ON THE STRUCTURE OF UNITARY GROUPS

${ }^{\text {By }}$
JEAN DIEUDONNE

1. Let K be an arbitrary sfield with an involution J, that is, a one-to-one mapping $\xi \rightarrow \xi^{J}$ of K onto itself, distinct from the identity, such that $(\xi+\eta)^{J}$ $=\xi^{J}+\eta^{J},(\xi \eta)^{J}=\eta^{J} \xi^{J}$, and $\left(\xi^{J}\right)^{J}=\xi$. Let E be an n-dimensional right vector space over $K(n \geqq 2)$; an hermitian (resp. skew-hermitian) form over E is a mapping (x, y) $\rightarrow f(x, y)$ of $E \times E$ into K which, for any x, is linear in y, and such that $f(y, x)=(f(x, y))^{J}$ (resp. $f(y, x)=-(f(x, y))^{J}$). This implies that $f(x, y)$ is additive in x and such that $f(x \lambda, y)=\lambda^{J} f(x, y)$. The values $f(x, x)$ are always symmetric (resp. skew-symmetric) elements of K, that is, elements α such that $\alpha^{J}=\alpha$ (resp. $\alpha^{J}=-\alpha$). The orthogonality relation $f(x, y)=0$ relative to f is always symmetric.

We shall always suppose that the form f is nondegenerate, or in other words that there is no vector in E other than 0 orthogonal to the whole space. Moreover, when the characteristic of K is 2 , the distinction between hermitian and skew-hermitian forms disappears, and $f(x, x)$ is symmetric for every $x \in E$; in that case we shall make the additional assumption that $f(x, x)$ has always the form $\xi+\xi^{J}$ ("trace" of ξ) for a convenient $\xi \in K$; this assumption is automatically verified when the restriction of J to the center Z of K is not the identity, but not necessarily in the other cases.

A unitary transformation u of E is a one-to-one linear mapping of E onto itself such that $f(u(x), u(y))=f(x, y)$ identically; these transformations constitute the unitary group $U_{n}(K, f)$. In a previous paper [5, pp. 63-82] ${ }^{1}$), I have studied the structure of that group in the two simplest cases, namely those in which K is commutative, or K is a reflexive sfield and the form f is hermitian; the present paper is devoted to the study of $U_{n}(K, f)$ in the general case.
2. We shall need the following lemma:

Lemma 1. If the sfield K is not commutative, it is generated by the set S of the symmetric elements, except when K is a reflexive sfield of characteristic $\neq 2$, and S is identical with the center Z of K.

Let L be the subsfield of K generated by S; we are going to prove that if L is not contained in Z, then $L=K$. Suppose the contrary, and let α be an element in K not belonging to L; let M be the 2 -dimensional right vector space over L having 1 and α as a basis; we are going to prove that M is a sfield. We first notice that L is identical with the subring of K generated by S;

[^0]for if $\zeta \neq 0$ is an element of that subring, it is clear that ζ^{J} also belongs to it; but $\zeta \zeta^{J}=\delta$ is in S, hence $\zeta^{-1}=\zeta^{J} \delta^{-1}$ belongs to the ring generated by S, which proves that L is identical with that ring. We next notice that $\alpha^{J}+\alpha=\beta$ $\in S \subset L$, and $\alpha \alpha^{J}=-\alpha^{2}+\alpha \beta=\gamma \in L$ and therefore $\alpha^{2}=\alpha \beta-\gamma$. On the other hand, if ξ is any element in $S, \alpha \xi+(\alpha \xi)^{J}=\alpha \xi+\xi \alpha^{J}$ is in L, and therefore $\alpha \xi-\xi \alpha$ is in L; by induction on k, it follows that if $\zeta=\xi_{1} \xi_{2} \cdots \xi_{k}$, where $\xi_{j} \in S$ for $1 \leqq j \leqq k$, the element $\alpha \zeta-\zeta \alpha$ is in L. These remarks prove that M is a subring of K, invariant by the involution J, and the same argument as the one made for L proves that M is a sfield. Now for any $\zeta \in L, \alpha \zeta+(\alpha \zeta)^{J}=\alpha \zeta+\zeta^{J} \alpha^{y}$ is in $S \subset L$, and replacing α^{J} by its value shows that $\alpha \zeta-\zeta^{J} \alpha$ is in L; but as $\zeta^{J} \alpha-\alpha \zeta^{J}$ also belongs to L, we see that $\alpha\left(\zeta-\zeta^{J}\right)$ is in L; this is of course possible only when $\zeta=\zeta^{J}$. In other words, we come to the conclusion that $L=S$; in particular, if ξ and η are any two elements of $S, \xi \eta$ is in S, and therefore $(\xi \eta)^{J}=\eta^{J} \xi^{J}$ $=\eta \xi$ is equal to $\xi \eta$; this means that L is a commutative field.

To go on with the argument, let us first suppose that the characteristic of K is $\neq 2$; then, as $\alpha=\left(\alpha+\alpha^{J}\right) / 2+\left(\alpha-\alpha^{J}\right) / 2, \alpha-\alpha^{J}$ is not in L, and we can replace α by $\alpha-\alpha^{J}$ in the preceding sequence of arguments. We then have $\alpha^{J}=-\alpha$, and $\alpha^{2}=-\gamma \in L$. The mapping $\zeta \rightarrow \alpha \zeta-\zeta \alpha$ is a derivation of the field L; if we put $D \zeta=\alpha \zeta-\zeta \alpha$, we have $D^{2} \zeta=\alpha^{2} \zeta-2 \alpha \zeta \alpha+\zeta \alpha^{2} \in L$ for every $\zeta \in L$, which gives $\alpha \zeta \alpha \in L$, since the characteristic of L is $\neq 2$. But we may write $\alpha \zeta \alpha=\alpha^{2} \zeta-\alpha \cdot D \zeta$ and as $\alpha^{2} \in L$, this gives $\alpha \cdot D \zeta \in L$, which is possible only if $D \zeta=0$ for every $\zeta \in L$. This proves that every element $\alpha \in K$ commutes with every element of L, in other words, that L is in the center of K, contrary to assumption.

We next take up the case in which the characteristic of K is 2 . From the relation $\alpha^{3}=\alpha \beta \alpha-\gamma \alpha=\alpha^{2} \beta-\alpha \gamma$, one derives immediately $D \beta=D \gamma=0$, in other words, β and γ commute with α; replacing α by $\beta^{-1} \alpha$, we can therefore suppose that $\alpha^{2}=\alpha+\gamma$, with $D \gamma=0$. Let N be the subfield of L defined by the equation $D \xi=0$ (commuting subfield of α or center of M). The relation $\alpha^{2}=\alpha+\gamma$ implies that $D^{2 \xi}=D \xi$ for every $\xi \in L$, or in other words, that $\xi+D \xi \in N$ for all $\xi \in L$. On the other hand, $D\left(\xi^{2}\right)=2 \xi \cdot D \xi=0$ because the characteristic is 2 , hence $\xi^{2} \in N$ for $\xi \in L$. Now, if $\zeta=\alpha \xi+\eta$ is any element of M, with $\xi \in L$ and $\eta \in L$, an easy computation shows that $\zeta \zeta^{J}=\gamma \xi^{2}+\xi \eta$ $+D(\xi \eta)+\eta^{2}$ and therefore $\zeta \zeta^{J} \in N$; on the other hand $\zeta+\zeta^{J}=\xi+D \xi$ is also in N. If $N \neq L$, this means that M is a reflexive sfield over its center $N[5, \mathrm{p}$. 72]. But in a reflexive sfield of characteristic 2, the symmetric elements constitute a 3-dimensional subspace over the center, whilst here they are the elements of L, which is only 2 -dimensional over N; the assumption $N \neq L$ is therefore untenable. But if $N=L, \alpha$ commutes again with every element of L, in other words, L is again the center of K, contrary to assumption.

