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Synopsis

The results of the Prigogine-George-Henin theory of “subdynamics’ are extended
to cover more general systems, such as spatially inhomogeneous systems or relativistic
systems. The theory is presented in an abstract form, from which any particular case
can be obtained by using an appropriate realization of the mathematical symbols, A
number of new results are obtained in this way. The internal symmetry of the theory
is clearly emphasized in the present formalism.

1. Imtroduction. In recent years a very significant advance has occurred
in non-equilibrium statistical mechanics1=3). Going definitely beyond the
traditional “‘simple”” problems (weak coupling, low density, efc.) this work
sheds a new light on the deeper, intrinsic structure of the law of evolution
of many-body systems. One of the most important results achieved in this
work is the separation of the distribution function into two components
having remarkable invariance properties. The evolution of the system is
such that when thermal equilibrium is approached, one of the components
tends to zero, whereas the other is sufficient for the complete description of
the thermodynamic behaviour of the system. It has also been shown?) that
the “thermodynamic component’’ completely characterizes as well the
stationary transport coefficients.

In the present paper we come back to this problem. Our motivation is
the following. In the first place, we generalize the results of Prigogine,
George and Henin* in such a way that they are no longer bound to the usual
Fourier representation of the distribution function. The formalism adopted
here is a continuation of the "unified” approach developed by one of us in

' Also with the Center for Statistical Mechanics and Thermodynamics, University
of Texas, Austin, Texas 78712, USA.

* Association Euratom — Etat Belge,

* These results, contained in refs. 1-3, will be henceforth referred to as the PGH
theory.
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ref. 5. The flexibility achieved in this way makes the theory especially well
suited for application to spatially inhomogeneous systems. Particular appli-
cations will, however, not be treated here, but will be the subject of a
separate paper®). We prefer to keep the results here on a rather abstract
level. We therefore use the algebraic approach developed in ref. 5, which
enhances the structural aspects of the theory. The various particular
systems (classical or quantum systems, homogeneous or inhomogeneous
systems) appear just as particular realizations of the various symbols of
the formalism.

We are thus able to show that practically all features of the PGH theory
go over without any change to the more general situations. Such are: the
concept of the separation into mutually independent IT and 17 subspaces (sec.
2), the projection operator property of II, its commutation relation with the
liouvillian (sec. 6), the properties of the equilibrium distribution (sec. 7),
ele.

Other features have to be slightly generalized. Forinstance, the generalized
kinetic operator VI'V has to be defined in a more general way, but reduces
to the PGH form Q¥ in the case of homogeneous systems (sec. 4).

Last, but not least, the use of our formalism enabled us to discover new
results and new relationships, For instance, we can write the explicit ex-
pression of the kinetic operator VIV, in the form of a series whose general
term has a very regular structure (sec. 4). This operator was previously known
only through a set of implicit recurrence relations. Related operators, such
as C, D, I', efc. can be expressed in a similar way.

Another new and important result is the extension of the semi-group X(!)
into a full group (sec. 5). This result clarifies the structure of the evolution
process and will be important in a relativistic extension of the theory, to be
presented in a forthcoming paper.

Finally, we derive a number of new properties of the operator £(¢), which
enhance the symmetry and the complementarity of this operator and (/)
(sec. 6).

A strong overlapping with the paper by Prigogine, George and Henin7)
was unavoidablet. We preferred, however, to give a full presentation of the
theory, rather than breaking the continuity by numerous and fastidious
references to other papers. Moreover, we show that in the present formalism,
many of the known and important properties of the PGH theory can be
proved in a way much simpler than before. Typical examples of such new
proofs have been sketched in the appendices.

T In a private communication, Prof. Prigogine told us that some of the results of the
present paper will also be found in a forthcoming paper by himself, L. Rosenfeld and
C. George,
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2. Definition of the asymptotic evolution operator. We consider a many-

body system described by a distribution function {(#) obeying the Liouville

equation
aiflt) = Zj(0). (2.1)

At this very first step it is important to make a remark about the inter-
pretation of all the equations of this paper. All equations, such as (2.1) are
considered as abstract algebraic equations, involving objects, like |, &, whose
nature is not specified. These equations can be concretely realized in various
ways. The simplest realization consists in identifying | with the ordinary
distribution function F(g, #) and £ with the ordinary Liouville operator.
Alternatively, | can be considered as the “vector” whose components are
the various Fourier components of F; & is then a matrix operator coupling
these components with each other. In a quite different approach, § is con-
sidered as the collection of all reduced distribution functions f; derived from
F. The vector equation (2.1) is then equivalent to the BBGKY hierarchy
and # is a matrix connecting reduced distributions of various orders. This
realization (which can be further refined) is particularly important in the
study of inhomogeneous systems. It is developed in ref. 6 (see also ref. 7).
Finally, the same structure occurs in quantum mechanics, where | can be
realized as the density matrix or the Wigner distribution function.

We now assume that # can be decomposed into two terms:

L =94 &, (2.2)

where 20 describes the free motion of independent degrees of freedom and
Z' describes interactions.

We further introduce a decomposition of the distribution function f into
two components, called the vacuum component V§, and the correlation
component Cf,

ilt) = Vil + Cilo). (2.3)

The separation can be performed by introducing two formal "projection
operators”t, as was done in ref. 5. These operators have to satisfy the re-
lations:

V4+C=1, (2.4)
2=V, C2=C, (2.5)
VC = CV =0. (2.6)

t The reader is warned not to associate with 1" and € any of the detailed properties
of projection operators in Hilbert spaces, such as orthogonality with respect to a
scalar product, hermiticity, efc, No Hilbert space structure has been defined here, and
such concepts are just meaningless at the present stage.
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We, moreover, express the physical idea that correlations cannot be
created or destroyed by the free motion, and require therefore that

PV =VP,  PC =P, (2.7)

We do not discuss here the various realizations of the projection operators.
We mention, however, that in all interesting cases it is possible to construct
a linear realization of the operators V and C?1.

