
ON THE STRUCTURE OF UNITARY GROUPS
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1. Let K be an arbitrary sfield with an involution J, that is, a one-to-one

mapping £—*f of K onto itself, distinct from the identity, such that (£ + rj)J
= ¡-J-\-r]J, (¡-riY—i]J¿,J, and (¿/)/=?. Let E be an «-dimensional right vector
space over K (n ^ 2) ; an hermitian (resp. skew-hermitian) form over £ is a
mapping (x, y)—*f(x, y) of EXE into iC which, for any x, is linear in y, and
such that/(y, x) = (f(x, y))J (resp./(y, x) = — (/(x, y))J). This implies that
/(x, y) is additive in x and such that/(xA, y) =X//(x, y). The values/(x, x) are
always symmetric (resp. skew-symmetric) elements of K, that is, elements a
such that a/=o; (resp. aJ = —a). The orthogonality relation/(x, y) =0 rela-
tive to / is always symmetric.

We shall always suppose that the form/is nondegenerate, or in other words
that there is no vector in E other than 0 orthogonal to the whole space.
Moreover, when the characteristic of K is 2, the distinction between hermitian
and skew-hermitian forms disappears, and /(x, x) is symmetric for every
xG-E; in that case we shall make the additional assumption that/(x, x) has
always the form ¿--f-f ("trace" of £) for a convenient ¿£i?; this assumption is
automatically verified when the restriction of / to the center Z of K is not
the identity, but not necessarily in the other cases.

A unitary transformation « of £ is a one-to-one linear mapping of E onto it-
self such that/(«(x), u{y)) =/(x, y) identically; these transformations con-
stitute the unitary group U„(K, f). In a previous paper [5, pp. 63-82](1), I
have studied the structure of that group in the two simplest cases, namely
those in which K is commutative, or if is a reflexive sfield and the form /
is hermitian; the present paper is devoted to the study of Un(K, f) in the
general case.

2. We shall need the following lemma:

Lemma 1. If the sfield K is not commutative, it is generated by the set S of
the symmetric elements, except when K is a reflexive sfield of characteristic 9^2,
and S is identical with the center Z of K.

Let L be the subsfield of K generated by 5; we are going to prove that
if L is not contained in Z, then L = K. Suppose the contrary, and let a be
an element in K not belonging to L; let M be the 2-dimensional right vector
space over L having 1 and a as a basis; we are going to prove that M is a
sfield. We first notice that L is identical with the subring of K generated by S;
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for if f f^O is an element of that subring, it is clear that f7 also belongs to
it; but ffJ = 5 is in S, hence Ç~1 = ÇJ8~1 belongs to the ring generated by S,
which proves that L is identical with that ring. We next notice that aJ+a=|ö
(ESC.L, and a.aJ — — a2+aß=y(E.L and therefore a2=aß — y. On the other
hand, if £is any element in S, a%-\-(od;)J =a%-\-%<x' isinl,, and therefore a£ — £a
is in L; by induction on k, it follows that if f = £i£2 • • ■ £*, where £y£S for
1 iíjiák, the element af — fa is in L. These remarks prove that M is a subring
of K, invariant by the involution /, and the same argument as the one made
for L proves that If is a sfield. Now for any f ÇL, af+ (af)J = af+fV is in
SCZL, and replacing 0/by its value shows that af — fJa is in L ; but asf'a—af
also belongs to L, we see that a(f — f) is in L; this is of course possible only
when f = fJ. In other words, we come to the conclusion that L = S; in particu-
lar, if £ and 77 are any two elements of 5, £77 is in S, and therefore (^rj)J = i/f7
= ?7£ is equal to £77; this means that L is a commutative field.

To go on with the argument, let us first suppose that the characteristic
of K is 9^2; then, as a = (a+aJ)/2 + (a — aJ)/2, a— a? is not in L, and we can
replace a by a — aJ in the preceding sequence of arguments. We then have
aJ = —a, and a2 = — yÇLL- The mapping f—>af — fa is a derivation of the field
L; if we put Z>f =af — fa, we have Z>2f = a2f — 2afa+fa2£-£< for every f £L,
which gives afaÇ-i-, since the characteristic of ¿is ^2. But we may write
afa=a2f — a-Df and as a2G¿, this gives a-Z?f £L, which is possible only if
Z?f = 0 for every f £L. This proves that every element aÇzK commutes with
every element of L, in other words, that L is in the center of K, contrary
to assumption.

We next take up the case in which the characteristic of K is 2. From the
relation a3=aßa— ya=a2ß — ay, one derives immediately Dß = Dy — 0, in
other words, ß and y commute with a; replacing a by ß"la, we can therefore
suppose that a2=a-\-y, with Dy = 0. Let N be the subfield of L defined by
the equation D£ = 0 (commuting subfield of a or center of M). The relation
a2=a+7 implies that D2£ = D!; for every £Çi, or in other words, that
Ç+DÇEN for all £GL. On the other hand, £>(£2) =2£Z>£ = 0 because the
characteristic is 2, hence £2G-A^ for ££-£<• Now, if f =a£+rî is any element of
M, with £££ and rjÇzL, an easy computation shows that ff/=7ê2+£7?
+#(£77) -H2 and therefore ff^G^V; on the other hand f+f = £+!>£ is also
in TV. If N^L, this means that M is a reflexive sfield over its center iV [5, p.
72]. But in a reflexive sfield of characteristic 2, the symmetric elements
constitute a 3-dimensional subspace over the center, whilst here they are
the elements of L, which is only 2-dimensional over N; the assumption N?¿L
is therefore untenable. But if N = L, a commutes again with every element
of L, in other words, L is again the center of K, contrary to assumption.