We have still to examine the exceptional case in which S is contained in Z. For every element $\xi \in K, \xi+\xi^{J}$ and $\xi^{J} \xi$ are then in the center Z, and therefore, as $\xi^{2}-\left(\xi+\xi^{J}\right) \xi+\xi^{J} \xi=0$, every element of K has degree 2 over the center
Z. It is well known that this is possible only if K has rank 4 over Z. Moreover if $\gamma \in Z$ and ζ is not in $Z, \gamma \zeta+(\gamma \zeta)^{J}=\gamma\left(\zeta+\zeta^{J}\right)+\left(\gamma^{J}-\gamma\right) \zeta^{J}$ is in Z, which implies $\gamma^{J}=\gamma$; this shows that K is a reflexive sfield [5, p. 72], and $S=Z$; but this is possible only when K has a characteristic $\neq 2$ (loc. cit.), and that completes the proof of Lemma 1.
3. From the involution J, we can deduce other involutions T of K by the general process of setting $\xi^{T}=p^{-1} \xi^{J} p$, where p is a symmetric or skew-symmetric element of K (with respect to J); if $p^{J}=\epsilon p(\epsilon=1$ or $\epsilon=-1$), the relation $\xi^{T}=\xi$ is then equivalent to $p \xi=\epsilon(p \xi)^{J}$; in other words, the T-symmetric elements of K are of the form $p^{-1} \eta$, where η is J-symmetric if $\epsilon=1$ and η is J-skew-symmetric if $\epsilon=-1$. This enables one to reduce to each other the hermitian and skew-hermitian forms, by a change of the involution (when the characteristic of K is not 2). Indeed, if $f(y, x)=-(f(x, y))^{J}$, consider the form $g(x, y)=p^{-1} f(x, y)$, where p is skew-symmetric; then g is linear in y, and one has $g(y, x)=-p^{-1}(f(x, y))^{J}=-p^{-1}(p g(x, y))^{J}=(g(x, y))^{T}$. For the sake of convenience, we shall always suppose in the following that the form f is skew-hermitian for J.

The notions of orthogonal basis, of isotropic vector, of isotropic and totally isotropic subspaces of E are defined as usual (see [5]); the index ν of f is the maximum dimension of the totally isotropic subspaces, and one has $2 \nu \leqq n$. When a plane $P \subset E$ is not totally isotropic but contains an isotropic vector $a \neq 0$, then there exists in P a second isotropic vector b such that $f(a, b)=1$; P is then said to be a hyperbolic plane, and the restrictions of f to any two hyperbolic planes are equivalent. Moreover, Witt's theorem is still valid (see [6, pp. 8-9]; in the case of characteristic 2, this, as well as the preceding property, is due to the restrictive assumption on f to be "trace-valued"); we shall formulate it in the following form: if V and W are any two subspaces of E such that the restrictions of f to V and W are equivalent, then there is a unitary transformation u such that $u(V)=W$.
4. Let us recall that a transvection is a linear transformation of the type $x \rightarrow x+a \rho(x)$, where ρ is a linear form, not identically 0 , and such that $\rho(a)=0$. If we write that such a transformation is unitary, we get

$$
(\rho(x))^{J} f(a, y)+f(x, a) \rho(y)+(\rho(x))^{J} f(a, a) \rho(y)=0
$$

identically in x and y; with $x=a$ this gives $f(a, a) \rho(y)=0$, hence $f(a, a)=0$, the vector a must be isotropic; then we get

$$
(\rho(x))^{J} f(a, y)+f(x, a) \rho(y)=0
$$

which, for fixed x such that $\rho(x) \neq 0$, shows that $f(x, a) \neq 0$, and $\rho(y)=\lambda f(a, y)$; finally, we have

$$
(f(a, x))^{J} \lambda^{J} f(a, y)+f(x, a) \lambda f(a, y)=0
$$

identically, and as $f(a, x)=-(f(x, a))^{J}$, this yields $\lambda^{J}=\lambda$. In other words,
unitary transvections exist only if $\nu \geqq 1$, and then are of the form $x \rightarrow x$ $+a \lambda f(a, x)$, where a is an arbitrary isotropic vector, and λ an arbitrary symmetric element in K; the hyperplane of points of E invariant by the transvection is the hyperplane orthogonal to a.

Let H be a nonisotropic hyperplane, a a vector orthogonal to H. Then every unitary transformation u leaving invariant every element of H is such that $u(a)=a \mu$, with $\mu^{J} \alpha \mu=\alpha$, where $\alpha=f(a, a)$; we shall say that such a transformation is a quasi-symmetry. There always exist quasi-symmetries of hyperplane H, not reduced to the identity; this is obvious if K has a characteristic $\neq 2$, for then the ordinary symmetry ($\mu=-1$) has that property. If K has characteristic 2 , one has by assumption $\alpha=\beta+\beta^{J}$, with $\beta \neq \beta^{J}$; then $\mu=\beta^{-1} \beta^{J}$ satisfies $\mu^{J} \alpha \mu=\alpha$, and $\mu \neq 1$.

These remarks already enable us to determine the center Z_{n} of the group $U_{n}(K, f)$. Indeed, a transformation v belonging to the center must permute with every quasi-symmetry, hence leave invariant every nonisotropic line; and if there are isotropic lines, v must permute with every unitary transvection, hence leave invariant every isotropic line as well. Therefore v leaves invariant every line, which means that it is a homothetic mapping $x \rightarrow x \gamma$, with γ in the center Z of K and $\neq 0$; moreover, in order that such a mapping be unitary, it is necessary and sufficient that $\gamma^{J} \gamma=1$.
5. From now on, we are going to suppose that $\nu \geqq 1$. Let T_{n} be the subgroup of $U_{n}(K, f)$ generated by unitary transvections; as a transform vuv ${ }^{-1}$ of a transvection u is again a transvection, it is clear that T_{n} is a normal subgroup of U_{n}. Let W_{n} be the center of T_{n} (we shall determine its structure in $\S 11$). We shall now prove the following theorem.

Theorem 1. If the sfield K has more than 25 elements $\left({ }^{2}\right)$, the group T_{n} / W_{n} is simple for $n \geqq 2$ and $\nu \geqq 1$.

Our proof will be modeled after that of [5, Theorem 4, p. 55], and will proceed in several steps.
1°. We first prove that if a normal subgroup G of T_{n} contains all transvections of U_{n} having the same vector a, then $G=T_{n}$. In order to do this, we shall prove the following lemma.

Lemma 2, If a and b are any two noncollinear isotropic vectors, there exists a transformation $u \in T_{n}$ such that $u(a)=b \mu$ for a convenient scalar $\mu \in K$.

If we suppose the lemma proved, and consider an arbitrary transvection $x \rightarrow v(x)=x+a \alpha f(a, x)$, it is readily verified that $u v u^{-1}$ is the transvection $x \rightarrow x+b \mu \alpha \mu^{J} f(b, x)$; but as α can take any value in the set S of symmetric elements, so can $\mu \alpha \mu^{J}$. Therefore G contains all transvections of b, and in consequence is identical to T_{n}, since b is an arbitrary isotropic vector.

[^1]To prove the lemma, let us first suppose that $f(a, b) \neq 0$; then there is a scalar $\mu \neq 0$ such that $a+b \mu=c$ is isotropic. Indeed, the relation $f(a+b \mu, a+b \mu)=0$ gives the condition $\mu^{J} f(b, a)+f(a, b) \mu=0$ which is satisfied by taking $\mu=(f(a, b))^{-1}$, owing to the relation $f(b, a)=-(f(a, b))^{J}$. The transvection $x \rightarrow u(x)=x+c f(c, x)$ sends then a into $-b \mu$, for $f(c, a)=\mu^{J} f(b, a)$ $=-1$.