From (2.4) it follows that every operator # acting on the distribution
functions can be decomposed as follows

@ = VPV + VPC + CPV + CPC. (2.8)

Applying this decomposition to the operator £9, it follows from (2.5)-(2.7)
that

PO — VLW 4 CLC = VL + C20. (2.9)

The operator V.29 plays a special role: it describes the change of the vacuum
component under the free flow. Similarly, the operator V.#'V represents
that part of the interactions which can be described by an average field
through which the “particles” move independently %) (in a plasma, this term
is the well-known Vlasov operator). None of these two effects exists in a
spatially homogeneous system. We may therefore define such a system by the
conditions

VLW =0, Ve'V =0 (homogeneous system). (2.10)

The solution of the initial value problem of the Liouville equation is
conveniently expressed in terms of the propagator U(t):

i) = %() §(0). (2.11)
The operator %(f) can be formally written as
U(t) = exp(tZ). (2.12)

The main purpose of this paper boils down to a study of the properties of
this operator.

Alternatively, one often uses instead of the propagator @(f) its Laplace
transform #(z); the relation between these operators is.

() = (2r)71 [ dz e~ R(2). (2.13)
o

t This statement corrects a claim made in ref. 5, where a nonlinear realization of ¥
was used to describe inhomogeneous systems. The latter realization, however, leads to
mathematical difficulties. It is shown in ref. 6 that even for inhomogeneous systems a
linear realization of V' can be explicitly constructed.
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where C is a parallel to the real axis lying above all singularities of the inte-
grand. #(z) can be expressed formally as

R(3) = (—2L —iz)"L. (2.14)
The corresponding operators for non-interacting systems will be denoted
by a superscript 0:

wt) = exp(tLY) (2.15)
and

RA(z) = (—L0 — iz)L, (2.16)
Let us note the following useful relation following from (2.16):

LORO(2) = —1 — 12R9(2). (2.17)

[t was shown in ref. 5 that the resolvent can be conveniently represented
as follows?t:

R(e) = Ew'(z)mz) RO) VI [V + Vé(z) #9) C]

= ;4 (V + CROEV) O (VEROV)™ (V + VERC)

+ CRO + CROYERC, (2.18)

where the irreducible evolution operator &(z) is defined by either of the
following equations

8(2) = 2L + LCR3) 8(2), (2.19)

E(z) =2 + &) #(z) C&L'. (2.20)
These equations can be solved by successive iterations. It is also convenient 3)
to introduce a special notation for the following important operator:

b2 =68(2) — &

= L'CR(2) 8(z) = &(2) RO(:) CL'. (2.21)

The vacuum-to-vacuum component V#(z) V' reduces (in the Fourier re-
presentation) to the well-known operator ¥(z) of PGH.

Wenote that theright-handside of eq. (2.18) can berearranged and combined
with eqs. (2.11) and (2.13) as follows:

i(t) = (2r)~1 [ dz e ™" [CRO + CROSRC
o
+ 3 (—iz)=m-1 (V + CROEV)(VLO + VEV)»
n=0
% (V + VERC)] (0). (2.22)

' The argument = will often not be written out explicitly.
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[It is easily verified that this function indeed satisfies the Liouville equation
(2.1)). This form has the advantage of exhibiting clearly the same kind of
singularities as the corresponding expression for the homogeneous systems;
the only difference is in the replacement of ¥(z) = V@ (z) V by V&0 4 V&)V
in the right-hand side. We can therefore proceed just as in PGH to define
an asymptotic evolution operator Z(¢)1.

We assume that the operators

Vé(z) V, Vé&(z) #9%:) C, CRz)&(2) V,
CRz), CROz) &(z) #Y(z) C
are regular functions of z in the neighbourhood of z = 0. (2.23)

These basic assumptions have been discussed extensively in the literature.
They represent a restriction both on the interaction potential (or #’) and
on the initial condition §(0) on which these operators ultimately act. Although
no simple general criterion can be found at present, it has been checked on
simple but important examples that these properties are indeed satisfied in
the problems of interest in statistical mechanics. We shall not further
comment on this subject,

We now define the “asymptotic’” part of the distribution function, f(f),
and the "asymptotic’’ evolution operator Z(¢), through the residue at z =
of the integrand in eq. (2.22)*:

i(t) = Z() (0), (2.24)
with
() =lim ¥ (n!) 2 (t + )n [V + CAO(z) &(z) V]
-l nef)
X [V 4+ V&) VIR [V + V&(z) R0z) C). (2.25)

In the limit z -~ 0 (here and in all subsequent equations), z is supposed to
approach the real axis from above. The abbreviation @ represents the
operator:

? = i(dfez). (2.26)

In order to illustrate the use of the projection operators we give the ex-
plicit decomposition of the operator Z(f) according to the pattern (2.8), as
deduced from eq. (2.25)

t We prefer to use the more compact notations Z(f), 2.:(8), OB f(!]. I, n instead of
(0) (A (ONAXD) (A)
the corresponding notations 2(f), X(¢), §, | I, IT of PGH, which are very cumbersome
in print,
 This definition implies the permutation of the » summation with the : integration.
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VEQ V =lim 3 (n))-1 (¢ + ) (V2O + VEV)», 2.27)
20 n=0

VEW) C = lim ¥ (n!)1 (¢ + ) (VLY + VEV)n VERC, (2.28)
20 n=0

CEW) V = lim 3 () (£ + 2)» CHOSV (VLY + VEV), (2.29)
zol) net

CE(t) C = lim X (0!)=1 (L + &)" CROEV (VL0 + VEV)" VERC. (2.30)
= n=0
These expressions correspond to the four operators arranged in a 2 x 2
matrix form in PGH. The single expression (2.25) is therefore precisely
equivalent to the latter matrix.
We now define the “incoherent’’ part f(t) simply as the remainder after
subtraction of j(f) from the complete distribution function:

ft) = £(1) {(0) = (#(t) — Z(1)] §(0) (2.31)

The main result of the present paragraph is in the decomposition of the
propagator #%({) of the Liouville equation,

w(t) = Z(t) + 20, (2.32)
and in the corresponding decomposition of §(¢),
fe) = §(t) + §0). (2.33)

Let us conclude this paragraph by noting that, in the present derivation,
extensive use was made of the (one-sided) Laplace-transformation technique.
This implies that Z(t) and £(f) have been obtained for positive values of
the time. From here on we shall extend these expressions and define Z(t)
[resp. £(f)] as being the right-hand side of eq. (2.25) [resp. (2.31)] for all
values of the time, positive, zero or negative, —oo < t < + oco. This ex-
tension is a very important step in the theory, which allows us to fully
investigate the properties of these operators.

