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Vehicular ad hoc networks (VANETs) are wireless communication networks which support cooperative driving among vehicles
on the road. �e speci	c characteristics of VANETs favor the development of attractive and challenging services and applications
which rely on message exchanging among vehicles. �ese communication capabilities depend directly on the existence of nearby
vehicles able to exchange information. �erefore, higher vehicle densities favor the communication among vehicles. However,
vehicular communications are also strongly a
ected by the topology of the map (i.e., wireless signal could be attenuated due to
the distance between the sender and receiver, and obstacles usually block signal transmission). In this paper, we study the in�uence
of the roadmap topology and the number of vehicles when accounting for the vehicular communications capabilities, especially
in urban scenarios. Additionally, we consider the use of two parameters: the SJ Ratio (SJR) and the Total Distance (TD), as the
topology-related factors that better correlate with communications performance. Finally, we propose the use of a new density
metric based on the number of vehicles, the complexity of the roadmap, and its maximum capacity. Hence, researchers will be
able to accurately characterize the di
erent urban scenarios and better validate their proposals related to cooperative Intelligent
Transportation Systems based on vehicular communications.

1. Introduction

Modern Intelligent Transportation Systems (ITS) are being
propelled by the development and adoption of wireless
telecommunications and computing technologies, thereby
allowing that our roads and highways can be both safer and
more e�cient transportation platforms.

Vehicular ad hoc networks (VANETs) are wireless com-
munication networks which support cooperative driving
among vehicles on the road. Vehicles act as communica-
tion nodes and relays, forming dynamic vehicular networks
together with other nearby vehicles [1]. �e speci	c char-
acteristics of VANETs favor the development of attractive
and challenging services and applications [2], including
road safety [3], road status monitoring [4], tra�c �ow
management [5], environmental protection [6], and mobile
infotainment [7, 8].

In VANET-based cooperative ITS, the correct and e�-
cient message delivery is of utmost importance. �e main
goal is to ensure the correct reception of messages while
reducing the latency of the information received by nearby
vehicles [9]. However, this dissemination of information in
vehicular environments is strongly a
ected by (i) the signal
attenuation due to the distance between the sender and
receiver (especially in low vehicle density areas), (ii) the e
ect
of obstacles in signal transmission (very usual in urban areas,
e.g., due to buildings), and (iii) the instantaneous vehicle
density. Regarding (i) and (ii), the topology of the roadmap is
an important factor that a
ects the average distance between
the sender and the receiver, as well as the di
erent obstacles
present in the scenario. As for (iii), the message propagation
process highly depends on the number of vehicles, since
lower densities can provoke message losses due to reduced
communication capabilities, whereas higher densities can
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provoke reduced message delivery e
ectiveness due to seri-
ous redundancy, contention, and massive packet collisions
caused by simultaneous forwarding, usually known as broad-
cast storm [10]. Although both factors (i.e., the number of
vehicles and topology) play an important role in vehicular
communications, we consider that they have not been well
studied, especially when characterizing the di
erent urban
scenarios. In fact, we realize that VANET-aimed proposals
are usually assessed under very simplistic conditions and
scenarios, and we can even 	nd that researchers surprisingly
account for di
erent concepts of vehicle density.

In this paper, we present some considerations and issues
related to the number of vehicles, the roadmap topology, and
its complexity, as well as the in�uence of these parameters in
vehicular communications. Additionally, we propose the use
of a newdensitymetricwhich allows researchers to accurately
characterize the di
erent urban scenarios and better validate
their proposals regarding cooperative Intelligent Transporta-
tion Systems. �e main objective is that researchers can
easily decidewhich scenarios to simulatewhen assessing their
proposals.

�e paper is organized as follows: in Section 2, we
review some of the existing works especially related to this
paper. Section 3 shows the simulation environment used
to evaluate the performance of vehicular communications.
In Section 4, we discuss the importance of the roadmap
topology (and its complexity), as well as the number of
vehicles to characterize the communication capabilities of a
speci	c scenario. In Section 5, we present and discuss the
obtained results. According to these results, in Section 6,
we present a novel density metric based on the number of
vehicles, the complexity of the roadmap, and its maximum
capacity. Finally, Section 7 concludes this paper.

2. Related Work

�e density of nodes is an important concept in networking,
especially when accounting for communications in coopera-
tive Intelligent Transportation Systems. In the literature, we
found several works that rely on an a priori evaluation of
congestion levels to improve the communication capabilities
of the vehicles. Alonso and Mecklenbraeuker [11] proposed a
Decentralized Congestion Control able to adapt to variable
tra�c densities. Das et al. [12] studied the e
ect of tra�c
density patterns on the performance of routing protocols for
VANETs. Akabane et al. [13] proposed an adaptive solution
for data dissemination under diverse road tra�c conditions
in urban scenarios. Similarly, Sanguesa et al. [14] studied
the e
ect of very adverse vehicle density conditions on the
performance of di
erent warning message dissemination
schemes.