We have still to examine the exceptional case in which S is contained in
Z. For every element ££-?£, £+£J and £J£ are then in the center Z, and there-
fore, as £2— (£+£J)£+£J£ = 0, every element of K has degree 2 over the center
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Z, It is well known that this is possible only if K has rank 4 over Z. More-
over if yEZ and f is not in Z, yÇ+(yÇ)J = y(Ç+ÇJ) + (yJ-y)ÇJ is in Z,
which impliesyJ = y; this shows that K is a reflexive sfield [5, p. 72], and S = Z;
but this is possible only when K has a characteristic 9^2 (loc. cit.), and that
completes the proof of Lemma 1.

3. From the involution /, we can deduce other involutions T of K by the
general process of setting ¡;T = p~1£Jp, where p is a symmetric or skew-sym-
metric element of K (with respect to /) ; if pJ =ep (e = 1 or e = — 1), the rela-
tion £r = £ is then equivalent to pi; = e(pÇ)J ; in other words, the ^-symmetric
elements of K are of the form p^1^, where 77 is /-symmetric if e = 1 and 77 is
/-skew-symmetric if e=— 1. This enables one to reduce to each other the
hermitian and skew-hermitian forms, by a change of the involution (when
the characteristic of K is not 2). Indeed, if f(y, x) = — (/(x, y))J, consider the
form g{x, y)=p~1f(x, y), Avhere p is skew-symmetric; then g is linear in y,
and one has g(y, x) = -p-l{f{x, y))J =-p-l{pg(x, y))J = (g(x, y))T. For the
sake of convenience, we shall always suppose in the following that the form /
is skew-hermitian for /.

The notions of orthogonal basis, of isotropic vector, of isotropic and totally
isotropic subspaces of E are defined as usual (see [5]) ; the index v of / is the
maximum dimension of the totally isotropic subspaces, and one has 2v¿¡n.
When a plane PQE is not totally isotropic but contains an isotropic vector
a^O, then there exists in P a second isotropic vector b such that/(a, b)=l;
P is then said to be a hyperbolic plane, and the restrictions of / to any two
hyperbolic planes are equivalent. Moreover, Witt's theorem is still valid
(see [6, pp. 8-9]; in the case of characteristic 2, this, as well as the preceding
property, is due to the restrictive assumption on / to be "trace-valued") ; we
shall formulate it in the following form: if Vand Ware any two subspaces of E
such that the restrictions of f to V and W are equivalent, then there is a unitary
transformation u such that u(V) = W.

4. Let us recall that a transvection is a linear transformation of the type
x—>x+ap(x), where p is a linear form, not identically 0, and such thatp(a) =0.
If we write that such a transformation is unitary, we get

{p{x)Yf{a, y) + f{x, a)p(y) + (P(x)Yf(a, a)p(y) = 0
identically in x and y; with x=a this gives/(a, a)p(y) =0, hence /(a, a) = 0,
the vector a must be isotropic; then we get

(p(x))'/(a, y) + /(*, a)p{y) = 0

which, for fixed x such that p(x) 5¿Q, shows that/(x, a) 5^0, and p(y) = X/(a, y) ;
finally, we have

(/(a, x)YVf(a, y) + f(x, a)\f(a, y) = 0
identically, and as fia, x) — — (f(x, a))J, this yields X/=X. In other words,
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unitary transvections exist only if rèl, and then are of the form x—»x
+aX/(a, x), where a is an arbitrary isotropic vector, and X an arbitrary sym-
metric element in K; the hyperplane of points of E invariant by the trans-
vection is the hyperplane orthogonal to a.

Let H be a nonisotropic hyperplane, a a vector orthogonal to H. Then
every unitary transformation u leaving invariant every element of H is
such that u(a) =a¡i, with pJap=a, where a=f(a, a) ; we shall say that such a
transformation is a quasi-symmetry. There always exist quasi-symmetries
of hyperplane H, not reduced to the identity; this is obvious if K has a
characteristic ^2, for then the ordinary symmetry (p.= — 1) has that prop-
erty. If K has characteristic 2, one has by assumption a=ß-\-ßJ, with ß9ißJ;
then ¡i=ß~~lßJ satisfies pJan=a, and p.5^1.

These remarks already enable us to determine the center Zn of the group
Un(K,f). Indeed, a transformation v belonging to the center must permute
with every quasi-symmetry, hence leave invariant every nonisotropic line;
and if there are isotropic lines, v must permute with every unitary transvec-
tion, hence leave invariant every isotropic line as well. Therefore v leaves
invariant every line, which means that it is a homothetic mapping x—>xy,
with y in the center Z of K and 5^0; moreover, in order that such a mapping
be unitary, it is necessary and sufficient that 7/7 = l.

5. From now on, we are going to suppose that J»èl. Let Tn be the sub-
group of Un{K,f) generated by unitary transvections; as a transform vuv~1 of a
transvection u is again a transvection, it is clear that Tn is a normal subgroup
of Un. Let Wn be the center of Tn (we shall determine its structure in §11).
We shall now prove the following theorem.

Theorem 1. If the sfield K has more than 25 elements^), the group Tn/Wn
is simple for n ^ 2 and v^l.

Our proof will be modeled after that of [5, Theorem 4, p. 55], and will
proceed in several steps.

Io. We first prove that if a normal subgroup G of Tn contains all transvec-
tions of Un having the same vector a, then G = Tn. In order to do this, we shall
prove the following lemma.

Lemma 2, If a and b are any two noncollinear isotropic vectors, there exists a
transformation uÇ^Tn such that u(a)=bß for a convenient scalar p-£i£.

If we suppose the lemma proved, and consider an arbitrary transvection
x—>z)(x) =x+oa/(a, x), it is readily verified that uvu~l is the transvection
x-^x-\-bpapJf(b, x); but as a can take any value in the set 5 of symmetric
elements, so can fiapJ. Therefore G contains all transvections of b, and in
consequence is identical to Tn, since b is an arbitrary isotropic vector.