3. Correlation and vacuum parts of Z(t). The first, very important property
of Z(f) is the simple relation existing between its vacuum and correlation
parts. That such a link should exist could be expected already from the
similarity of the right sides of eqs. (2.27)—(2.30).

The explicit form, however, does not look very simple because of the
presence of the differential operators ¢/2z. On the contrary, the relation
becomes extremely transparent if we go over to a representation as a function
of time (rather than of the Laplace variable z). It turns out that many
expressions take a much simpler form in the time formalism.
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It is a simple matter to show (see appendix 1) that:

CE(t) = [ dr CE(r) VE(t — =), (3.1)
o
where the “creation operator’” C€(z) V is defined as
Cé(r) V = [ dr' CUr —+) 8(x) V, (3.2)
0
with*t
&(f) = (2r)1 [ dze ™ &(2). (3.3)
¢

Equation (3.1) is extremely simple and compact?t. It shows that the corre-
lation part CZ(f) can be related to the vacuum part VZ(f) through a “kind
of"" convolution product with the creation operator* [a true convolution
product would involve ¢ rather than oo as the upper bound of integration
in (3.1)]. One should actually think of (3.1) as a couple of equations, involving
CE(t) V and CZ(t) C:

CE(O) V = [ dr C6(r) VE(L—7) V, (3.4)
CE(t) C = [ dr CH(x) VE(t—1) C. (3.5)
0

In this form, we see that two of the four components in the decomposition
(2.8) of Z(f) can be expressed in terms of the two others. Let us finally note
that, combining eqs. (3.1) and (2.24) we obtain:

Ci(t) = :’fdf Cé(r) Vit — 7). (3.6)

This fundamental equation shows that the correlation component is func-
tionally related to the vacuum. Hence, the §f component of the distribution
function automatically satisfies a generalized form of the Bogoliubov
ansatz?),

It is easy to prove the existence of another, independent relation, sym-
metrical to (3.1):

£() C = [ dr £t — 7) V() C, (3.7)
0

t No confusion should arise from the use of the same symbol & for &(f) and its
Laplace transform &(z). The particular variable involved will either be explicitly
indicated, or will be clear from the context,

t Eq. (3.1) does not appear in PGH; however, a similar relation was derived by
Baus #).

* We note that C&(r) V is identical with the Laplace transform of the operator €(z)
of ref. 3. It should not be mistaken with the operator C of ref. 3, which is much more
complicated. The latter operator will appear below [see eq. (4.20)).
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where the “destruction fragment” V2 (r) C is defined as
Va(r) C = Jdr' V&(r') ¥~ — 7') C. (3.8)
0

Equation (3.7) must again be interpreted as a couple of equations, like
(3.4)—(3.5). Combining these four equations (of which only three are in-
dependent) we immediately see that the only independent component in the
decomposition (2.8) of Z(f) is VE(f) V. The three other components can be
related functionally to the former.

It is now easily seen [the derivation is quite parallel to that of eq. (3.1)]
that this unique independent component obeys a remarkable differential
equation:

AVEWV = V(L0+2) VIV + fdf Ve(r) VIt —1)V, (3.9)
0

where %(7) is the inverse Laplace transform of the operator %(z) defined in
(2.21).

It follows from the previous discussion that the solution of this equation,
with the initial condition

VZO) V =1lim X (n!)-1on (VLY + VE(z) V)m, (3.10)
20 n=0
completely determines the operator X(1).
As a consequence of (3.9), (2.24) and (3.7) we derive the equation obeyed
by the vacuum component of j(t):

Vill) = V(29 + 2) Vi) + [ dr V() Vil — 1. (3.11)

This equation has to be solved with the initial condition:
V5(0) = [VE(0) V + VE(0) CI §(0). (3.12)

The solution of this problem completely determines [through eq. (3.6)] the
f(t) component of the distribution function.

Equation (3.11) is identical to the well-known asymptotic evolution
equation derived by Prigogine and Résibois!?) in the homogeneous case and
by Severne!l) in the inhomogeneous case; it appeared in the general form
(3.11) in ref. 5. However, the philosophy of the present approach (and of PGH)
is different from the one of refs. 5, 10, 11. Instead of looking at eq. (3.11) as
an approximation valid under limited circumstances, it now appears as
an exact equation obeyed by a part of the distribution function, viz. j(t).
The complementary part, f(l), is no longer neglected, but rather studied
separately.
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Let us finally note that the operator VZ({) V also obeys another equation
symmetric to (3.9):

AVEQV = VE V(LY + 2)V + [dr VE(—7) VI V. (3.13)
0

The proof is the same as for (3.9). This equation will be useful in the next
section.

4. Reduction of the kinetic equation. In PGH it was shown (for homogeneous
systems) that the integro-differential equation (3.9) has a remarkable
exponential solution. We shall denote it as follows:

VE() V = [exp(VTVH)] VE©) V, (4.1)

where VIV is a time-independent operator, having only a V-V component
in the representation (2.8)*. It then follows that VE({) V' obeys the differ-
ential equation (in time):

V() V =Vrve(y) v, (4.2)
and correspondingly, the vacuum part of {{f) obeys
elVilt) = VIVit). (4.3)

This is the basic general kinetic equation obeyed by Vi(f). Simple particular
cases are the Boltzmann equation for dilute gases, the weak-coupling Landau
equation, efe. Some of the simple examples are worked out in ref. 6.

