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ON THE SUBGROUP STRUCTURE
OF EXCEPTIONAL GROUPS OF LIE TYPE

MARTIN W. LIEBECK AND GARY M. SEITZ

Abstract. We study finite subgroups of exceptional groups of Lie type, in
particular maximal subgroups. Reduction theorems allow us to concentrate
on almost simple subgroups, the main case being those with socle X(q) of Lie
type in the natural characteristic. Our approach is to show that for sufficiently
large q (usually q > 9 suffices), X(q) is contained in a subgroup of positive
dimension in the corresponding exceptional algebraic group, stabilizing the
same subspaces of the Lie algebra. Applications are given to the study of
maximal subgroups of finite exceptional groups. For example, we show that
all maximal subgroups of sufficiently large order arise as fixed point groups of
maximal closed subgroups of positive dimension.

Introduction

In this paper we establish results aimed at the study of the subgroup structure of
the finite exceptional groups of Lie type, in particular of their maximal subgroups.
Let G(r) be an exceptional group of Lie type over a finite field Fr of order r, where
r is a power of the prime p. Write G(r) = Op

′
(Gσ), where G is a simple algebraic

group over F̄r and σ is a Frobenius morphism of G.
The reduction theorem [LS1, Theorem 2] determines all maximal subgroups of

G(r) which are not almost simple. Thus we concentrate on almost simple maximal
subgroups of G(r); let M be such a subgroup. Of particular interest is the so-called
“generic case”, in which F ∗(M) = X(q), a group of Lie type over a field Fq, also of
characteristic p.

Our approach to the generic case is to attempt to show that the embedding
X(q) < G(r) lifts to an embedding X̄ ≤ G, where X̄ is a simple closed connected
subgroup of G of the same type as X(q). Once this is achieved, we are in a position
to apply results from [Se2, LS1] on the subgroup structure of algebraic groups.

The first lifting result for exceptional groups appeared in [ST1], and showed that
the finite embedding can be lifted under certain hypotheses, one of the hypotheses
being that the characteristic p be suitably large. In this paper we establish lifting
results in which there are hypotheses on the size of the ground field Fq, but no
assumptions on the characteristic. Consequently, the results hold for all but finitely
many possibilities for the groupX(q). For example, Theorem 6 below shows that for
q sufficiently large, either X(q) is the group of fixed points of an automorphism of
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3410 MARTIN W. LIEBECK AND GARY M. SEITZ

G(r), or X(q) = Op
′
(X̄σ) with X̄ maximal among closed connected M〈σ〉-invariant

subgroups of G. (In most cases, “sufficiently large” means that q > 9.)
Once the lifting has been achieved we can apply the results of [Se2, LS1], which

determine those subgroups X̄ of G as in the last sentence of the previous paragraph,
under some mild characteristic restrictions. These restrictions are much weaker
than those required for the result in [ST1]; in particular, p = 0 or p > 7 covers
all the restrictions. However, in view of the results obtained in this paper, it
becomes a high priority issue to extend the analysis in [Se2, LS1] so as to remove
the characteristic restrictions. Such an analysis is under way.

The preceding discussion has been couched in terms of maximal subgroups, but
our results apply much more generally. We establish lifting results for all subgroups
X(q) of G(r), with q sufficiently large. Namely, in Theorem 1 we show that any
such subgroup is contained in a closed connected subgroup X̄ of G stabilizing
precisely the same subspaces of the Lie algebra L(G) as X(q). We also show
(Theorem 4 and Corollary 5) that this connected group X̄ is almost always proper
in G, and that, given mild characteristic restrictions, X(q) = Op

′
(X̄δ) for some

Frobenius morphism δ (Theorem 10). At this point the results of [LS2] determine
the conjugacy class of X(q) in G(r).

Finally, we use our lifting results to clear up a nagging problem on classical
groups. In Theorem 11, we show that an embedding X < Y < C of finite groups of
Lie type in the same characteristic, with C classical and X absolutely irreducible
on the usual module for C, can usually be lifted to a corresponding embedding of
simple algebraic groups; such embeddings of algebraic groups are known [Se1]. See
[Se3] for further discussion of this problem.

We now state our results in detail, beginning with our main lifting results. As
indicated above, these require no assumption on the characteristic p, but do need an
assumption on q, where X = X(q) is as above. In order to specify this assumption
we need the following definition.

Definition. Let G be a simple adjoint algebraic group, and let Σ = Σ(G) be the
root system of G. For a subgroup L of the lattice ZΣ, let t(L) be the exponent of
the torsion subgroup of ZΣ/L. For α, β ∈ Σ, call the element α − β of ZΣ a root
difference. Define

t(Σ(G)) = max{t(L) : L a subgroup of ZΣ generated by root differences}.
Theorem 1. Let X = X(q) be a quasisimple group of Lie type in characteristic p,
and suppose that X < G, where G is a simple adjoint algebraic group of exceptional
type, also in characteristic p. Assume that

q > t(Σ(G)).(2, p− 1) if X = A1(q), 2B2(q) or 2G2(q),
q > 9 and X 6= Aε2(16) otherwise.

Then the following hold:
(i) there is a closed connected subgroup X̄ of G containing X, such that every

X-invariant subspace of the Lie algebra L(G) is also X̄-invariant;
(ii) if also X ≤ Gσ where σ is a Frobenius morphism, then there is a σ-stable

and NG(X)-stable subgroup X̄ containing X such that each X-invariant subspace
of each G-composition factor of L(G) is also X̄-invariant.

Theorem 4 below will show that the subgroup X̄ in the conclusion is proper in
G, unless X has the same type as G.
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Remark. If p is a good prime for G, then L(G) is irreducible as a G-module, so the
subspace invariance conditions in conclusions (i) and (ii) are equivalent; however,
for bad primes L(G) can be reducible (see Proposition 1.10 below), in which case
(i) is stronger than (ii).

In view of Theorem 1, it is of interest to know the values of t(Σ(G)), particularly
for groups G of exceptional type. Dr Ross Lawther has informed us that he has
verified (using a computer) that t(G2) = 12, t(F4) = 68, t(E6) = 124 and t(E7) =
388, while t(E8) is unknown at present.

The bounds in Theorem 1 for groups of type A1,
2B2,

2G2 are relatively large,
and follow from Corollary 3 below, which we shall deduce from the following general
proposition. It should be possible to improve these bounds with additional work.

Proposition 2. Let G be a simple adjoint algebraic group, and let x be a semisim-
ple element of G of finite order greater than mt(Σ(G)), for some positive integer
m. Then there is an infinite closed subgroup S of G such that the following both
hold:

(i) x ∈ S, and some nontrivial power of x, of order greater than m, lies in S0;
(ii) every x-invariant subspace of L(G) is also S-invariant.

Corollary 3. Let X = X(q) be a quasisimple group of Lie type in characteristic
p, and suppose that X < G, where G is a simple adjoint algebraic group, also in
characteristic p. Assume that q > t(Σ(G))m(X), where m(X) is the order of the
Schur multiplier of X/Z(X). Then conclusions (i) and (ii) of Theorem 1 hold.

Note that Proposition 2 and Corollary 3 apply to all types of simple algebraic
group, not just exceptional types.

The proofs of Proposition 2 and Corollary 3 are rather short, and are given in
§2. Reducing the bounds on q to those in Theorem 1 requires a great deal more
effort. After some preliminary results in §3, this is carried out for p 6= 2 in §§4,5
and in §6 for p = 2. With some further effort, our proof could no doubt be extended
to improve the q > 9 bound for subgroups X of rank larger than 2; indeed, when
X has rank greater than half the rank of G, [LST, Theorem 2] gives a stronger
conclusion assuming only that q > 2.

In order to make use of Theorem 1 (or Corollary 3), we need to know that the
subgroup X̄ is proper in G. For this it suffices to show that X̄ acts reducibly
on some G-composition factor of L(G). This information is provided by the next
result.

Definition. We define X and G to be of the same type if X ∼= G
(∞)
σ for some

Frobenius morphism σ; we also say that X is a group of type G.

Theorem 4. Let G be a simple algebraic group in characteristic p, and let X =
X(q) be a subgroup of G, where q = pe and X is quasisimple. Suppose that X is not
of the same type as G, and that X acts irreducibly on every G-composition factor
of L(G).

Then (G, p) = (Cn, 2) or (Bn, 2), and either X = Dε
n(q) or n = 3 and X =

G2(q); further, X lies in a simple connected subgroup Dn or G2 of G.

Combining Theorems 1 and 4, we immediately have

Corollary 5. Let G be a simple adjoint algebraic group of exceptional type, and
suppose that X = X(q) < G, where q is as in the hypotheses of Theorem 1. Then
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either X is of the same type as G, or X < X̄ < G, where X̄ is closed and connected,
and leaves invariant every X-invariant subspace of L(G).

Using this result we shall derive Theorem 6 below, which concerns the maximal
subgroups of the finite exceptional groups of Lie type. In the statement we refer to
[LS1, Theorem 1]; in this result, certain positive integers N(X̄,G) are defined for
pairs (X̄,G) of simple algebraic groups, as follows:

G = E8 E7 E6 F4 G2

X̄ = A1 7 7 5 3 3
A2 5 5 3 3

B2, G2 5 3 3 2
B3 2 2 2

A3, C3, B4 2

For example, N(A2, E7) = 5, and so on. For (X̄,G) not in the table, set N(X̄,G) =
1. We define N(X(q), G) to be equal to N(X̄,G), where X̄ is a simple algebraic
group of the same type as X(q).

The statement of Theorem 6 and its corollaries involves groups G,L and L1

such that G is a simple adjoint algebraic group of exceptional type in characteristic
p, σ is a Frobenius morphism such that L = Op

′
(Gσ) is a finite simple group of

exceptional Lie type, and L1 is a finite group with socle L (i.e. L ≤ L1 ≤ Aut L).

Theorem 6. Let L = Op
′
(Gσ) and L ≤ L1 ≤ Aut L, as above. Suppose that H is

an almost simple maximal subgroup of L1, and F ∗(H) = X(q) with q satisfying the
hypotheses of Theorem 1. Then one of the following holds:

(i) X(q) has the same type as G;
(ii) X(q) = Op

′
(X̄σ) for some maximal closed connected reductive H〈σ〉-stable

subgroup X̄ of G. (The subgroup X̄ is given by [LS1, Theorem 1] if X̄ is non-simple
or if p > N(X(q), G).)

Remarks. 1. There is no assumption on p in the theorem.
2. The subgroups satisfying (i) are uniquely determined up to Gσ-conjugacy by

[LS2, 5.1].
3. Our proof of Theorem 6 shows, more generally, that ifH is any (not necessarily

maximal) subgroup of L1 such that F ∗(H) = X(q) with q as in Theorem 1, then
H ≤ N(X̄σ) for some X̄ as in conclusion (ii).

4. In our proof of Theorem 6 we do not require the full force of the hypothesis
on q; indeed, in the proof we only require the existence of a subgroup X̄ satisfying
the conclusions of Theorem 1.

We recall one further definition before stating the next result. If G,L, L1 are as
above, and D is a σ-stable connected reductive subgroup of G of maximal rank (i.e.
containing a maximal torus), then we call NL1(Dσ) a subgroup of maximal rank of
L1. The subgroups of maximal rank which are maximal in L1 are determined in
[LSS].

Corollary 7. Let L = Op
′
(Gσ) and L ≤ L1 ≤ Aut L, as above. Let H be an

almost simple maximal subgroup of L1, with F ∗(H) = X(q) and q as in Theorem
1, and let Gσ = G(q1). Then one of the following holds:

(i) H is a subgroup of maximal rank;
(ii) X(q) has the same type as G;
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(iii) q = q1 and X(q) = Op
′
(X̄σ), where X̄ is a simple maximal connected σ-

stable subgroup of G not containing a maximal torus. Moreover, assuming that
p > N(X(q), G), the possibilities are:

G = G2 : X(q) = A1(q) (p ≥ 7),
G = F4 : X(q) = A1(q) (p ≥ 13) or G2(q) (p = 7),
G = E6 : X(q) = Aε2(q) (ε=±, p≥5), G2(q) (p≥5, p 6=7), F4(q) or C4(q) (p 6=2),
G = E7 : X(q) = A1(q) (2 classes, p ≥ 17, 19) or Aε2(q) (ε = ±, p ≥ 7),
G = E8 : X(q) = A1(q) (3 classes, p ≥ 23, 29, 31) or B2(q) (p ≥ 7).

Assuming p > N(X(q), G), there is just one Aut(G)-class of subgroups X̄ of each
isomorphism type occurring, and each such Aut(G)-class gives a unique Aut(Gσ)-
class of subgroups X(q).

Corollary 8. Let L = Op
′
(Gσ) and L ≤ L1 ≤ Aut L, as above. There is a

constant c (independent of G,L, L1), such that if H is a maximal subgroup of L1

with |H | > c, then either
(i) H is the normalizer of a subgroup of the same type as G, or
(ii) H = NL1(X̄σ) for some maximal closed connected H〈σ〉-stable subgroup X̄

of G.

Next we state our results on embeddings of arbitrary subgroups X(q) of an
exceptional adjoint algebraic groupG. Theorem 9 is the analogue of [LS2, Theorem
1] for finite groups. In the statement we use numbers N ′(X,G) as defined in [LS2];
these are roughly the same as the numbers N(X,G), with a few differences. The
precise definition of N ′(X,G) is given by the following table:

G = E8 E7 E6 F4 G2

X of type A1 7 7 5 3 3
A2 5 5 3 3
B2 5 3 3 2
G2 7 7 3 2
B3 2 2 2 2
C3 3 2 2 2

A3, B4, C4, D4 2 2 2

Theorem 9. Let X = X(q) < G, with G of exceptional type and q as in Theorem
1, and assume that p > N ′(X,G). If X lies in a parabolic subgroup QL of G,
with unipotent radical Q and Levi subgroup L, then X lies in a Q-conjugate of L.
Further, if also X < Gσ (where σ is a Frobenius morphism), and QL is σ-stable,
then X lies in a σ-stable Q-conjugate of L.

Theorem 10. Let X = X(q) < G, with G of exceptional type and q as in Theorem
1, and assume that p > N ′(X,G). Then

(i) X lies in a closed connected simple subgroup X̃ of G of the same type as X,
and CG(X)0 = CG(X̃)0;

(ii) if also X < Gσ with σ a Frobenius morphism of G, then X lies in a closed
connected semisimple σ-stable subgroup X̄ = X1 . . . Xt of G, where each factor Xi

is simple of the same type as X; moreover, CG(X)0 = CG(X̄)0.

The embeddings of the subgroups X̃ and X̄ in the conclusion of Theorem 10 are
given by [LS2, Theorems 5 and 7], so Theorem 10 determines the embeddings of
X(q) in G and Gσ.
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For X = X(q) of rank more than 1
2 rank(G), the conclusion of Theorem 10 is

obtained in [LST, Theorem 2] with no assumption on p, and assuming only that
q > 2.

Finally, we give a consequence of Theorem 1 to the study of subgroups of finite
classical groups.

Theorem 11. Let C be a finite classical simple group in characteristic p, with
usual module V . Suppose that X = X(q) and Y are finite simple groups of Lie
type in characteristic p, not of the same type, such that X < Y < C and X is
absolutely irreducible on V ; when Y is of exceptional type, assume also that q is as
in Theorem 1 (relative to Y ).

Then the embedding X < Y < C lifts to an embedding of closed subgroups
X̄ < Ȳ ≤ C̄, where X̄, Ȳ , C̄ are connected simple algebraic groups of the same
types as X,Y,C.

Remark. Assuming Ȳ , C̄ are not both classical groups on the same natural module,
all possibilities for the triple (X̄, Ȳ , C̄) in the conclusion are given by [Se1, Te1].

The layout of the paper is as follows. After the preliminary first section, we give
in §2 the proofs of Proposition 2 and Corollary 3. The following four sections are
devoted to the proof of Theorem 1. In §3 we describe the strategy and give some
preliminary lemmas. The proof is then carried out for q odd in §§4,5, and for q
even in §6. In §7 we prove Theorem 4, and §8 contains proofs of Theorem 6 and its
corollaries. Theorems 9 and 10 are proved in §9, and Theorem 11 in §10.

We use the following notation throughout the paper. If Y is a connected sim-
ple algebraic group over the algebraically closed field K, or a corresponding finite
group of Lie type, and λ is a dominant weight, then VY (λ) denotes the rational
irreducible KY -module with high weight λ, and WY (λ) denotes the corresponding
Weyl module. If V1, . . . , Vk are modules, then V1/ . . . /Vk denotes a module having
the same composition factors as V1 ⊕ . . . ⊕ Vk. We often abbreviate this notation
as follows: if µ1, . . . , µk are dominant weights for the group Y , and c1, . . . , ck are
positive integers, then

µc11 / . . . /µ
ck

k

always denotes a KY -module having the same composition factors as the module
VY (µ1)c1 ⊕ . . .⊕ VY (µk)ck .

When Y is a subgroup of G and V is a KG-module, we use V ↓ Y for the
restriction of V to Y . If Y is connected and simple in characteristic p > 0, and q
is a power of p, then σq denotes a standard Frobenius morphism of Y ; that is, a
morphism inducing the map xα(t) → xα(tq) on root groups. If V is a KY -module,
we write V (q) for the KY -module obtained from V by twisting the action of Y by
σq (i.e. changing the action from v → vy to v → vyσq ).