(2) The theorem is still true when K has at most 25 elements, except when K = Ft, « = 2
and n = 3, and K = F>, n = 2 [5, p. 70].
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To prove the lemma, let us first suppose that fia, 0)^0; then there is a
scalar py^O such that a-\-bp = c is isotropic. Indeed, the relation
f(a-\-bp, a-\-bp) = Ogives the conditionpJf{b, a)-\-f{a, b)p = 0 which is satisfied
by taking p = (f(a, ft))-1, owing to the relation f(b, a) = —(f(a, b))J. The
transvection x—>w(x) =x-\-cf{c, x) sends then a into — bp, for/(c, a) =pJf(b, a)
= -1.

Suppose next that/(a, b)=0; this means that the plane containing a
and b is totally isotropic, hence »^3. Therefore there exists a vector z such
that/(a, z) 5^0 and/(2>, z) ^0; the plane containing a and z is hyperbolic, and
contains therefore a vector ai not collinear to a and isotropic; moreover a\
cannot be orthogonal to b, otherwise z would also be orthogonal to b; there-
fore one has f(a, a1)?i0 and/(ai, 0)^0; applying the preceding result, there
is a transvection U\ transforming a into a scalar multiple of a\, and a trans-
vection «2 transforming a\ into a scalar multiple of b; the transformation
u=UiUi satisfies the conditions of the lemma.

6. Our next step will be to prove that:
2°. Theorem 1 is true for n = 2, v^l. The assumption implies that there

is a basis of E consisting of 2 isotropic vectors t\, e% such that /(ei, e^) = 1.
If « is a unitary transformation,

-CO
its matrix with respect to the basis («i, e2), the elements of U satisfy the fol-
lowing conditions

(1) a? y - yJa = 0,        ßJ5 - 8*ß = 0,        aJô - yJß = í,

and conversely, the matrices satisfying these relations are unitary. We ob-
serve that from (1) one deduces the following relations

(2) aßJ - pW = 0,       y¥ - St-7 = 0.

Indeed,let

and let U* be the transposed matrix of UJ; then (1) is equivalent to the
matrix relation U*AU = A, whence A~1=U~1A~1(U*)~1, and therefore
UA-1U*=A~1; but as A~l=—A, the last relation implies (2) (this short
derivation of (2) from (1) was indicated by the referee). The transvections of
vector e2 have matrices of the type

BW . (I »).
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where X£S; the transvections of vector ei have matrices of the type

cw - G Ü-
with pÇzS. We want to prove that if a normal subgroup G of Tz contains a
transformation u not in the center Wz, then G = Tz; it will be enough, by
virtue of part Io, to show that all matrices C(p) belong to G.

Let us first suppose that the matrix U is such that ßy^O. Then the matrix

(JB(X))-1i/J5(X) = B (-\)UB(\)

/cc + ß\   ß\

\   y'      SV7

belongs to G, for any XES. It follows from the first relation (2) that ß~la
£S; taking X = —ß~la, we see that we can always limit ourselves to the case
in which a = 0; the third relation (1) then yields 7= — (/3_1)/.

Supposing therefore that a = 0, we next determine a linear transformation
v of ¿Ssuch that u(v(e{)) =ei£, a.ndv(u(ei)) =«177, £ and 77 being at first arbitrary
elements 5^0 in K. An easy computation shows that the matrix of v with
respect to e\, ez is equal to

_ /-y-'oß-^ vy~'\
" \     ß-1!; 0  /

We now want v to be in the group Tz; this, by the third condition (1), is
possible only if we have

(3) OrrlK0-1É = - 1.
Conversely, if £ and 77 satisfy (3) and /3_1££S, then kE7Y To prove this, we
first remark that there is <t£.S such that

VB(<r) (0 -(r1)^
Vf   0 ;•

with f=/3~"1£; indeed, this relation is equivalent to ff=777~17~15/3-1£; but it
follows from the second relation (2) that y~18(ES, and on the other hand, (3)
shows that 777-1 = — (/3_1£),/; therefore, the element a is in S.

Further, we have, for f Ç.S,

cç-r^B&ci-r1) -cry
hence VB(a) is in Tz, which proves that V is in Tz.

The transformation Mi = w_1z/_1mz/ is. then in G, and its matrix has the
form
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where p=ßJCß£. Finally the matrix W= C/iC(ö)Z71_1C(-ö) is in G for every
OÇzS, and is equal to

/l pdpJ - 6

\0        1

in other words, it is a matrix C(p) with p=pdpJ — 6.
7. We first want to prove that it is possible to choose f and 0 in the set

5 of symmetric elements such that py^O. This will certainly be the case if
pp19^\, with 0 = 1. We have therefore to show that, under the assumptions of
Theorem 1, it is impossible that ppJ = l for every f ES. This is immediate if
the subfield Z0 of the center Z, which consists of the symmetric elements
of Z (and is such that Z is a separable quadratic extension of Z0, or identical
to Zo), has more than 5 elements; for if f E^o, the relation pp/ = l reduces tc
f403J/3)2 = l, which can be verified by at most 4 different elements of Z0. We
are therefore reduced to the case in which Z0 has at most 5 elements, which
means that Z has at most 25 elements; moreover, we can suppose that K
is noncommutative, and therefore infinite. In the identity ppJ = 1, if we re-
place f by 1, we get {ßJß)2 = \, hence ßJ=ß~1 or ßJ= —ß~1; in any case, ßJ
and ß commute. If ßJ+ß = 0, we have /34 = 1; if ß+ßJ9£0, we can replace f by
ß+ßJ, and we get (ß-\-ßJ)i = l. In every case, ß is a root of an algebraic equa-
tion with coefficients in Z, and as Z is finite, so is the commutative field Z(ß).
Let L be the subsfield of K consisting of the elements of K which commute
with ß; as Z(ß) has finite degree over Z, K has finite degree over L, and
therefore L is an infinite sfield [2, p. 104]; moreover, as Z(ßJ)=Z(ß), L is
invariant under the involution /. Now, if we take f in Sf\L, the relation
ppJ = 1 reduces to f4 = 1, in other words f2 = 1 or f2 = — 1. If we apply this to
f =£ + 77, where £ and 77 are arbitrary in SCM,, we conclude that £t7+t7£ is in the
center Z of K, from which it immediately follows that the sfield M generated
by £ and 77 over Z has at most rank 4 over Z; as Z is finite, this sfield must be
commutative. In other words, any two elements of SÍM, commute; it then
follows from Lemma 1 that either L is commutative, or is a reflexive sfield,
and then has necessarily an infinite center which is identical to Sr\L. In any
case, the relation f 4= 1, valid for f ESrM, (and f 5^0) shows that SÍM, must
be finite; this is possible only when L is commutative; but then Si^L is a
subfield of L such that L has degree 2 over SC\L, and as L is infinite, Sf~\L
would also have to be infinite; we thus have reached a contradiction, which
ends this part of the argument.