In fact, vehicle density awareness is of crucial importance
in many ITS applications, especially those related to man-
aging emergency situations. Jin et al. [15] presented a novel
warning dissemination scheme, based on the tra�c �ow
theory, designed to mitigate the broadcast storm problem
while reducing the end-to-end latency in real urban scenar-
ios. Barrachina et al. [16] proposed four di
erent approaches
addressing the tra�c congestion problem. According to

them, once an emergency occurs, vehicles can perform
e�cient tra�c redirection and emergency services can reduce
their arrival time by applying evolution strategies based on
the tra�c density estimation obtained by means of V2I
communications.

Despite the importance of vehicle density and roadmap
topology in vehicular networks performance, there is no
consensus when accounting for the concept of vehicle density
in VANET works. Additionally, so far there have not been
enough studies that explored the complexity of roadmap
topology in order to improve wireless communications in
vehicular environments. Next, we will discuss the most
relevant works in this 	eld.

Tyagi et al. [17] considered the problemof vehicular tra�c
density estimation, using the information provided by the
cumulative acoustic signal acquired from a roadside-installed
single microphone. �is cumulative signal comprises several
noise signals such as tire noise, engine noise, engine-idling
noise, occasional honks, and air turbulence noise of multiple
vehicles. In this work, the vehicle density is classi	ed into
three broad tra�c density states, that is, jammed (where the
vehicles’ average speed varies from 0 to 10 km/h), medium-
�ow (10–40 km/h), and free-�ow (40 km/h and above).

As for the scenario used, authors collected acoustics data
from the New Delhi South District area. More speci	cally,
the data were collected from a roadside-installed omnidi-
rectional microphone. In our opinion, authors should assess
their approach in other di
erent scenarios to better study the
feasibility and accuracy of their proposal.

Tan and Chen [18] proposed a novel approach of combin-
ing an unsupervised clustering scheme called AutoClass with
Hidden Markov Models (HMMs) to determine the tra�c
density state in a Region of Interest (ROI) of a road in a tra�c
video. Similarly to the previously presented work, authors
considered the vehicle density in terms of four di
erent states
(i.e., empty, low, high, and full tra�c density states, resp.).

Regarding the roadmap used, authors tested their algo-
rithm on a video sequence of a tra�c intersection of New
South Wales. Although we consider that they should assess
their proposal in other topologies, at least, they evaluated it
under cloudy and sunny conditions.

Using vehicular communications makes vehicle density
estimation more accurate and powerful since the messages
exchanged by the vehicles in the scenario can be used to
better estimate the vehicles that are present in a speci	c area.
Maslekar et al. [19] claimed that clustering has demonstrated
to be an e
ective concept to implement the estimation of
vehicular density in the surroundings. In this work, they
proposed a direction based clustering algorithmwith a cluster
head switching mechanism. Simulation results showed that
the proposed clustering algorithm provides a better accuracy
in terms of density estimation.However, due to highmobility,
a stable cluster within a vehicular framework is di�cult
to implement. In this work, authors considered the vehicle
density in terms of vehicles per square kilometer.

Regarding the topology used, authors simulated a sce-
nario with multiple intersections spread over simulation
area of 9 km2. However, authors did not provide enough
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details related to topology, especially about its complexity,
and whether the topology is real or synthetic.

Venkata et al. [20] proposed a clustering approach for
tra�c monitoring and routing, where the cluster head (CH)
election is done based on distance and direction information.
Since clusters are formed all along the road, CHs will take
the responsibility of routing the message to the destination.
Simulation results showed better stability, accurate density
estimation in the cluster, better end-to-end delay, and good
packet delivery ratio. However, the density estimation mech-
anism operation is limited to the vehicles within the cluster.
Similarly to the previouswork, authors considered the vehicle
density in terms of vehicles per square kilometer.

To evaluate the performance of the proposed algorithm,

authors simulated an area of 6.2 km2 with multiple inter-
sections. However, similarly to the previous work, authors
did not provide enough details to make their simulations
reproducible.