We use Ti to denote a torus of rank i, and W (G) for the Weyl group of G. The
fundamental roots in a fundamental system for G are denoted α1, . . . , αl, and the
corresponding fundamental dominant weights are λ1, . . . , λl. The Dynkin diagram
of G is labelled as in [Bo, p.250].

For ε = ±, Aεn(q) denotes the group An(q) if ε = + and 2An(q) if ε = −; we use
similar notation for types Dε

n, E
ε
6, B

ε
2, G

ε
2, F

ε
4 , and also for Dε

4 we allow ε = 3 to
denote 3D4. Finally, if X is a finite group of Lie type, then rk(X) denotes the rank
of the simple algebraic group corresponding to X .
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1. Preliminaries

In this section we present some preliminary results which will be used throughout
the paper.

The first few results concern representations of groups of type A1. For the group
G = SL2(K) over the algebraically closed field K of characteristic p > 0, and for
0 ≤ i ≤ p − 1, we denote simply by i (or sometimes V (i)) the rational irreducible
KG-module with high weight iλ1, of dimension i+ 1; these are the restricted KG-
modules. By Steinberg’s tensor product theorem, every finite-dimensional rational
irreducible KG-module is a tensor product i0 ⊗ i

(p)
1 ⊗ . . . ⊗ i

(pk)
k of field twists of

restricted modules i0, . . . , ik, and such a module has high weight
∑
irp

r.
Using [St, Lemma 79], we have the following well known result.

Proposition 1.1. Let V (i) denote the restricted module for G = SL2(K) of high
weight i. If i is odd, then the induced group

GV (i) = SL2(K) ≤ Sp(V (i));

and if i is even, then GV (i) = PSL2(K) ≤ SO(V (i)).

The next result concerns extensions of modules for SL2(K) and its subgroups
SL2(pe), and is taken from [AJL, 3.9 and 4.5]. We thank Professor J-P. Serre for
pointing out to us that [AJL, 4.5] has a small omission when e = 2, and giving us
the corrected version below.

Proposition 1.2. Let G = SL2(K), and for e ≥ 1 denote by Ge a subgroup
SL2(pe) of G.

(i) Suppose p > 2 and let 0 ≤ a, b ≤ p− 1. Then Ext1G1
(a, b) 6= 0 if and only if

a+ b = p− 3 or p− 1.
(ii) Let e ≥ 2, and suppose λ, µ < pe have p-adic expansions λ =

∑e−1
0 aip

i, µ =∑e−1
0 bip

i (where 0 ≤ ai, bi ≤ p−1). Set ae = a0 and be = b0. Then Ext1Ge
(λ, µ) 6= 0

if and only if there exists k ≥ 0 such that

ai = bi for i 6∈ {k, k + 1}, ak + bk = p− 2, and ak+1 − bk+1 = ±1.

Further, Ext1Ge
(λ, µ) has dimension at most 1, except if e = 2 and, writing s =

1
2 (p − 1), t = 1

2 (p − 3), we have (a0, a1, b0, b1) = (s, s, t, t), (t, t, s, s), (s, t, t, s) or
(t, s, s, t) (in which case it has dimension 2).

(iii) Let λ, µ be positive integers with p-adic expansions λ =
∑
aip

i, µ =
∑
bip

i.
Then Ext1G(λ, µ) 6= 0 if and only if there exists k ≥ νp(λ + 1) (where νp(λ + 1) =
max{i : pi divides λ+ 1}), such that

ai = bi for i 6∈ {k, k + 1}, ak + bk = p− 2, and ak+1 − bk+1 = ±1.

Further, Ext1G(λ, µ) has dimension at most 1.

Proposition 1.3. Let G = SL2(K), Ge = SL2(pe), and let 0 ≤ λ, µ < pe.
(i) The restriction map Ext1G(λ, µ) → Ext1Ge

(λ, µ) is injective; indeed, this map
is an isomorphism unless either e = 1, or λ, µ are as in the exceptional cases at the
end of 1.2(ii).

(ii) Suppose that e ≥ 2, and, if e = 2, that λ, µ are not as in the exceptional
cases at the end of 1.2(ii). Then there exist λ′, µ′ such that λ′ ↓ Ge ∼= λ ↓ Ge,
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µ′ ↓ Ge ∼= µ ↓ Ge and

Ext1G(λ′, µ′) ∼= Ext1Ge
(λ′, µ′) ∼= Ext1Ge

(λ, µ).

In particular, taking µ = 0, we have H1(G, λ′) ∼= H1(Ge, λ′) ∼= H1(Ge, λ).

Proof. Part (i) is immediate from [CPSK, 7.4], and part (ii) follows from 1.2; note
that in (ii) it may be necessary to choose λ′ 6= λ or µ′ 6= µ, since by 1.2 there exist
λ, µ such that Ext1G(λ, µ) = 0 but Ext1Ge

(λ, µ) 6= 0 (the pairs λ, λ′ and µ, µ′ are
related by a field morphism of G).

Proposition 1.4. Let G be a connected simple algebraic group over K and let H
be a finite subgroup of G. Suppose V is a finite-dimensional rational KG-module
satisfying the following conditions:

(i) every G-composition factor of V is H-irreducible;
(ii) for any G-composition factors M,N of V , the restriction map Ext1G(M,N) →

Ext1H(M,N) is injective;
(iii) for any G-composition factors M,N of V , if M ↓ H ∼= N ↓ H then M ∼= N

(as G-modules).
Then G and H fix exactly the same subspaces of V .

Proof. The proof goes by induction on dimV . It is clearly sufficient to show that
if W is an irreducible H-submodule of V , then G fixes W .

Thus let W be an irreducibleH-submodule of V . Define U = 〈WG〉, and suppose
that W 6= U . If U is G-irreducible, then by (i) it is H-irreducible, so U = W ,
contrary to assumption. Therefore U is G-reducible; let W0 be a G-irreducible
submodule of U . Then W0 6= W .

Consider V/W0. Now H fixes the subspace (W + W0)/W0 of this, which is H-
irreducible. By induction, G fixes W + W0. Hence U = W + W0. As W,W0 are
H-irreducible, U = W +W0 = W ⊕W0. Thus U is not H-indecomposable, and so
by (ii), U is also not G-indecomposable. Therefore there is a G-module W1 such
that

U = W ⊕W0 = W1 ⊕W0.

Note that W is H-isomorphic to W1. If W is not H-isomorphic to W0, then
W,W0 are the only irreducible H-submodules of U , so W1 = W and G fixes W , a
contradiction. Therefore W is H-isomorphic to W0, and hence by (iii) these two
spaces are also G-isomorphic. Now W ⊆ W1 ⊕W0, so W = {w + wφ : w ∈ W1}
for some H-isomorphism φ : W1 → W0. But φ is a G-isomorphism: for let α be
any G-isomorphism from W1 to W0. Then αφ−1 : W1 →W1 is an H-isomorphism,
so by Schur’s Lemma, αφ−1 = λ.id for some λ ∈ K∗. Hence φ = λ−1α, and so φ
is a G-isomorphism, as claimed. It follows that W is fixed by G, contrary to our
assumption that W 6= U . Therefore W = U , and this completes the proof.

The next result is a consequence of 1.4; it is actually a special case of [CPSK,
7.5].

Corollary 1.5. Let G = SL2(K) and Ge = SL2(pe) < G. If V is a finite-
dimensional rational KG-module such that every composition factor of V ↓ G has
high weight less than pe, then G and Ge fix exactly the same subspaces of V .

Proof. Take H = Ge in 1.4. Conditions (i) and (iii) of 1.4 are clearly satisfied, and
condition (ii) follows from 1.3(i).
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Proposition 1.6. Let G = SL2(K) and Y ∼= SL2(pe), and let T, TY be Cartan
subgroups of G, Y respectively. Let Q be a finite-dimensional rational KG-module,
and regard the semidirect product QG as an algebraic group. Suppose that Y < QG,
TY < QT , CQ(T ) = CQ(TY ) and that H1(G,Q) ∼= H1(Y,Q). Then there is a closed
complement to Q in QG which contains Y .

Proof. We may assume that TY < T . For x ∈ Y , let x = uxrx with ux ∈ Q, rx ∈ G.
Then X = {rx : x ∈ Y } is a subgroup of G isomorphic to Y , and the hypotheses
hold with X replacing Y . The map γ : X → Q given by γ(rx) = ux is a 1-
cocycle. The assumption that CQ(T ) = CQ(TY ) implies that the restriction map
H1(G,Q) → H1(X,Q) is injective, by [CPSK, 7.3]. Hence by hypothesis, the
restriction map is an isomorphism, and γ extends to a rational 1-cocycle γ̄ : G→ Q.
Then {γ̄(g)g : g ∈ G} is a closed complement to Q in QG containing Y .

Proposition 1.7. Let G = SO2n(K), where K is algebraically closed of charac-
teristic p > 2n, and let u be an element of G of order p. Then there is a closed
connected subgroup A ∼= A1(K) of G containing u, such that every composition
factor of VG(λ1) ↓ A is restricted.

Proof. Let V = VG(λ1). By [SS, IV, 2.14 and 2.15], u is determined up to G-
conjugacy by the sizes of its Jordan blocks on V ; moreover, the number of Jordan
blocks of each even size is even. Let r1, . . . , rk be the sizes of the odd Jordan blocks
of u, and s1, s1, . . . , sl, sl the sizes of the even Jordan blocks, listed in pairs. Then
G has a subgroup

∏k
1 SOri ×

∏l
1 SLsi . Each factor has an irreducible subgroup of

type A1(K), and we define A to be a diagonal subgroup of the product of these
A1’s such that the composition factors of V ↓ A have high weights ri − 1, si − 1.
Any nontrivial unipotent element of A has the same Jordan block sizes on V as u,
hence is G-conjugate to u. This completes the proof.

Next we state two results on modules for groups of type A2. The first is taken
from [LS2, 1.9, 1.11], and is a consequence of the sum formula in [An].

Proposition 1.8. Let G = A2(K), and let a, b ∈ {0, 1, . . . , p− 1}.
(i) If a+ b+ 2 ≤ p, or if b = 0, then WG(ab) is irreducible.
(ii) If WG(ab) is reducible, then it is indecomposable with two composition factors,

VG(ab) and VG(p− b− 2, p− a− 2).
(iii) WG(ab) has dimension 1

2 (a+ 1)(b+ 1)(a+ b+ 2).

The next result is a straightforward application of 1.8.

Proposition 1.9. Let A = Aε2(p) with p = 11 or 13, and let S be a subgroup
SL2(p) of A centralizing an involution. Suppose V = VA(ab) is a restricted module
for A satisfying

(i) a ≥ b and a+ b ≥ 9, and
(ii) dimV ≤ 124 if a 6= b, and dimV ≤ 248 if a = b.

Then the possibilities for a, b and V ↓ S are as in the following table (in the last
column, the superscripts denote the multiplicities of each composition factor).
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ab p dimV V ↓ S
12, 0 13 91 121/111/101/....
11, 0 13 78 111/101/91/....
10, 0 11, 13 66 101/91/81/....
90 11, 13 55 91/81/71/....
11, 1 13 102 121/112/101/....
91 13 120 101/92/....

11 75 101/92/82/....
81 11, 13 99 9/82/....
10, 2 13 111 121/112/102/....
82 11 82 101/92/82/71....
93 13 118 121/112/102/92/....
73 11 87 101/92/82/....
84 13 123 121/112/102/....
66 13 127 121/112/102/....
64 11 90 101/92/82/....
55 13 216 101/92/83/....

11 91 101/92/82/72....

Next we prove some results concerning the representation of a simple algebraic
group G on its Lie algebra L(G). The first is well known, but we give a proof for
completeness.

Proposition 1.10. The G-composition factors of L(G) are as in the following ta-
ble.

G p comp. factors dimensions
of L(G)

An p - n+ 1 λ1 + λn (n+ 1)2 − 1
p|n+ 1 λ1 + λn/0 (n+ 1)2 − 2, 1

Bn p 6= 2 λ2 2n2 + n
p = 2, n odd λ1/λ2/0 2n, 2n2 − n− 1, 1

p = 2, n > 2 even λ1/λ2/02 2n, 2n2 − n− 2, 2
p = 2, n = 2 λ1/2λ2/02 4, 4, 2

Cn p 6= 2 2λ1 2n2 + n
p = 2, n odd 2λ1/λ2/0 2n, 2n2 − n− 1, 1
p = 2, n even 2λ1/λ2/02 2n, 2n2 − n− 2, 2

Dn p 6= 2 λ2 2n2 − n
p = 2, n odd λ2/0 2n2 − n− 1, 1
p = 2, n even λ2/02 2n2 − n− 2, 2

E8 any λ8 248
E7 p 6= 2 λ1 133

p = 2 λ1/0 132, 1
E6 p 6= 3 λ2 78

p = 3 λ2/0 77, 1
F4 p 6= 2 λ1 52

p = 2 λ1/λ4 26, 26
G2 p 6= 3 λ2 14

p = 3 λ1/λ2 7, 7
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Proof. For G of exceptional type this is proved in [Se2, 1.2]. Assume now that G
is classical.

Consider first G = An. The highest root vector in L(G) affords weight λ1+λn, so
the composition factor VG(λ1 +λn) of L(G) has all n2+n roots occuring as weights.
By [Se1, 8.6], the 0-weight space of VG(λ1 + λn) has dimension n if p - n + 1, and
dimension n− 1 if p|n. The conclusion follows for An.

Next consider G = Bn, Cn, Dn with p 6= 2. The highest long root vector affords
weight λ2, 2λ1, λ2 respectively; hence L(G) has a composition factor of this high
weight. Also, if V = VG(λ1) (of dimension 2n + 1, 2n, 2n respectively), then by
[Se1, 8.1], the G-modules

∧2
V, S2V,

∧2
V (respectively) are irreducible, and are

isomorphic to VG(λ2), VG(2λ1), VG(λ2). Since
∧2
V, S2V,

∧2
V (respectively) have

dimension equal to that of L(G), it follows that L(G) is irreducible of high weight
λ2, 2λ1, λ2 respectively, as in the conclusion.

In all the remaining cases we have p = 2. We begin with G = Dn. We may
take n ≥ 4 and G = SO2n = SO(V ) (note that the composition factors of L(G) are
independent of the form of the group G). The highest root vector affords weight λ2.
We work out the dimension of the composition factor VG(λ2), by considering the
action of G on

∧2
V (of which VG(λ2) is a section). Observe first that the orbit of λ2

under the Weyl group of G has size 2n2− 2n (which is the number of roots of Dn);
so the dimension of VG(λ2) will be determined once we calculate the dimension of
the 0-weight space. Now G has a subgroup GLn containing a maximal torus T .
The Weyl group Sn of GLn acts on the 0-weight space M of T on

∧2
V as on the

natural n-dimensional permutation module over K. Writing Vi for an irreducible
Sn-module of dimension i, we have

M ↓ Sn = V1 ⊕ Vn−1, if n is odd
V1/Vn−2/V1 (indecomposable), if n is even.

A subgroup GL4 of G has a composition factor of high weight λ1 + λ3 in VG(λ2).
Hence by the An case above, we see that the 0-weight space of VG(λ2) has dimension
at least 2; from the Sn-action described above, the 0-weight space therefore has
dimension at least n − 1 if n is odd, and at least n − 2 if n is even. Therefore
dimVG(λ2) is at least 2n2 − n− 1 if n is odd, and at least 2n2 − n− 2 if n is even.
As G = SO(V ) < Sp(V ), we see that G fixes a 1-space 〈w〉 in

∧2
V . It follows

that dimVG(λ2) = 2n2 − n− 1 if n is odd. Finally, dimVG(λ2) = 2n2 − n− 2 if n
is even: for in this case the G-invariant 1-space 〈w〉 cannot be a direct summand
(as M ↓ Sn is indecomposable), so the self-duality of

∧2
V implies that there is a

G-invariant subspace W of codimension 1 in
∧2
V , and VG(λ2) ∼= W/〈w〉.

Next consider G = Bn, with p = 2 and n > 2. The highest long root affords
weight λ2, and the highest short root affords λ1. Also VG(λ1) has dimension 2n.
Moreover, G fixes the ideal I of L(G) generated by all eα with α a short root; and
I ⊆ L(An1 ), where An1 is a commuting product of short A1’s. Thus a consideration
of weights implies that I ↓ G = λ1/0k for some k. Now the long roots form a
subsystem Dn, so the composition factor VDn(λ2) of L(Dn) is a section of L(G)/I.
By [Se1, 4.1(iii)], VDn(λ2) has the same dimension as VBn(λ2), and by the previous
paragraph, this dimension is 2n2 − n− 1 if n is odd, and 2n2 − n− 2 if n is even.
The conclusion now follows. The case where G = B2, p = 2 follows from the C2

case, given below.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3420 MARTIN W. LIEBECK AND GARY M. SEITZ

Finally, letG = Cn with p = 2. The highest long root affords 2λ1, and the highest
short root affords λ2. Again G fixes the ideal of L(G) generated by all eα with α
short, which is contained in L(Dn). By [Se1, 4.1(iii)], dimVCn(λ2) = dim VDn(λ2),
and the conclusion follows as above.