8. We now have proved that there exists in S an element p0¿¿0 such
that C(/io) belongs to G. We want to show next that C(l) also belongs to G.
In order to do this, we repeat the whole argument of §§6 and 7, starting with

>
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the matrix C(po) instead of U, and, therefore, this time the element ß=po
is symmetric. If we can take f in the center Z, we thus get an element p
which is symmetric and such that p2^ 1. If not, which is the case only when
Z0 has at most 5 elements, the commutative field Z(ß) is either finite or in-
finite. If it is infinite, we can again take a symmetric f in Z(ß) such that p is
symmetric and p27i\. If on the contrary Z{ß) is finite, an argument similar
to that of §7, where Z(j3) replaces Z, proves that in the subsfield L of K com-
muting with ß it is possible to find a symmetrical element f such that f4/34?^ 1,
and then p=/32f2 is again symmetric and such that p27i\. Now, in the
method of §6, we can take0 = (p2 —1)_1; thenp andö commute, and the matrix
we obtain in that way is C(l).

Finally, letp- be any symmetric element 9¿0, and consider the subsfield N
of K commuting with p; we are going to prove that there exists in N a sym-
metric element f such that f^l. This is certainly the case if the center of
N (which contains the commutative field Z{p)) is infinite (or has more than
25 elements). On the other hand, if the center of N is finite and is distinct
from N, in particular Z(p) is finite, and then N is necessarily infinite; but
then the argument of §7 shows that it is impossible that f4 = l for every
symmetric element in N. The symmetric element f being thus chosen, we
apply again the procedure of §6, starting this time from the matrix C(l)
instead of U; we take then p=f2, and p is symmetric and such that p27^1.
Moreover, p commutes with p and with f (which commute together) ; there-
fore, if we take this time 0=p,(f4 —1)_1, 8 is symmetric, and we have pdpJ
-d=p.

9. To end the proof of step 2°, we still have to consider the cases in
which 0 = 0 in the matrix U. Suppose first that 7^0; then, if

Q - C "0-
we notice that Ç=C(-1)5(1)C(-1) belongs to T2 and that

QUQ-' - C "!)•
and we are reduced to the preceding case. Finally, if ß=7 = 0, we have
ô = (a~1),/ by the third relation (1); then the matrix C(p)UC( — p) belongs to
G, and it is equal to

/a  p(a~1)J — ap\

\o      (a-*y    )'

We are therefore reduced to the former case if there is a symmetric p such
that p(a~1)J — ap7¿0. If not, U commutes with every matrix C(p), and it is
easily verified that it also commutes with every matrix -B(X). But this is
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possible only if U is in the center Wz of Tz, owing to the following lemma:

Lemma 3. The group Tz is generated by the transvections -B(X) and C{p).

To prove that lemma, consider an arbitrary isotropic vector x = eia+ezß
in E; one has then aJß—ßJa = 0. Suppose ß^O; then aß^1 is a symmetric ele-
ment. But then the transvection C(p), with p= —aß~1, transforms x into a
vector collinear with ez, and this shows that every transvection of vector x
is transformed by C(p) into a transvection of vector e2, that is, a transvection
B(k). This of course proves the lemma, and ends the proof of step 2° of
Theorem 1.

10. 11 is now easy to prove that Theorem 1 is true for any n §: 3. Let G be a
normal subgroup of Tn, and u a transformation in G which does not belong
to the center Wn- Then u does not belong to Z„, in other words it is not a
homothetic mapping. From that, we shall deduce that there exists an isotropic
vector x such that u(x) and x are not collinear. This will be proved if we
show that when u leaves invariant every isotropic line, it leaves invariant
every line (and is therefore a homothetic mapping), according to the following
lemma:

Lemma 4. For n^3 and v^l, every nonisotropic line in E is the intersection
of two hyperbolic planes.

To prove the lemma, let x be a nonisotropic vector, and y an isotropic
vector. Let z be a vector which is orthogonal neither to x nor to y and is
not in the plane determined by x and y. Then the plane P determined by y
and z is a hyperbolic plane, and it contains therefore a second isotropic vector
yi such that/(y, yi) = l. Moreover, any vector y2=ya+yi/3 is isotropic if
aJß — ßJa = 0, and therefore there exists such a vector y2 which is collinear
with neither of y and y\ (take for instance a=/3 = l). Among the three iso-
tropic vectors y, y\, yz, two at least are not orthogonal to x, since x is not
orthogonal to P. Therefore two of the three planes Q, Qi, Qz determined by
x and the vectors y, yu yz, respectively, are hyperbolic planes, which proves
the lemma.

We can now resume the end of the proof of Theorem 1. Let x be an iso-
tropic vector such that x and w(x) are not collinear. Suppose first that
f(x, w(x)) =0. Then there exists a vector z which is orthogonal to w(x) but
not to x. The plane P determined by x and z is a hyperbolic plane, hence
contains an isotropic vector y which is not collinear to x. From Lemma 2,
there exists a transvection vÇ.Tn transforming x into a scalar multiple yX of
y; moreover the vector of that transvection is in P, hence orthogonal to
u(x), and therefore v{u{x)) =u(x). The transformation u\ =vu~1v~1u belongs to
G, and one has #i(x) =y. This proves that we can always suppose that «GG
is such that/(x, u(x))y^0.

