {(x1, x2) ∈ R
2 : x2 ≥ 1, x1 ≥ (x2)

2/2 +
1/2 + (x2 − 1)4} (note that the boundary of S ′ is C2 at (1, 1), see Figure 2), then the
graph of the new minimum time function T ′ is smooth at all points of γ2, but the unique
normal are horizontal, so that T ′ is not differentiable at those points.

S

H1

H2

H3
γ2

(1, 1)

Figure 2

The next two examples deal with the case where the normal cone to the hypograph of
T is not pointed. We show first that Theorem 3.3 does not hold in general. Next we
provide an example where – although the normal cone is not pointed – the situation is
entirely analogous to the case where the cone is pointed.

Example 2. Set

γ1(y) =











(1 −
√

−y2 − 2y, y) −2 ≤ y ≤ −1

(−1 +
√

−y2 − 2y, y) −1 ≤ t ≤ 0

(−1 −
√

−y2 + 4y, y) 0 ≤ y ≤ 3,

and

γ2(y) =























(1 +
√

−y2 − 2y, y) −2 ≤ y ≤ 0

(1 −
√

−y2 + 2y, y) 0 ≤ y ≤ 1

(0, y) 1 ≤ y ≤ 2

(−1 +
√

−y2 + 4y, y) 2 ≤ y ≤ 3.

Observe now that the concatenation of γ1 with γ2 defines a C1,1-curve γ. We set the
target S to be the unbounded component of R

2 \ {γ} (see Figure 3) and the dynamics
to be







ẋ(t) = u
ẏ(t) = 0
u ∈ U = [−1, 1].
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S
Γ

Figure 3

It is readily verified that the minimum time function is everywhere defined and contin-
uous. Observe however that Petrov condition (1.1) does not hold at all points of the
segment [−1, 1] × {0}.
Consider now the curve

Γ(t) =
γ1(t) + γ2(t)

2
, t ∈ [−1, 1],

together with the function

T (t) = γ2(t) − Γ(t)(= Γ(t) − γ1(t)), t ∈ [−1, 1],

which is the minimum time to reach S from the point Γ(t).
Observe that T (t) is constantly equal to 1 for −1 ≤ t ≤ 0 and in this interval all points
of Γ are maximum points for T . Therefore (0, 0, 1) is a unit limiting normal vector to
the hypograph of T at (0, 0, 1).
On the other hand, it can be easily computed that a unit tangent vector to the graph of
T at (0, 0, 1) is

(

−2 +
√

2

2
√

3
, 0,

2 −
√

2

2
√

3

)

.

Since the latter has positive scalar product with the limiting normal (0, 0, 1), it is clear
that the hypograph of T is not regular at (0, 0, 1). In particular, the normal vector
(0, 0, 1) is not proximal, thus showing that hypo(T ) is not ϕ-convex (see (4) in Theorem
2.1).
Observe that both (1, 0, 0) and (−1, 0, 0) are unit proximal normals to hypo(T ) at (0, 0, 1),
so that NC

hypo(T )(0, 0, 1) contains a line. Therefore, the assumption (3.1) in Theorem 3.3
cannot be dropped in general.
Observe finally that the hypograph of T satisfies the external sphere condition with
radius ρ for a suitable ρ > 0. Therefore this is a simple example that this condition is
weaker that ϕ-convexity. �
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Example 3. We consider again the dynamics (7.1) appearing in Example 1 and modify
the target in order to allow lines in the normal cone to the hypograph of T .
The target is the set (see Figure 4)

S = { (x1, x2) ∈ R
2 | x1 ≤ 0 } ∪ { (x1, x2) ∈ R

2 | 0 ≤ x1 ≤ 1, x2 ≤ x1 − 1}
∪ { (x1, x2) ∈ R

2 | x1 ≥ 1} ∪ { (x1, x2) ∈ R
2 | 0 ≤ x1 ≤ 1, x2 ≥ x1}.

S

P

Figure 4

The minimum time function is everywhere finite and continuous, but Petrov condition
(1.1) does not hold. Computations of the same type of Example 1 show that the normal
cone to the hypograph of T at (1/2, 0, 1) is not pointed, however NC

hypo(T )(1/2, 0, 1) can

be represented exactly as in (3.3) and the hypograph of T is ϕ-convex. More precisely,

NP
hypo(T )(1/2, 0, 1) = NC

hypo(T )(1/2, 0, 1) = R





1
0
0



+ R
+co

















1√
3

1√
3

1√
3






,







− 1√
3

− 1√
3

1√
3

















and

∂PT (1/2, 0) = ∂CT (1/2, 0) = R

(

1
0

)

+ co

{

(

1
1

)

,

(

−1
−1

)

}

.

Observe that H((1/2, 0), (1, 0)) = 0, while H((1/2, 0), (1, 1)) = H((1/2, 0), (−1,−1)) =
1, so that the conclusion of Theorem 3.2 holds. An explicit computation of the minimum
time function shows also that the conclusion of Theorem 3.3 holds as well. �

8 Appendix

In this section, under the assumptions (H1) and (H2) on (2.7), we prove first some
elementary estimates which are needed in Lemma 4.1, Lemma 4.2 and Lemma 4.3. At
the end we state a result on the closedness of the convex hull of a closed pointed cone.
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For future use, we set

K1 = max
u∈U

‖f(0, u)‖ ,
K2 = max

u∈U
‖Dxf(0, u)‖ ,

L2(s, δ) = L1e
Lsδ +

L1(e
Ls − 1)K1

L
+K2 for all s, δ ≥ 0. (8.1)

Lemma 8.1 Let α(·) := yx,u(·) be the solution of (2.7). The following estimates hold
true for all t > 0:

(i) ‖α(t) − x‖ ≤ (L‖x‖+K1)(eLt−1)
L

.