Proposition 1.11. Let G be a simple algebraic group in characteristic p, and let
T be a maximal torus of G. Then CL(G)(L(T )) = L(T ), unless (G, p) = (Cn, 2) (or
(B2, 2)). In the exceptional cases, CL(G)(L(T )) = L(An1 ) (or L(A2

1)).

Proof. Let A = CL(G)(L(T )). Then A is T -invariant, hence is spanned by L(T ),
together with those elements eα of L(G) which centralize L(T ). Note that if eα ∈ A
then e−α ∈ A. We may assume that G 6= A1.

Suppose A 6= L(T ), so that eα ∈ A for some root α. Conjugating by an element
of the Weyl group, we may assume that α is a fundamental root. As hα centralizes
eα, we have p = 2.

If there is a root β such that (α, β) = −1, then hβ does not centralize eα, a
contradiction. Therefore α cannot lie in an A2 subsystem of Σ(G). Hence there
must be more than one root length, and α must be a long root. It follows that
G = B2 or Cn. The B2 case can be treated as C2, so we take G = Cn. Now the
proof of 1.10 shows that the weight α occurs within a composition factor VCn(2λ1)
of L(G). Because of the field twist, L(T ) acts trivially on this module. Moreover,
the fundamental A1’s corresponding to long roots commute, so this completes the
proof.

Proposition 1.12. Let G be a simple algebraic group over K, and let φ : G→ G
be a morphism which is an automorphism of abstract groups.

(i) Suppose that Gφ is not a finite Suzuki or Ree group, and let V be a G-
composition factor of L(G). If M is a subspace of V , then (GM )φ = GM ′ for some
subspace M ′ of V .

(ii) Suppose Gφ is a finite Suzuki or Ree group, and let V1, V2 be the two G-
composition factors of L(G). If M is a subspace of Vi (i = 1, 2), then (GM )φ = GM ′

for some subspace M ′ of V3−i.
(iii) Let X be a φ-stable subgroup of G, and let M be the collection of all

X-invariant subspaces of all G-composition factors of L(G). Then the subgroup⋂
W∈MGW of G is φ-stable.

Proof. (i) Let the G-module V have high weight λ and correspond to the represen-
tation ρ : G→ GL(V ). We may write φ = yτσ, where y, τ, σ are (possibly trivial)
inner, graph, field automorphisms, respectively. By 1.10, the representations ρ and
τρ of G are equivalent, as they both have high weight λ. Hence if σ is a q-power
field automorphism (where q = pe ≥ 1), then the high weight of the representa-
tion φρ is qλ. There is therefore a q-power field automorphism ω of GL(V ) such
that the representations φρ and ρω of G are equivalent. The automorphism ω is
induced by a semilinear transformation V → V which we shall also denote by ω.
Then yω = ω−1yω for y ∈ GL(V ). Thus, identifying each g ∈ G with its image
gρ ∈ GL(V ), there exists x ∈ GL(V ) such that gφ = gωx = x−1ω−1gωx, for all
g ∈ G. Writing δ = ωx, this gives δgφ = gδ for all g ∈ G, and we have

(vδ)gφ = (vg)δ

for all v ∈ V, g ∈ G. If M is a subspace of V , and m ∈ M, g ∈ GM , then
(mδ)gφ = (mg)δ ∈ Mδ, and hence gφ ∈ GMδ. Therefore (GM )φ ≤ GMδ . For the
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reverse inclusion, write g ∈ GMδ as g = (gφ
−1

)φ. Using the displayed equality, we
see that gφ

−1 ∈ GM , as required. Part (i) is now established.
(ii) Here Gφ is a finite group of type 2B2,

2G2 or 2F4. Let V1, V2 be the compo-
sition factors of L(G), as in 1.10, and let ρi : G → GL(Vi) (i = 1, 2) be the corre-
sponding representations. As above, consideration of high weights shows that there
are automorphisms ωi of GL(Vi) such that the representations φρi and ρ3−iω3−i are
equivalent for i = 1, 2. Thus there are invertible linear transformations δ : V1 → V2,
γ : V2 → V1 such that

(v1gφ)δ = (v1δ)gω2 , (v2gφ)γ = (v2γ)gω1

for all vi ∈ Vi, g ∈ G (where we write just vig instead of vi(gρi). A calculation
similar to that in part (i) now shows that for subspaces Mi of Vi, we have

GM1 = (GM1δω
−1
2

)φ, GM2 = (GM2γω
−1
1

)φ,

giving (ii).
Finally, (iii) is immediate from (i) and (ii).

The next result is presumably well known, but we have been unable to find a
reference for it.

Proposition 1.13. Let G be a simple algebraic group over K = F̄p, and let σ be
a Frobenius morphism of G such that Op

′
(Gσ) = G(q), a finite group of Lie type

over Fq. Suppose H is a closed, connected, simple subgroup of G which is σ-stable.
Then Op

′
(Hσ) = H(q), a group of Lie type over the same field Fq.

Proof. Assume first that Gσ is not a Suzuki or Ree group, so that σ is defined over
Fq. By [SS, I, 2.9], σ fixes a Borel subgroup BH of H , and a maximal torus TH
therein. Let UH = Ru(BH). Notice that since σ is defined over Fq, Hσ is also not
a Suzuki or Ree group; hence there exists a σ-stable long root subgroup U of UH .

We claim that |Uσ| = q. To see this, observe first that since the action of σ on
U ∼= K+ is defined over Fq (see [Bor1, AG 14.4]), we haveK[U ] = K[x] ∼= K⊗Fq[x].
Hence the comorphism σ∗ induces the q-power map x → xq on Fq[x]. There is a
polynomial f such that σ(u) = f(u) for all u ∈ U , and we have

f(u) = x(σ(u)) = σ∗(x)(u) = xq(u) = uq.

Hence |Uσ| = q, as claimed.
We have now shown that a long root subgroup of Hσ has order q, from which

the conclusion follows.
Finally, assume that Gσ is a Suzuki or Ree group. Then σ2 is a q-power field

morphism of G, and from the above proof we have |Uσ2 | = q, where U is a σ2-stable
long root subgroup of H . As σ squares to σ2, it follows that either σ induces a field
morphism of H , or Hσ is a Suzuki or Ree group. In the latter case we have the
result. The former leads to a contradiction, as here we can choose U to be σ-stable
and obtain |Uσ| = q1/2. But this is impossible as q is an odd power of p.

We conclude this section by stating a result concerning the centralizers of semi-
simple elements of prime order in simple algebraic groups; this result is taken from
[GL, 14.1].

Proposition 1.14. Let G be a simple algebraic group, and let α1, . . . , αl be a sys-
tem of fundamental roots for the root system of G; let α0 =

∑
ciαi be the highest

root. Suppose x ∈ G is a semisimple element of prime order r. Then CG(x)0 is a
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reductive subgroup of maximal rank in G, and if ∆ is the Dynkin diagram of the
root system of (CG(x)0)′, then one of the following holds:

(i) ∆ is obtained by deleting nodes from the Dynkin diagram of G;
(ii) ∆ is obtained from the extended Dynkin diagram of G by deleting one node

αi, where r = ci.

2. Proof of Proposition 2 and Corollary 3

The proof of Proposition 2 relies upon the following result.

Proposition 2.1. Let G be a simple algebraic group over the algebraically closed
field K, let T be a maximal torus of G and let X(T ) be the character group of T .
For any subgroup L of X(T ), define

Ann(L) = {t ∈ T : λ(t) = 1 for all λ ∈ L}
Then the exponent of Ann(L)/(Ann(L))0 divides t(L) (the exponent of the torsion
subgroup of X(T )/L).

Proof. Choose a Z-basis f1, . . . , fn of X(T ) such that n1f1, . . . , nrfr is a Z-basis
of L, for some positive integers n1, . . . , nr. Define a morphism h : T → (K∗)n by

h(t) = (f1(t), . . . , fn(t)) for t ∈ T.
Then h has comorphism h∗ such that h∗(πi) = fi (where πi is the ith projection
map on (K∗)n). It follows that h∗ is an isomorphism. The surjectivity of h∗ implies
that h is injective. Since the image of h is closed, dimension considerations imply
that h is an isomorphism of algebraic groups. Thus, if

T1 = h−1{(α1, . . . , αr, 1, . . . , 1) : αi ∈ K∗},

T2 = h−1{(1, . . . , 1, αr+1, . . . , αn) : αi ∈ K∗},
then T = T1 × T2, and both T1 and T2 are tori. Also, X(T ) = X(T1)×X(T2) and
L ≤ X(T1).

Write gi = nifi for 1 ≤ i ≤ r, and define d : T → (K∗)n by

d(t) = (g1(t), . . . , gr(t), 1, . . . , 1) for t ∈ T.
Then Ann(L) = kerd, and (ker d)0 = T2. Let t ∈ Ann(L) and e = exp(X(T1)/L).
As X(T1)/L is the torsion group of X(T )/L, we have e = t(L). We need to show
that te ∈ T2. This is equivalent to χ(te) = eχ(t) = 1 for all χ ∈ X(T1). However,
if χ ∈ X(T1), then eχ ∈ L, so that eχ(t) = 1, as required.

Proof of Proposition 2. As in the hypothesis of Proposition 2, let G be a simple
adjoint algebraic group, and let x be a semisimple element of G of finite order
greater than mt(Σ(G)), for some positive integer m. We aim to find an infinite
closed subgroup S of G satisfying conclusions (i) and (ii) of Proposition 2.

Choose a maximal torus T of G containing x, and let X(T ) denote the character
group of T . Regard the root system Σ(G) of G as a subset of X(T ) in the usual
way. As G is adjoint, ZΣ = X(T ). Define subgroups L,L′ of ZΣ as follows:

L′ = 〈α− β : α, β ∈ Σ(G) and α(x) = β(x)〉,

L = 〈α− β, γ : α, β, γ ∈ Σ(G), α(x) = β(x) and γ(x) = 1〉.
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Since γ(x) = 1 implies that γ(x) = γ(x)−1, hence 2γ ∈ L′, we see that t(L) (the
exponent of the torsion group of ZΣ/L) divides t(L′). By the definition of t(Σ(G)),
we have t(L′) ≤ t(Σ(G)), and so t(L) ≤ t(Σ(G)).

Let S = Ann(L), the annihilator of L in T . Clearly x ∈ S. By 2.1, the exponent
of S/S0 divides t(L). Since x has order greater than mt(Σ(G)), this means that
some nontrivial power of x, of order greater than m, lies in S0. In particular S0 6= 1.
Thus conclusion (i) of Proposition 2 holds.

To prove (ii) of Proposition 2, write

L(G) = L0 ⊕
∑

α∈Σ(G)

Lα,

where L0 = L(T ), and for α ∈ Σ(G),

Lα = {v ∈ L(G) : t(v) = α(t)v for all t ∈ T }.
Let W be an x-invariant subspace of L(G). For a character χ of 〈x〉, set Wχ =
{v ∈ W : x(v) = χ(x)v}; then

W =
∑
χ

Wχ,

the sum being over all irreducible characters χ of 〈x〉. For nontrivial such χ, we
have

Wχ ⊆ L(χ) =
∑

{Lα : α ∈ Σ(G), α(x) = χ(x)}.
If α1, . . . , αk are the roots such that αi(x) = χ(x), then αi − αj ∈ L for i 6= j;
hence αi(s) = αj(s) for all s ∈ S. It follows that each s ∈ S acts on L(χ) as a
scalar multiple of the identity, and hence S fixes Wχ. Finally, to see that S fixes
W1 = CW (x), observe that

W1 ⊆ L0 + L(1) = L0 +
∑

{Lα : α ∈ Σ(G), α(x) = 1}.
If α(x) = 1 then α ∈ L, hence α(s) = 1 for all s ∈ S; thus S acts as the identity on
L0 + L(1), so S fixes W1. We conclude that S stabilizes W , completing the proof
of Proposition 2.

Proof of Corollary 3. Assume that G is a simple adjoint algebraic group in char-
acteristic p, and that X = X(q) < G, with X quasisimple of Lie type over Fq
(q = pe). Assume also that q > t(Σ(G))m(X), where m(X) is the order of the
Schur multiplier of X/Z(X).

Observe that X contains a subgroup isomorphic to SL2(q) or 2B2(q), unless
X = L2(q) or 2G2(q). Excluding the latter possibilities for X , we see that X
has a semisimple element x of order at least q + 1, and by assumption this is
greater than t(Σ(G)).|Z(X)|; and when X = L2(q) or 2G2(q), X has an element
of order (q + 1)/(2, p− 1) or q +

√
3q + 1 respectively, which is again greater than

t(Σ(G)).|Z(X)|. Applying Proposition 2 with m = |Z(X)|, we see that there is an
infinite closed subgroup S of G such that x ∈ S, 1 6= xn ∈ S0 − Z(X) for some n,
and every x-invariant subspace of L(G) is S-invariant. Define

X̄ = 〈X,S〉0.
Then xn ∈ (X ∩ X̄)−Z(X); hence, as X ∩ X̄ is normal in X and X is quasisimple,
we have X < X̄. Also every X-invariant subspace of L(G) is certainly x-invariant,
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hence is also 〈X,S〉-invariant, and therefore is X̄-invariant. This completes the
proof of part (i) of Corollary 3.

For part (ii) of Corollary 3, suppose that X ≤ Gσ, where σ is a Frobenius mor-
phism. Let M be the collection of all X-invariant subspaces of all G-composition
factors of L(G), and define

Y =
⋂

W∈M
GW .

By 1.12(iii), Y is σ-stable; also Y is clearly closed and contains the subgroup X̄
defined above. Clearly Y fixes every X-invariant subspace of each G-composition
factor of L(G), so this completes the proof of part (ii) of Corollary 3.

3. Proof of Theorem 1: Strategy and lemmas

We embark upon the proof of Theorem 1. In this section, after some preliminary
observations, we explain the strategy of our proof, which is based on the consider-
ation of the centralizer of a suitably chosen element a of the subgroup X . We then
present some general lemmas concerning this centralizer.

Assume that G is a simple adjoint algebraic group of exceptional type over the
algebraically closed field K of characteristic p, and that X = X(q) is a quasisimple
group of Lie type over Fq (q = pe), with X < G. The case where X = A1(q), 2B2(q)
or 2G2(q) follows from Corollary 3, so we assume that X is not one of these groups.
Suppose further that q > 9 and X 6= Aε2(16) (as in the hypothesis of Theorem
1). We aim to show that X lies in a connected subgroup X̄ of G fixing the same
subspaces of L(G) as X . This is enough to complete the proof of Theorem 1, since
part (ii) of Theorem 1 follows exactly as at the end of §2.

We begin with a lemma which restricts attention to the case where G = E8.

Lemma 3.1. If Theorem 1 holds for G = E8, then it holds in all cases.

Proof. Suppose that Theorem 1 holds for G = E8. We deduce the result for G = E7

as follows. Suppose X = X(q) < E7, with q as in the hypothesis of Theorem 1.
By the conclusion of Theorem 1 for E8, there is a connected subgroup X̄ of E8

containing X which fixes exactly the same subspaces of L(E8) as X does. Since
X fixes L(E7), so does X̄ , and therefore X̄ lies in NE8(L(E7)); this is equal to
A1E7 (since it certainly contains A1E7, which is maximal in E8). Passing to the
actions of X, X̄ on L(E7), and projecting to the adjoint group E7, we have the
conclusion of Theorem 1 for E7. Theorem 1 for G = E6, F4, G2 follows using the
same argument.

In view of Lemma 3.1, we assume from now on that G = E8.
Observe that X contains a subgroup A isomorphic to Aε2(q) (ε = ±) or B2(q).

There is an element a ∈ A such that CA(a)(∞) = S ∼= SL2(q) generated by long
root subgroups of A, and such that a has order divisible by (q − ε)/(3, q − ε) if
A ∼= Aε2(q), and divisible by q + 1 if A ∼= B2(q). By [SS, II, 4.4], CG(a) is a
connected reductive group; write

D = CG(a)′,

so that D is connected and semisimple, and S < D. Note that o(a) ≥ 6, except
when X = L3(13) or U3(11).

The strategy of our proof is based on the following elementary lemma.
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Lemma 3.2. Suppose that there is a subgroup Y of X and a closed connected
subgroup Z of G such that

(i) X ∩ Z 6≤ Z(X), and
(ii) every Y -invariant subspace of L(G) is Z-invariant.

Then the conclusion of Theorem 1 holds.

Proof. Take X̄ = 〈X,Z〉0. Then X ∩ X̄ contains X ∩ Z, so X ∩ X̄ 6≤ Z(X), and
hence X < X̄ . By (ii), X and X̄ fix the same subspaces of L(G).

In the ensuing proof, we attempt to fulfil the hypotheses of 3.2 using two basic
methods. The first method is to try to find a torus Tk such that 〈a〉 ∩ Tk and Tk
fix the same subspaces of L(G). Then, assuming 〈a〉 ∩ Tk 6≤ Z(X), the hypotheses
of 3.2 hold, taking Y = 〈a〉 ∩ Tk, Z = Tk.