Let then w be a transvection of vector x; uwu~1 is a transvection of vector
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u{x), and as x and u(x) are not collinear, these two transvections do not
commute. Let Q be the hyperbolic plane determined by x and w(x) ; the trans-
formation Uz = w~1uwu~1 belongs to G, and leaves invariant every vector in
the subspace Q* orthogonal to Q. It therefore belongs to the subgroup T of
Un(K, f) which leaves invariant every vector of Q*, and is obviously iso-
morphic to the unitary group Uz(K,fi), where/i is the restriction of/ to the
plane Q; we shall identify T with that group. Moreover, w2 is the product of
two transvections, hence belongs to the group Tz(K, /i) ; finally, it is not in
the center of that group, since it does not commute with w. Now step 2° of
the proof shows that G contains every transformation of Tz(K, /i), in par-
ticular every transvection of vector x. Applying step Io of the proof, we see
that G = Tn, and Theorem 1 is completely proved.

11. We can supplement Theorem 1 by proving the following theorem.

Theorem 2. Under the same assumptions as in Theorem 1, the center W„
of the group Tn is the intersection TnC\Zn.

Indeed, if «^3, every transformation uÇzWn must commute with every
transvection, hence leave invariant every isotropic line. It then follows from
Lemma 4 that u leaves invariant every line, hence is a homothetic mapping.

For w = 2, if e-y and e2 are two isotropic vectors constituting a basis of E
such that/(ei, ez) =1, the matrix

-CO
of u with respect to that basis must commute with every one of the matrices
B(\) and C(p) (notations of §6); this, as is readily seen, means that

"-("  ° )■

where a is such that a\=\(a~1)J for every symmetric element XE-^- Taking
X = l gives a? =ar1, and therefore a must commute with every symmetric
element. From Lemma 1, we deduce therefore that a is in the center Z of K
(and therefore that uÇ.Tzi~\Zz) with the possible exception of the case in
which K is a reflexive sfield of characteristic 5^2, and Z is identical to the
set 5 of symmetric elements. But in that case we remark that the matrices
B(K) and C(p) have their elements in Z, and from Lemma 3 it follows that
the same is true for every matrix of the group T2; hence if the matrix U
belongs to Tz, a is again in Z, and this ends the proof of Theorem 2.

12. The remainder of this paper is devoted to the study of the quotient
group Un/Tn; the results we obtained in that direction are far from complete,
and part of them are valid only under the additional assumption that the
sfield K has finite rank over its center Z.
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We begin by proving a lemma which is valid for any sfield K. A plane
rotation is a transformation u^Un which leaves invariant every element of a
nonisotropic (« — 2)-dimensional subspace Q; the plane Q* orthogonal to Q
is then called the plane of the rotation u. A hyperbolic rotation is a plane rotation
whose plane is hyperbolic. We then prove the following lemma.

Lemma 5. For v^l, every unitary transformation is a product of hyperbolic
rotations.

The lemma being obvious for n = 2, we prove it by induction on n, as in
[5, p. 66]. Let u be any unitary transformation, and let x be a nonisotropic
vector such that the hyperplane H orthogonal to x contains isotropic vectors.
If m(x) =x, u leaves H invariant, and we can apply induction to its restriction
to II, since the index of the restriction of the form/ to II is ^ 1 by assumption ;
the lemma is then proved. If u(x) t^x, there is always a hyperbolic plane P
containing the vector u(x) —x: indeed, if a = u{x) —x is not isotropic, there is
an isotropic vector b not orthogonal to a (Lemma 4), and then the plane P
determined by a and b is hyperbolic; if on the contrary a is isotropic, there
is a nonisotropic vector c not orthogonal to a, and the plane P determined
by a and c is hyperbolic. Now, as m(x) — x is in P, we can write x = z-\-y,
u(x) = z+y', where y and y' are in P, and z in the (n — 2)-dimensional sub-
space P* orthogonal to P. Moreover, as/(w(x), w(x)) =/(x, x), we have also
f(y> y) =f(y'j y')- From Witt's theorem applied to the restriction of/ to the
plane P, it follows that there exists a plane rotation v of plane P such that
v(y) ~y'< hence also v(x)=u{x), since v(z)=z. But then v~lu leaves x in-
variant, and we are reduced to the first case: v~xu is thus a product of hyper-
bolic rotations, and so is therefore u.

13. We shall use Lemma 5 to prove that in certain cases the subgroup
Tn is identical to Un: Lemma 5 shows that this will be done if we can prove
that every hyperbolic rotation is a product of transvections. In particular, we
shall have proved that Un = Tn for every dimension n if we can prove that
Uz = Tz (for v = 1, of course). We therefore begin by investigating the rela-
tions between the group Uz and its subgroup Tz-

As in §6, we consider a basis of E consisting of two isotropic vectors Ci, es
such that/(ei, ez) = 1 ; let

-CO
be the matrix of a unitary transformation u with respect to that basis; the
relations (1) and (2) are then satisfied. As a and ß are not both 0, there is a
cES such that in

/«'A
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a' = a-\-ßa7e0; we can therefore already suppose that a^O; then it follows from
the first relation (2) that p = or 1ß and from the first relation (1) thatX=7a_1
are both symmetric. But then the matrix

(a     0    \
B(-\)UC(-p) = ( )Vo (ov

(owing to the third relation (1)). If we observe that Tz is a normal subgroup
of Uz, and that Tz is generated by the matrices ¿f(£) and C(r¡) (Lemma 3), we
finally see that every matrix U in the group Uz can be written as a product
VW, where W belongs to the group Tz, and V has the form

Vo (a-iy/
In order that Tz = Uz, it is therefore necessary and sufficient that every

matrix

/.ON
Vo (a-iyJ

belong to T2. Now, for every pair of elements X, p in S, we have

/l + p\ p\
C(p)B(\) = {     ^   *j;

if we apply the preceding method to that matrix, we see that every matrix

Vo (a-y/
with a = l+/iX = (X-1+p)X belongs to T2.