Suppose next that $f(a, b)=0$; this means that the plane containing a and b is totally isotropic, hence $n \geqq 3$. Therefore there exists a vector z such that $f(a, z) \neq 0$ and $f(b, z) \neq 0$; the plane containing a and z is hyperbolic, and contains therefore a vector a_{1} not collinear to a and isotropic; moreover a_{1} cannot be orthogonal to b, otherwise z would also be orthogonal to b; therefore one has $f\left(a, a_{1}\right) \neq 0$ and $f\left(a_{1}, b\right) \neq 0$; applying the preceding result, there is a transvection u_{1} transforming a into a scalar multiple of a_{1}, and a transvection u_{2} transforming a_{1} into a scalar multiple of b; the transformation $u=u_{2} u_{1}$ satisfies the conditions of the lemma.
6. Our next step will be to prove that:
2°. Theorem 1 is true for $n=2, \nu \geqq 1$. The assumption implies that there is a basis of E consisting of 2 isotropic vectors e_{1}, e_{2} such that $f\left(e_{1}, e_{2}\right)=1$. If u is a unitary transformation,

$$
U=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
$$

its matrix with respect to the basis (e_{1}, e_{2}), the elements of U satisfy the following conditions

$$
\begin{equation*}
\alpha^{J} \gamma-\gamma^{J} \alpha=0, \quad \beta^{J} \delta-\delta^{J} \beta=0, \quad \alpha^{J} \delta-\gamma^{J} \beta=1 \tag{1}
\end{equation*}
$$

and conversely, the matrices satisfying these relations are unitary. We observe that from (1) one deduces the following relations

$$
\begin{equation*}
\alpha \beta^{J}-\beta \alpha^{J}=0, \quad \gamma \delta^{J}-\delta \gamma^{J}=0 \tag{2}
\end{equation*}
$$

Indeed, let

$$
A=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

and let U^{*} be the transposed matrix of U^{J}; then (1) is equivalent to the matrix relation $U^{*} A U=A$, whence $A^{-1}=U^{-1} A^{-1}\left(U^{*}\right)^{-1}$, and therefore $U A^{-1} U^{*}=A^{-1}$; but as $A^{-1}=-A$, the last relation implies (2) (this short derivation of (2) from (1) was indicated by the referee). The transvections of vector e_{2} have matrices of the type

$$
B(\lambda)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

where $\lambda \in S$; the transvections of vector e_{1} have matrices of the type

$$
C(\mu)=\left(\begin{array}{ll}
1 & \mu \\
0 & 1
\end{array}\right)
$$

with $\mu \in S$. We want to prove that if a normal subgroup G of T_{2} contains a transformation u not in the center W_{2}, then $G=T_{2}$; it will be enough, by virtue of part 1°, to show that all matrices $C(\mu)$ belong to G.

Let us first suppose that the matrix U is such that $\beta \neq 0$. Then the matrix

$$
\begin{aligned}
(B(\lambda))^{-1} U B(\lambda) & =B(-\lambda) U B(\lambda) \\
& =\left(\begin{array}{cc}
\alpha+\beta \lambda & \beta \\
\gamma^{\prime} & \delta^{\prime}
\end{array}\right)
\end{aligned}
$$

belongs to G, for any $\lambda \in S$. It follows from the first relation (2) that $\beta^{-1} \alpha$ $\in S$; taking $\lambda=-\beta^{-1} \alpha$, we see that we can always limit ourselves to the case in which $\alpha=0$; the third relation (1) then yields $\gamma=-\left(\beta^{-1}\right)^{J}$.

Supposing therefore that $\alpha=0$, we next determine a linear transformation v of E such that $u\left(v\left(e_{1}\right)\right)=e_{1} \xi$, and $v\left(u\left(e_{1}\right)\right)=e_{1} \eta, \xi$ and η being at first arbitrary elements $\neq 0$ in K. An easy computation shows that the matrix of v with respect to e_{1}, e_{2} is equal to

$$
V=\left(\begin{array}{cc}
-\gamma^{-1} \delta \beta^{-1} \xi & \eta \gamma^{-1} \\
\beta^{-1} \xi & 0
\end{array}\right)
$$

We now want v to be in the group T_{2}; this, by the third condition (1), is possible only if we have

$$
\begin{equation*}
\left(\eta \gamma^{-1}\right)^{J} \beta^{-1} \xi=-1 \tag{3}
\end{equation*}
$$

Conversely, if ξ and η satisfy (3) and $\beta^{-1} \xi \in S$, then $v \in T_{2}$. To prove this, we first remark that there is $\sigma \in S$ such that

$$
V B(\sigma)=\left(\begin{array}{cc}
0 & -\left(\zeta^{-1}\right)^{J} \\
\zeta & 0
\end{array}\right)
$$

with $\zeta=\beta^{-1} \xi$; indeed, this relation is equivalent to $\sigma=\gamma \eta^{-1} \gamma^{-1} \delta \beta^{-1} \xi$; but it follows from the second relation (2) that $\gamma^{-1} \delta \in S$, and on the other hand, (3) shows that $\gamma \eta^{-1}=-\left(\beta^{-1} \xi\right)^{J}$; therefore, the element σ is in S.

Further, we have, for $\zeta \in S$,

$$
C\left(-\zeta^{-1}\right) B(\zeta) C\left(-\zeta^{-1}\right)=\left(\begin{array}{cc}
0 & -\zeta^{-1} \\
\zeta & 0
\end{array}\right)
$$

hence $V B(\sigma)$ is in T_{2}, which proves that V is in T_{2}.
The transformation $u_{1}=u^{-1} v^{-1} u v$ is. then in G, and its matrix has the form

$$
U_{1}=\left(\begin{array}{cc}
\rho & \beta^{\prime} \\
0 & \left(\rho^{-1}\right)^{J}
\end{array}\right)
$$

where $\rho=\beta^{J} \zeta \beta \zeta$. Finally the matrix $W=U_{1} C(\theta) U_{1}^{-1} C(-\theta)$ is in G for every $\theta \in S$, and is equal to

$$
\left(\begin{array}{cc}
1 & \rho \theta \rho^{J}-\theta \\
0 & 1
\end{array}\right)
$$

in other words, it is a matrix $C(\mu)$ with $\mu=\rho \theta \rho^{J}-\theta$.
7. We first want to prove that it is possible to choose ζ and θ in the set S of symmetric elements such that $\mu \neq 0$. This will certainly be the case if $\rho \rho^{J} \neq 1$, with $\theta=1$. We have therefore to show that, under the assumptions of Theorem 1, it is impossible that $\rho \rho^{J}=1$ for every $\zeta \in S$. This is immediate if the subfield Z_{0} of the center Z, which consists of the symmetric elements of Z (and is such that Z is a separable quadratic extension of Z_{0}, or identical to Z_{0}), has more than 5 elements; for if $\zeta \in Z_{0}$, the relation $\rho \rho^{J}=1$ reduces tc $\zeta^{4}\left(\beta^{J} \beta\right)^{2}=1$, which can be verified by at most 4 different elements of Z_{0}. We are therefore reduced to the case in which Z_{0} has at most 5 elements, which means that Z has at most 25 elements; moreover, we can suppose that K is noncommutative, and therefore infinite. In the identity $\rho \rho^{J}=1$, if we replace ζ by 1 , we get $\left(\beta^{J} \beta\right)^{2}=1$, hence $\beta^{J}=\beta^{-1}$ or $\beta^{J}=-\beta^{-1}$; in any case, β^{J} and β commute. If $\beta^{J}+\beta=0$, we have $\beta^{4}=1$; if $\beta+\beta^{J} \neq 0$, we can replace ζ by $\beta+\beta^{J}$, and we get $\left(\beta+\beta^{J}\right)^{4}=1$. In every case, β is a root of an algebraic equation with coefficients in Z, and as Z is finite, so is the commutative field $Z(\beta)$. Let L be the subsfield of K consisting of the elements of K which commute with β; as $Z(\beta)$ has finite degree over Z, K has finite degree over L, and therefore L is an infinite sfield [2, p. 104]; moreover, as $Z\left(\beta^{J}\right)=Z(\beta), L$ is invariant under the involution J. Now, if we take ζ in $S \cap L$, the relation $\rho \rho^{J}=1$ reduces to $\zeta^{4}=1$, in other words $\zeta^{2}=1$ or $\zeta^{2}=-1$. If we apply this to $\zeta=\xi+\eta$, where ξ and η are arbitrary in $S \cap L$, we conclude that $\xi \eta+\eta \xi$ is in the center Z of K, from which it immediately follows that the sfield M generated by ξ and η over Z has at most rank 4 over Z; as Z is finite, this sfield must be commutative. In other words, any two elements of $S \cap L$ commute; it then follows from Lemma 1 that either L is commutative, or is a reflexive sfield, and then has necessarily an infinite center which is identical to $S \cap L$. In any case, the relation $\zeta^{4}=1$, valid for $\zeta \in S \cap L$ (and $\zeta \neq 0$) shows that $S \cap L$ must be finite; this is possible only when L is commutative; but then $S \cap L$ is a subfield of L such that L has degree 2 over $S \cap L$, and as L is infinite, $S \cap L$ would also have to be infinite; we thus have reached a contradiction, which ends this part of the argument.
8. We now have proved that there exists in S an element $\mu_{0} \neq 0$ such that $C\left(\mu_{0}\right)$ belongs to G. We want to show next that $C(1)$ also belongs to G. In order to do this, we repeat the whole argument of $\S \S 6$ and 7 , starting with
the matrix $C\left(\mu_{0}\right)$ instead of U, and, therefore, this time the element $\beta=\mu_{0}$ is symmetric. If we can take ζ in the center Z, we thus get an element ρ which is symmetric and such that $\rho^{2} \neq 1$. If not, which is the case only when Z_{0} has at most 5 elements, the commutative field $Z(\beta)$ is either finite or infinite. If it is infinite, we can again take a symmetric ζ in $Z(\beta)$ such that ρ is symmetric and $\rho^{2} \neq 1$. If on the contrary $Z(\beta)$ is finite, an argument similar to that of $\S 7$, where $Z(\beta)$ replaces Z, proves that in the subsfield L of K commuting with β it is possible to find a symmetrical element ζ such that $\zeta^{4} \beta^{4} \neq 1$, and then $\rho=\beta^{2} \zeta^{2}$ is again symmetric and such that $\rho^{2} \neq 1$. Now, in the method of $\S 6$, we can take $\theta=\left(\rho^{2}-1\right)^{-1}$; then ρ and θ commute, and the matrix we obtain in that way is $C(1)$.