In order to determine the form of the operator VI'V, we substitute (4.1)
into (3.9) and obtain the following integral equation:8):

VIV = V(29 + 2) V + [dr VE(r) V exp(—rVTV). (4.4)
0

In order to solve this nonlinear equation, some iterative procedure must be
used. By expanding the exponential in the integrand of (4.4), as a power
series in 7, Baus8) obtained the functional relation

VIV =lim ¥ (n!)"! [en(VLO + VEV)(VIV)n. (4.5)

20 n=0
Baus showed that eq. (4.5) gives the same result as a more complicated
recurrence relation derived earlier by Prigogine and Résibois!?) (in the
homogeneous case) and by Severne!!) for inhomogeneous systems, The
solution of eq. (4.5) cannot be written in a general form: each successive

t The operator VI'V is denoted by 2% in PGH, and by K in ref. 5. We prefer not to
use the PGH notation 2% because in the general inhomogeneous case this operator is
not necessarily factorizable,
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iteration must be worked out separately. Introducing the abbreviation
P(z) = VL4 VE(z) V the first few terms appear to be:

VIV = Q¥(0)
= (1 + P'(0) + 4P"(0) P(0) + P'(0) P'(0) + .1 P(0),  (4.6)

(where ¥' = 2%, ...). Besides the impossibility of writing out the general
term, this equation has another, major disadvantage when applied to
inhomogeneous systems (V.20 £ 0). If we want to write down the simplest
weak-coupling equation, we expand ¥(z) in powers of the coupling para-
meter through order 2. Then

Pez) = VL + VL'V + VEl2z) V,
and, substituting into (4.6) we obtain, to second order:
Vrely = veo + V'V 4+ VeiR0) V
+ VERI(0) Vg0 4 LVeRI"Q) VLves + ... (4.7)

Hence, even for a weakly coupled gas, the kinetic operator is expressed as an
infinile series of terms of the same order. What is worse is that we do not
even know the torm of the general term in this series, so we cannot sum it.
[Note that this difficulty does not exist for homogeneous systems [see (2.10)];
only the third term in the right side of eq. (4.7) subsists in that case]. Hence
eq. (4.6) cannot be consistently applied to the derivation of kinetic equations
for inhomogeneous systems.

We now show that a different iteration procedure can be applied for the
solution of eq. (4.4). In this way we shall be able to express VI'V in a form
which has none of the two previous disadvantages:

a) the general term in the series can be written down explicitly;

b) only a finite number of terms appears in any order of an expansion
in powers of the coupling parameter.

The zeroth-order approximation is taken as

VIOV — V(£0 + £ V. (4.8)

The corresponding exponentiated operator is then clearly the propagation
of the Viassov equation, which we denote by Vat) Vv:

exp[tV(£0 + &) V] = Va(l) V. (4.9)

Substituting this expression into the integral of eq. (4.4) we obtain the first
approximation:

Vroy = y(go + 2V + ?drgV@(rg) Vat(—rs) V. (4.10)
0

To go further, we calculate the exponentiated form of this operator, using
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the well-known identity
l(.-l +8) I(w(“ V). ‘B (_tt(l m (4_”)

Calling A and B respectively the first and second term of the right-hand side
of (4.10), we get, to first order (one single 4 factor):

[exp(tVTV)IW = Vi) V
! oo
+ [ OV — 0) V [ draV G (r) VA (—72) V() V. (4.12)
0 0
With this result the second iteration of (4.4) takes the form

Vrev = V(g + 2V + jdsz{’(-rg} Vat(—rs) V

—s

+ jd-ro I dry j drgV@(re) Vl{—72 — 73) V%(74) V-W(-rs — 74).
(4.13)

This iteration process can be continued systematically in the same way.
One will soon be convinced that the successive terms have a very regular
structure. The complete formal solution can therefore be written as:

VIV = V(%0 + £V + X VIV, (4.14)
nel
with

VgV = 6[ drs j dry .. I dray j dry I drs .. I dron-—1
i 0

X V@(re) Vil(ry — 12 — 13) VE(r4) VWl (g — 74 — 75)
X V@(rg) V ... Vll(r2n-3 — T2n-2 — T2n-1)
X V&(ron) VAl (Tan-1 — T20 — T2041) V, (4.15)

where one has to set 7y = 79,41 = 0. We preferred to write these two
spurious variables in (4.16) in order to enhance the basic regularity in the
limits of integration of the odd #;'s and in the order of succession of the
arguments of the 4 factors. We have thus achieved our first goal of deriving
a fully explicit expression for VIV,

If we now consider again the example of a weakly coupled system, as in
(4.7), we obtain from (4.14)-(4.15), to second order in A:

VIRV = V(29 + 2) V + | deaV2)(r) VU (—1g) V. (4.16)
0

Hence the infinite series in eq. (4.7) appears here automatically summed
in closed form. This is an appreciable advantage, especially in higher orders.
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To show that our equations (4.14)-(4.15) reduce to the PGH expression
(4.6) in the homogeneous case (2.10), we note that for such systems

Vv =V, (homogeneous systems). (4.17)

Hence, the first few terms of (4.15) are

VIV = [draV%(ry) V
i

+ [ dra [ dry [ drs VE(ra) V(ry) V
T T

+ Jdra [ dry [ drg ]’(’lfauj-;l‘n V&(ra) VE(rq) VF(re) + ...
0 0 0 0 0

= [dra V(ra) V + [dra (—72) VE(ra) V | draVF(rq) V
0 0 0

- Idrg j dn(ifg + 7ars) VG(r2) V&(rg) V
i 0

* ?d‘ran(‘rg] V+ ... = Y(0) + ¥'(0) ¥(0)
0
+ ¥"(0) Y(0) ¥(0) + ¥’(0) ¥'(0) 'P(0) + ..., (4.18)

in agreement with (4.7). [In the last step, use was made of eq. (A.1.3) of
appendix 1 and of the fact, already mentioned after eq. (2.21), that

V(z) V = Y(z2)
in the homogeneous casel,
It is now easy to see that the representation (4.1) of operator VI(f) V

allows us to transform the correlation component (3.1) into a different,
remarkable form*:

CE(t) = | deC¥(r) Viexp(t — 7) VIV] VE(O)
0

and hence

CE(t) = CCVE(t), (4.19)
with

cev — ;fdrcw(f) V exp(—rVTV). (4.20)

Eq. (4.19) relates the correlation components CZ(f) to the vacuum com-
ponents VI(f) evaluated at the same time through the action of the time-
independent operator CCV, It is the generalization to inhomogeneous

t Tt is not difficult to show that eq. (4.1) also holds for the component VX(#)C.
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systems of a relation due to PGH. Equation (4.20) is, however, much more
compact than the corresponding expression derived by C. George3). The
former reduces to the latter for homogeneous systems, upon expansion of
the exponential as a power series in r, and use of eq. (A.1.3).