This proves that Tz = Uz if every element ^0 in K is a product of elements
of S.

14. Let us suppose in this section that K has finite rank m2 over its center
Z. We recall that K is said to be of the first kind if J leaves invariant every
element of Z, of the second kind if the restriction of / to Z is not the identity
(it is then an involution in Z). Moreover, when K is of the first kind and of
characteristic 5^2, the dimension of 5 over Z is equal to m(m-\-\)/2 or
m(m — l)/2 [7]; the easiest way to see this is to extend Z to a splitting field
L of AT; the involution J is extended to K^d in an obvious way (the elements
of L being invariant by /), and by taking a basis of K over Z consisting of
symmetric or skew-symmetric elements, one sees readily that the dimension
over L of the space of symmetric elements of K(d is equal to the dimension
over Z of the space of symmetric elements of K But K^d is the algebra of
matrices of order m over L, and an involution of that algebra leaving in-
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variant the elements of L is known, namely the mapping X—*'X, where 'X
is the transposed matrix of X; therefore [l, p. 896], one has XJ = P~1-tX P,
where P is either a symmetric or a skew-symmetric matrix. Hence, the rela-
tion XJ = X means that PX is symmetric (resp. skew-symmetric) if P is sym-
metric (resp. skew-symmetric); this proves at once our assertion. Similarly,
it is shown that when the characteristic of K is 2, the dimension of S over Z is
always m(m-\-\)/2 when K is of the first kind.

We can now prove the following theorem.

Theorem 3. When K is a sfield of the first kind, of finite rank m2 over its
center Z and of characteristic 5¿2, and such that the space S of symmetric elements
in K has dimension m(m-\-l)/2 over Z, then Un = Tnfor every n^2.

All we have to prove (according to the final remark of §13) is that, for
every f E-K, there exist two elements £, 77 in 5 such that f =£77. If 0 = r¡~1, this
amounts to saying that there exists an element 9(£S such that fö is sym-
metric, which means that f0— 0f/ = O. But the mapping 6—>Çd—dÇJ of S into
K is linear with respect to Z, and maps S into the space A of skew-symmetric
elements, which is supplementary to 5 in K, hence has a dimension equal to
m{m—l)/2; as m(m + l)/2>m(m — l)/2, the kernel of the linear mapping
0-->f0 —of7 is not reduced to 0, and this ends our proof.

As a corollary, we obtain Theorem 6 of [5] when K is a reflexive sfield
of characteristic 9^2: the passage from an hermitian to a skew-hermitian
form over K, explained in §3, replaces the involution £—*£ in K by an involu-
tion for which the symmetric elements are the skew-symmetric elements of
£—*■£, hence form a subspace of dimension 3 over the center Z.

15. Turning now to the case in which the sfield K, of finite rank m2 over
Z, is a sfield of the first kind but such that S has dimension m(m — l)/2 over Z
(this property implying that K has a characteristic 9i2), we have to set aside
the case m = 2, in which S = Z, and therefore 5 cannot generate the group K*
of elements 5^0 in K. When m>2, it seems likely (due to Lemma 1) that 6"
generates K*, but I have not been able to prove that conjecture, and in the
absence of any further assumptions, the structure of the group Un/Tn remains
unknown in that case. I shall therefore consider only the case m = 2 ; in other
words, K is then a sfield of generalized quaternions over Z, and the involution
/ is the (unique) involution of K for which the elements of Z are the only
symmetric elements.

Let us first consider the case n = 2; then Tz is simply the unimodular
group SLz{Z) [4, p. 30]. Moreover, as every element a^K is such that
(a.-iy = a-(N(a))~1, where N(a) =aaJE^Z, it follows from §13 that every
matrix U in the group Uz can be written aX, where X is an arbitrary matrix
in GLz(Z) such that det^) = (N(a))~\ and a is an arbitrary element
in K*. We observe in addition that a and X are permutable, and that a is
determined by U up to a factor \Ç£Z* (the matrix X being then multiplied

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



380 JEAN DIEUDONNÉ [May

by X-1). We can therefore describe the structure of the group Uz in the fol-
lowing way: consider in the direct product K*XGLz(Z) the subgroup Y
consisting of the pairs (a, X) such that N(a) ■ det (X) = 1, and let A be the
subgroup of T consisting of the pairs (X, X-1), where XEZ*; then U2 is iso-
morphic to the factor group T/A. We observe that Uz contains as a normal
subgroup the multiplicative group U\ of elements of norm 1 in K, and that Ui
and Tz commute and have as their intersection the two elements 1 and — 1,
which constitute the center Wz of T2; the quotient group Uz/Tz contains
Ui/Wz as a subgroup, hence Tz is certainly not the commutator subgroup
of Uz.

16. There are reasons to believe that the preceding structure of the group
Uz{K,f) when K is a sfield of generalized quaternions and/a skew-hermitian
form is exceptional among the corresponding groups Un(K, /) for n>2,
much as the 4-dimensional orthogonal groups among the orthogonal groups
of other dimensions. The evidence I can supply in favor of that view is
summed up in the following theorem:

Theorem 4. If K is a sfield of characteristic 5^2, and the index v of the
form f is at least 2 (which implies w^4), then T„ is the commutator subgroup
ofUn(K,f).

To prove that theorem, we shall establish two lemmas.

Lemma 6. Let P be a hyperbolic plane, T the group of hyperbolic rotations of
plane P. Then (for u^2) the factor group T/(Yf~\Tn) is abelian.