This method only works in relatively few cases (usually when D = CG(a)′ has
large rank). In other cases, we use the following approach. Observe that S < D,
and with a couple of exceptions, D is a product of classical groups. By studying the
possible embeddings of S in D, we attempt to find a closed subgroup S̄ ∼= SL2(K)
of D containing S, such that every composition factor of S̄ on L(G) has high weight
less than q. Then by 1.5, S and S̄ fix the same subspaces of L(G), so the hypotheses
of 3.2 hold with Y = S,Z = S̄. It turns out (after much work) that this approach
is successful in most cases; the remaining cases are usually dealt with using the
representation theory of the subgroup A.

It is convenient to carry out the above strategy by contradiction; thus, in view
of 3.2, we assume

there are no subgroups Y ≤ X , Z ≤ G such that Z
is closed and connected, X ∩ Z 6≤ Z(X) and every Y -
invariant subspace of L(G) is Z-invariant.

(†)

We consider now the possibilities for CG(a). Recall that the extended Dynkin
diagram of G = E8 is

e e e e e e e e
e

p p pα1 α3 α4 α5 α6 α7 α8 −α0

α2

and the highest root α0 = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8.

Lemma 3.3. Suppose that o(a) ≥ 6. Then one of the following holds:
(i) CG(a) = TkD, where Tk is a central torus of rank k ≥ 1, and D is a connected

semisimple group;
(ii) CG(a) = A1A2A5 and o(a) = 6.

Proof. This follows easily from 1.14: if (i) does not hold, then every power of a
of prime order r has centralizer obtained by deleting a node from the extended
Dynkin diagram of G corresponding to a coefficient r in the above expression for
α0. Repeating this process, we find that the only possibility with o(a) ≥ 6 is that
in conclusion (ii).
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Lemma 3.4. Suppose that o(a) ≥ 6 and CG(a) = T1D, with T1 a rank 1 torus and
D semisimple. Then CG(T1) = Li, a Levi subgroup corresponding to the Dynkin
diagram of G with the node αi deleted. Moreover D ≤ Li, and one of the possibilities
in Table 1 holds.

Table 1

Li D o(a) possible q
D7 A1A1D5 or A3D4 o(a2) ≤ 4 17, 19, 23, 25
A7 A7 o(a) ≤ 6 17, 19
A1A6 A1A6 o(a) ≤ 8
A1A2A4 A1A2A4 o(a) ≤ 12
A3A4 A3A4 o(a) ≤ 10
A2D5 A2D5 o(a) ≤ 8 17, 19, 23, 25

A2A1A1A3 o(a2) ≤ 8
A1E6 A1E6 o(a) ≤ 6 17, 19

A1A1A5 o(a2) ≤ 6
A1A2A2A2 o(a3) ≤ 6

E7 A1D6 or A7 o(a2) ≤ 4 17, 19, 23, 25
A1A3A3 o(a4) ≤ 4
A2A5 o(a3) ≤ 4

Proof. Observe that CG(T1) is a Levi subgroup of G containing D, a semisimple
group of rank 7; hence CG(T1) = Li for some i.

First suppose that i = 8, so Li = E7. Since the α8-coefficient in the highest root
α0 is 2, the torus T1 has just 5 distinct weights 2,1,0,−1,−2 on L(G); indeed, this
can be seen by writing a typical element T1(c) of T1 as

hα1(c
2)hα2(c

3)hα3(c
4)hα4(c

6)hα5(c
5)hα6(c

4)hα7(c
3)hα8(c

2).

If a ∈ T1, then since o(a) ≥ 6, every a-invariant subspace of L(G) is also T1-
invariant; hence the subgroups 〈a〉 of X and T1 of G satisfy (i) and (ii) of 3.2,
contrary to our assumption (†). Therefore a 6∈ T1, and so a = a1a2 with a1 ∈ T1

and 1 6= a2 ∈ L8 = E7 and a2 6∈ Z(E7). We have CE7(a2) = D, a proper semisimple
subgroup of E7 of rank 7. Using 1.14 again, we see that the only possibilities for
D are A1D6, A7, A1A3A3, A2A5, and ar2 ∈ Z(E7) with r = 2, 2, 4, 3, respectively.
Then ar ∈ T1; replacing a by ar and using the previous argument, we conclude that
o(ar) < 5. This completes the proof for i = 8, and the other values of i are handled
in the same way.

Lemma 3.5. Assuming o(a) ≥ 6, we have SL2(q) ∼= S ≤ CX(a)′ < CG(a)′ = D,
and one of the following holds:

(1) D = A1A2A5, o(a) = 6 and q = 17 or 19;
(2) D is as in row 1, 2, 6, 8 or 11 of Table 1;
(3) D = D6 = L18;
(4) D = E6 = L78 and p = 2;
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(5) D is contained in one of the following subgroups of G:

A1A3A3, A2A5 (⊆ L8 = E7)
A1A1A5, A1A2A2A2 (⊆ L7 = A1E6)
A2A1A1A3 (⊆ L6 = A2D5)
A1A1D4 (⊆ L18 = D6)
A3A4, A1A2A4, A1A6 (= L5, L4, L3 resp.)
A2D4, A1D5 (= L16, L17 resp.).

Proof. By 3.3, either (1) holds or CG(a) = TkD with k ≥ 1, so assume the latter
holds. When k = 1, the possibilities are as listed in Table 1, and visibly either (2)
or (5) holds.

Now assume that k = 2, so D ≤ CG(T2) = Lij for some i, j. If i or j is in
{3, 4, 5}, or if {i, j} is {1, 6} or {1, 7}, then (5) holds. Also L12, L26, L27, L28,
L67 and L68 lie in conjugates of subgroups listed in (5) of L3, L4, L7, L3, L17 and
L17, respectively. And if {i, j} = {1, 8} or {7, 8} then Lij = D6 or E6, and either
D = Lij or D lies in CLij (a), a proper semisimple subgroup of Lij of rank 6; the
only possibilities for the latter are A1A1D4, A3A3 (if Lij = D6), or A1A5, A2A2A2

(if Lij = E6), all of which occur under (5). If D = L18 then (3) holds. Finally,
if D = L78 = E6, then p = 2, as in (4): for if p 6= 2 then Z(S) = 〈t〉 ∼= Z2, and
D ≤ CL78(t), a contradiction.

To complete the proof, observe that if k ≥ 3, then D lies in a Levi subgroup
Lijk of co-rank 3. We claim that all such Levi subgroups lie in conjugates of
subgroups under (5). To see this, observe that as L3, L4, L5, L16 and L17 are under
(5), we may assume that {i, j, k} does not contain 3, 4, 5, {1, 6} or {1, 7}. Hence
ijk = 128, 267, 268, 278 or 678. One checks that in each case Lijk lies in a subgroup
under (5), giving the claim. This completes the proof.

Lemma 3.6. Suppose that a ∈ A2 = CG(E6). Then p is not 2 or 3; in particular,
case (4) of Lemma 3.5 does not occur.

Proof. Assume p = 2 or 3. Then q ≥ 16 if p = 2 and q ≥ 27 if p = 3. Hence
either o(a) ≥ 26, or o(a) = 15 or 17 (with q = 16), or o(a) = 11 (with q = 32),
or o(a) = 21 (with q = 64). Choose a torus T2 < A2 containing a. We may take
T2 to consist of diagonal 3 × 3 matrices, and write a = diag (α, β, α−1β−1). The
nontrivial composition factors of A2 on L(G) are VA2(10), VA2(01) and VA2(11).
Hence the eigenvalues of a on L(G) are

1, α, β, αβ, αβ−1, α2β, αβ2, α−1, β−1, α−1β−1, α−1β, α−2β−1, α−1β−2.

If these are all distinct, then T2 fixes the same subspaces of L(G) as a, contrary
to assumption (†). Therefore two of the above eigenvalues are equal, and so one of
the following holds:

(i) αk = 1, βk = 1 or αk = β−k, for some k ∈ {1, 2, 3};
(ii) αl = βl, α2l = β−l or α−l = β2l, for some l ∈ {1, 2};
(iii) α2 = β, α = β2, α3 = β−1, α−1 = β3, α3 = β−2 or α2 = β−3.
Consider (i). Here ak ∈ T1, where T1 is a W (A2)-conjugate of {diag(1, c, c−1) :

c ∈ K∗}. The weights of T1 on L(G) are 2, 1, 0,−1,−2, so T1 and ak fix the same
subspaces of L(G) provided o(ak) ≥ 5, which is true; this contradicts (†) (note that
ak 6∈ Z(A), so ak 6∈ Z(X)).
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In case (ii), al lies in T1, a W (A2)-conjugate of {diag(c, c, c−2) : c ∈ K∗}.
Then T1 has weights 3, 2, 1, 0,−1,−2,−3. Hence T1 and al fix the same subspaces
provided o(al) ≥ 7, which is true; this again contradicts (†).

Finally in case (iii), a lies in T1, a W (A2)-conjugate of {diag(c, c2, c−3) : c ∈ K∗},
which has weights 5, 4, 3, . . . ,−5. Then T1 and a fix the same subspaces since
o(a) ≥ 11.

Lemma 3.7. Suppose a ∈ A1A1 = CG(D6). Then either q is prime or q = 25; in
particular, this holds in case (3) of Lemma 3.5. Further, if q = 25 then D 6= A1D6.

Proof. The argument is similar to that of the previous lemma. Assume that q is
not prime and that q 6= 25. Then either q ≥ 49 or q ∈ {16, 27, 32}; hence either
o(a) ≥ 15 or o(a) = 11. We have a ∈ T2 < A1A1 = CG(D6). Write elements of T2

as (c, d) (c, d ∈ K∗), where this represents the element (diag(c, c−1), diag(d, d−1))
of A1A1 = SL2×SL2. Take a = (α, β). Since the nontrivial composition factors of
A1A1 on L(G) are 1⊗ 0, 0⊗ 1, 2⊗ 0, 0⊗ 2 and 1⊗ 1, the eigenvalues of a on L(G)
are

1, α, β, α2, β2, αβ, αβ−1, α−1, β−1, α−2, β−2, α−1β−1, α−1β.

As in the previous lemma, two of these must be equal. Hence one of the following
holds:

(i) αk = 1 or βk = 1 for some k ∈ {1, 2, 3, 4};
(ii) α = β±1 or α2 = β±2;
(iii) α = β±2 or α±2 = β;
(iv) α = β±3 or α±3 = β.
In (ii), a2 lies in T1 = {(c, c) : c ∈ K∗} or {(c, c−1) : c ∈ K∗}, both of which

have weights 2,1,0,-1,-2; hence T1 and a2 fix the same subspaces of L(G) provided
o(a2) ≥ 5, which is true.

In (iii) or (iv), a ∈ T1 = {(c, cm) : c ∈ K∗} or {(cm, c) : c ∈ K∗}, where
m ∈ {±2,±3}. If m = ±2 the weights of T1 are 4, 3, 2, . . . ,−4, so T1 and a fix
the same spaces provided o(a) ≥ 9; this is true by our assumption on q. And if
m = ±3, the weights of T1 are ±6,±4,±3,±2,±1; hence T1 and a fix the same
spaces if o(a) ≥ 13 or o(a) = 11, which is again true.

Finally, consider (i). Here ak lies in T1 = {(1, c) : c ∈ K∗} or {(c, 1) : c ∈ K∗},
which has weights 2, 1, 0,−1,−2; hence T1 and ak fix the same subspaces provided
o(ak) ≥ 5. By our assumption on q, this is true unless k = 4 and q = 49 (in which
case o(a) could be 16). So suppose k = 4 and q = 49, and without loss assume
that α4 = 1. Recall, that a = (α, β) ∈ A1A1. The composition factors of A1A1

on L(G) are 0 ⊗ 0, 1 ⊗ 0, 0 ⊗ 1, 2 ⊗ 0, 0 ⊗ 2 and 1 ⊗ 1. Hence we check that
T1 = {(1, c) : c ∈ K∗} fixes the same spaces as a itself. Finally, if q = 25 and
D = A1D6, then o(a) = 8 by 3.4, and we may take a = (α,±1); as above, a and
T1 = {(1, c) : c ∈ K∗} fix the same spaces. This completes the proof.

4. Proof of Theorem 1 for p 6= 2 and q > 13

We continue with the proof of Theorem 1. In this section we handle the case
where p 6= 2 and q > 13. Recall, from the discussion following Lemma 3.2, that our
basic strategy is to try to find a subgroup S̄ ∼= SL2(K) of D = CG(a)′ such that S̄
contains S and fixes the same subspaces of L(G) as S.
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The next lemma provides some useful information for this strategy; it will be
used in the following sections also, so we make no assumptions on p and only assume
q > 9 in the statement.

To ease notation, we make the following definition. Suppose D = E1 . . . Ek, a
product of simple factors Ei, and write Z = Z(D). Denote by πi the ith projection
map D/Z → EiZ/Z. By the projection Si of S in Ei, we mean a minimal preimage
in Ei of the group (SZ/Z)πi. If Ei is classical, with usual module Vi, we abuse
notation by writing Vi ↓ S instead of Vi ↓ S̃i, where S̃i is the derived group of the
preimage of Si in a simply connected cover of Ei. And if each of the Ei is classical,
we usually describe the embedding of S in D by giving the composition factors of
V1 ↓ S, . . . , Vk ↓ S. We can always adjust these factors by applying (globally) any
automorphism of S (this amounts to relabelling the elements of S).

Lemma 4.1. Let E be a simple factor of D of classical type, where D is as in
(1), (2), (3) or (5) of Lemma 3.5, and let V be the usual module for E. Suppose
that V ↓ S is not completely reducible. Then one of the following holds:

(i) p = 2 and V ↓ S has an indecomposable section 1(2i)/0 or 1(2i) ⊗ 1(2j)/1(2j)

(with i 6= j);
(ii) p = 3 and V ↓ S has an indecomposable section 1(3i)/1(3i+1), 1(3i)⊗1(3i+1)/0

or 1(3i) ⊗ 1(3i+1)/2(3i+1);
(iii) p = 5 and V ↓ S has an indecomposable section 3(5i)/1(5i+1), 3(5i)⊗1(5i+1)/0,

2(5i)/1(5i) ⊗ 1(5i+1) or 2(5i) ⊗ 1(5i+1)/1(5i);
(iv) q = p = 11 and V ↓ S has an indecomposable section 4/4, 5/5 or 0/8/0;
(v) q = p = 13 and V ↓ S has an indecomposable section 5/5.

Proof. We have dimV ≤ 12; moreover, if dim V ≥ 8 then E = D4, D5, D6 or A7

(with q prime or q = 25 in the latter two cases). We use Proposition 1.2, which
determines the 2-step indecomposables for S = SL2(q).

First assume that q = p. By 1.2(i), if there is an indecomposable W for S with
composition factors a/b, then a+b = p−3 or p−1, whence dimW ≥ a+1+b+1 ≥
p − 1. As q > 9, we have p − 1 = q − 1 ≥ 10. Therefore E = D5 or D6. Thus
V ↓ S is self-dual, and it follows that either (iv) or (v) holds, or E = D6, p = 11
and V ↓ S has an indecomposable section a/b/a. The dimension of this section
is 2a + b + 3 ≤ 12, so (a, b) = (0, 8) or (1, 7). The first case is in conclusion (iv).
And in the second case, the middle factor (of high weight 7) is symplectic, which
is impossible.

Now assume q = pe with e ≥ 2. By 1.2(ii), the following is a list of all 2-step
indecomposables for S of dimension at most 10 (of dimension at most 12 if q = 25):

p = 2 : 1(2i)/0, 1(2i) ⊗ 1(2j)/1(2j)

p = 3 : 1(3i)/1(3i+1), 1(3i) ⊗ 1(3i+1)/0, 1(3i) ⊗ 1(3i+1)/2(3i+1), 1(3i) ⊗ 2(3i+1)/1(3i+1)

1(3i) ⊗ 1(3j)/1(3i+1) ⊗ 1(3j), 1(3i) ⊗ 1(3i+1) ⊗ 1(3j)/1(3j)

p = 5 : 3(5i)/1(5i+1), 3(5i) ⊗ 1(5i+1)/0, 3⊗ 1(5)/2(5)(q = 25),

2(5i)/1(5i) ⊗ 1(5i+1), 2(5i) ⊗ 1(5i+1)/1(5i), 2⊗ 1(5)/1⊗ 2(5) (q = 25)

p = 7 : 5(7i)/1(7i+1), 4(7i)/1(7i) ⊗ 1(7i+1), 3(7i)/2(7i) ⊗ 1(7i+1).

If E = Ar then dimV ≤ 8 (and q = 25 if dimV = 8), and the only possible inde-
composables appearing in V ↓ S are among those in conclusions (i)-(iii). Otherwise,
E = Dr with 4 ≤ r ≤ 6 (and q = 25 if E = D6); as V is orthogonal, we see using
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1.1 that the last three indecomposables listed for p = 3, the third, fifth and sixth
listed for p = 5, and all the indecomposables listed for p = 7 cannot occur in V ↓ S.
Hence again one of (i)-(iii) holds.

From now on in this section we shall assume that

p 6= 2 and q > 13.