In Sanguesa et al. [21], authors proposed a novel real-
time mechanism to estimate the vehicular density in urban
environments based on V2V communications. �eir mech-
anism uses as input parameters the number of beacons
received per vehicle and the topological characteristics of
the environment where the vehicles are located. Unlike that
paper, in the present work we introduce some considerations
regarding how researchers determine the density of vehicles
when assessing their V2V-aimed proposals.More speci	cally,
we study in detail both the complexity of the maps and the
maximum capacity of vehicles that roadmaps can host. In
addition,we introduce a newmetric to account for the density

of vehicles. �is metric, unlike the classic vehicle per km2,
also refers to the capacity and complexity of maps, so it
is much more recommendable to be used when evaluating
new proposals related to VANETs. Using our new metric,
researchers can easily determine whichmaps and densities to
simulate when evaluating their proposals, ensuring that their
conclusions will be more accurate and representative.

All these works established the importance of vehicular
density awareness in vehicular environments, but as previ-
ouslymentioned, it seems that there is no consensus about the
concept of vehicle density and how di
erent densities directly
a
ect vehicular communications. Additionally, none of these
works has deepened in the analysis of density, or the e
ect
of the topology in the results obtained. In most cases, vehicle
density is determined by the number of vehicles per square
kilometer or simply classi	ed into di
erent states (e.g., empty,
low, medium, and high densities).

Figure 1 presents a taxonomy of the di
erent density
metrics used in the literature, including our proposed one.
We have classi	ed existing density metrics into two di
erent
categories, that is, those metrics that measure the density
in terms of tra�c �ow and those that consider the density
in terms of vehicles located in a determined area. Unlike
existing proposals, our density metric approach accounts not
only for the number of vehicles but also for the capacity and
complexity of the maps. In this paper, we demonstrate the
in�uence of the topology and the number of vehicles to better
characterize the vehicular scenarios, thereby predicting their
communications capabilities.

3. Simulation Environment

To analyze and test the performance of vehicular communi-
cations we used the ns-2 simulator [22], modi	ed to include
the IEEE 802.11p [23] standard (all these improvements and
modi	cations are available in http://www.grc.upv.es/so�-
ware/). �e purpose of the 802.11p standard is to provide
the minimum set of speci	cations required to ensure inter-
operability between wireless devices when attempting to
communicate in potentially fast-changing communication
environments. In terms of the physical layer, the data rate
used for packet broadcasting is 6Mbit/s, as this is the
maximum rate for broadcasting in 802.11p. �e MAC layer
was also extended to include four di
erent channel access
priorities. �erefore, application messages are categorized
into four di
erent Access Categories (ACs), where AC0 has
the lowest and AC3 the highest priority.

�e simulator was also modi	ed to make use of our
Real Attenuation and Visibility (RAV) scheme [24], which
proved to increase the level of realism in VANET simulations
using real urban roadmaps in the presence of obstacles.
�e mobility of the vehicles was generated using CityMob
for Roadmaps version 2 (C4Rv2) [25], a mobility generator
based on SUMO [26], able to import maps directly from
OpenStreetMap (OSM) [27].

With regard to data tra�c, we consider that vehicles
operate in two modes: (a) warning mode and (b) nor-
mal mode. Warning mode vehicles inform other vehicles
about their status by sending warning messages periodi-
cally with the highest priority at the MAC layer (similarly
to the Decentralized Environmental Noti	cation Messages
(DENMs) de	ned by the European Telecommunications
Standards Institute (ETSI) [28]); each vehicle is only allowed
to propagate them once for each sequence number. Normal
mode vehicles enable the di
usion of these warning packets
and, periodically, they also send beacons with information
such as their positions, speed, and status (similarly to the
Cooperative Awareness Messages (CAMs) also de	ned by
the ETSI). �ese periodic messages have lower priority than
warning messages, and so they are not propagated by other
vehicles.

To analyze the communications performance, we focus
on the percentage of informed vehicles (i.e., the percentage of
vehicles that receive the warning messages sent by warning
mode vehicles) and the warning noti	cation time, which is
the time required by normal vehicles to receive a warning
message sent by a warning mode vehicle. All the results
included in this paper represent an average of over 50
repetitions with di
erent random scenarios, obtaining for all
of them a con	dence degree of 95%. Table 1 shows the main
parameters used for the simulations.

4. Roadmap Characterization in
Vehicular Communications

�e roadmap (road topology) is an important factor account-
ing for mobility and communications in vehicular networks,
since the topology constrains cars’ movements, and the
wireless signal can be a
ected by the presence of obstacles
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Figure 1: A taxonomy of vehicle density metrics.

Table 1: Parameter settings in the simulations.