Finally, let μ be any symmetric element $\neq 0$, and consider the subsfield N of K commuting with μ; we are going to prove that there exists in N a symmetric element ζ such that $\zeta^{4} \neq 1$. This is certainly the case if the center of N (which contains the commutative field $Z(\mu)$) is infinite (or has more than 25 elements). On the other hand, if the center of N is finite and is distinct from N, in particular $Z(\mu)$ is finite, and then N is necessarily infinite; but then the argument of $\S 7$ shows that it is impossible that $\zeta^{4}=1$ for every symmetric element in N. The symmetric element ζ being thus chosen, we apply again the procedure of $\S 6$, starting this time from the matrix $C(1)$ instead of U; we take then $\rho=\zeta^{2}$, and ρ is symmetric and such that $\rho^{2} \neq 1$. Moreover, ρ commutes with μ and with ζ (which commute together); therefore, if we take this time $\theta=\mu\left(\zeta^{4}-1\right)^{-1}, \theta$ is symmetric, and we have $\rho \theta \rho^{J}$ $-\theta=\mu$.
9. To end the proof of step 2°, we still have to consider the cases in which $\beta=0$ in the matrix U. Suppose first that $\gamma \neq 0$; then, if

$$
Q=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

we notice that $Q=C(-1) B(1) C(-1)$ belongs to T_{2} and that

$$
Q U Q^{-1}=\left(\begin{array}{rr}
\delta & -\gamma \\
0 & \alpha
\end{array}\right)
$$

and we are reduced to the preceding case. Finally, if $\beta=\gamma=0$, we have $\delta=\left(\alpha^{-1}\right)^{J}$ by the third relation (1); then the matrix $C(\mu) U C(-\mu)$ belongs to G, and it is equal to

$$
\left(\begin{array}{cc}
\alpha & \mu\left(\alpha^{-1}\right)^{J}-\alpha \mu \\
0 & \left(\alpha^{-1}\right)^{J}
\end{array}\right)
$$

We are therefore reduced to the former case if there is a symmetric μ such that $\mu\left(\alpha^{-1}\right)^{J}-\alpha \mu \neq 0$. If not, U commutes with every matrix $C(\mu)$, and it is easily verified that it also commutes with every matrix $B(\lambda)$. But this is
possible only if U is in the center W_{2} of T_{2}, owing to the following lemma:
Lemma 3. The group T_{2} is generated by the transvections $B(\lambda)$ and $C(\mu)$.
To prove that lemma, consider an arbitrary isotropic vector $x=e_{1} \alpha+e_{2} \beta$ in E; one has then $\alpha^{J} \beta-\beta^{J} \alpha=0$. Suppose $\beta \neq 0$; then $\alpha \beta^{-1}$ is a symmetric element. But then the transvection $C(\mu)$, with $\mu=-\alpha \beta^{-1}$, transforms x into a vector collinear with e_{2}, and this shows that every transvection of vector x is transformed by $C(\mu)$ into a transvection of vector e_{2}, that is, a transvection $B(\lambda)$. This of course proves the lemma, and ends the proof of step 2° of Theorem 1.
10. It is now easy to prove that Theorem 1 is true for any $n \geqq 3$. Let G be a normal subgroup of T_{n}, and u a transformation in G which does not belong to the center W_{n}. Then u does not belong to Z_{n}, in other words it is not a homothetic mapping. From that, we shall deduce that there exists an isotropic vector x such that $u(x)$ and x are not collinear. This will be proved if we show that when u leaves invariant every isotropic line, it leaves invariant every line (and is therefore a homothetic mapping), according to the following lemma:

Lemma 4. For $n \geqq 3$ and $\nu \geqq 1$, every nonisotropic line in E is the intersection of two hyperbolic planes.

To prove the lemma, let x be a nonisotropic vector, and y an isotropic vector. Let z be a vector which is orthogonal neither to x nor to y and is not in the plane determined by x and y. Then the plane P determined by y and z is a hyperbolic plane, and it contains therefore a second isotropic vector y_{1} such that $f\left(y, y_{1}\right)=1$. Moreover, any vector $y_{2}=y \alpha+y_{1} \beta$ is isotropic if $\alpha^{J} \beta-\beta^{J} \alpha=0$, and therefore there exists such a vector y_{2} which is collinear with neither of y and y_{1} (take for instance $\alpha=\beta=1$). Among the three isotropic vectors y, y_{1}, y_{2}, two at least are not orthogonal to x, since x is not orthogonal to P. Therefore two of the three planes Q, Q_{1}, Q_{2} determined by x and the vectors y, y_{1}, y_{2}, respectively, are hyperbolic planes, which proves the lemma.

We can now resume the end of the proof of Theorem 1. Let x be an isotropic vector such that x and $u(x)$ are not collinear. Suppose first that $f(x, u(x))=0$. Then there exists a vector z which is orthogonal to $u(x)$ but not to x. The plane P determined by x and z is a hyperbolic plane, hence contains an isotropic vector y which is not collinear to x. From Lemma 2, there exists a transvection $v \in T_{n}$ transforming x into a scalar multiple $y \lambda$ of y; moreover the vector of that transvection is in P, hence orthogonal to $u(x)$, and therefore $v(u(x))=u(x)$. The transformation $u_{1}=v u^{-1} v^{-1} u$ belongs to G, and one has $u_{1}(x)=y$. This proves that we can always suppose that $u \in G$ is such that $f(x, u(x)) \neq 0$.