Lemma 4.2. Suppose that D is as in (1), (2), (3) or (5) of Lemma 3.5, but D 6=
A1E6 (and that p 6= 2, q > 13). Thus D = E1 . . . Ek, a product of classical simple
factors Ei with usual module Vi; let Si be the projection of S in Ei. Then one of
the following holds:

(i) for each i, Vi ↓ Si is completely reducible;
(ii) for some j, Vj ↓ Sj is not completely reducible; moreover, there is a subgroup

S̄j ∼= A1(K) of Ej containing Sj, and the composition factors of Vj ↓ S̄j are as in
Table 2 (up to a twist);

(iii) q = 27, S < D = A5 or A6 with embedding 1/1(3)/1(9)/0m (where m = 0 or
1);

(iv) q = 27, S < D = A1D5 with embedding 1(9), (1 ⊗ 1(3))2/02;
(v) q = 27, S < D = A1D5 with embedding 1(9), (2(3))2/1⊗ 1(3).

Table 2

p Ej Vj ↓ S̄j
5 A5+δ (δ = 0, 1) 3/1(5)/0δ

A6+δ (δ = 0, 1) 2/1⊗ 1(5)/0δ

A7 (q = 25) 2⊗ 1(5)/1
D5+δ (δ = 0, 1) 3⊗ 1(5)/02+2δ

D5+δ (δ = 0, 1) 22/1⊗ 1(5)/02δ

3 A3+δ (δ = 0, 1, 2, 3) 1/1(3)/0δ

A4 1⊗ 1(3)/0
A6 1⊗ 1(3)/1(3i)/0
D4+δ (δ = 0, 1) 12/(1(3))2/02δ

D4+δ (δ = 0, 1) 1⊗ 1(3)/04+2δ

D5 1⊗ 1(3)/1(3i)/1(3i)/02

D5 1⊗ 1(3)/1(3i) ⊗ 1(3l)/02

Proof. Suppose (i) does not hold, so that some Vj ↓ S is not completely reducible.
Write E = Ej , V = Vj . By 4.1, p = 3 or 5 and V ↓ S has a section as in 4.1(ii) or
4.1(iii). Let T be a Cartan subgroup of S.

Assume first that p = 5. Relabelling S, we may take it that V ↓ S has an
indecomposable section 3/1(5), 2 ⊗ 1(5)/1, 3 ⊗ 1(5)/0 or 2/1 ⊗ 1(5). In the first
case, using 1.1 we see that E = A5, A6 or D6. Suppose E = A5 or A6; then
V ↓ S = 3/1(5) or (3/1(5)) ⊕ 0. By 1.3(i), the restriction map Ext1A1(K)(3, 1

(5)) →
Ext1A1(q)(3, 1(5)) is an isomorphism. It follows that there is a closed subgroup A1(K)
of E containing Sj , as required for (ii). Now suppose E = D6; then D = E, q = 25
by 3.7, and V ↓ S = 1(5)/3/3/1(5). Pick an element t ∈ S of order 26; then t lies in
a Levi subgroup A5 of E, and we may take it that t lies in a 1-dimensional torus
T1 = {diag(c5, c−5, c3, c−3, c, c−1) : c ∈ K∗} < A5. As the nontrivial composition
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factors of the restriction of L(G)/L(A5) to A5 are just VA5(λi) (1 ≤ i ≤ 5) (see
[LS2, §2]), it follows that t and T1 fix the same subspaces of L(G), contrary to (†).

Next, if V ↓ S has an indecomposable section 2⊗ 1(5)/1, then E = A7 (use 1.1
again), and we obtain (ii) using 1.3(i), as above.

Now assume V ↓ S has an indecomposable section 3 ⊗ 1(5)/0. Then E = D5

or D6. In the first case, V ↓ S is an indecomposable module 0/3⊗ 1(5)/0, and Sj
(the projection of S in E) fixes a singular 1-space of V . The stabilizer in E of this
1-space is a parabolic subgroup QL with unipotent radical Q and Levi subgroup
L = D4T1, and Q is a KL-module of high weight λ1. If we choose a subgroup
S̃ ∼= A1(K) of L such that Q ↓ S̃ = 3 ⊗ 1(5), then Sj < QS̃. Moreover, by 1.3,
H1(S,Q) ∼= H1(S̃, Q), and clearly CQ(T ) = 0. Therefore by 1.6, Sj lies in a closed
complement to Q in QS̃, giving (ii). When E = D6 we have V ↓ S = 02/3⊗1(5)/02.
Since H1(S, 3⊗ 1(5)) has dimension 1 by 1.2(ii), in fact V ↓ S = V2⊥(0/3⊗ 1(5)/0),
where V2 is a non-degenerate 2-space, so Sj lies in a subgroup D5 of E, and now
the argument given for E = D5 applies.

To complete the case p = 5, suppose V ↓ S has an indecomposable section
2/1 ⊗ 1(5). Then E = A6, A7, D5 or D6. If E = A6 or A7, we obtain (ii) us-
ing 1.3(i). Now suppose E = D5. Then V ↓ S is an indecomposable module
2/1⊗ 1(5)/2. The group A1(K) has a 10-dimensional orthogonal module

∧2
V (4),

and
∧2
V (4) ↓ A1(K) = 2/1 ⊗ 1(5)/2; moreover this module is indecomposable,

since a 1-dimensional unipotent subgroup centralizes only a 1-space of weight 2
vectors in

∧2
V (4). Hence E contains a subgroup S̃ ∼= A1(K) with this represen-

tation on the usual module. We may take it that both Sj and S̃ lie in the same
parabolic subgroup QL stabilizing a totally singular 3-space. The unipotent radical
Q has an S̃-series 1 < Q1 < Q with Q1, Q/Q1 abelian, such that Q1 ↓ S̃ = V (2)
and (Q/Q1) ↓ S̃ = 2 ⊗ 1 ⊗ 1(5) = (3 ⊗ 1(5)) ⊕ (1 ⊗ 1(5)). By 1.2, H1(S̃, Q/Q1) is
1-dimensional. Hence, under the action of (Q/Q1)Z(L) there are just two classes
of closed complements to Q/Q1 in (Q/Q1)S̃, with representatives S̃ and S̄, where
S̄ = L ∩ QS̃. As H1(S̃, Q/Q1) ∼= H1(S,Q/Q1) by 1.3, and CQ/Q1(T ) = 0, we
deduce from 1.6 that Sj therefore lies in a conjugate of either Q1S̃ or Q1S̄. Since
also by 1.3, H1(S̃, Q1) ∼= H1(S,Q1) = 0, S lies in a conjugate of S̃ or S̄, giving the
conclusion.

Finally, suppose E = D6. If Sj lies in a subgroup D5 of E, then the conclusion
follows as before. Otherwise, V ↓ S = (1 ⊗ 1(5)/2/1 ⊗ 1(5)) ⊕ 0; also q = 25 and
D = E, by 3.7. An element t of S of order 26 lies in a 1-dimensional torus

T1 = {diag(c6, c4, c−4, c−6, c2, 1, c−2, c6, c4, c−4, c−6, 1) : c ∈ K∗} < D6

(matrices relative to a suitable basis). The nontrivial composition factors of
L(G) ↓ E are VD6(λi) (i = 1, 2, 5, 6). Moreover, T1 lies in a Levi subgroup A4 of D6,
which by [LS2, 2.6] has all its nontrivial composition factors on VD6(λi) (i = 5, 6)
among the modules VA4(λ1), . . . , VA4(λ4). Hence the eigenvalues on L(G) of a typ-
ical element T1(c) of T1 displayed above are among c±k with 0 ≤ k ≤ 12. It follows
that T1 and t fix the same subspaces of L(G), contrary to (†). This completes the
proof for p = 5.

Now suppose that p = 3. By 4.1, V ↓ S has an indecomposable section 1⊗1(3)/0,
1/1(3) or 1 ⊗ 1(3)/2(3). Consider the first case. Here E = Ar, D4 or D5 (note that
E 6= D6 by 3.7). Suppose E = Ar. Then r 6= 7 by 3.4, and r = 4 yields to the
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usual argument using 1.3(i). If r = 5 then the projection Sj of S in E is PSL2(q),
so D = A1A5; but then a ∈ CG(A1A5) = A2 = CG(E6), contrary to 3.6. The
same argument works if r = 6, unless V ↓ S = (1 ⊗ 1(3)/0) ⊕ 13(i)

; but then
S < A1A4 < A6 and we can apply the 1.3(i) argument again.

When E = D4 or D5, one of the following holds:
(a) V ↓ S = Vm⊥(0/1⊗1(3)/0), with Vm (m = 2 or 4) a non-degenerate m-space

on which S acts completely reducibly;
(b) E = D5 and V ↓ S = 0/1 ⊗ 1(3)/1(3i) ⊗ 1(3i+1)/0 (with S fixing a singular

1-space);
(c) E = D5 and V ↓ S = (1 ⊗ 1(3)/0/1 ⊗ 1(3))⊥V1 (with S fixing a singular

4-space).
In case (a), Sj lies in a subgroup of E of type SOm × SO6, and we can use the

usual H1 argument for the SO6 to obtain conclusion (ii) of the lemma. In case
(b), observe that Sj lies in a subgroup QS̃ of E fixing a singular 1-space, with
S̃ ∼= A1(K) and Q ↓ S̃ = (1 ⊗ 1(3)) ⊕ (1(3i) ⊗ 1(3i+1)). Now by 1.2, H1(S,Q) and
H1(S̃, Q) both have dimension 2, and CQ(T ) = 0, so conclusion (ii) follows from
1.6. In case (c), the projection Sj of S in E is PSL2(q), so D = A1D5 (note that
D has rank at most 6 by 3.4). Let the projection of S in the factor A1 be 1(3k).
Pick t ∈ S of order q + 1; then t lies in a rank 1 torus T1 in D = A1D5, with

T1 = {diag(c3
k

, c−3k

), diag(c4, c4, c2, c2, c−4, c−4, c−2, c−2, 1, 1) : c ∈ K∗}
(matrices in D5 relative to a suitable basis). The nontrivial composition factors of
L(G) ↓ A1D5 are 0 ⊗ λi, 1 ⊗ λi (i = 1, 4, 5) and 1 ⊗ 0, together with L(A1) and
L(D5). Hence the eigenvalues of a typical element T1(c) of T1 shown above on L(G)
are

c±2.3k

, c±3k±6,4,2,0, c±8,6,4,2,0.

It follows that t and T1 fix the same subspaces of L(G), unless q = 27 and 3k = 9;
this is the exceptional embedding in conclusion (iv) of the lemma.

Now suppose V ↓ S has an indecomposable section 1 ⊗ 1(3)/2(3). Here E =
A6, A7, D5 or D6. In the A6, A7 cases, the projection of S in E is PSL2(q), so
D has a further factor; but then D has rank at least 7, which contradicts 3.4;
and E 6= D6 by 3.7. Therefore E = D5; hence D = D5 or A1D5. We have
V ↓ S = 2(3)/1 ⊗ 1(3)/2(3), indecomposable with S fixing a singular 3-space. Pick
t ∈ S of order q + 1 ≥ 28. If S < E then t lies in a 1-dimensional torus T1 =
{diag(c6, c−6, c6, c−6, 1, 1, c4, c2, c−2, c−4) : c ∈ K∗} in a subgroup of type SO6×SO4

in E. The nontrivial composition factors of L(G) ↓ D5 have high weights λ1, λ2, λ4

and λ5 (see [LS2, §2]). Hence the highest weight of T1 on L(G) is 12. It follows
that t and T1 fix the same subspaces of L(G), contrary to (†). Hence S 6< E, so
D = A1D5, with embedding 1(3i), 2(3)/1⊗1(3)/2(3). Now an obvious adjustment of
the previous T1 argument goes through, unless q = 27 and 3i = 9, as in conclusion
(v).

To complete the proof, suppose V ↓ S has an indecomposable section 1/1(3).
Here E = Ar, D4 or D5. In the D4, D5 cases, we have V ↓ S = (1/1(3)/1(3)/1)⊥Vk,
where k = 0 or 2 and Vk is a nondegenerate k-space. Thus Sj < D4 ≤ E. As
Ext1S(1, 1(3)) has dimension 1 by 1.2, V ↓ S has a submodule 1 ⊕ 1(3) which is
totally singular. Hence Sj lies in a subgroup QS̃ of E stabilizing this singular 4-
space, where S̃ ∼= A1(K) and Q ↓ S̃ =

∧2
(1⊕1(3)) ∼= (1⊗1(3))⊕02. By 1.2 we have

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE SUBGROUP STRUCTURE OF EXCEPTIONAL GROUPS OF LIE TYPE 3433

H1(S̃, Q) ∼= H1(S,Q); since also CQ(T ) = CQ(T̃ ) (where T̃ is a Cartan subgroup
of S̃), the conclusion now follows from 1.6.

Finally, suppose E = Ar. If S has only two nontrivial composition factors on
V , then Sj < A3Ar−4 < E, and we can use the usual 1.3(i) argument for the A3

factor to obtain the conclusion. So assume that S has more than two nontrivial
composition factors on V . In particular, r ≥ 5. If r = 7, or if D has a further factor,
3.4 or 3.6 gives a contradiction. Thus D = A5 or A6, and V ↓ S = 1/1(3)/1(3k)/0m,
where m = r − 5. Let t ∈ S have order q + 1; then t lies in a rank 1 torus
T1 = {diag(c, c3, c3

k

, c−1, c−3, c−3k

, 1m) : c ∈ K∗} of D, and we check that t and T1

fix the same subspaces of L(G) unless q = 27 and 3k = 9, as in conclusion (iii) of
the lemma.

We now explain how we propose to use Lemma 4.2. The special configurations
in 4.2(iii,iv,v) will be postponed until later (see 4.8). Thus suppose we are in the
situation of conclusion (i) or (ii) of 4.2. Consider a module Vi such that Vi ↓ Si
is completely reducible. Write Vi ↓ Si =

⊕t
r=1Wir , where the Wir are irreducible

Si-submodules if Ei is of type An, and are minimal non-degenerate Si-submodules
if Ei is of type Dn. Using 1.1, we see that the action of Si on each Wir extends
to an action of A1(K), preserving the quadratic form when Ei = Dn. Therefore Si
lies in a subgroup Ri = S̄i1 . . . S̄it of Ei, where each S̄ir ∼= A1(K).

Thus if 4.2(i) or (ii) holds, then S lies in a connected subgroup of D which is a
commuting product of A1’s and contains each of the Ri. Abusing notation slightly,
write S̄1 . . . S̄l for this commuting product, where each S̄i ∼= A1(K). So we have

S < S̄1 . . . S̄l ≤ D.

Obviously S̄1 . . . S̄l is an image of (SL2(K)l. In the ensuing discussion we shall
consider subgroups SL2(K) of S̄1 . . . S̄l containing S. When l > 1, there are many
such groups, as described below.

Fix matrix groups SL2(q) < SL2(K). For powers pi1 , . . . , pil < q, the embed-
ding φ : x → (x(pi1 ), . . . , x(pil )) of SL2(q) in SL2(K)l extends to an embedding
φ̄ : x̄ → (x̄(pi1 ), . . . , x̄(pil )) of SL2(K) in SL2(K)l. Every subgroup of SL2(K)l

which is isomorphic to SL2(q) and projects nontrivially to each factor is conjugate
in SL2(K)l to Imφ for some such φ. Notice that it is possible to have such embed-
dings φ, ψ such that Imφ = Imψ but Im φ̄ 6= Im ψ̄: for example, this is the case if
q = p2 and

φ : x→ (x, x(p)), ψ : x→ (x(p), x).

In general, Imφ = Imψ means that ψ is obtained from φ by applying a fixed field
twist to each coordinate (and equating the q-power twist to 1).

Now let ρ be a surjective homomorphism SL2(K)l → S̄1 . . . S̄l. By the previous
paragraph, we may assume that S = (SL2(q))φρ for some φ as above. Then S lies
in S̄φ = SL2(K)φ̄ρ, a closed subgroup of S̄1 . . . S̄l isomorphic to SL2(K). Conse-
quently the first aim of our strategy, to find a subgroup SL2(K) of D containing
S, is achieved in the situation of 4.2(i,ii).

Observe that if ψ is another embedding of SL2(q) such that Imφ = Imψ, then
S also lies in S̄ψ. Thus if l > 1, then S lies in many subgroups SL2(K) of S̄1 . . . S̄l,
obtained from field twists of φ. If we can show that one of these subgroups S̄ψ has
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all its composition factors on L(G) having high weight less than q, it will follow from
1.5 that S and S̄ψ fix the same subspaces of L(G), contradicting our assumption
(†), as desired for Theorem 1. In the next few lemmas we show that this can usually
be done.

Lemma 4.3. Suppose that case (5) of 3.5 holds (with p 6= 2 and q > 13), and
suppose also that 4.2(i) holds. Then either we can choose S̄ with S < S̄ ≤ D, such
that every composition factor of L(G) ↓ S̄ has high weight less than q, or one of the
following holds:

(i) q = 25, S < D ≤ A1A3A3 with embedding 02, 3, 3(5) or 1, 3, 3(5);
(ii) q = 25, S < D ≤ A3A4 with embedding 3(5), 4 or 3(5), 3/0.