(ii) ‖α(t)‖ ≤ eLt ‖x‖ + (eLt−1)K1

L
.

(iii) ‖f(α(t), u(t))‖ ≤ LeLt ‖x‖ + eLtK1.

(iv) ‖Dxf(α(t), u(t))‖ ≤ L2(t, ‖x‖).
Proof. Since α(·) is the solution of (2.7), for all t > 0 we have

‖α(t) − x‖ =

∥

∥

∥

∥

∫ t

0
f(α(s), u(s))ds

∥

∥

∥

∥

≤
∫ t

0
‖f(α(s), u(s))‖ ds

≤
∫ t

0
‖f(α(s), u(s)) − f(x, u(s))‖ ds

+

∫ t

0
‖f(x, u(s)) − f(0, u(s))‖ ds+

∫ t

0
‖f(0, u(s))‖ ds

≤ L

∫ t

0
‖α(s) − x‖ ds+ L ‖x‖ t+K1t.

Applying Gronwall’s inequality we obtain

‖α(t) − x‖ ≤ (L ‖x‖ +K1)(e
Lt − 1)

L
, (8.2)

whence

‖α(t)‖ ≤ eLt ‖x‖ +
(eLt − 1)K1

L
. (8.3)

Recalling the condition (H2), we obtain

‖f(α(t), u(t))‖ ≤ LeLt ‖x‖ + eLtK1 (8.4)

and also

‖Dxf(α(t), u(t))‖ ≤ L1e
Lt ‖x‖ +

L1(e
Lt − 1)K1

L
+K2. (8.5)

The proof is concluded. �

In the next Lemma, we will give some estimates related to the limiting adjoint tra-
jectories MT (·).
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Lemma 8.2 Let x ∈ Sc, set r = T (x) > 0, and take x̄ ∈ Sx and M(·) ∈ Mx̄. Then

(i) ‖M(t)‖ ≤ eL2(t,‖x‖)t for all t ∈ [0, r],

(ii)
∥

∥M(t)−1
∥

∥ ≤ eL2(t,‖x‖)t for all t ∈ [0, r].

Proof. Let xn → x, {ūn} ⊂ Uad be such that {yxn,ūn(·)} ⊂ Tx̄ andM(·, xn, ūn) converges
to M(·) uniformly on [0, T (x)]. By (iv) in Lemma 8.1 and Theorem 2.2.1, p. 23, in [3],
we obtain that for all w ∈ R

N

‖M(t, xn, ūn)w‖ ≤ e[L1eLt‖x‖+ L1(eLt−1)K1
L

+K2]t ‖w‖ .

Taking n→ ∞ we conclude the proof of (i).
The proof of (ii) proceeds exactly as the proof of (i), by replacing M(·, xn, ūn) with

M(·, xn, ūn)−1. �

The following result is essentially Theorem 2.2.4, pp. 25, 26 in [3].

Lemma 8.3 Let A1, A2 : [0, T ] → MN×N be matrices with L∞-entries, and set ‖Ai‖ =
Li, i = 1, 2. Let M1,M2 be the fundamental solution of, respectively,

ṗ(t) = A1(t)p(t), p(0) = I
N×N

ṗ(t) = A2(t)p(t), p(0) = I
N×N .

Then, for every t ∈ [0, T ] and every unit vector v ∈ R
N it holds

‖(M2(t) −M1(t))v‖ ≤ e(L1+L2)t

∫ t

0
‖A2(s) −A1(s)‖ ds.

The last result is concerned with pointed cones in general.

Lemma 8.4 Let K ⊂ R
N be compact and assume that 0 6∈ K. Set

C := {λx | λ ≥ 0, x ∈ K}

and assume that coC is a pointed cone. Then coC is closed.

Proof. Let sequences {αn
k ∈ R | k = 0, . . . ,N, n ∈ N}, {vn

k ∈ R
N | k = 0, . . . ,N, n ∈ N}

be such that αn
k ≥ 0 and vn

k ∈ K for all k = 0, . . . ,N , n ∈ N. Assuming that

lim
n→∞

N
∑

k=0

αn
kv

n
k = v, (8.6)

we wish to show that v ∈ coC, i.e., there exist αk ≥ 0, vk ∈ K, k = 0, . . . N , such
that v =

∑N
k=0 αkvk. Since K is compact, there is no loss of generality in assuming

that vn
k → vk ∈ K for all k = 0, . . . , N . We claim that the sequences αn

k are bounded.
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Indeed, assume by contradiction that αn :=
∑∞

k=0 α
n
k → +∞, and set, for k = 0, . . . ,N ,

βn
k = αn

k/αn. By (8.6) we obtain that

N
∑

k=0

βkvk = 0,

where βk ≥ 0 and
∑N

k=1 βk = 1. Since vk 6= 0 for all k = 0, . . . ,N , we deduce from
the above equality that coC is not pointed, a contradiction. Therefore without loss
of generality we can assume that αn

k → αk for all k = 0, . . . ,N and so the proof is
concluded. �
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