Actually, by using the expansion of the exponential in the same way as
above, we can get an explicit series expansion for CCV, which is quite
useful in practical calculations.

CCV = ¥ CCV, (4.21)
with 3
CCrV = Td‘rg ?du Tdfz,"flefsuf':irs ...m-']?m-;lrz,.._l
0 0 0 0 0 0
C&(ra) Vil (r1 — 72 — 73) VF(ra) VAl (13 — 74 — 73)
X VG(re) V ... Vil (T2n-3 — Tan-2 — T2n-1)
X V%(ran) V@ (ran-1 — 720 — T2ns1) V)
71 = T2a41 = 0. (4.22)
This expansion is closely similar to (4.15); the only difference is in the

replacement of the first factor, V#%(r2) V, in the integrand by the factor

Cé(ra) V.
We now note that the operator VE(f) V' also admits a representation slightly

different from (4.1);
VE() V = VEQO) V exp(tVAV). (4.23)

The operator V4V obeys an equation derived by substituting (4.23) into
eq. (3.13):

VAV = V(29 + ) V + | dr exp(—rVaV) V8(z) V. (4.24)
0

Going through the same derivation as before, we obtain the following
explicit solution

VAV = V(£ + 2') V + T VAV, (4.25)
=1
with '
oo oo o Ti™~T: Ta—%4 TIn-3=Tin-2
VAV = j dre I drg ... j drap I drs j drs ... j drap—1
0 0 0 0 0 0

V@(—"‘!nﬂ — 7an + T2n-1) VG(r2a) V

X W(—ren-1 — T2n-2 + Ten-3) VG(r2n-2) V

e VG(16) VWU (—75 — 74 + 73) VE(ra) V

X WU(—r3 — 712+ 71) VE(ra) V, (4.26)
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where one sets again 71 = 73541 = 0. One immediately notes the nice
symmetry existing between the operators I' and 4.

Combining now eq. (4.23) with (3.7) we obtain

() C = }odf Z(0) exp[(t — 7) VAV] VZ@(r) C
0

and hence

Z(t) C = Z(t) VDC, (4.27)
with

VDC =o}°d-r exp(—rV4V) Va(r) C. (4.28)

Again, the operator VDC can be expanded in the same way as the other
operators:

VDC = ¥ VDuC. (4.29)
n~1
The general term VD,C looks exactly like V4,C, eq. (4.26), the only
difference being the replacement of the last factor V@(rs) V by VZ(r) C.
Eq. (4.27) completes the final reduction of the four components of X(f) to
the single component VZ({) V. This reduction is summarized by the following
relations:

VE({t) C = VE(t) VDC, (4.30)
CE() V = CCVE({) V, (4.31)
CX(t) C = CCVE() VDC, (4.32)
VI(t) V = exp(tVTV) VZ(0) V = VZ(0) V exp(tV4V). (4.33)

It also follows that the correlation component Cf(f) is related to the vacuum
component Vi(f) through a time-independent functional:

Ci(t) = CCVf(). (4.34)

These relations completely characterize the Z({) part of the propagator
and the j({) part of the distribution function. They may be taken as a
definition of these concepts.

5. Group properties of E(t) and of £(t). We now establish a certain number
of global properties of the operator X(¢). In this context a very special role
is played by the operators £(0) and £(0); we shall therefore denote them by
particular symbols:

0 =m £0 =il. (5.1)



492 R. BALESCU AND ], WALLENBORN

Two fundamental theorems are at the basis of this theory. The first one
states that IT is an idempotent operator

m=n. (5.2)

This property was conjectured by Haubold, then proved by a quite involved
perturbational method by Turner!?). Recently, a very straightforward and
simple proof has been given by Georgel3), His proof only needs trivial
changes to be carried over to the general case treated here (see appendix 2).

The second fundamental theorem gives the intrinsic relation between the
Liouville propagator U(t) and the operator E(i):

() = () M = D). (5.3)

As a particular case, we obtain from a consideration of infinitesimal time
translations:

Z0 = N¢. (5.4)

This theorem was conjectured by Turner and Clavin, and then proved in
ref. 15. A simpler and more general proof is given in appendix 3.

We now develop the consequences of these two theorems. The first
important property is the following: () is a representation of the one-para-
meter continuous group of translations, i.e.

I(ty) Z(ta) = Z(ty + t2), Y1, 120, (5.5)
()0 = ms(l) = £(), Y, (5.6)
2() E(—1) = £(—) £() = 1. (5.7)

The group properties (5.5)-(5.7) appear now as almost trivial conse-
quences of the relations (5.3) and (5.4). Indeed, we know that #(f) is a
representation of the group of translations, in which the unit element is the
identity transformation: #(0) = I, i.e.

U(t) U(ta) = U + t2), (5.8)
) I = Tu(t) = %(t), (5.9)
Ult) U(—1) = U(—t) u(t) = L (5.10)

Applying now eqs. (5.2), (5.3) we easily obtain:
I(t) Z(te) = U(t) Mu(ta) IT = U(ty) U(t2) IT*
=U(h + ta) T = Z(ty + ta).
Eqs. (5.6) and (5.7) are proved in the same elementary way.
In the PGH theory, X(t) was only shown to have the semi-group property,

i.e. properties (5.5) and (5.6) for positive values of f only. The reason for this
apparent restriction is the extensive use made in the PGH theory of the
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Laplace transformation method. In our formulation (which reduces to
PGH for homogeneous systems) it is clear from the very first steps, that
an extension of the definition (2.22) to f < 0 is not only natural but abso-
lutely necessary. Actually, we may adopt eqs. (4.30)-(4.33) as an equivalent
definition of Z(¢). This definition, completed by eqs. (4.15) and (4.16) makes
no more any use of the Laplace transformation. It clearly has a meaning
only if all the operators are defined for all values of £, positive and negative.
It is therefore quite gratifying that the PGH semi-group can be naturally
extended into a group if these definitions are used. This extension is parti-
cularly important in a relativistic theory.