Proof. We have S < D ≤ Y1 . . . Yr, a product of classical groups Yi as in (5) of
3.5. In view of the natural embedding of D in Y1 . . . Yr, we may replace D by
Y1 . . . Yr in the discussion preceding the lemma. We know from that discussion
that there is a closed subgroup S̄ ∼= SL2(K) of D containing S. Let Vi be the usual
module for Yi. As usual, we describe the embedding of S̄ in Y1 . . . Yr by giving the
composition factors of V1 ↓ S̄, . . . , Vr ↓ S̄. We can certainly choose S̄ so that all
these composition factors have high weight less than q.

Suppose first that all the factors Yi are of type Am with m ≤ 4. Projections of
S̄ in such factors are given by the following representations (up to field twists):

S̄ → A1 : 1 or 02

S̄ → A2 : 2, 1/0 or 03

S̄ → A3 : 3, 2/0, 1/1(pi), 1⊗ 1(pi), 1/02 or 04

S̄ → A4 : 4, 3/0, 2/1(pi), 2/02, 1⊗ 1(pi)/0, 1/1(pi)/0, 1/03 or 05.

Each composition factor of L(G) ↓ Y1 . . . Yr occurs either in L(Yi) or in a tensor
product of modules among the Vi and

∧2
Vi and their duals (see [LS2, §2]). The

highest weight of a composition factor of
∧2
VS̄(a) is 2a−2, and of

∧2
(1(pi)⊗1(pj))

(with i > j) is 2pi.
Now Y1 . . . Yr is one of

A1A3A3, A1A2A2A2, A1A1A2A3, A3A4, A1A2A4.

Suppose first that Vi ↓ S̄ has a composition factor 3(pj) or 4(pj) for some i, j. Then
p ≥ 5. Applying a field twist, as discussed in the preamble to the lemma, we can
take the factor to be 3 or 4. Arguing only from the above observations, we check
that the only possibilities where a composition factor of high weight at least q can
occur in L(G) ↓ S̄ are:

(a) S̄ < A1A3A3, with embedding 02, 3, 3(pi) or 1(pj), 3, 3(pi): here L(G) ↓ S̄ has
possible highest weight 6pi or pj + 4 + 4pi;

(b) S̄ < A3A4, with embedding 3(pi), 4 or 3(pi), 3/0: here L(G) ↓ S̄ has possible
highest weight 6pi or 4pi + 6.
In both cases, the possible highest weight is at least q only if p = 5; and if q =
5e > 25, we can apply a field twist to take i ≤ e − 2 in all cases, giving highest
weight less than q. Therefore a high weight at least q can only occur if q = 25 and
conclusion (i) or (ii) of the lemma holds.
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We may now assume that no composition factor of Vi ↓ S̄ is 3 or 4 (or a twist
thereof). From [LS2, 2.1 and 2.3] we see that the number of factors Vi or

∧2
Vi in

a tensor product occurring in L(G) ↓ Y1 . . . Yr is at most three; hence, referring to
the list of possibilities for Y1 . . . Yr above, we see that the highest weight occurring
in L(G) ↓ S̄ is at most 6pe−1, which is less than q if p > 5. Thus we may assume
that p = 3 or 5.

For p = 5, a high weight q or more can be achieved only if three factors occur in a
tensor product, each factor contributing 2pe−1 (since otherwise the highest weight
is at most 4pe−1 + 2pe−2 < q). Thus the embedding of S̄ in Y1 . . . Yr has three
representations of the form 2(pe−1) or 1(pe−1) ⊗ 1(pj). This forces S̄ < A1A2A2A2,
with embedding (02 or 1(pi)), 2(pe−1), 2(pe−1), 2(pe−1). Applying a field twist, this
becomes (02 or 1(pi+1)), 2, 2, 2, and now L(G) ↓ S̄ has highest weight less than q.

Now consider p = 3. Here o(a) ≥ q− 1 ≥ 26, so we see from 3.2 and 3.4 that the
semisimple group D = CG(a)′ cannot have rank 7 or 8. Recall that the product
Y1 . . . Yr is as in 3.5(5), with factors Am (m ≤ 4). Consequently D lies in one of the
following products:

A1A2A3, A1A1A2A2, A2A2A2, A3A3, A2A4, A1A1A1A3, A1A1A4

Arguing as above, and applying a field twist if necessary, we see that the only case
where L(G) ↓ S̄ can have highest weight at least q is S̄ < D ≤ A2A2A2, with
embedding 2, 2(3), 2(9) and q = 27. But in this case a ∈ CG(A2A2A2) = A2 =
CG(E6), which is not possible by 3.6. This completes the proof when all the Yi are
of type Am with m ≤ 4.

Next, suppose that Y1 . . . Yr has a factor Am with m ≥ 5, hence is A2A5, A1A1A5

or A1A6. If the usual module for Am has all S̄-composition factors of dimension
at most 5, then the arguments for the previous case (all factors An, n ≤ 4) apply;
hence the projection of S̄ in Am is one of the following (up to twists):

S̄ → A5 : 5 or 2⊗ 1(pi)

S̄ → A6 : 6, 5/0 or 2⊗ 1(pi)/0.

By [LS2, 2.1 and 2.3], each composition factor of L(G) ↓ Y1 . . . Yr occurs in L(Yi),
in

∧3
Vi, or in a tensor product of modules among the Vi and

∧2
Vi (and duals).

Moreover, by [LS2, 2.13], the highest weights in
∧3
VS̄(r),

∧2
(2⊗1(pi)),

∧2
(1⊗2(pi)),∧3

(2⊗1(pi)),
∧3

(1⊗2(pi)) are 3r−6, 2pi+2, 4pi, 3pi, 4pi+1, respectively. Hence,
as usual adjusting by a field twist if necessary, we see that L(G) ↓ S̄ has highest
weight less than q when p > 3.

Now let p = 3. Then o(a) ≥ q− 1 ≥ 26, so by 3.2 and 3.4, D = CG(a)′ has rank
at most 6. Consequently S̄ must lie in a product A1A5, with embedding 02, 2⊗1(3i)

or 1(3j), 2⊗1(3i). Then L(G) ↓ S̄ has highest weight less than q, unless i = e−1; but
in this case we apply a field twist to adjust the embedding to 02 or 1(3k), 2(3) ⊗ 1,
and now L(G) ↓ S̄ has highest weight less than q.

We have now handled all cases where the Yi are all of type Am. It remains to
consider Y1 . . . Yr = A1A1D4, A2D4 or A1D5. The possible projections of S̄ in the
factor Dm (m = 4 or 5) are as follows (up to twists):
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S̄ → D4 : 6/0, 4/2(pi), 4/03, 3/3, 2/2(pi)/02, 2/1(pi)/1(pi)/0, 2/05,

1/1/1(pi)/1(pi), 1/1/04, 1⊗ 1(pi)/1(pj) ⊗ 1(pk),

1⊗ 1(pi)/1(pj)/1(pj), 3⊗ 1(pi), 1⊗ 1(pi)/04, 1⊗ 1(pi)/2(pj)/0
S̄ → D5 : 8/0, 6/2(pi), 6/03, 4/4(pi), 4/2(pi)/02, 4/05, 3/3/02, 2/2(pi)/2(pj)/0,

2/2(pi)/1(pj)/1(pj), 2/2(pi)/04, 2/1(pi)/1(pi)/03, 2/07,

1/1/1(pi)/1(pi)/02, 1/1/06, 2⊗ 2(pi)/0, 3⊗ 1(pi)/02,

1⊗ 1(pi)/1(pj) ⊗ 1(pk)/02, 1⊗ 1(pi)/1(pj)/1(pj)/02, 1⊗ 1(pi)/06,

1⊗ 1(pi)/4(pj)/0, 2/2(pi)/1(pj) ⊗ 1(pk), 2/1(pi) ⊗ 1(pj)/03.

By [LS2, 2.1 and 2.3],
L(G) ↓ A1A1D4 has nontrivial composition factors among 2 ⊗ 0 ⊗ 0, 0 ⊗ 2 ⊗ 0,

0 ⊗ 0 ⊗ λ2, 0 ⊗ 0 ⊗ λ1, 1 ⊗ 1 ⊗ 0, 1 ⊗ 1 ⊗ λi, 1 ⊗ 0 ⊗ λi, 0 ⊗ 1 ⊗ λi, 0 ⊗ 0 ⊗ λi
(i = 1, 3, 4),
L(G) ↓ A2D4 has nontrivial composition factors 11 ⊗ 0, 0 ⊗ λ2, 0 ⊗ λj λi ⊗ λj

(i = 1, 2, j = 1, 3, 4), and
L(G) ↓ A1D5 has nontrivial composition factors 2 ⊗ 0, 0 ⊗ λ2, 0 ⊗ λi 1 ⊗ λi

(i = 4, 5).
As before, for each embedding of S̄, the highest weight of L(G) ↓ S̄ can be worked
out using [LS2, 2.13]. We find that in every case but one, applying a field twist if
necessary, L(G) ↓ S̄ has highest weight less than q; the exceptional case is

q = 25, S < A1D5, embedding (02 or 1), 4/4(5).

But in this case, S also lies in A1A3A3, as in conclusion (i) of the lemma.

Lemma 4.4. Suppose that case (5) of 3.5 holds, and also that 4.2(ii) holds. Then
we can choose S̄ with S < S̄ ≤ D, such that every composition factor of L(G) ↓ S̄
has high weight less than q.

Proof. We have S < S̄ ≤ D, and by applying a suitable field twist we may take it
that D has a factor E with usual module V such that V ↓ S̄ is as in Table 2.

Suppose first that p = 5. Then E = A5, A6, D5 or D6; as we are assuming 3.5(5)
holds, D lies in A2A5, A1A1A5, A1A6 or A1D5. We may take the embedding of S̄
in these groups to be one of the following:

S̄ < A2A5 : projection (03, 1(5i)/0 or 2(5i)), 3/1(5) (with 5i < q)

S̄ < A1A1A5 : embedding (02 or 1(5i)), (02 or 1(5j)), 3/1(5) (with 5i, 5j < q)

S̄ < A1A6 : embedding (02 or 1(5i)), (3/1(5)/0 or 2/1⊗ 1(5)) (with 5i < q)

S̄ < A1D5 : embedding (02 or 1(5i)), (3⊗ 1(5)/02 or 22/1⊗ 1(5)) (with 5i < q)

In all cases we find that the highest weight of S̄ on L(G) is less than q, as required.
Now suppose p = 3. Then E = Ar (3 ≤ r ≤ 6), D4 or D5. As in the proof of

4.3, and using 3.4 to rule out all rank 7 possibilities, we see that D lies in one of
the following subgroups Y1 . . . Yr:

A1A2A3, A3A3, A2A4, A1A1A1A3, A1A1A4, A1A5, A6, A1A1D4, A2D4, A1D5.

If D ≤ A1A2A3, the conclusion is clear unless the embedding of S̄ is (02 or 1(3i)),
2(3e−1), 1/1(3) (recall that q = 3e). Applying a field twist, we can change S̄ to take
the embedding to be (02 or 1(3i+1)), 2, 1(3)/1(9); this gives the conclusion unless
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i + 1 = e, in which case we further twist to replace the 1(3i+1) by just 1. Now the
weights on L(G) are less than q, as required.

This argument applies to all cases where the factors Yi are all of type Ak, except
for A3A3, in which case S̄ could be indecomposable on both natural modules for the
factors. Here the embedding is 1/1(3), (1/1(3))(3

i), and we can assume that 3i < q.
The weights are all less than q unless 3i+1 = q. We can now change S̄ by applying
a 3-power twist to take the embedding to be 1(3)/1(9), 1/1(3), for which the weights
are less than q.

It remains to handle the cases where some Yi is D4 or D5. For these the
weights of S̄ on L(G) are less than q unless possibly S̄ < A1D5 with embedding
1 ⊗ 1(3)/1(3i)/1(3i)/02 or 1 ⊗ 1(3)/1(3i) ⊗ 1(3l)/02 (i < l) in the D5 factor. In the
first case, S̄ < A1A1D3, a case handled above. In the second case, if the factor
1(3i) ⊗ 1(3l) splits off then S̄ < A1A1A1D3, a case already considered. Otherwise,
by 1.2, we have l = i+1. The weights of S̄ on L(G) are less than q unless i+1 = e,
in which case we twist to embedding 1(3) ⊗ 1(9)/1⊗ 1(3)/02, for which the weights
are all less than q.

Continue to assume that p 6= 2, q > 13. By 3.5–3.7 and the previous two lemmas,
we may now assume that either we are in one of the exceptional cases of 4.2(iii,iv,v),
4.3(i,ii), or D and q are as in Table 3.

Table 3

D q
A1A2A5, A1E6, A1D6 17, 19
A1A1D5, A7, A2D5, A3D4 17, 19, 23, 25
D6 q prime or q = 25

Lemma 4.5. Suppose that q is prime and D is as in Table 3, with D 6= A1E6.
Then we can choose S̄ ∼= A1(K) such that S < S̄ ≤ D and the highest weight of
L(G) ↓ S̄ is less than q, except in the following case:

q = 17, S < D = A1D6 or D6, with embedding 10/0 in the D6 factor.

Proof. Since q = p ≥ 17, it follows from 1.2 that S acts completely reducibly on
the usual module for each factor of D. Hence there is a subgroup S̄ ∼= SL2(K) of
D containing S (see the preamble to 4.3). We see as in the proof of the previous
lemma that either we can take the highest weight of S̄ to be less than q, or D has
a factor D6 with S projecting via 10/0, as in the conclusion.

Lemma 4.6. If q = 25 and D is as in Table 3, then either we can choose S̄ ∼=
A1(K) such that S < S̄ ≤ D and the highest weight of L(G) ↓ S̄ is less than q, or
one of the following holds:

(i) D has a factor D5 or D6, and the embedding of S in this factor is 4/4(5)/0m

(m = 0 or 2);
(ii) S < D = A3D4, with embedding 3(5), 1(5) ⊗ 3 or 3(5), 3/3 or 3(5), 4/2 or

3(5), 4/2(5) or 3(5), 4/03;
(iii) S < D = A7, with embedding 3/3(5).

Proof. If S is not completely reducible on the usual module for one of the factors of
D, then one of the possibilities given in Table 2 of 4.2 holds, from which we easily
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see that S̄ exists, with all weights on L(G) less than q. Otherwise, S is completely
reducible in all factors of D. The only way the desired S̄ can fail to exist is for
some Vi ↓ S to have a composition factor 3(5) or 4(5) which cannot be excluded by
applying a field twist; all such possibilities are listed under conclusions (i)–(iii).

The next lemma deals with the possibility D = A1E6 excluded in 4.5.

Lemma 4.7. Theorem 1 holds if D = A1E6.

Proof. Here q = 17 or 19, and by 3.4, o(a) ≤ 6. Consequently the group A must
be U3(17) or L3(19). Observe that the projection of S to the factor E6 is a group
S0
∼= L2(p). Pick u ∈ S of order p, and write u = u1u0 with u1 ∈ A1, u0 ∈ S0 < E6.
Assume first that u0 is a regular or semiregular element of E6. Now the projec-

tion of CA(a) to E6 in fact contains PGL2(p). Under these circumstances, [ST2,
Theorem 1] implies that there is a subgroup S̄ ∼= A1(K) of E6 containing S0.
Moreover, by [LT, Table 3], S̄ is determined up to E6-conjugacy; the composition
factors of L(E6) ↓ S̄ are as in [Se2, p.65]. It follows that L(E6) ↓ S̄ has a unique
composition factor with high weight 16. Hence the same is true of L(E8) ↓ S.
Consequently L(E8) ↓ A has a composition factor VA(aa) with 2a ≥ 16. By 1.5,
VA(aa) has dimension either (a + 1)3 or (a + 1)3 − (p − a − 1)3. Since this is at
most 248, we must have p = 17 and a = 8, in which case VA(aa) has dimension
217. Now VA(88) ↓ S has two composition factors of high weight 15; moreover,
S < A1S̄ < A1E6, and

L(G) ↓ A1E6 = L(A1)/L(E6)/1⊗ λ1/1⊗ λ6/0⊗ λ1/0⊗ λ6/(1⊗ 0)2/0

(see [LS2, §2]). It follows that the restriction of the A1E6-module 1⊗λ1 to S must
have a composition factor of high weight 15. By [LS2, 2.5], we have λ1 ↓ S0 =
16/8/0 or 12/8/4; hence, by the previous sentence, in fact λ1 ↓ S0 = 16/8/0. Then
1⊗ λ1 ↓ S has two composition factors 15, whence L(G) ↓ S has four composition
factors 15. This implies that L(G) ↓ A has a further factor VA(bc) with b+ c ≥ 15;
but then dimVA(88) + dimVA(bc) > 248, a contradiction.

Now suppose that u0 is not regular or semiregular in E6. Then u0 lies in the
centralizer in E6 of a semisimple element, hence lies in a subsystem subgroup Y =
D5, A1A5 or A2A2A2. Since p ≥ 17, it follows using 1.7 that u0 lies in a subgroup
S̄ ∼= A1(K) of Y such that S̄ has restricted composition factors on the usual modules
for all factors of Y . If we write M for the factor A1 of D = A1E6, then u lies in a
diagonal subgroup S̃ ∼= A1(K) of MS̄ (where neither projection involves a twist).
The restrictions L(E8) ↓MY are given by [LS2, §2], and we deduce from this that
all composition factors of L(E8) ↓ S̃ are restricted. It now follows from [LST, 1.14]
that if U is a connected unipotent subgroup of S̃ containing u, then u and U fix
the same subspaces of L(E8), contrary to (†).