Parameter Value

Roadmaps
Madrid, Beijing, Prague, Amsterdam,

Valencia, and San Francisco

Number of vehicles 100–1000

Roadmap size 2000m × 2000m
Warning message
size

256B

Beacon message
size

512B

Warning messages
priority

AC3

Beacon priority AC1

Interval between
messages

1 second

MAC/PHY 802.11p

Radio propagation
model

RAV [24]

Mobility model Krauss et al. [29]

Channel
bandwidth

6Mbps

Max. transmission
range

400m

such as buildings. Roughly described, an urban topology
is a graph where vertices and edges represent, respectively,
junction and road elements.

In this section, we present the di
erent parameters
that better characterize the communication capabilities of a
speci	c roadmap in vehicular networks.

4.1. Complexity of the Map. An important issue to measure
the complexity of the map is to obtain the di
erent features
of each roadmap (e.g., the number of streets, the number of
junctions, the average distance of segments, and the number
of lanes per street).

We consider that the parameters that better correlate with
the complexity of the roadmap are the number of streets and
the number of junctions [30]. Table 2 shows the values of 15

di
erent fragments (of 4 km2) of real cities. We also added

Table 2: Number of streets, junctions, and SJR of the analyzedmaps.

Streets Junctions SJ Ratio

Houston 548 650 0.8430

Madrid 628 715 0.8783

San Francisco 725 818 0.8863

Turin 1212 1353 0.8958

Los Angeles 287 306 0.9379

Amsterdam 1494 1449 1.0310

Sydney 872 814 1.0712

Liverpool 1758 1502 1.1704

Dubai 676 558 1.2114

Brussels 2365 1921 1.2311

Prague 3157 2542 1.2419

Beijing 777 618 1.2573

Valencia 2831 2233 1.2678

Rio de Janeiro 542 401 1.3516

Rome 1656 1193 1.3881

a column labeled as SJ Ratio (SJR, which represents the result
of dividing the number of streets in the number of junctions).
As shown, the 	rst 5 cities (Houston, Madrid, San Francisco,
Turin, and Los Angeles) present a SJR lower than 1, which
indicates that they have a simple topology, while the rest of
the cities present a greater than 1 SJR value, which indicates
that they have a complex topology. Also, note that although
Rio de Janeiro has a relatively small number of streets and
junctions, it has a complex topology. Figure 2 shows three of
the topologies used in our simulations (San Francisco that
represents a simple topology, Amsterdam that represents a
medium complexity topology, and Valencia that represents a
more complex topology).

4.1.1. �e Concept of Street. As previously mentioned, to
calculate the SJR it is necessary to measure the number of
streets and the number of junctions. As for the number of
junctions, it is only necessary to count the junctions between
di
erent street segments. However, regarding the number
of streets, we realized that di
erent alternatives could be
selected to obtain the number of streets in a given roadmap.
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(a) (b)

(c)

Figure 2: Some maps used in our simulations. Fragments of the cities of (a) San Francisco (USA), (b) Amsterdam (Netherlands), and (c)
Valencia (Spain).

Basically, the di
erent alternatives are (i) the number of
streets obtained in SUMO, where each segment between two
junctions is considered a street, (ii) the number of streets
obtained in OpenStreetMap, where each street has a di
erent
“name,” and (iii) the number of streets according to the RAV
radio propagation model [24], where the visibility between
vehicles is taken into consideration when identifying the
di
erent streets.

Figure 3 shows a small portion of NewYork City to depict
the di
erent criteriawhen counting the number of streets. For
example,�ames street is considered only one street in OSM,
whereas the SUMO and RAV models consider that there are
two di
erent streets instead. However, if we observe Cedar
street, theRAVvisibilitymodel and theOSMapproaches con-
sider a single street (as expected), whereas it is represented
by three di
erent streets according to SUMO, since it has
three di
erent segments. Finally, according to both the OSM
and SUMO approaches, Trinity Place and Church Street are
represented as two di
erent streets, whereas the RAV model
considers only that one street exists.

�ames street

OSM: 1 street
SUMO: 2 streets

RAV: 2 streets

Cedar street

OSM: 1 street
SUMO: 3 streets

RAV: 1 street

Trinity Pl.-Church st.

OSM: 2 streets
SUMO: 2 streets

RAV: 1 street

Figure 3: Di
erent criteria when counting the number of streets.
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Table 3: Number of streets obtained depending on the criterion
used.

City SUMO OSM RAV

Rome 2780 1484 1656

Rio de Janeiro 758 377 542

Amsterdam 3022 796 1494

Madrid 1387 1029 628

Table 3 shows the values obtained when counting the
number of streets of some of the cities studied, according
to each criterion (i.e., SUMO, OSM, and RAV). As shown,
the di
erences between these approaches are signi	cant,
meaning that it is important to decide which one to use
in order to obtain accurate and realistic results. A�er some
experiments [21], we realized that the third approach (i.e.,
RAV) better correlates with the real features of cities, since
the other two present some drawbacks: they are not accurate
enough, or they present some errors (e.g., SUMO always
considers segments between junctions as streets, and using
street names to estimate the communication between the
vehicles may result in inaccurate estimations).