Let e\, ez be two isotropic vectors forming a basis of P, with f(eir e2) = 1 ;
it is then possible to find two other isotropic vectors e3, e4 orthogonal to P
and such thatf(e3, 64) = 1 (because v^2). Let Q and R be the totally isotropic
planes determined by e\, e3 and ez, e4 respectively; if uÇzU„ leaves invariant
both planes Q and R, and V and W are the matrices of the restrictions of u to
Q and R, with respect to the bases ei, e3 and e2, e4 respectively, one has
W— ( V'y, V being the contragredient of V. We are going to prove that there
are transformations u(E:Tn of the preceding type, and such that V=B(\),
where X is any element of K. Let a=eza-\-e3ß be any vector in the totally
isotropic plane determined by e2 and e3, and consider the transvection w such
that w(x) =x-\-af(a, x) ; it leaves invariant ez and e%, and is such that

w(e{) = ei — ezaaJ — ezßaJ,        w(e¿) = e< + ezaßJ + esßßJ.

Let ax = ezOL1-\-e$i be a second isotropic vector, Wi the transvection such
that Wi(x) =x — aif(ai, x); then u—W\W leaves invariant e2 and e3 and is such
that

j j j j
u(e{) = ei + ez(aial — aa ) + e3(p\ai — ßa ),

'   '   • «(A) = «4 + e2(aßJ- aißi)-+ es(ßßJ- ß/y).
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If we take ai=a and ßi= —ß, u leaves invariant Q and R, and is such that
u(ei) =ei — 2e3ßctJ; as the characteristic of K is not 2, it is possible to take
a and ß such that —2ßaJ = \, for any element XÇ.K, and the matrix of the
restriction of u to Q is then B(\). Similarly, it can be proved that u(E.Tn
exists such that V=C(p) for any pÇzK. Therefore T„ contains all the trans-
formations u(^Un leaving invariant Q and R and such that the matrix of the
restriction of u to Q is any matrix V in the unimodular group SLz(K) [4, p. 30] ;
in particular, for any element y in the commutator subgroup of K*, u£zT„ exists
such that

-CO-
[4, p. 29], which means that m is a hyperbolic rotation of plane P, such that
its matrix in P is

Vo (y-iy)
Now we have seen in §13 that every hyperbolic rotation of plane P has a
matrix (with respect to Ci, ez) which can be written as the product of a matrix

Vo (a~iy)
(with aGK*) and a matrix of TC\Tn. If, to every a£K*, we associate the
class of the matrix

VO (a-1)'/

modulo the subgroup Tf\Tn, we define a homomorphism of K* onto
r/(rnr„), and the preceding result shows that the kernel of that homo-
morphism contains .the commutator subgroup C of K*; hence T/(Tr\Tn) is
isomorphic to a quotient group of the abelian group K*/C.

17. Lemma 7. Let Pi and P2 be any two hyperbolic planes. Then (for i>Sï2)
there exists a transformation wEP» such that w(Pi) = P2.

It follows from Lemma 2 that there exists a transformation in Tn sending
an isotropic vector in Pi into an isotropic vector in P2; we can therefore as-
sume in the following proof that there exists a common isotropic vector e2
in Pi and P2. We now consider separately several cases.

(a) The dimension n =4. Let ei be a second isotropic vector in Px such that
/(«i, «2) = 1> and let e3, e4 be determined as in the proof of Lemma 6. There
exists in P2 an isotropic vector e{ such that f(e[, e2) = 1 ; we can write e[ = ex
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-\-ezß-\-e3y-\-eiS, and the condition f(e{, e{)=0 is equivalent to

ß - ßJ + yJà - 8Jy = 0

which can be written ß+yJ8 = (ß-\-yJ8)J, and means therefore that the expres-
sion ß-\-yJ8 is a symmetric element X. Now, it has been proved in the proof
of Lemma 6 that the transformation wi leaving invariant e2 and e3, and such
that

a>i(ei) = «i + e3y,        wi(e4) = c4 - e2yJ,

belongs to Tn. Similarly (exchanging the parts played by e3 and e4), the trans-
formation w2 leaving invariant e2 and e4, and such that

Wz(ei) = «i + «45,        w2(e3) = e3 — e28J,

belongs to Tn. The transformation WyW2, which belongs to Tn, is such that
WiW2(e2)=e2, and WiW2(ei) = e1+e3y+ei8 — e2yJ8. Let finally v be the trans-
vection x—>x —e2X/(e2, x), which leaves invariant e2, e3, e4 and is such that
v(ei) =ei-\-e2\; the transformation w = vw\W2 belongs to Tn, leaves e2 invariant,
and is such that

w(e{) = «i + e2(\ — yJ8) + e3y + e45 = ei.

Therefore w(Pi) = P2, and the lemma is proved in that case.
(b) n>4 and the 3-dimensional subspace M = Pi-\-Pz is isotropic. This

means that there exists in M at least an isotropic vector c orthogonal to M;
such a vector cannot be in Pi, since Pi is not isotropic. Therefore the three
vectors c, e\, e2 (e\ being defined as in (a)) constitute a basis for M, such
that f(e\, e2) = \, f(e\, c) =f(e2, c) = 0. There exists then in £ a fourth isotropic
vector d such that/(c, d) = l,f(ei, d) =/(e2, d)=0 [5, p. 18], and the four
vectors elf e2, c, d form the basis of a nonisotropic 4-dimensional subspace N
of E containing Pi and P2 and such that the restriction of the form/ to N has
an index equal to 2. The result of case (a) proves then the lemma.

(c) » > 4 and the space M is not isotropic. There exists then in M a. non-
isotropic vector c orthogonal to Pv As the index v^2, the restriction of/ to
the (n — 2) -dimensional subspace P* orthogonal to Pi has an index =1, by
Witt's theorem. Therefore (Lemma 4), there exists a hyperbolic plane Q
contained in P* and containing c. The subspace N = Py-\-Q is then a non-
isotropic 4-dimensional subspace of E, such that the restriction of / to N has
index 2, and N contains Pi and P2. The proof of the lemma then follows as
in case (b).