To complete the proof of Theorem 1 for q > 13, p 6= 2, all that remains is to
handle the exceptional cases in the conclusions of 4.2, 4.3, 4.5 and 4.6.

Lemma 4.8. None of the exceptional cases in 4.2(iii, iv, v) can occur.

Proof. Consider first case 4.2(iii); here q = 27 and S < A5 < D with embedding
1/1(3)/1(9). From [LS2, Table 8.1] we have

L(G) ↓ A5 = L(A5)/λ6
1/λ

3
2/λ

2
3/λ

3
4/λ

6
5/0

11.
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Hence

L(G) ↓ S = (1⊗ 1(3) ⊗ 1(9))2/(1⊗ 1(3))8/(1⊗ 1(9))8/(1(3) ⊗ 1(9))8/
116/(1(3))16/(1(9))16/2/2(3)/2(9)/031.

Recall that S < A = Aε2(27) or B2(27). If A = B2(27) then S contains a conjugate
b of a (of order 28). However from the above restriction of L(G) to S, we see that
dimCL(G)(b) = 34, whereas CG(a) contains A5, of dimension 35, a contradiction.

Therefore A = Aε2(27). Since L(G) ↓ S has two factors 1⊗ 1(3) ⊗ 1(9), it follows
that L(G) ↓ A has a factor α ⊗ β(3) ⊗ γ(9) and its dual, where α, β, γ ∈ {10, 01}.
Moreover,

(α⊗ β(3) ⊗ γ(9)) ↓ S = 1⊗ 1(3) ⊗ 1(9)/1⊗ 1(3)/1⊗ 1(9)/1(3) ⊗ 1(9)/1/1(3)/1(9)/0.

Now VA(22) ↓ S has three composition factors of high weight 2, hence is not present
in L(G) ↓ A. In order to accomodate the further six composition factors 1 ⊗ 1(3)

in L(G) ↓ S, it follows that L(G) ↓ A must have three factors of the form δ ⊗ ε(3)

with δ, ε ∈ {10, 01}, together with their duals; similarly for the other 2-fold twists.
The composition factors found so far for L(G) ↓ A account for all composition

factors of L(G) ↓ S except 12/(1(3))2/(1(9))2/2/2(3)/2(9)/011; in order to accomo-
date these, L(G) ↓ A must have further factors 11/11(3)/11(9)/008.

Now a is an element of order 26 or 28 in A of the form diag(ω, ω, ω−2) for some
ω ∈ K∗. We calculate that dimCVA(λ)(a) is at most 1 if λ = α⊗ β(3) ⊗ γ(9), is 0 if
λ = δ⊗ε(3), and is 4 if λ = 11. Hence from the above we see that dimCL(G)(a) ≤ 22.
This is a contradiction, as CG(a) contains A5. This completes the argument for the
case 4.2(iii).

The case 4.2(iv) is handled similarly. Here S < D = A1D5, and from [LS2, §2],

L(G) ↓ A1D5 = L(A1)/L(D5)/(1⊗ λ1)2/1⊗ λ4/1⊗ λ5/(0⊗ λ4)2/
(0⊗ λ5)2/(0⊗ λ1)2/(1⊗ 0)4/04.

From the proof of 4.2, we see that the projection of S in the D5 factor is as in case
(c) for p = 3, namely (1 ⊗ 1(3)/0/1⊗ 1(3))⊥V1, the space 1⊗ 1(3) being a singular
4-space. We now calculate that

L(G) ↓ S = (1⊗ 1(3) ⊗ 1(9))8/(2⊗ 1(9))2/(2(3) ⊗ 1(9))2/2⊗ 2(3)/

(1⊗ 1(3))16/27/(2(3))7/2(9)/(1(9))12/018.

If A = B2(27) then, as above, S contains a conjugate b of a, and from this restriction
we see that CL(G)(b) has dimension 34, which is a contradiction as CG(a)′ = A1D5.
Thus A = Aε2(27). As in the previous case, L(G) ↓ A must have a composition
factor α⊗ β(3) ⊗ γ(9) with α, β, γ ∈ {10, 01}. But the restriction of this to S has a
composition factor 1⊗ 1(9), which is not present in L(G) ↓ S.

Finally, consider 4.2(v). Here we calculate that

L(G) ↓ S = (1⊗ 2(3) ⊗ 1(9))2/(1⊗ 1(3) ⊗ 1(9))2/(1⊗ 2(3))4/
(2(3) ⊗ 1(9))4/(1⊗ 1(3))6/(1⊗ 1(9))4/(1(3) ⊗ 1(9))7/
2/(2(3))8/(2(9))3/14/(1(3))12/(1(9))8/08.

We obtain the usual contradiction if A = B2(27), so assume A = Aε2(27). In order
to produce (1⊗ 2(3)⊗ 1(9))2 for S, L(G) ↓ A must have a factor λ = α⊗ β(3)⊗ γ(9)

and its dual, where α, γ ∈ {10, 01}, β ∈ {20, 02} (note that L(G) ↓ A cannot have
factors α ⊗ 22(3) or α ⊗ 11(3) ⊗ γ(9), as these are incompatible with L(G) ↓ S).
Removing the composition factors of (λ + λ∗) ↓ S from L(G) ↓ S still leaves two
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factors 2(3) ⊗ 1(9). To accommodate these, L(G) ↓ A must have δ(3) ⊗ µ(9) and
its dual, where δ ∈ {20, 02, 11}, µ ∈ {10, 01}. Removing the restrictions of these
to S leaves a further one or three factors 1(3) ⊗ 1(9). At least one of these must
occur in the restriction of a self-dual factor of L(G) ↓ A, which must be 22(3).
Removing all S-composition factors of this from what is left of L(G) ↓ S leaves
(1⊗ 2(3))2/(2(3))1/..... The factors 1⊗ 2(3) must occur in the restriction of φ⊗ψ(3)

and its dual, where φ ∈ {10, 01}, ψ ∈ {20, 02, 11}; but this restriction has two
composition factors 2(3), which is a contradiction. This completes the proof.

Lemma 4.9. None of the exceptional cases in 4.3 or 4.6 can occur.

Proof. Suppose false, so q = 25. By considering the restriction of L(G) to the
subsystem subgroup containing D given in 4.3 or 4.6, we see that L(G) ↓ S has a
composition factor 4⊗ k(5) or 4(5)⊗ k, where k ∈ {3, 4}. Applying a twist, we may
assume the factor is 4 ⊗ k(5). Recall that X has a subgroup A ∼= Aε2(q) or B2(q)
which contains S. Let W be a composition factor of L(G) ↓ A such that W ↓ S
has 4⊗ k(5) as a composition factor.

Observe first that W is not restricted, since the highest weight of VA(ab) ↓ S
(a, b ≤ 4) is a+ b. Hence W = ab⊗ cd(5), with a, b, c, d ≤ 4.

If a+ b < 4 then cd(5) ↓ S must have a composition factor l⊗ k(5) = l(25)⊗ k(5),
with 1 ≤ l ≤ 4. Then 5(c + d) ≥ 25l + 5k ≥ 40, forcing c = d = 4. However, 44
(the Steinberg module) has dimension 53 (for A = Aε2(25)) or 54 (for A = B2(25)),
so ab⊗ 44(5) has dimension greater than 248, a contradiction.

Therefore a + b ≥ 4. Similarly we see that c + d ≥ k. For A = Aε2(q) it is now
easy to check that dimW > 248 if W is self-dual (i.e. if a = b and c = d), and that
dim(W +W ∗) > 248 otherwise. And for A = B2(q) we check that dimW > 248,
by counting conjugates of subdominant weights and using [Pr].

Lemma 4.10. The exceptional case in 4.5 cannot occur.

Proof. Suppose false, so that q = 17 and S < D = D6 or A1D6 with embedding
(02), 10/0 or 1, 10/0. By [LS2, §2], we have

L(G) ↓ A1D6 = L(A1D6)/(1⊗ λ1)2/1⊗ λ5/λ
2
6/0

3.

Moreover, by [LS2, 2.13], λ5 ↓ S ∼= λ6 ↓ S = 15/9/5. Therefore L(G) ↓ S has
a composition factor with high weight 15 or 16. If A = B2(17) then we can take
a to have order 18, and the conclusion follows from the proof of 3.7. Therefore
A = Aε2(17). Now L(G) ↓ A must have a composition factor VA(ab) with a+ b = 15
or 16. By 1.8, this forces a = b = 8, in which case dimVA(ab) = 217. Now
VA(88) = WA(88)/WA(77), from which we calculate that

VA(88) ↓ S = 161/152/142/ . . .

To obtain the factor 16, the embedding of S in A1D6 must be 1, 10/0, whence
L(G) ↓ S = 161/152/143/ . . . . The factor 14 not occurring in VA(88) ↓ S must
occur in the restriction of a self-dual A-composition factor of L(G), which must be
VA(77). However, dim VA(88) + dimVA(77) > 248, which is a contradiction.

This completes the proof of Theorem 1 for p 6= 2, q > 13.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE SUBGROUP STRUCTURE OF EXCEPTIONAL GROUPS OF LIE TYPE 3441

5. Completion of the proof of Theorem 1 for p 6= 2

In this section we complete the proof of Theorem 1 for p 6= 2. Since q > 9 by
hypothesis, by the previous section it remains only to handle the cases q = 11 and
q = 13. Thus let G = E8 and suppose that X = X(q) < G with q = 11 or 13. By
the hypothesis of Theorem 1, X 6= L2(q), so X contains a subgroup A isomorphic
to one of the following groups:

Aε2(11), Aε2(13), B2(11), B2(13).

As in the previous section, by 3.2 we may assume
(†) there are no subgroups Y ≤ X , Z = Z0 ≤ G, such that every

Y -invariant subspace of L(G) is Z-invariant and X ∩ Z 6≤ Z(X).
A in a series of lemmas. The most complicated cases occur when A = L3(13) or

U3(11), and we leave these until the final lemma.
We begin with a useful fact about self-dual indecomposables for SL2(p).

Lemma 5.1. Let S = SL2(p) (p = 11 or 13), and let V be a self-dual indecompos-
able KS-module of the form 4/4 (p = 11) or 5/5 (p = 11 or 13). Then S < SO(V )
only if V = 5/5 with p = 11; otherwise S < Sp(V ).

Proof. Suppose S < SO(V ) = SO2r (r = 4 or 5). Then S < Pr = QL, the stabilizer
of a maximal totally singular subspace, with unipotent radical Q; moreover, Q is
abelian, and Q ↓ S ∼=

∧2
V (r), which is 6/2 if r = 4 and 8/4/0 if r = 5. Since V

is indecomposable, S does not lie in a conjugate of L, so H1(Q,S) 6= 0. It follows
from 1.2(i) that r = 5 and p = 11, as required.

Lemma 5.2. Theorem 1 holds if A = SL3(13) or SU3(11).

Proof. Write Z(A) = 〈t〉, a group of order 3. We claim that CG(t) = A2E6 or
A8. Now A < CG(t) = TkE, where E is a semisimple subsystem subgroup of G.
Then A < E = CG(t)′, whence t ∈ Z(E). Therefore E has a simple factor of
type A2, A5, E6 or A8. In the last case the claim holds. If there is an E6 factor
or a unique A2 factor, then CG(t) contains the centralizer of this factor, whence
CG(t) = A2E6, as in the claim. If there is an A5 factor, this has centralizer A2A1

in G, whence CG(t) has an A2 factor. It remains to show that CG(t) cannot have
more than one A2 factor. If there is more than one, then the normalizer of the
product of all the A2 factors is A4

2, whence CG(t) = A4
2, contradicting 1.14. Thus

CG(t) = A2E6 or A8, as claimed.
Suppose first that CG(t) = A8; in fact, then CG(t) = SL9/Z3. But this group

cannot contain A, since if it did, the preimage of Z(A) in SL9 would be cyclic of
order 9, which is clearly impossible.

Now assume CG(t) = A2E6. If A lies in the A2 factor, then these groups fix the
same subspaces of L(G); hence A projects nontrivially to the E6 factor. Choose
a ∈ A of order 4 such that CA(a)(∞) = S ∼= SL2(p). The projection of S in
E6 centralizes an involution, hence lies in a subgroup A1A5 or T1D5; hence S
lies in T1A1A1A5 or T1A1T1D5. The restriction of L(G) to these subgroups is
given by [LS2, §2], and for all but one possible embedding of S we conclude that
S < S̄ ∼= SL2(K), where all high weights of L(G) ↓ S̄ are less than q, giving the
usual contradiction to (†). The one exception is S < A1D5 with embedding 1, 8/0
or 02, 8/0 (note that projection into D5 is not the indecomposable 4/4, by 5.1).
In this case, let S0 be the projection of S in E6, and consider the action of S0 on
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the 27-dimensional module V27 = VE6(λ1). Since V27 ↓ D5 = λ1/λ4/0, there is a
composition factor of V27 ↓ S0 of high weight 10 (see [LS2, 2.13]). Therefore if A0

denotes the projection of A in E6, V27 ↓ A0 must have a composition factor VA0(ab)
with a+ b ≥ 10, which is impossible by 1.9.

Lemma 5.3. Theorem 1 holds if A = L3(11) or U3(13).

Proof. The arguments are very similar to those of the previous lemma, and we give
just a sketch. Pick a ∈ A of order 10 or 14 (order 10 if A = L3(11), order 14 if
A = U3(13)), such that CA(a)(∞) = S ∼= SL2(p). As usual, by (†) we may suppose
that there is no subgroup S̄ ∼= SL2(K) containing S and having all composition
factors on L(G) of high weight less than q. If CG(a) = T1D with D semisimple,
then 3.4 implies that D = A3A4, A1A2A4, A2A1A1A3 or A1A1A5; in each case S̄
as above exists. Otherwise, writing o(a) = 2r, and working in CG(ar) = A1E7 or
D8, we find that S < CG(a)′ = A6, D6, D5 or A1D5 (in all other cases, S̄ as above
exists).

If S < A6, the non-existence of S̄ as above (having all weights less than q)
implies that the embedding is given by the representation 6 of S, and p = 11. But
the image of this representation of SL2(11) in A6 is L2(11), so this is impossible.

If S < D6, the embedding must be 10/0, 8/2 or 5/5 (an indecomposable extension
in the last case, with p = 11 by 5.1). (Note that the embedding 8/03 has image
group L2(p) (see [LS2, 2.13]), and 4/4/02 is out by 5.1.) By [LS2, Table 8.1],

L(G) ↓ D6 = λ2/λ
4
1/λ

2
5/λ

2
6/0

6,

and the restriction to S can be worked out from this using [LS2, 2.13]. If the
embedding of S is 10/0 then L(G) ↓ S has at least five composition factors of high
weight 10, which is not possible by 1.9. If the embedding is 8/2 with p = 13, then
L(G) ↓ S has four composition factors of high weight 11, and none of high weight
12; and if the embedding is 8/2 with p = 11, then L(G) ↓ S = 102/98/..... Both of
these are impossible, by 1.6. Now suppose the embedding is 5/5 with p = 11. We
find that L(G) ↓ S = 101/92/87/..... It follows that L(G) ↓ A must have a self-dual
composition factor giving a 10 on restriction to S. This must be VA(55); by 1.9, it
has dimension 91, and restricts to S as 101/92/82/..... The remaining composition
factors of L(G) ↓ A restrict to S to give a further 85, so it follows that one of them
is VA(44), which has dimension 125 by 1.8. There remain composition factors of
L(G) ↓ A, with restriction to S giving 84, and of total dimension 248−91−125 = 32.
This is clearly impossible, by 1.8.

Finally, if S < A1D5, the embedding must be 1, 8/0 (the 4/4 indecomposable
with p = 11 is not possible by 5.1). If p = 13 we find that L(G) ↓ S has 112/106

and no 12; and if p = 11, it has 105. Both of these are incompatible with 1.9.

Lemma 5.4. Theorem 1 holds if A = B2(11) or B2(13).

Proof. Pick an element a ∈ A of order 10 or 12 such that CA(a)(∞) = S ∼= SL2(p).
As in the previous proof, we have S < CG(a)′ = A6, D6 or A1D5. Since A contains
a product of two commuting conjugates of S, there is a conjugate b of a lying in S.

Suppose S < D6; as before, the embedding must be 10/0, 8/2 or 5/5 (p = 11).
In the first two cases, CVD6 (λi)(b) has dimension at most 4, 14, 0, 0 according as
i = 1, 2, 5, 6, and hence CL(G)(b) has dimension at most 36. But CL(G)(a) has
dimension at least dimA6 = 48, a contradiction. In the last case CVD6 (λi)(b) has
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dimension 0, 14, 8, 0 according as i = 1, 2, 5, 6, so dimCL(G)(b) ≤ 36, again a
contradiction.

Similar contradictions are reached when S < A6 or A1D5: for the A6 case we
obtain a group S̄ contradicting (†) (note that the irreducible embedding 6 is not
possible as its image in A6 is PSL2(q)); and for the A1D5 case we obtain S̄ unless
the projection of S into the D5 factor is 8/0, in which case we obtain a contradiction
by considering CL(G)(b) as above.

Lemma 5.5. Theorem 1 holds if A = L3(13) or U3(11).