Let then w be a transvection of vector $x ; u w u^{-1}$ is a transvection of vector
$u(x)$, and as x and $u(x)$ are not collinear, these two transvections do not commute. Let Q be the hyperbolic plane determined by x and $u(x)$; the transformation $u_{2}=w^{-1} u w u^{-1}$ belongs to G, and leaves invariant every vector in the subspace Q^{*} orthogonal to Q. It therefore belongs to the subgroup Γ of $U_{n}(K, f)$ which leaves invariant every vector of Q^{*}, and is obviously isomorphic to the unitary group $U_{2}\left(K, f_{1}\right)$, where f_{1} is the restriction of f to the plane Q; we shall identify Γ with that group. Moreover, u_{2} is the product of two transvections, hence belongs to the group $T_{2}\left(K, f_{1}\right)$; finally, it is not in the center of that group, since it does not commute with w. Now step 2° of the proof shows that G contains every transformation of $T_{2}\left(K, f_{1}\right)$, in particular every transvection of vector x. Applying step 1° of the proof, we see that $G=T_{n}$, and Theorem 1 is completely proved.
11. We can supplement Theorem 1 by proving the following theorem.

Theorem 2. Under the same assumptions as in Theorem 1, the center W_{n} of the group T_{n} is the intersection $T_{n} \cap Z_{n}$.

Indeed, if $n \geqq 3$, every transformation $u \in W_{n}$ must commute with every transvection, hence leave invariant every isotropic line. It then follows from Lemma 4 that u leaves invariant every line, hence is a homothetic mapping.

For $n=2$, if e_{1} and e_{2} are two isotropic vectors constituting a basis of E such that $f\left(e_{1}, e_{2}\right)=1$, the matrix

$$
U=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
$$

of u with respect to that basis must commute with every one of the matrices $B(\lambda)$ and $C(\mu)$ (notations of $\S 6$); this, as is readily seen, means that

$$
U=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \left(\alpha^{-1}\right)^{J}
\end{array}\right)
$$

where α is such that $\alpha \lambda=\lambda\left(\alpha^{-1}\right)^{J}$ for every symmetric element $\lambda \in K$. Taking $\lambda=1$ gives $\alpha^{J}=\alpha^{-1}$, and therefore α must commute with every symmetric element. From Lemma 1, we deduce therefore that α is in the center Z of K (and therefore that $u \in T_{2} \cap Z_{2}$) with the possible exception of the case in which K is a reflexive sfield of characteristic $\neq 2$, and Z is identical to the set S of symmetric elements. But in that case we remark that the matrices $B(\lambda)$ and $C(\mu)$ have their elements in Z, and from Lemma 3 it follows that the same is true for every matrix of the group T_{2}; hence if the matrix U belongs to T_{2}, α is again in Z, and this ends the proof of Theorem 2.
12. The remainder of this paper is devoted to the study of the quotient group U_{n} / T_{n}; the results we obtained in that direction are far from complete, and part of them are valid only under the additional assumption that the sfield K has finite rank over its center Z.

We begin by proving a lemma which is valid for any sfield K. A plane rotation is a transformation $u \in U_{n}$ which leaves invariant every element of a nonisotropic ($n-2$)-dimensional subspace Q; the plane Q^{*} orthogonal to Q is then called the plane of the rotation u. A hyperbolic rotation is a plane rotation whose plane is hyperbolic. We then prove the following lemma.

Lemma 5. For $\nu \geqq 1$, every unitary transformation is a product of hyperbolic rotations.

The lemma being obvious for $n=2$, we prove it by induction on n, as in [5, p. 66]. Let u be any unitary transformation, and let x be a nonisotropic vector such that the hyperplane H orthogonal to x contains isotropic vectors. If $u(x)=x, u$ leaves H invariant, and we can apply induction to its restriction to H, since the index of the restriction of the form f to H is $\geqq 1$ by assumption; the lemma is then proved. If $u(x) \neq x$, there is always a hyperbolic plane P containing the vector $u(x)-x$: indeed, if $a=u(x)-x$ is not isotropic, there is an isotropic vector b not orthogonal to a (Lemma 4), and then the plane P determined by a and b is hyperbolic; if on the contrary a is isotropic, there is a nonisotropic vector c not orthogonal to a, and the plane P determined by a and c is hyperbolic. Now, as $u(x)-x$ is in P, we can write $x=z+y$, $u(x)=z+y^{\prime}$, where y and y^{\prime} are in P, and z in the ($n-2$)-dimensional subspace P^{*} orthogonal to P. Moreover, as $f(u(x), u(x))=f(x, x)$, we have also $f(y, y)=f\left(y^{\prime}, y^{\prime}\right)$. From Witt's theorem applied to the restriction of f to the plane P, it follows that there exists a plane rotation v of plane P such that $v(y)=y^{\prime}$, hence also $v(x)=u(x)$, since $v(z)=z$. But then $v^{-1} u$ leaves x invariant, and we are reduced to the first case: $v^{-1} u$ is thus a product of hyperbolic rotations, and so is therefore u.
13. We shall use Lemma 5 to prove that in certain cases the subgroup T_{n} is identical to U_{n} : Lemma 5 shows that this will be done if we can prove that every hyperbolic rotation is a product of transvections. In particular, we shall have proved that $U_{n}=T_{n}$ for every dimension n if we can prove that $U_{2}=T_{2}$ (for $\nu \geqq 1$, of course). We therefore begin by investigating the relations between the group U_{2} and its subgroup T_{2}.

As in §6, we consider a basis of E consisting of two isotropic vectors e_{1}, e_{2} such that $f\left(e_{1}, e_{2}\right)=1$; let

$$
U=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
$$

be the matrix of a unitary transformation u with respect to that basis; the relations (1) and (2) are then satisfied. As α and β are not both 0 , there is a $\sigma \in S$ such that in

$$
U B(\sigma)=\left(\begin{array}{ll}
\alpha^{\prime} & \beta^{\prime} \\
\gamma^{\prime} & \delta^{\prime}
\end{array}\right)
$$

$\alpha^{\prime}=\alpha+\beta \sigma \neq 0$; we can therefore already suppose that $\alpha \neq 0$; then it follows from the first relation (2) that $\mu=\alpha^{-1} \beta$ and from the first relation (1) that $\lambda=\gamma \alpha^{-1}$ are both symmetric. But then the matrix

$$
B(-\lambda) U C(-\mu)=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \left(\alpha^{-1}\right)^{J}
\end{array}\right)
$$

(owing to the third relation (1)). If we observe that T_{2} is a normal subgroup of U_{2}, and that T_{2} is generated by the matrices $B(\xi)$ and $C(\eta)$ (Lemma 3), we finally see that every matrix U in the group U_{2} can be written as a product $V W$, where W belongs to the group T_{2}, and V has the form

$$
\left(\begin{array}{cc}
\alpha & 0 \\
0 & \left(\alpha^{-1}\right)^{J}
\end{array}\right)
$$

In order that $T_{2}=U_{2}$, it is therefore necessary and sufficient that every matrix

$$
\left(\begin{array}{cc}
\alpha & 0 \\
0 & \left(\alpha^{-1}\right)^{J}
\end{array}\right)
$$

belong to T_{2}. Now, for every pair of elements λ, μ in S, we have

$$
C(\mu) B(\lambda)=\left(\begin{array}{cc}
1+\mu \lambda & \mu \\
\lambda & 1
\end{array}\right) ;
$$

if we apply the preceding method to that matrix, we see that every matrix

$$
\left(\begin{array}{cc}
\alpha & 0 \\
0 & \left(\alpha^{-1}\right)^{J}
\end{array}\right)
$$

with $\alpha=1+\mu \lambda=\left(\lambda^{-1}+\mu\right) \lambda$ belongs to T_{2}.
This proves that $T_{2}=U_{2}$ if every element $\neq 0$ in K is a product of elements of S.
14. Let us suppose in this section that K has finite rank m^{2} over its center Z. We recall that K is said to be of the first kind if J leaves invariant every element of Z, of the second kind if the restriction of J to Z is not the identity (it is then an involution in Z). Moreover, when K is of the first kind and of characteristic $\neq 2$, the dimension of S over Z is equal to $m(m+1) / 2$ or $m(m-1) / 2$ [7]; the easiest way to see this is to extend Z to a splitting field L of K; the involution J is extended to $K_{(L)}$ in an obvious way (the elements of L being invariant by J), and by taking a basis of K over Z consisting of symmetric or skew-symmetric elements, one sees readily that the dimension over L of the space of symmetric elements of $K_{(L)}$ is equal to the dimension over Z of the space of symmetric elements of K. But $K_{(L)}$ is the algebra of matrices of ordet m over L, and an involution of that algebra leaving in-
variant the elements of L is known, namely the mapping $X \rightarrow{ }^{t} X$, where ${ }^{t} X$ is the transposed matrix of X; therefore [1, p. 896], one has $X^{J}=P^{-1 . t} X \cdot P$, where P is either a symmetric or a skew-symmetric matrix. Hence, the relation $X^{J}=X$ means that $P X$ is symmetric (resp. skew-symmetric) if P is symmetric (resp. skew-symmetric); this proves at once our assertion. Similarly, it is shown that when the characteristic of K is 2 , the dimension of S over Z is always $m(m+1) / 2$ when K is of the first kind.