The peculiar feature of the representation Z(¢) of the group of translations
is in the fact that the unit element IT of the group does nof correspond to the
identity transformation I [as happens in the representation #(f)]. It then
follows from the group axioms that IT must be an idempoient operator, i.c.
it must satisfy eq. (5.2). For this reason I can be called a projector (although
the warning in the footnote of p. 479 applies to IT as well). Combining eqs.
(2.32) (for ¢ = 0) and (5.2) we can easily see that the operators I, II provide
a decomposition of the identity, having the following properties:

n+in=1 (5.11)
m—n, A, (5.12)
nim=nan=o (5.13)

The analogy between these equations and (2.4)-(2.6) is striking. The analogy
goes even further if we compare eqs. (5.4) and (2.7). We have introduced at
this stage two different systems of projectors acting on the distribution
function space. It is interesting to note that these two systems of projectors
merge into each other as the interaction strength goes to zero:

mnm-—-v, a—c (no interactions). (5.14)

This is easily seen from eq. (2.25), noting that &(z) = 0 when ¥’ =0
[see eq. (2.19)].

It is now an elementary matter to show that £(¢) has quite similar group
properties as Z({). Indeed, from eqs. (2.32), (5.3) and (5.11) we obtain

5t = %) @ = Au). (5.15)

This relation, together with (5.12) then vields another representation of the
one-parameter group of translations:

£(t) £(t2) = E(tr + ta), (5.16)
£ = [k = L), (5.17)
2 2(—1) = . (5.18)
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Finally, combining eqs. (5.3), (5.15) and (5.13) we obtain
Z(t) £(ta) = £(t) Z(t2) = O. (5.19)

The decomposition (5.11) defines a separation of the space of distribution
functions into two subspaces. Any element of this space can therefore be
split into two components by means of the projections I, fi. Let us consider
an arbitrary element §(0) of this space, representing the state of the system
at some fixed time which may be called ¢ = 0. We then have the decomposi-
tion

f(0) = mf(0) + Af(0). (5.20)

Under the effect of the motion, the element {(0) is transformed into another
element of the functional space, f(f) = #(f) {(0). In other words #(f) is a
group of automorphisms, transforming the space of distribution functions
into itself. Splitting now f(£) into IT and /T components, we obtain

f(t) = Mj(t) + i) = ma(t) §(0) + fw() (0). (5.21)

It then first follows from (5.3) and (5.15) that in the decomposition (2.33),
we may identify

jo) = mi), § = m@iw. (5.22)

In other words, we may now define the components §(¢), {({) by means of a
time-independent projection operalor acting on the distribution function
evaluated at the same time ¢. This is to be contrasted to our initial definitions
(2.24), (2.31) in terms of time-dependent operators X(¢), £(¢) acting on the
function f at time 0. The new point of view (5.22) gives an intrinsic geometri-
cal meaning to the decomposition.

More important still is the following other consequence of (5.3) and (5.15):

(t) = (1) m§(0), (5.23)
() = () [§(0). (5.24)

These equations mean that the function If(f) is the result of the exact time
evolution of Ij(0) [a similar statement holds for fIj(t)]. As time proceeds,
there is no mixing between the two components; they evolve independently
of each other. In other words, the subspaces {IIf} and {fIf} are invariant
manifolds under the motion; they transform into themselves under the
automorphisms %(t) of the complete space {i}. We can formulate this property
in the language of group theory. From the existence of two invariant mani-
folds in the *‘carrier space’ {j} of the representation #(t) of the group of time
translations we may infer that the representation %(t) is reducible. This
reducibility property of #(f), valid even for the case of infinite systems of
interacting degrees of freedom, is perhaps the most important and highly
nontrivial feature of the PGH theory. It could not be predicted by any
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clementary or semi-intuitive argument. It throws a new light on the deep
structure of the evolution process.

Let us now concentrate upon the component M§(f). (The component fIf(¢)
will be considered in sec. 6.) It follows from (5.23) that it obeys the following
equation

2dIi(t) = 2mi(t). (5.25)

Hence Hj(r) = {(f) is a solution of the Liouville equation. However, there is
an important difference between (5.25) and the initial Liouville equation
(2.1). In the complete space {f} the vacuum and the correlation component
of { are quite independent functions. This is not so in the {IIf} subspace, as
we know that the correlation component CHf(f) must be functionally related
to the vacuum VIj(f) through eq. (4.34) af all times. Hence eq. (4.34) is a
constraint which has to be added to eq. (5.25) in order to define the motion
completely in the subspace {ITf}. The only independent part being the vacuum
component of ITj, we now derive an equation for the latter, taking the con-
straint explicitly into account:

aVIi(t) = Vi) = VLVt + VLCHi(t)
= VZVAi{) + VLCCVIi(),
or, using also eq. (2.7),
avIi) = V(20 + 2') VIj(t) + VL'CCVIIt).

We therefore obtained a closed equation for the component VIj(¢). This
equation must be identical with eq. (4.3); hence we have a new compact
expression for the kinetic operator VIV:

VIV = V(L0 2V + V£'CCV. (5.26)
One should not forget however that CCV is itself expressed in terms of I';

hence (5.26) is really an implicit non-linear equation for I'. By using eqs.
(4.20). (3.2) and (2.21) one easily sees that

VZ'CCV = [dr V¥(r) V exp(—7VTV), (5.27)
0
which establishes the equivalence of eqs. (5.26) and (4.4).

6. Properties of £(t). We now turn our attention to the second part of the
propagator #(t) and show that it has properties analogous, though comple-
mentary, to those of Z(#).

Using eqs. (5.13) and (4.30) we obtain

0= Vai = (VAV + VIC) it = vav(V + VDC) i
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and therefore (as VIV +# 0):

Vil = —VDCi, (6.1)
similarly
av = —nccev. (6.2)

Using these equations together with (5.15) we obtain three relations analogous
to (4.30)—(4.32):

VE(t) C = —VDCE() C, (6.3)
CE() V = —CE(t) CCV, (6.4)
VE(t) V = VDCE(t) CCV. (6.5)

Hence, in the decomposition (2.8) of £(f) we can again eliminate three of the
components in terms of the fourth. However, unlike X(/), the independent
component is now the correlation-correlation part, CE(f) C. It also follows
that the vacuum part of {(f) is a functional of the correlation, a situation quite
opposite to f(f):

Vi(t) = —VDCj(t). (6.6)
This relation was derived (for homogeneous systems) in PGH, but egs.
(6.3)—(6.5) do not appear in the latter theory.