4.2. Size of the Map. As previously mentioned, most of

researchers use the area (i.e., in terms of km2) to measure
the size of the map. However we consider that this metric
does not directly re�ect the communications capabilities of
a roadmap, especially in terms of vehicles informed when
disseminating warning messages.

Figure 4 presents three di
erent example scenarios with
the same area. In these scenarios, we consider that vehicle
S sends a warning message and receivers rebroadcast this
message; green vehicles do receive the message, whereas
white vehicles do not receive anything either due to their
distance to the sender or because of buildings blocking
the wireless signal. As observed, the topology, as well as
the maximum number of vehicles that could be present in
the di
erent scenarios, greatly a
ects the communication
capabilities; they depend on the number of streets, the
number of lanes of each street, and the length of them.

In particular, Figure 4 shows that the size of the map (in

terms of km2) does not clearly a
ect thewarningmessage dis-
semination process. In fact, the number of vehicles informed
in the three examples is di
erent, despite the fact that the
number of vehicles is the same. Moreover, we can observe
that the maximum number of vehicles that each example can
host is also di
erent. Hence, when focusing on the size of
the map, we consider that it is also necessary to account for
the number and the length of the lanes to better characterize
the communication capabilities of a roadmap. However, we
observe that most of researchers only account for the number

of vehicles per km2 when dealing with vehicle density in
vehicular environments.

A more suitable metric related to the size of the map
should account for the total length of roads present in a given
area, instead of the area itself, similarly to the road density
metric used by the International Road Federation (IRF) in

Table 4: Total distance of maps analyzed.

TD

Rio de Janeiro 24.8

Dubai 29.9

Los Angeles 32.3

Rome 32.8

Sydney 34.2

Beijing 35.2

San Francisco 36.3

Madrid 36.3

Amsterdam 37.1

Turin 43.0

Houston 43.6

Valencia 47.8

Liverpool 48.3

Brussels 49.3

Prague 62.1

their World Road Statistics (WRS) report [31]. Nevertheless,
this metric only measures the length of the roads without
considering the number of lanes of each one, thus treating
multilane roads and single-lane roads in the same way, which
is inaccurate since the amount of vehicles able to travel in
multilane roads is higher.

According to these considerations, we de	ne the Total
Distance (TD) of a map as the sum of the length of all the

lanes of each street per km2

TD (Map) = ∑�∈S length (�) ⋅ num lanes (�)
areakm2

, (1)

where each street is denoted as �, S is the set of all the
streets of the map, length(�) is the length (in km) of the street
�, num lanes(�) is the number of lanes of the street �, and
areakm2 represents the area of the map in km2.

We consider that TD should be usedwhen referring to the
size of a map (indicating its maximum capacity of vehicles)
when dealing with vehicular communications. Table 4 shows
the information obtained a�er analyzing the roadmaps of dif-
ferent cities. As shown, the di
erences between the di
erent
cities are signi	cant; some cities such as Rio de Janeiro or
Dubai present TD values less than 30, whereas other cities
such as Valencia, Brussels, or Liverpool present TD values
close to 50. Prague presents the highest TD value by far (62.1).

4.3. Number of Vehicles in Vehicular Networks. One of the
most important parameters to be considered when a message
is going to be broadcasted in VANETs is the number of
vehicles in a speci	c area. According to previous works [21,
32], the number of vehicles is a key factor that directly a
ects
warning message dissemination performance in VANET
scenarios. Additionally, as mentioned in Section 2, several
metrics have been considered to measure density so far (such

as vehicles per hour, vehicles per km2, related to the average
speed of vehicles).



Mobile Information Systems 7

S

(a)

S

(b)

S

(c)

Figure 4: Map example with three di
erent con	gurations: (a) single-lane, (b) multilane, and (c) highway.

Figure 5 shows the simulation results when varying the
number of vehicles, in the scenarios of Valencia and San
Francisco, respectively. We have tested with di
erent num-
bers of vehicles, ranging from 100 to 1000 (i.e., from 25 to

250 vehicles/km2). As shown, in both cases, the percentage of
informed vehicles varies according to the number of vehicles.
As expected, the communication possibilities (in terms of
vehicles that are informed) increase when the number of
vehicles also increases.

�is characteristic is explained because the �ooding
propagation of warning messages works better with higher
vehicle densities. Moreover, the topology of the map also
a
ects the obtained results. In fact, we observe that the

percentage of vehicles informed is greater in simple maps
than in complex maps, where the wireless signal is usually
blocked by the presence of buildings.