We can now prove the following theorem.
Theorem 3. When K is a sfield of the first kind, of finite rank m^{2} over its center Z and of characteristic $\neq 2$, and such that the space S of symmetric elements in K has dimension $m(m+1) / 2$ over Z, then $U_{n}=T_{n}$ for every $n \geqq 2$.

All we have to prove (according to the final remark of $\S 13$) is that, for every $\zeta \in K$, there exist two elements ξ, η in S such that $\zeta=\xi \eta$. If $\theta=\eta^{-1}$, this amounts to saying that there exists an element $\theta \in S$ such that $\zeta \theta$ is symmetric, which means that $\zeta \theta-\theta \zeta^{J}=0$. But the mapping $\theta \rightarrow \zeta \theta-\theta \zeta^{J}$ of S into K is linear with respect to Z, and maps S into the space A of skew-symmetric elements, which is supplementary to S in K, hence has a dimension equal to $m(m-1) / 2$; as $m(m+1) / 2>m(m-1) / 2$, the kernel of the linear mapping $\theta \rightarrow \zeta \theta-\theta \zeta^{J}$ is not reduced to 0 , and this ends our proof.

As a corollary, we obtain Theorem 6 of [5] when K is a reflexive sfield of characteristic $\neq 2$: the passage from an hermitian to a skew-hermitian form over K, explained in $\S 3$, replaces the involution $\xi \rightarrow \bar{\xi}$ in K by an involution for which the symmetric elements are the skew-symmetric elements of $\xi \rightarrow \xi$, hence form a subspace of dimension 3 over the center Z.
15. Turning now to the case in which the sfield K, of finite rank m^{2} over Z, is a sfield of the first kind but such that S has dimension $m(m-1) / 2$ over Z (this property implying that K has a characteristic $\neq 2$), we have to set aside the case $m=2$, in which $S=Z$, and therefore S cannot generate the group K^{*} of elements $\neq 0$ in K. When $m>2$, it seems likely (due to Lemma 1) that S generates K^{*}, but I have not been able to prove that conjecture, and in the absence of any further assumptions, the structure of the group U_{n} / T_{n} remains unknown in that case. I shall therefore consider only the case $m=2$; in other words, K is then a sfield of generalized quaternions over Z, and the involution J is the (unique) involution of K for which the elements of Z are the only symmetric elements.

Let us first consider the case $n=2$; then T_{2} is simply the unimodular group $S L_{2}(Z)$ [4, p. 30]. Moreover, as every element $\alpha \in K$ is such that $\left(\alpha^{-1}\right)^{J}=\alpha \cdot(N(\alpha))^{-1}$, where $N(\alpha)=\alpha \alpha^{J} \in Z$, it follows from §13 that every matrix U in the group U_{2} can be written αX, where X is an arbitrary matrix in $G L_{2}(Z)$ such that $\operatorname{det}(X)=(N(\alpha))^{-1}$, and α is an arbitrary element in K^{*}. We observe in addition that α and X are permutable, and that α is determined by U up to a factor $\lambda \in Z^{*}$ (the matrix X being then multiplied
by λ^{-1}. We can therefore describe the structure of the group U_{2} in the following way: consider in the direct product $K^{*} \times G L_{2}(Z)$ the subgroup Γ consisting of the pairs (α, X) such that $N(\alpha) \cdot \operatorname{det}(X)=1$, and let Δ be the subgroup of Γ consisting of the pairs $\left(\lambda, \lambda^{-1}\right)$, where $\lambda \in Z^{*}$; then U_{2} is isomorphic to the factor group Γ / Δ. We observe that U_{2} contains as a normal subgroup the multiplicative group U_{1} of elements of norm 1 in K, and that U_{1} and T_{2} commute and have as their intersection the two elements 1 and -1 , which constitute the center W_{2} of T_{2}; the quotient group U_{2} / T_{2} contains U_{1} / W_{2} as a subgroup, hence T_{2} is certainly not the commutator subgroup of U_{2}.
16. There are reasons to believe that the preceding structure of the group $U_{2}(K, f)$ when K is a sfield of generalized quaternions and f a skew-hermitian form is exceptional among the corresponding groups $U_{n}(K, f)$ for $n>2$, much as the 4 -dimensional orthogonal groups among the orthogonal groups of other dimensions. The evidence I can supply in favor of that view is summed up in the following theorem:

Theorem 4. If K is a sfield of characteristic $\neq 2$, and the index ν of the form f is at least 2 (which implies $n \geqq 4$), then T_{n} is the commutator subgroup of $U_{n}(K, f)$.

To prove that theorem, we shall establish two lemmas.
Lemma 6. Let P be a hyperbolic plane, Γ the group of hyperbolic rotations of plane P. Then (for $\nu \geqq 2$) the factor group $\Gamma /\left(\Gamma \cap T_{n}\right)$ is abelian.

Let e_{1}, e_{2} be two isotropic vectors forming a basis of P, with $f\left(e_{1}, e_{2}\right)=1$; it is then possible to find two other isotropic vectors e_{3}, e_{4} orthogonal to P and such that $f\left(e_{3}, e_{4}\right)=1$ (because $\nu \geqq 2$). Let Q and R be the totally isotropic planes determined by e_{1}, e_{3} and e_{2}, e_{4} respectively; if $u \in U_{n}$ leaves invariant both planes Q and R, and V and W are the matrices of the restrictions of u to Q and R, with respect to the bases e_{1}, e_{3} and e_{2}, e_{4} respectively, one has $W=\left(V^{\prime}\right)^{J}, V^{\prime}$ being the contragredient of V. We are going to prove that there are transformations $u \in T_{n}$ of the preceding type, and such that $V=B(\lambda)$, where λ is any element of K. Let $a=e_{2} \alpha+e_{3} \beta$ be any vector in the totally isotropic plane determined by e_{2} and e_{3}, and consider the transvection w such that $v(x)=x+a f(a, x)$; it leaves invariant e_{2} and e_{3}, and is such that

$$
w\left(e_{1}\right)=e_{1}-e_{2} \alpha \alpha^{J}-e_{3} \beta \alpha^{J}, \quad w\left(e_{4}\right)=e_{4}+e_{2} \alpha \beta^{J}+e_{3} \beta \beta^{J}
$$

Let $a_{1}=e_{2} \alpha_{1}+e_{3} \beta_{1}$ be a second isotropic vector, w_{1} the transvection such that $w_{1}(x)=x-a_{1} f\left(a_{1}, x\right)$; then $u=w_{1} w$ leaves invariant e_{2} and e_{3} and is such that

$$
\begin{aligned}
& u\left(e_{1}\right)=e_{1}+e_{2}\left(\alpha_{1} \alpha_{1}^{J}-\alpha \alpha^{J}\right)+e_{3}\left(\beta_{1} \alpha_{1}^{J}-\beta \alpha^{J}\right) \\
& u\left(e_{4}\right)=e_{4}+e_{2}\left(\alpha \beta^{J}-\alpha_{1} \beta_{1}^{J}\right)+e_{3}\left(\beta \beta^{J}-\beta_{1} \beta_{1}^{J}\right)
\end{aligned}
$$