To complete the picture, we now show that the independent component
can be represented as

CE(t) € = exp(tCAC) CAIC = CHIC exp(ICFC), (6.7)
in complete analogy with (4.33). To derive an expression for CAC, we start
from

ACE(t) C = aCu(t) fIC = CLE() C

=CLVE(l)C + CZLCE(Y) C
= —C2LVDCE(t) C + CLCE(t) C.

This equation can therefore be rewritten as

2CE() C = CACE() C (6.8)
and provides the definition of CAC as:
CAC =C(2° + £')C — C2'VDC. (6.9)

This is the generalization of the corresponding equation (4.13) of ref. 1,
where 4 is denoted by the letter 2. Eq. (6.9) looks quite similar to (5.25);
however, it is intrinsically much simpler. Indeed, this relation explicitly
expresses CAC in terms of the operator VAV, which has been determined
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carlier; another equivalent form, analogous to eq. (4.4) is
o
C4C = C(£0 + £') C — [ dr CL'V exp(—7V4AV) V&(7) C. (6.10)
0

Using the methods of sec. 4, it is a very easy matter to expand the ex-
ponential in this equation and obtain an explicit expansion for the operator
CAC:

C4C = C(29 + £') C — X C4xC, (6.11)

n=1
with
CJ,.C = I dfz I du . j (I‘r2ﬂ I d‘rs j d1'5 I d‘rz”_]
0 0 0

CL'VU(—rini1 — Tan + T2n-1) VE(r2n) V

X W(—Tan-1 — Tan-2 + Tan-3) VO(rau-2) V ... V¥ (r6) V

X W(—15 — 74 + 13) VG(7s) VW (—73 — 72 — 1) VZ(72) C.

(6.12)

In an exactly analogous fashion it is shown that the right-hand operator
CIC of eq. (6.7) is related to the operator VI'V through the equation

CIC = C(2° + £') C — [d+C€(r) V exp(—+VIV) VL'C, (6.13)
0

which has the solution

CI'C = C(#° + £') C — 3 CI'sC, (6.14)
n=1

with
Cl'yC = jdrg_\'dn

Ti=7s Ny=n Tin-0=Tin-3

j dron I drg j drs .. j drap—1

C6(r2) Vil (s — 72 — 73) VG(7a) Vil (13 — 74 — 75)
X V@(re) V ... Vi (ran-3 — Tan—2 — Tan-1)
X VG(ran) VW (r2n-1 — T2n — T2ns1) VL'C. (6.15)

It is hardly necessary to stress the close similarity between eqs. (6.12)
and (6.15) and the corresponding eqs. (4.26) and (4.15). The only difference
between corresponding equations is in the terminal factors of the integrand:
replacement of a factor V() V by a factor V@(rs) C (resp. C€(rg) V) and
adjunction of a factor CZ'V (resp. V#'C) at the other end. Everything
else is identical. This beautiful symmetry between the IT and [T subspaces is
clearly enhanced in the present formulation.
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7. Equilibrium properties. We now show that the equilibrium distribution
function has very remarkable properties in connection with the I[I-fj
concept.

An equiltbrivom distribution function j, will be very broadly defined as a
stationary solution of the Liouville equation (2.1):

Zfe = 0. (7.1)
This equation can also be written [see (2.2) and (2.4)] as
L% + L'Vie + £'Cle = 0. (7.2)

We now evaluate the function &(z) Vie; using eq. (2.20), then (7.2) and
finally {2.17) we obtain

8Vie = Z'Vie + ECRL 'V,
= —%L%e — L'Cle — SCROLOy — SCRVL'Ce
= — L%y — 2L'Cie + ECje + 128 RCfo — ECfe + £L'Cie,
hence
8(2) Vie = —2%e + i28(z) #°(2) Cfe. (7.3)

From this equation we obtain a first important result by projecting both
sides on the vacuum and taking the limit z — 0:

lim Vé&(z) Vie

-0
= — V&%, + lim(iz) V&(z) #z) Cje = — VL%,
-0
where the regularity assumption (2.23) has been used. We thus obtain
[V 4 lim Vé&(z) V] Vie = 0. (7.4)
=0

This is the generalized form of the PGH result: ¥(0) po(Ho) = 0. It is
translated into time-dependent operators as follows [see eq. (A.1.3)]

V(£ + ') Vie + [ dr VE(r) Vi, = 0. (7.5)
0

A second important lemma is obtained from (7.2) by multiplying both
sides by C#%(z):

CREVie = —CROL Y, + iz CROECRY,

= Cfe + iz CR%, + iz CRIERCH,,

where we used (2.17). From (2.23), it follows that

lim CR%(z) &(z) Vie = Cie. (7.6)

-0
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This equation is equivalent [see (3.2)] to
oo
Cle = Idr Cé(7) Vie. (7.7)
0

Recalling that fe is a time-independent function, we see that the correlation
and vacuum parts of f, are related to each other as the corresponding
components of an § function, see eq. (3.6). We may derive a couple of other
results which strengthen this statement. We note first the property

VrVie = 0. (7.8)
This property is very easily proved by using eq. (4.4):

VIVie= V(29 4 £') Vie + | dr VE(r) V exp(—VTV) fo.
0

By substituting (7.8) as an ansatz, this equation reduces to (7.5) which has
been proved above. From eqs. (7.8) and (4.21) follows then

CCVfe = Fdf Cé(r) Vexp(—7VIV)fs = }od‘r C%(r) Vie,
0 0

and hence, from (7.7):
Cfu — CcVie. (7.9)

This is the characteristic relation defining the subspace I1, as we saw in eq.
(4.34). We may therefore also write this equation as

niu = fe, (7.]0)
ij. = 0. (7.11)

The set of stationary distribution functions lies entirely in the IT subspace.