5. Simulation Results: Influence of
SJR and TD Parameters

As demonstrated in the previous section, the impact of
both the number of vehicles and roadmap complexity
clearly a
ects communications performance. Moreover, we
observed that researchers surprisingly consider di
erent
concepts of vehicle density. In this section, we evaluate



8 Mobile Information Systems

1000 vehicles

900 vehicles

800 vehicles

700 vehicles

600 vehicles

500 vehicles

400 vehicles

300 vehicles

200 vehicles

100 vehicles

0

10

20

30

40

50

60

70

80

90

100
In

fo
rm

ed
 v

eh
ic

le
s 

(%
)

5 10 15 20 25 300

Warning noti�cation time (s)

(a)

1000 vehicles

900 vehicles

800 vehicles

700 vehicles

600 vehicles

500 vehicles

400 vehicles

300 vehicles

200 vehicles

100 vehicles

0

10

20

30

40

50

60

70

80

90

100

In
fo

rm
ed

 v
eh

ic
le

s 
(%

)

5 10 15 20 25 300

Warning noti�cation time (s)

(b)

Figure 5: Warning noti	cation time and percentage of vehicles informed when varying the number of vehicles in (a) San Francisco (USA)
and (b) Valencia (Spain).

Table 5: Topology features of maps with similar TD.

SJR TD

Madrid 0.8783 36.3

Beijing 1.2573 35.2

the warning message dissemination process when varying
the SJR and the TD, while maintaining the same number of

vehicles per km2. �e objective is to demonstrate that the
communications performance strongly correlates not only
with the number of vehicles, but also with the values of SJR
and the TD of the roadmaps used (i.e., to the complexity and
the capacity of them).

5.1. Similar TD and Di	erent SJR Values. Table 5 shows the
topology features of Madrid and Beijing. As shown, these
cities present a similar Total Distance, whereas their SJR
values are quite di
erent. More speci	cally, although the
capacity of vehicles is very similar in both maps, Madrid is
a simple roadmap and Beijing is a complex one.

Figure 6 shows the percentage of vehicles informed
in Madrid and Beijing when simulating 400 vehicles

(i.e., 100 veh/km2). As expected, the percentage of vehicles
informed is quite di
erent. Madrid (a simpler map) results
in an 84% of informed vehicles a�er the 	rst 20 seconds,
whereas the warning dissemination process in Beijing (a
more complex map) is only able to achieve a 28% of vehicles
informed along the same period of time. �ese results

Madrid
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Figure 6: Percentage of informed vehicles in maps with similar TD
and di
erent SJR values.

con	rm the importance of the SJ Ratio when disseminat-
ing warning messages, especially in urban environments.
Although both maps present similar TD values, the results
obtained in terms of vehicles informed are quite di
erent.

5.2. Similar SJR andDi	erent TDValues. Table 6 shows the SJ
Ratio and theTDof Prague andBeijing. As shown, these cities
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Table 6: Topology features of maps with similar SJ Ratio.

SJR TD

Prague 1.2419 62.1

Beijing 1.2573 35.2
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Figure 7: Percentage of informed vehicles in maps with similar SJR
and di
erent TD values.

present a very similar SJ Ratio, whereas their TD values are
di
erent. According to results presented in Section 5.1, both
cities should result in similar communications performance
since their complexity (in terms of SJR values) is quite similar.
However, while Prague presents a TD of 62.1, Beijing hardly
reaches 35.2. As the TD is directly related to the maximum
capacity of the roadmap (i.e., maps with higher TD values are

able to host more vehicles), the number of vehicles per km2

should not be a fair vehicle density metric when comparing
them. In fact, although the complexity of both maps is quite
similar, the results obtained in terms of vehicles informed are
di
erent.

Figure 7 shows the results obtained in Prague and Beijing
when simulating 400 vehicles. As shown, during the 	rst 15
seconds the warning dissemination process behaves similarly
since the complexity of both maps is quite similar in terms
of SJ Ratio. However, the overall dissemination process is
di
erent since the higher TD of Prague makes the percentage
of informed vehicles lower than in Beijing. Although the

number of vehicles per km2 is the same, the probability of a
successful communication is higher in Beijing than in Prague.
�ese results con	rm the importance of the TDmetric when
accounting for vehicular communications in di
erent maps.

5.3. Similar TD and SJR Values. Finally, we focus on two
di
erent scenarios which present similar values for both
parameters. Table 7 shows the SJ Ratio and the TD values
of San Francisco and Madrid. As shown, both cities present
very similar values. Hence, according to previous results,

Table 7: Topology features of maps with similar SJ Ratio and TD.