If we take $\alpha_{1}=\alpha$ and $\beta_{1}=-\beta, u$ leaves invariant Q and R, and is such that $u\left(e_{1}\right)=e_{1}-2 e_{3} \beta \alpha^{J}$; as the characteristic of K is not 2 , it is possible to take α and β such that $-2 \beta \alpha^{J}=\lambda$, for any element $\lambda \in K$, and the matrix of the restriction of u to Q is then $B(\lambda)$. Similarly, it can be proved that $u \in T_{n}$ exists such that $V=C(\mu)$ for any $\mu \in K$. Therefore T_{n} contains all the transformations $u \in U_{n}$ leaving invariant Q and R and such that the matrix of the restriction of u to Q is any matrix V in the unimodular group $S L_{2}(K)$ [4, p. 30]; in particular, for any element γ in the commutator subgroup of $K^{*}, u \in T_{n}$ exists such that

$$
V=\left(\begin{array}{ll}
\gamma & 0 \\
0 & 1
\end{array}\right)
$$

[4, p. 29], which means that u is a hyperbolic rotation of plane P, such that its matrix in P is

$$
\left(\begin{array}{cc}
\gamma & 0 \\
0 & \left(\gamma^{-1}\right)^{J}
\end{array}\right)
$$

Now we have seen in $\S 13$ that every hyperbolic rotation of plane P has a matrix (with respect to e_{1}, e_{2}) which can be written as the product of a matrix

$$
\left(\begin{array}{cc}
\alpha & 0 \\
0 & \left(\alpha^{-1}\right)^{J}
\end{array}\right)
$$

(with $\alpha \in K^{*}$) and a matrix of $\Gamma \cap T_{n}$. If, to every $\alpha \in K^{*}$, we associate the class of the matrix

$$
\left(\begin{array}{cc}
\alpha & 0 \\
0 & \left(\alpha^{-1}\right)^{J}
\end{array}\right)
$$

modulo the subgroup $\Gamma \cap T_{n}$, we define a homomorphism of K^{*} onto $\Gamma /\left(\Gamma \cap T_{n}\right)$, and the preceding result shows that the kernel of that homomorphism contains the commutator subgroup C of K^{*}; hence $\Gamma /\left(\Gamma \cap T_{n}\right)$ is isomorphic to a quotient group of the abelian group K^{*} / C.
17. Lemma 7. Let P_{1} and P_{2} be any two hyperbolic planes. Then (for $\nu \geqq 2$) there exists a transformation $w \in T_{n}$ such that $w\left(P_{1}\right)=P_{2}$.

It follows from Lemma 2 that there exists a transformation in T_{n} sending an isotropic vector in P_{1} into an isotropic vector in P_{2}; we can therefore assume in the following proof that there exists a common isotropic vector e_{2} in P_{1} and P_{2}. We now consider separately several cases.
(a) The dimension $n=4$. Let e_{1} be a second isotropic vector in P_{1} such that $f\left(e_{1}, e_{2}\right)=1$, and let e_{3}, e_{4} be determined as in the proof of Lemma 6. There exists in P_{2} an isotropic vector e_{1}^{\prime} such that $f\left(e_{1}^{\prime}, e_{2}\right)=1$; we can write $e_{1}^{\prime}=e_{1}$
$+e_{2} \beta+e_{3} \gamma+e_{4} \delta$, and the condition $f\left(e_{1}^{\prime}, e_{1}^{\prime}\right)=0$ is equivalent to

$$
\beta-\beta^{J}+\gamma^{J} \delta-\delta^{J} \gamma=0
$$

which can be written $\beta+\gamma^{J} \delta=\left(\beta+\gamma^{J} \delta\right)^{J}$, and means therefore that the expression $\beta+\gamma^{J} \delta$ is a symmetric element λ. Now, it has been proved in the proof of Lemma 6 that the transformation w_{1} leaving invariant e_{2} and e_{3}, and such that

$$
w_{1}\left(e_{1}\right)=e_{1}+e_{3} \gamma, \quad w_{1}\left(e_{4}\right)=e_{4}-e_{2} \gamma^{J},
$$

belongs to T_{n}. Similarly (exchanging the parts played by e_{3} and e_{4}), the transformation w_{2} leaving invariant e_{2} and e_{4}, and such that

$$
w_{2}\left(e_{1}\right)=e_{1}+e_{4} \delta, \quad w_{2}\left(e_{3}\right)=e_{3}-e_{2} \delta^{J},
$$

belongs to T_{n}. The transformation $w_{1} w_{2}$, which belongs to T_{n}, is such that $w_{1} w_{2}\left(e_{2}\right)=e_{2}$, and $w_{1} w_{2}\left(e_{1}\right)=e_{1}+e_{3} \gamma+e_{4} \delta-e_{2} \gamma^{J} \delta$. Let finally v be the transvection $x \rightarrow x-e_{2} \lambda f\left(e_{2}, x\right)$, which leaves invariant e_{2}, e_{3}, e_{4} and is such that $v\left(e_{1}\right)=e_{1}+e_{2} \lambda$; the transformation $w=v w_{1} w_{2}$ belongs to T_{n}, leaves e_{2} invariant, and is such that

$$
w\left(e_{1}\right)=e_{1}+e_{2}\left(\lambda-\gamma^{J} \delta\right)+e_{3} \gamma+e_{4} \delta=e_{1}^{\prime}
$$

Therefore $w\left(P_{1}\right)=P_{2}$, and the lemma is proved in that case.
(b) $n>4$ and the 3-dimensional subspace $M=P_{1}+P_{2}$ is isotropic. This means that there exists in M at least an isotropic vector c orthogonal to M; such a vector cannot be in P_{1}, since P_{1} is not isotropic. Therefore the three vectors c, e_{1}, e_{2} (e_{1} being defined as in (a)) constitute a basis for M, such that $f\left(e_{1}, e_{2}\right)=1, f\left(e_{1}, c\right)=f\left(e_{2}, c\right)=0$. There exists then in E a fourth isotropic vector d such that $f(c, d)=1, f\left(e_{1}, d\right)=f\left(e_{2}, d\right)=0[5, \mathrm{p} .18]$, and the four vectors e_{1}, e_{2}, c, d form the basis of a nonisotropic 4 -dimensional subspace N of E containing P_{1} and P_{2} and such that the restriction of the form f to N has an index equal to 2 . The result of case (a) proves then the lemma.
(c) $n>4$ and the space M is not isotropic. There exists then in M a nonisotropic vector c orthogonal to P_{1}. As the index $\nu \geqq 2$, the restriction of f to the ($n-2$)-dimensional subspace P_{1}^{*} orthogonal to P_{1} has an index $\geqq 1$, by Witt's theorem. Therefore (Lemma 4), there exists a hyperbolic plane Q contained in P_{1}^{*} and containing c. The subspace $N=P_{1}+Q$ is then a nonisotropic 4-dimensional subspace of E, such that the restriction of f to N has index 2 , and N contains P_{1} and P_{2}. The proof of the lemma then follows as in case (b).
18. To end the proof of Theorem 4, let us consider a fixed hyperbolic plane P. We are going to show that every unitary transformation v can be written $s u$, where s is a hyperbolic rotation of plane P, and u belongs to T_{n}. The result is true if v is a hyperbolic rotation of plane P^{\prime}, for by Lemma 7 there exists $t \in T_{n}$ such that $t(P)=P^{\prime}$, and therefore $v=t s t^{-1}$, where s is a
rotation of plane P; but we can also write $v=s\left(s^{-1} t s\right) t^{-1}$, and as T_{n} is a normal subgroup, $s^{-1} t s \in T_{n}$. Suppose now that v is a product of p hyperbolic rotations (Lemma 5), and use induction on p. Let $v=w_{1} w_{2}$, where w_{1} is a hyperbolic rotation and w_{2} is a product of $p-1$ hyperbolic rotations; we can write by assumption $w_{1}=s_{1} u_{1}, w_{2}=s_{2} u_{2}$, hence $v=s_{1} u_{1} s_{2} u_{2}=s_{1} s_{2}\left(s_{2}^{-1} u_{1} s_{2}\right) u_{2}$, and this proves our contention. We have thus shown that the group U_{n} / T_{n} is isomorphic to $\Gamma /\left(\Gamma \cap T_{n}\right)$, hence abelian (and isomorphic to a quotient group of K^{*} / C). Theorem 4 then follows from the fact that T_{n} / W_{n} is a simple group (Theorem 1).
19. In special cases it is possible to obtain more precise information. Let us suppose for instance that K is the sfield of ordinary quaternions over a Euclidean ordered field Z (i.e., an ordered field in which every positive element has a square root in Z). The usual theory of quaternions can then be carried out exactly as when Z is the field R of real numbers; we know therefore that every quaternion $\xi \neq 0$ can be written in one and only one way $\xi=\rho \zeta$, where $\rho \in Z, \rho>0$, and $\rho^{2}=N(\xi)$, hence $N(\zeta)=1$; moreover, every quaternion of norm 1 is a commutator; finally, if ξ and η are two quaternions of norm 1 and scalar 0 , there is a third quaternion α of norm 1 such that $\xi=\alpha \eta \alpha^{-1}$. We suppose as usual that J is the only involution in K leaving invariant the elements of Z, and that f is skew-hermitian. We can then show that there exists an orthogonal basis in E with respect to which $f(x, y)=\sum_{i=1}^{n} \xi_{k}^{J} i_{k}$. Indeed, there exists an orthogonal basis (e_{k}) for f, and with respect to that basis, $f(x, y)=\sum_{k=1}^{n} \xi_{k}^{J} \alpha_{k} \xi_{k}$, with $\alpha_{k}^{J}=-\alpha_{k}$, which means that the scalar of the quaternion α_{k} is 0 . We can write $\alpha_{k}=\rho_{k} \beta_{k}$, with $\rho_{k}>0, N\left(\beta_{k}\right)=1$, and $\beta_{k}^{J}=-\beta_{k}$, and therefore $\alpha_{k}=\rho_{k} \gamma_{k} i \gamma_{k}^{-1}$, where $N\left(\gamma_{k}\right)=1$, hence $\gamma_{k}^{J}=\gamma_{k}^{-1}$. If we replace e_{k} by $e_{k}\left(\rho^{1 / 2}\right)^{-1} \gamma_{k}$, we obtain for $f(x, y)$ the canonical expression $\sum_{k=1}^{n} \xi_{k}^{J} i \xi_{k}$. This proves that all nondegenerate skew-hermitian forms over E are equivalent, hence their index is [$n / 2$]. In particular, for $n \geqq 4, \nu \geqq 2$, and therefore Theorem 4 applies. But here every matrix