We may now summarize all the results of our discussion as follows.
Starting from an arbitrary initial state, the IT and f parts of the distri-
bution function evolve quite independently. The IT component obeys a
generalized kinetic equation (4.2) which drives that component to equili-
brium; on the other hand the fI component has an evolution which could
be compared to a phase-mixing process. In the end stage, the fI component
vanishes. We refer the reader to refs. 1 and 2 for a further discussion of
these concepts. We may, however, note that a detailed understanding of the
evolution process will require further work. The results of the PGH theory
and of the present paper clearly show the way for these future developments.
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500 R. BALESCU AND J. WALLENBORN

APPENDIX 1
Proof of eq. (3.1). From eq. (2.25) we obtain

CX(t) = lim ;: (n!)=1 (L + )" CROEV (VLO + VEV)H (V + VERC)
z-xll ne

= lim E f: E"{tv;p gt (n — p — @) |(ICROSV)
=+ n=0p=0g=0

[En-P-a(VLO - VEV)" (V + VERC)). (A.L.1)
On the other hand

Td'r Ce(r) VZt — 7) = Fdr Cé(r) V
0 0

xlim Y )1t —74+ (VLY + VEV)n (V + VER)

o) n=0
—lim[drCE@ VE S S /plg! (n —p —g)! ]
=0 0 n=) p=g=0
% (—7)8 [0n-P-0 (VLO L VEV) (V + VERC)). (A.1.2)

We now use the following relation connecting a pair of Laplace transforms
Afz) and A(f):

(i L) Alg) = J' dr &7 (— )% A(r). (A.1.3)
o2

0
It follows that

Fd-r Cé(r) V(—7)1 = [01CE(3) V..,
0

= [C9CRO(2) &(2) V] op-

Substituting this result into the right-hand side of (A.1.2) we obtain the
right-hand side of (A.1.1).
Equations (3.7), (3.9) and (3.13) are derived in a quite similar way.

APPENDIX 2

On the proof of M2 = M. In ref. 13, George gave a complete and elegant
direct proof of a theorem which, in his notations, is stated as

A2 4+ Y ADCrA = A. (A.2.1)
k

Translated into our notation,
A=vav, Dy = VDC, Cr = CCV.



THE TIME-EVOLUTION PROCESS IN MANY-BODY SYSTEMS 501

Hence his theorem is equivalent to

vovaov + vovbeocvnv = vaovav + VvIacav = vilv, (A.2.2)
or

Vvirv = vav. (A.2.3)
There is practically no change necessary in order to generalize his proof
to the inhomogeneous systems considered here. One simple has to translate
his symbol ¥(z) by (V£ + Vé&(z) V).
It should be clear, on the other hand, that eq. (A.2.2), together with the
relations (4.30)-(4.32) ensure the validity of all four component equations
of M* = [I. Indeed, consider for instance:

VII:C = VIIRVDC = vivDC = VIC,

and similarly for the C-V and C-C components.

APPENDIX 3

Proof of E(t) = M4(t). We note again that it is sufficient, because of eq.
(4.19), to prove:

Vimu() = VE(t). (A3.1)
Using eqs. (2.13) and (2.22) (for { = 0), the left side is
Vi)

= lm ¥ X (Ir/p!r!) ep(VLY - VEV)P (V + VERC) 2.
=0 re=0p=0
On the other side, from (2.25) and the binomial expansion of ({ + ¢)":

VE() =lim X X ([r1p!) 29 (V2O + VEV)#+1 (V + VERC).

-+l r=0p=0
It is therefore sufficient to prove the following relation

lim X (p!)-1 22 (VL0 + VEV)P (V + VERC) &7

-+l p=0

=lim X (p!)-1 ep(VZLO + VEV)Pir (V + VERC),

20 p=0

r=0,12,... (A.3.2)
The proof is by induction. The theorem is trivially true for r = 0.
Assume now that (A.3.2) is true for given » and consider

lim 3 (p!)12p(VZLO + VEV)P (V + VERC) £+l

=l p=0

=lim ¥ (p!)-1ep(VLO + VEV)Pir (V + VERC) 2.  (A3.2)

2+ p=i)
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Expanding & in the form (2.8) and using (2.2), we can write:

(V 4 VERC) &
=V(&Y+ L'+ 8RCL") V 4+ V(L' 4 8RCEL' + ERLY) C.
(A.3.3)
Making use of eqs. (2.20) and (2.17), we can simplify (A.3.3) to
(V+VERC)Z = (VLY + VEV) = izVERC. (A.3.4)

Substituting this result into the right-hand side of eq. (A.3.2) we get

lim X (p!)-1 2» (VL0 + VEV)P (V + VERC) 2+

2=l p=0

=lim ¥ (p!)) 2P(VLO + VEV)ir (VLY 4 VEV)

20 p=0

4+ lim X (¢!)'ee [(—iz)(VLO + VeV)atr VEROC]. (A.3.5)

=0 =0

Using the Leibnitz formula, the second term can be written as

lim ;‘, g‘,[n! (g — n)!]71 [e™ (—iz)]
g+l g

X (241 (V@O + VEV)&rVERC]

=lim ¥ [(g — 1)!]-1fe-1 (V20 4 VEV)atr VEROC.
2+l g=1

The last step is obtained by noting that the first bracketed factor differs
from zero only for n = 1 and n = 0. Moreover, it follows from the regularity
assumptions (2.23) that the contribution of the term »n = 0 vanishes in the
limit = — 0; we are therefore left with the contribution of # = 1. Changing
the summation index ¢ to p = g — | and substituting the result into the
right side of (A.3.5) we get

lim X (p!)-1 02 (VL0 + VEV)P (V + VERC) Lr

zeol) pt

=1lim ¥ (p!)-1 20 (VL0 & VEV)»ril (V 4+ VERC).  (A.3.6)
20 p=0

The induction hypothesis (A.3.2) is thus extended to the value » + 1, and
hence the theorem (A.3.1) is proved. The proof of the relation Z(¢f) = #(¢) 1
is quite analogous to the present one. It is important to note that the sign
of t is irrelevant in this proof; the theorem holds for any ¢ 2 0. This remark
is important in connection with the extension of the PGH semi-group
property of X(t) into the full-group property derived in eqs. (5.5)-(5.7).
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