SJR TD

Madrid 0.8783 36.3

San Francisco 0.8863 36.3
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Figure 8: Percentage of informed vehicles in maps with similar SJR
and similar TD values.

the communications performance in terms of vehicles
informed in both cities should be very similar.

Figure 8 shows the results obtained under the same
number of vehicles (i.e., when simulating 400 vehicles) in
Madrid and San Francisco. In particular, results con	rm that
the communication process in maps which present similar
values of both SJR and TD performs very similarly when the
number of vehicles is also similar. Moreover, the percentage
of informed vehicles remains quite similar during all the
dissemination process.

6. Novel Density Metric

In the literature, we can 	nd a plethora of VANET-based new
applications, services, and protocols specially designed to
propel future Intelligent Transportation Systems and mainly
focused on increasing tra�c safety and comfort of drivers
and passengers. However, it is very common that authors
only validate their proposals under very simplistic (and
sometimes unrealistic) scenarios. In order to better validate
their approaches, they should assess them under a di
erent
number of vehicles, realistic topologies, conditions, and so
forth, thereby obtaining more signi	cant conclusions.

According to the results presented in the previous sec-
tion, we now propose a novel vehicle density metric which
accounts not only for the number of vehicles and the area of
the scenario but also for the complexity and the maximum
capacity of the roadmap. Our metric will allow researchers
to accurately characterize the di
erent roadmaps and fairly
validate their proposals.
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6.1. Our Proposal. In vehicular networks, it is very common
to consider the vehicular density as the number of vehicles in a
certain area.However, along this work, we have demonstrated
that this metric is not suitable since the number of vehicles
and the area of the scenario are not the only parameters highly
a
ecting communication performance.

As expected, and similarly to mobility, communicating
vehicles cannot reach all the vehicles located in the scenario.
�erefore, and taking into account the special characteristics
of the 802.11p standard, we consider that it is more accurate
to account for the number of vehicles per kilometer of
paved road including the number of lanes in each road. In
addition, we have demonstrated that the layout of the roads
also presents a noticeable in�uence in the communication
capabilities, showing that scenarios with lower SJ Ratios ease
communication among vehicles.

Taking into account these considerations, we propose
a new metric to measure density in vehicular networks.
Considering a scenario consisting of a map formed by a set
S of streets, a set J of junctions, and a total areakm2 , where a
set V of vehicles are moving at a given time, we de	ne density
as shown in

Density (V ,Map)

= (|V | / ∑�∈S length (�) ⋅ num lanes (�)) ⋅ (|J| / |S|)
Areakm2

.
(2)

We can further develop the previous equation as shown
in

Density (V ,Map)

= (|V | / ∑�∈S length (�) ⋅ num lanes (�)) ⋅ (|J| / |S|)
Areakm2

= |V |
∑�∈S length (�) ⋅ num lanes (�) /Areakm2

⋅ |J||S|

= |V |
TD (Map) ⋅

1
SJR (Map)

= Number of vehicles

TD (Map) ⋅ SJR (Map) .

(3)

Note that unlike the traditional density metric which

accounts for the number of vehicles per km2 our proposal
also considers the complexity of the roadmap, and its max-
imum capacity; that is, our approach implicitly includes the
communication possibilities among the vehicles. �erefore,
our novel density metric should be used when accounting for
vehicular communications in future Intelligent Transporta-
tion Systems. Note that vehicles can calculate the number
of vehicles, the Total Distance, and the instant SJ Ratio in
real-time since we consider that all the vehicles are equipped
with communication devices and on-boardGPS systemswith
integrated street maps.

�e main objective is that researchers can characterize
more precisely the di
erent scenarios used in their simula-
tions to better validate their proposals. Using our approach,

Table 8: Number of vehicles required to obtain similar density (�)
values.

SJ Ratio TD � = 0.5 � = 1.25 � = 2.5
Houston 0.8430 43.6 18.4 46.0 92.0

Madrid 0.8783 36.3 16.0 39.9 79.8

San Francisco 0.8863 36.3 16.1 40.2 80.3

Turin 0.8958 43.0 19.3 48.2 96.3

Los Angeles 0.9379 32.3 15.1 37.9 75.7

Amsterdam 1.0310 37.1 19.1 47.8 95.5

Sydney 1.0712 34.2 18.3 45.9 91.7

Liverpool 1.1704 48.3 28.3 70.7 141.4

Dubai 1.2114 29.9 18.1 45.3 90.6

Brussels 1.2311 49.3 30.4 75.9 151.8

Prague 1.2419 62.1 38.6 96.4 192.9

Beijing 1.2573 35.2 22.1 55.3 110.5

Valencia 1.2678 47.8 30.3 75.7 151.4

Rio de Janeiro 1.3516 24.8 16.7 41.9 83.7

Rome 1.3881 32.8 22.8 57.0 114.0

researchers simulating di
erent roadmaps presenting the
same density (�) are guaranteed to obtain similar results in
terms of communication performance.