$$
\left(\begin{array}{cc}
\alpha & 0 \\
0 & \left(\alpha^{-1}\right)^{J}
\end{array}\right)
$$

can be written

$$
\left(\begin{array}{cc}
\gamma & 0 \\
0 & \left(\gamma^{-1}\right)^{J}
\end{array}\right)\left(\begin{array}{cc}
\rho & 0 \\
0 & \rho^{-1}
\end{array}\right)
$$

where $N(\gamma)=1$, hence γ is a commutator, and $\rho \in Z$; as the matrix

$$
\left(\begin{array}{cc}
\rho & 0 \\
0 & \rho^{-1}
\end{array}\right)
$$

belongs to $S L_{2}(Z)$, the proof of Lemma 6 shows that we have here $\Gamma=\Gamma \cap T_{n}$, hence $U_{n}=T_{n}$. When $Z=R$, this is equivalent to one of E. Cartan's theorems
on the real forms of the simple Lie groups [3, p. 286].
20. We end by mentioning some relations between our results and the properties of the commutator subgroup C of a sfield K with involution.

Theorem 5. Let K be a sfield of characteristic $\neq 2$, of finite rank over its center Z, and let J be an involution in K leaving invariant the elements of Z. Then, for every $\xi \in K^{*}, \xi$ and ξ^{J} are in the same class modulo the commutator subgroup C of K^{*}.

Let m^{2} be the rank of K over its center, and let us suppose first that the set S of symmetric elements in K has dimension $m(m+1) / 2$ over Z. Then we have seen in $\S 14$ that every element $\xi \in K^{*}$ can be written $\xi=\alpha \beta$, where α and β are in S; accordingly $\xi^{J}=\beta^{J} \alpha^{J}=\beta \alpha$, hence $\xi^{J} \xi^{-1}=\beta \alpha \beta^{-1} \alpha^{-1}$, which proves our contention in that case. If on the contrary S has dimension $m(m-1) / 2$ over Z, and p is a skew-symmetric element of K, then $\xi \rightarrow \xi^{T}$ $=p^{-1} \xi^{J} p$ is an involution in K for which the symmetric elements form a space of dimension $m(m+1) / 2$ over $Z(\S 3)$; therefore ξ and ξ^{T} are in the same class modulo C, and the same is true for ξ and ξ^{J}, since ξ and $p^{-1} \xi p$ are in the same class modulo C.

The situation is reversed when K is a sfield of the second kind:
Theorem 6. Let K be a sfield of finite rank over its center Z, and let J be an involution in K which does not leave invariant every element of Z. Then there exist elements ξ in K^{*} such that ξ and ξ^{J} are not in the same class modulo C.

The theorem being obvious when K is commutative, we can suppose that K is not commutative, hence that Z is an infinite field. The theorem will be proved if we exhibit a homomorphism ϕ of K^{*} onto an abelian group, such that $\phi\left(\xi^{J}\right) \neq \phi(\xi)$ for some $\xi \in K^{*}$. Let $N(\xi)$ be the norm of an element ξ in the regular representation of K (considered as an algebra over its center Z); $\xi \rightarrow N(\xi)$ is then a homomorphism of K^{*} into Z^{*}. If $r=m^{2}$ is the rank of K over Z, we have $N(\xi)=\xi^{r}$ for every $\xi \in Z^{*}$; we have only therefore to verify that if the element $\omega \in Z$ constitutes with the identity a basis of Z over the subfield Z_{0} of J-invariant elements, then the elements $(x+y \omega)^{r}$ and $\left(x+y \omega^{J}\right)^{r}$ cannot be identical for all values of x and y in Z_{0}. But as $\omega^{J} \neq \omega$, this follows at once from the fact that Z_{0} is an infinite field.

Theorem 6 has as a consequence that when K is a sfield of the second kind, the groups U_{n} and $T_{n}($ for $\nu \geqq 1)$ are always distinct. To prove this, we have only to verify that the determinant [4] of some unitary matrix is not the identity element in K^{*} / C; but this is obvious for the matrix

$$
\left(\begin{array}{cc}
\alpha & 0 \\
0 & \left(\alpha^{-1}\right)^{J}
\end{array}\right)
$$

if α and α^{J} are not in the same class modulo C.

Bibliography

1. A. A. Albert, Involulorial simple algebras and real Riemann matrices, Ann. of Math. vol. 36 (1935) pp. 886-964.
2. E. Artin and G. Whaples, The theory of simple rings, Amer. J. Math. vol. 65 (1943) pp. 87-107.
3. E. Cartan, Les groupes réels simples, finis et continus, Ann. Ecole Norm. (3) vol. 31 (1914) pp. 263-355.
4. J. Dieudonné, Les déterminants sur un corps non commutatif, Bull. Soc. Math. France vol. 71 (1943) pp. 27-45.
5. -, Sur les groupes classiques, Actualités Scientifiques et Industrielles, no. 1040, Paris, Hermann, 1948.
6. I. Kaplansky, Forms in infinite-dimensional spaces, Anais da Academia Brasileira de Ciencias vol. 22 (1950) pp. 1-17.
7. C. Rosati, Sulle matrici di Riemann, Rend. Circ. Mat. Palermo vol. 53 (1929) pp. 79134.

University of Nancy, Nancy, France.

[^0]: Received by the editors August 14, 1951.
 $\left.{ }^{(}{ }^{1}\right)$ Numbers in square brackets refer to the bibliography at the end of the paper.

[^1]: ${ }^{(2)}$ The theorem is still true when K has at most 25 elements, except when $K=F_{4}, n=2$ and $n=3$, and $K=F_{9}, n=2[5$, p. 70].