18. To end the proof of Theorem 4, let us consider a fixed hyperbolic
plane P. We are going to show that every unitary transformation v can be
written su, where s is a hyperbolic rotation of plane P, and u belongs to Tn.
The result is true if v is a hyperbolic rotation of plane P', for by Lemma 7
there exists tÇ.T„ such that t(P)=P', and therefore v = tst~l, where s is a
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rotation of plane P; but we can also write v = s(s~Hs)t~l, and as Tn is a normal
subgroup, s~1tsE.Tn. Suppose now that v is a product of p hyperbolic rotations
(Lemma 5), and use induction on p. Let v = wiw2, where Wi is a hyperbolic
rotation and w2 is a product of p — 1 hyperbolic rotations ; we can write by
assumption Wi = SiUi, w2 = szUz, hence v = SiUiSzUz = SiSz(s2~1UiSz)uz, and this
proves our contention. We have thus shown that the group Un/Tn is iso-
morphic to T/(Tr\T„), hence abelian (and isomorphic to a quotient group of
K*/C). Theorem 4 then follows from the fact that Tn/Wn is a simple group
(Theorem 1).

19. In special cases it is possible to obtain more precise information. Let
us suppose for instance that K is the sfield of ordinary quaternions over a
Euclidean ordered field Z (i.e., an ordered field in which every positive element
has a square root in Z). The usual theory of quaternions can then be carried
out exactly as when Z is the field R of real numbers; we know therefore
that every quaternion £;¿0 can be written in one and only one way £=pf,
where pÇLZ, p>0, and p2 = 7V(£), hence iV(f) = 1 ; moreover, every quaternion
of norm 1 is a commutator; finally, if £ and 77 are two quaternions of norm 1
and scalar 0, there is a third quaternion a of norm 1 such that £=a77a-1. We
suppose as usual that J is the only involution in K leaving invariant the
elements of Z, and that / is skew-hermitian. We can then show that there
exists an orthogonal basis in E with respect to which f(x, y) — 23»_i £»*£*.
Indeed, there exists an orthogonal basis (ek) for/, and with respect to that
basis, /(x, y) = XX1 £*«*&> with °i — ~tt*. which means that the scalar of
the quaternion a* is 0. We can write ctk=pkßk, with p*>0, N(ßk)=\, and
ßl=—ßk, and therefore ak=pkykiylx, where N(yk) = \, hence 7^ = 7^- If
we replace ek by 6i(p1/2)_17*, we obtain for f(x, y) the canonical expression
]Cï-i £t¿£*. This proves that all nondegenerate skew-hermitian forms over E

are equivalent, hence their index is [n/2]. In particular, for «¿4, v~^2, and
therefore Theorem 4 applies. But here every matrix

Vo («-y/
can be written

/y    0   \/p  o\
\o (7-x)v\o p-V'

where N(y) =1, hence 7 is a commutator, and pÇZ; as the matrix

Vo P-v
belongs to SL2(Z), the proof of Lemma 6 shows that we have here T=Tr\Tn,
hence Un = T„. When Z = R, this is equivalent to one of E. Cartan's theorems
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on the real forms of the simple Lie groups [3, p. 286].
20. We end by mentioning some relations between our results and the

properties of the commutator subgroup C of a sfield K with involution.

Theorem 5. Let K be a sfield of characteristic j¿2, of finite rank over its
center Z, and let J be an involution in K leaving invariant the elements of Z.
Then, for every £E-K*, £ and £J are in the same class modulo the commutator
subgroup C of K*.

Let m2 be the rank of K over its center, and let us suppose first that the
set S of symmetric elements in K has dimension m(m + V)/2 over Z. Then
we have seen in §14 that every element £E-K* can be written £=a/3, where a
and ß are in S; accordingly £J=ßJaJ=ßa, hence £'7£_1=lSa/3_1a_1, which
proves our contention in that case. If on the contrary S has dimension
m(m — l)/2 over Z, and p is a skew-symmetric element of K, then £—>£T
= P~1£JP is an involution in K for which the symmetric elements form a
space of dimension m(m-\-\)/2 over Z (§3); therefore £ and £r are in the
same class modulo C, and the same is true for £ and £J, since £ and p~^p
are in the same class modulo C.

The situation is reversed when K is a sfield of the second kind:

Theorem 6. Let K be a sfield of finite rank over its center Z, and let J be an
involution in K which does not leave invariant every element of Z. Then there
exist elements £ in K* such that £ and £J are not in the same class modulo C.

The theorem being obvious when K is commutative, we can suppose that
K is not commutative, hence that Z is an infinite field. The theorem will be
proved if we exhibit a homomorphism <f> of K* onto an abelian group, such
that 4>(%J) 9a</>(£) for some £E-K*- Let N(£) be the norm of an element £ in
the regular representation of K (considered as an algebra over its center Z) ;
£—»iV(£) is then a homomorphism of K* into Z*. If r = m2 is the rank of K over
Z, we have iV(£) =£r for every £EZ*; we have only therefore to verify that
if the element w£Z constitutes with the identity a basis of Z over the sub-
field Zu of /-invariant elements, then the elements (x+yw)r and (x-f-yw/)r
cannot be identical for all values of x and y in Z0. But as 0/9^03, this follows
at once from the fact that Z0 is an infinite field.

Theorem 6 has as a consequence that when K is a sfield of the second kind,
the groups Un and Tn (for v~2iV) are always distinct. To prove this, we have
only to verify that the determinant [4] of some unitary matrix is not the
identity element in K*/C; but this is obvious for the matrix

('  ° )VO (a-y)

if a and oc1 are not in the same class modulo C.
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