6.2. Validation of theNovel DensityMetric. In this subsection,
we validate our proposedmetric by studying the performance
of the warning message dissemination process, in terms
of warning noti	cation time and percentage of informed
vehicles. In particular, we simulate three di
erent complexity
scenarios (i.e., San Francisco, Amsterdam, and Valencia)
under three di
erent densities (i.e., low, medium, and high).
Our objective is to demonstrate that our approach better
correlates with the communication performance than the
traditional density metric, allowing researchers to obtain
similar results when simulating di
erent roadmaps with a
di
erent number of vehicles.

Table 8 shows the number of vehicles required to obtain
di
erent densities (i.e., � equal to 0.5, 1.25, and 2.5) for
each scenario. For the sake of clarity, we also included the
values of both SJR and TD parameters. According to this
table, for example, if we simulate 76 vehicles in Los Angeles,
193 vehicles in Prague, and 114 vehicles in Rome, the results
obtained in terms of vehicle communications should be very
similar.

We now proceed to compare the communication perfor-
mance when accounting for the traditional density approach
in contrast to our proposed one. Speci	cally, Figures 9, 10, and
11 show the comparison in terms of percentage of informed
nodes and warning noti	cation time.

Figures 9(a) and 9(b) show the results when simulating

a low density. More speci	cally, 100 veh/km2 (traditional
metric) and � = 0.5 (novel density metric), respectively. As
shown, using the traditional approach, although the number

of vehicles per km2 is the same, the percentage of informed
vehicles is di
erent for each of the scenarios simulated.
However, despite the topology di
erences of the three maps,



Mobile Information Systems 11

San Francisco

Amsterdam

Valencia

0

20

40

60

80

100
In

fo
rm

ed
 v

eh
ic

le
s 

(%
)

10 20 30 40 50 600

Warning noti�cation time (s)

(a)

San Francisco

Amsterdam

Valencia

0

20

40

60

80

100

In
fo

rm
ed

 v
eh

ic
le

s 
(%

)

10 20 30 40 50 600

Warning noti�cation time (s)

(b)

Figure 9: Comparison between the traditional density approach (a) and our proposed metric (b), under low-density conditions.
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Figure 10: Comparison between the traditional density approach (a) and our proposed metric (b), under medium-density conditions.

the warning dissemination process behaves similarly during
all the dissemination process, in terms of informed vehicles
when using our density metric.

Figures 10(a) and 10(b) show the comparison under

medium-density conditions (i.e., 200 veh/km2 and� = 1.25,
resp.). As shown, similarly to the previous results, communi-
cation performance is very similar for the di
erent scenarios
when using our density approach.

Finally, Figure 11 presents the results obtained under
high-density conditions. In particular, we simulated 400 veh/

km2 (see Figure 11(a)) and � = 2.5 (see Figure 11(b)). As
shown, when accounting for the traditional density metric,
Valencia results in lower percentage of informed vehicles,

especially in the 	rst part of the simulation (due to the higher
complexity of the map), whereas when using our proposed
density approach, the di
erent roadmaps present similar
values along all the simulated period.

7. Conclusions

Along this work we have analyzed the importance of the

roadmap topology and the number of vehicles in vehicular

networks performance. So far, only a few researchers have

proposed classi	cations of di
erent scenarios considering

di
erent parameters. In addition, we can 	nd in literature
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Figure 11: Comparison between the traditional density approach (a) and our proposed metric (b), under high-density conditions.

di
erent criteria in order to measure the density in vehicular
networks.

In order to help researchers to better characterize vehicu-
lar communications or assess their new VANET-based ITS
proposals, we encourage them to account not only for the
number of vehicles but also for the complexity of the roadmap
and its maximum capacity. In particular, we propose the use
of the SJ Ratio (SJR) and the Total Distance (TD) of maps to
predict the communications possibilities of them. Simulation
results con	rm that not only the number of vehicles but
also SJR and TD o
er good correlation to communications
performance. More speci	cally, maps with similar SJR and
TD values o
er similar results in terms of vehicles informed.

According to this, we propose a novel density metric
which considers the number of vehicles, the complexity
of the roadmap, and its maximum capacity. Our proposal
allows researchers to accurately characterize the di
erent
urban scenarios and better validate their proposals related to
cooperative Intelligent Transportation Systems.
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