Proof. Pick a ∈ A of order 4 such that CA(a)(∞) = S ∼= SL2(p). Then CG(a) is
one of the following groups (cf. [CG, Table 4]):

T1E7, T1A1E6, T1D7, T1A7, T1A1D6, A1A7, A3D5.

We now argue in a series of steps.

Step 1. If CG(a) = T1E7, then the composition factors of L(G) ↓ A are among the
modules VA(ab) with ab ∈ {00, 11, 30, 03}.

To see this, observe first that the weights of T1 on L(G) are 2, 1, 0,−1,−2, and
2,−2 occur with multiplicity 1; these are the only weights which agree on a, and
the sum of the two corresponding weight spaces is the −1-eigenspace for a. It
follows that any a-invariant subspace of L(G) containing this eigenspace is also
T1-invariant, and so is any a-invariant space which intersects the eigenspace in 0
only. In view of (†), it follows that some composition factor of L(G) ↓ A has
−1-eigenspace of dimension 1.

SupposeW = VA(cd) = VA(λ) is a composition factor on which a has no eigenval-
ues −1. We may assume the composition factor is restricted. Note that Z(A) = 1,
so c ≡ d mod 3. Let α, β be fundamental roots of an A2 root system. We may
assume that c ≥ d, α(a) = i and β(a) = 1. We know that λ(a) = 1, i or −i. If
λ(a) = 1 then λ − 2α − bβ cannot be a weight of W for any b ≥ 0, so c ≤ 1 and
d ≤ 1. This forces c = d = 0. If λ(a) = i then λ − 3α− bβ cannot be a weight, so
c ≤ 2, d ≤ 2, forcing c = d = 1. Finally, if λ(a) = −i then λ − α − bβ cannot be a
weight, forcing c = d = 0, a contradiction.

Similarly, we find that the only possible composition factors on which a has
exactly one eigenvalue −1 are VA(30) and VA(03). This proves Step 1.

Step 2. CG(a) 6= T1E7.

For suppose CG(a) = T1E7. Then by Step 1, the highest weight of S on L(G)
is 3. This is less than (p − 1)/3, and one now checks that the argument of [ST1,
Lemma 2] (second paragraph of proof) provides a rank 1 torus of G which fixes the
same subspaces of L(G) as some element of S of order p− 1, contrary to (†).
Step 3. CG(a) 6= T1D7.

Suppose CG(a) = T1D7, so that S < D7. Observe first that by [LS2, Table 8.1],

L(G) ↓ D7 = λ2/λ
2
1/λ6/λ7/0.

Arguing as in 4.2 and 4.3, we see that either S < S̄ < D7 with S̄ ∼= SL2(K) and
all composition factors of L(G) ↓ S̄ of high weight less than p (in which case (†) is
violated), or the embedding of S in D7 is one of

12/0, 10/03, 8/4, 8/2/02, 8/12/0, 5/5/02 (p = 11)
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(where as usual we specify the embedding by giving the composition factors of S
on the natural 14-dimensional module for D7). Note that the embeddings 6/6 and
8/05 are not possible, as these correspond to a subgroup PSL2(q) of D7 rather
than SL2(q).

In the ensuing arguments, observe that since A = L3(13) or U3(11), every com-
position factor of L(G) ↓ A is of the form VA(ab) with a ≡ b mod 3.

If the embedding is 12/0 then p = 13 and, using the restriction L(G) ↓ D7

given above, together with [LS2, 2.13], we see that L(G) ↓ S has three composition
factors with high weight 12. Then by Proposition 1.9, L(G) ↓ A must have three
composition factors among VA(12, 0), VA(93), VA(66). This forces dimL(G) > 248,
a contradiction.

If the embedding is 10/03, then L(G) ↓ S has at least five composition factors
with high weight 10, and again we obtain a contradiction using Proposition 1.9. If
the embedding is 8/4 then for p = 13 we find that L(G) ↓ S = 121/114/..., and
for p = 11, L(G) ↓ S = 102/94/84/76/..., both of which conflict with 1.9. If the
embedding is 8/2/02 or 8/12/0, we find that L(G) ↓ S = 114/... or 112/106/...
(respectively) if p = 13, and is 102/98/... or 105/96/83/... if p = 11; all these
possibilities conflict with 1.9.

Finally, the embedding 5/5/02 is excluded exactly as in the proof of 5.3. This
completes Step 3.

Step 4. CG(a) 6= T1A7, T1A1D6, A1A7 or A3D5.

The proof of this is entirely similar to that of Step 3: supposing CG(a) is one of
the above, we find that either S < S̄ < CG(a)′ with S̄ having all weights less than
p, or the embedding of S in CG(a)′ is one of the following:

CG(a)′ embedding S < CG(a)′

A7 7
A1A7 1, 7 or 1, 6/0(p = 11)
A1D6 1, 10/0 or 1, 8/2 or 1, 8/03 or 1, 5/5(p = 11)
A3D5 3, 8/0

(note that in the last two rows we have assumed that S 6≤ D7, in view of the
argument for Step 3). For each of the above embeddings, it is straightforward to
work out the composition factors of L(G) ↓ S, and in all cases we find as in Step 3
that these conflict with 1.9.

Step 5. CG(a) 6= T1A1E6.

The argument for this step is similar to the proof of 4.7. Let S0 be the projection
of S to the factor E6, pick u ∈ S of order p, and write u = u1u0 with u1 ∈ A1,
u0 ∈ S0 < E6. Note that S0

∼= L2(p).
Assume first that u0 is a regular or semiregular element of E6. As in the proof

of 4.7, [ST2] then implies that S0 < S̄ < E6, where S̄ ∼= A1(K); and by [Se2, p.65]
and [LS2, 2.5(ii)] we have, writing V27 = VE6(λ1), either

(i) p = 13, L(E6) ↓ S̄ = W (22)/W (16)/W (14)/W (10)/W (8)/W (2) and V27 ↓ S̄
= W (16)/W (8)/0 (recall W (r) denotes the Weyl module of high weigth r),
or

(ii) L(E6) ↓ S̄ = W (16)/W (14)/W (10)2/W (8)/W (6)/W (4)/W (2) and V27 ↓ S̄
= W (12)/W (8)/W (4).
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Moreover, by [LS2, §2],

L(G) ↓ A1E6 = L(A1E6)/1⊗ λ1/1⊗ λ6/0⊗ λ1/0⊗ λ6/(1⊗ 0)2/0.

Note that S projects nontrivially into the A1 factor (since the image of S in the E6

factor is PSL2(q)). In case (i), we deduce that L(G) ↓ S has at least 3 composition
factors with high weight 10, and none with high weight 12. Using 1.9 we find
that this leads to a contradiction. In case (ii) with p = 13, we have L(G) ↓
S = 122/114/103/92/....; and in case (ii) with p = 11, we have L(G) ↓ S =
102/94/85/..... Both of these restrictions conflict with the possibilities given by 1.9.

Therefore u0 is not regular or semiregular in E6, so, as in the proof of 4.7,
it lies in a subsystem subgroup Y = D5, A1A5 or A2A2A2. Using 1.7 for the
D5 case, we see that there is a subgroup S̄ ∼= A1(K) of Y containing u0 and
having restricted composition factors on the usual modules for all factors of Y .
The restrictions V27 ↓ Y are given by [LS2, Table 8.7], and using [LS2, 2.13] we
deduce that all composition factors of V27 ↓ S̄ are restricted. Therefore, if U is a
connected unipotent subgroup of S̄ containing u0, then by [LST, 1.14], u0 and U
fix the same subspaces of V27. Now S0 = A1(p) is not irreducible on V27; hence
neither is 〈S0, U〉. Thus 〈S0, U〉0 is a proper nontrivial connected subgroup of E6,
hence lies in a maximal connected subgroup, M say. The possibilities for M are
given by [Se2, Theorem 1].

Suppose M contains a maximal torus of E6. If M is reductive, then M ′ is a
subsystem subgroup, hence lies in a subgroup D5, A1A5 or A2A2A2. We find in the
usual way that either S lies in a subgroup A1(K) having all composition factors on
L(G) of high weight less than p, or S0 < D5 with embedding 8/0. But in this case
S < A1D5 < D7, which was excluded in Step 3.

Now suppose M is parabolic. Choose a minimal parabolic P = QL of E6 con-
taining S0, with unipotent radical Q and Levi subgroup L. The L-composition
factors of Q have the structure of KL-modules, with high weights given by [LS2,
3.1]. Using 1.2, we find that eitherH1(S0, V ) = 0 for all such modules V , or L = D5

and the embedding of S0 in L modulo Q is 8/0. In the latter case, S < QA1D5,
so S has the same composition factors on L(G) as a suitable subgroup A1(p) of
A1D5 < D7, and the proof of Step 3 gives a contradiction. And in the former case,
S0 lies in a conjugate of L, a case dealt with in the previous paragraph.

Thus M does not contain a maximal torus of E6. The argument of the previous
two paragraphs shows that S0 lies in no subgroup of maximal rank in E6. Then
by [Se2], M = A2, G2, F4 or A2G2; the restrictions of L(E6) and V27 to each of
these subgroups are given in [LS2, §2]. The fact that S0 lies in no maximal rank
subgroup of E6 implies that S0 also lies in no maximal rank subgroup of M (since
otherwise S0 would centralize a nontrivial semisimple element t in the centre of a
maximal rank subgroup of M , hence lie in the maximal rank subgroup CE6(t)).

Write R = 〈S0, U〉. Observe first that R does not act irreducibly in dimension
27 or 26, so R is not equal to one of the maximal subgroups G2, A2 or F4 of E6.
Also, if R lies in a maximal G2, then by [Se2, pp.193 and 65], R = A1 and S0 < R
has composition factors as in (ii) above, giving a contradiction as before. And if
R lies in a maximal A2, then R = A1 has all composition factors on L(G) of high
weight less than p.

Now suppose R lies in a maximal subgroup A2G2 of E6. Then S0 < A2G2. Let
S1 be the projection of S0 in the factor G2. Then S1 = L2(p) < G2 < B3. There is
a subgroup S̄1

∼= A1(K) of B3 containing S1, with all weights on L(B3) less than p.
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Hence by 1.5, S̄1 fixes all S1-invariant subspaces of L(B3), and in particular fixes
L(G2). Therefore S1 < S̄1 < G2; as S1 is not contained in a proper maximal rank
subgroup of G2, we have VG2(λ1) ↓ S̄1 = 6 and L(G2) ↓ S̄1 = 10/2. It follows that
S < S̄ < A1A2G2 with S̄ ∼= A1(K) having all weights on L(G) less than p.

Finally, suppose R lies in a maximal subgroup F4 of E6. By [Se2] again, R lies in
a maximal subgroup A1 or A1G2 of this F4. The subgroup A1G2 lies in a maximal
A2G2 of E6, a case handled in the previous paragraph. Hence R = A1; now R has
composition factors as in (i) above, giving a contradiction as before.

This completes the proof of Step 5, and hence of the lemma.

Lemmas 5.2–5.5, together with the remarks at the beginning of this section,
complete the proof of Theorem 1 for p 6= 2.

6. Proof of Theorem 1 for p = 2

In this section we complete the proof of Theorem 1 by handling the case where
p = 2. Thus we assume that X = X(q) < G with q = 2e ≥ 16, and G = E8 (as we
may assume by 3.1). As before, by Proposition 2 we can take it that X 6= L2(q) or
2B2(q). Moreover, X 6= Aε2(16) by the hypothesis of Theorem 1.

Observe that X contains a subgroup A, where A = Aε2(q) or B2(q) if q ≥ 32, and
A = B2(16) or G2(16) if q = 16. Pick a ∈ A of order divisible by (q − ε)/(3, q − ε)
if A = Aε2(q), and of order q + 1 otherwise, such that CA(a)(∞) = S ∼= SL2(q),
generated by long root subgroups of A. Note that either o(a) ≥ 17 or o(a) = 11
(which occurs only if A = U3(32).

In view of 3.2, we continue to adopt the assumption (†) made immediately after
3.2.

We begin with several preliminary results which will be required in the proof.

Lemma 6.1. The restrictions to S of VA(10), VA(01) and VA(11) are as in Table
4.

Table 4

A VA(10) ↓ S VA(01) ↓ S VA(11) ↓ S dimVA(10), VA(01), VA(11)
Aε2(q) 1/0 1/0 12/1(2)/02 3, 3, 8
B2(q) 12 1/02 14/(1(2))2/04 4, 4, 16
G2(q) 12/02 14/1(2)/04 (1⊗ 1(2))2/110/ 6, 14, 64

(1(2))9/018

Proof. This is elementary for the high weights 10 and 01, and follows for 11 from
the following facts: for A2, the module 11 is the quotient of 10 ⊗ 01 by a trivial
submodule 00; for B2, 11 = 10⊗ 01; and for G2, 11 is the quotient of 10⊗ 01 by a
submodule 10⊕ 01.

Lemma 6.2. (i) If L(G) ↓ S has a composition factor 1(2i1) ⊗ 1(2i2) ⊗ 1(2i3) ⊗
1(2i4), then A 6= B2(q) or G2(q); moreover, if this composition factor occurs with
multiplicity 1, then A 6= Aε2(q) also.

(ii) If L(G) ↓ S has a composition factor 1(2i1)⊗ . . .⊗1(2ir ) with r = 3 or 4, and
has no composition factor 1(2i1) ⊗ . . .⊗ 1(2ir−1 ), then A 6= Aε2(q) or G2(q).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE SUBGROUP STRUCTURE OF EXCEPTIONAL GROUPS OF LIE TYPE 3447

(iii) If L(G) ↓ S has a composition factor 1(2i1) ⊗ 1(2i2 )⊗ 1(2i3) with multiplicity
1, then it has 1(2i1) ⊗ 1(2i2) as a composition factor also.

(iv) If L(G) ↓ S has a composition factor 1(2i1) ⊗ 1(2i2)⊗ 1(2i3 ) with multiplicity
less than 8, or has composition factors 1(2i1) ⊗ 1(2i2) ⊗ 1(2i3), 1(2i1) ⊗ 1(2i2), the
latter with multiplicity less than 8, or has two different composition factors 1(2i1)⊗
1(2i2) ⊗ 1(2i3 ) and 1(2j1 ) ⊗ 1(2j2 ) ⊗ 1(2j3 ), then A 6= G2(q).

(v) If L(G) ↓ S has composition factors 1(2i1)⊗1(2i2)⊗1(2i3) with multiplicity 2,
1(2i1)⊗1(2i2) with multiplicity less than 4, and no composition factor 1(2i2)⊗1(2i3),
then A 6= B2(q).

(vi) If L(G) ↓ S has composition factors 1(2i1 )⊗1(2i2)⊗1(2i3) with multiplicity a,
1(2i1)⊗1(2i2)⊗1(2j) (j 6= i3) with multiplicity b, and 1(2i1 )⊗1(2i2) with multiplicity
less than a+ b, then A 6= Aε2(q).

Proof. (i) Note first that L(G) ↓ S has no r-fold tensor composition factors with
r ≥ 5, since dimL(G) < 35. By 6.1, L(G) ↓ A must also have a 4-fold tensor
composition factor. If A = B2(q) or G2(q), this has dimension at least 44 or 64,
which is greater than 248, a contradiction; and if A = Aε2(q) and the 4-fold factor
in L(G) ↓ S occurs with multiplicity 1, then L(G) ↓ A has a self-dual 4-fold factor,
of dimension at least 84, again a contradiction.

(ii) Suppose A = Aε2(q) or G2(q). By 6.1 and dimensions, L(G) ↓ A must have
a composition factor 10(2i1) ⊗ . . .⊗ 10(2ir ) (for type A2, each 10 could also be 01);
however the restriction of this to S has a composition factor 1(2i1 ) ⊗ . . .⊗ 1(2ir−1),
contrary to the hypothesis of (ii).

(iii) This follows from (ii) unless A = B2(q). For this case, by 6.1, the multiplicity
1 assumption forces L(G) ↓ A to have a composition factor 01(2i1)⊗01(2i2)⊗01(2i3);
however, the restriction of this to S has a composition factor 1(2i1) ⊗ 1(2i2).

(iv) Suppose A = G2(q). The hypothesis implies that L(G) ↓ A has a 3-fold
composition factor, which by dimensions must be 10(2i1) ⊗ 10(2i2) ⊗ 10(2i3). The
restriction of this to S conflicts with the assumptions in (iv).

(v) Suppose A = B2(q). Again L(G) ↓ A must have a 3-fold composition factor
µ

(2i1)
1 ⊗µ(2i2)

2 ⊗µ(2i3 )
3 , where each µi ∈ {10, 01}. Each possibility for the µi conflicts

with the assumptions on multiplicities.
(vi) This follows from an easy extension of the argument for (ii).

Lemma 6.3. Let e ≥ 5, and take Ze = {0, 1, . . . , e− 1} to act additively on itself
(i.e. a ∈ Ze sends x → x + a). Let k ∈ {3, 4, 5}, and let i1 . . . ik be an unordered
k-tuple of elements of Ze. Then i1 . . . ik is in the Ze-orbit of a k-tuple j1 . . . jk
satisfying one of the following conditions:

(i) jr ≤ e− 3 for all r;
(ii) taking j1 ≤ . . . ≤ jk, we have jk = e− 2, jk−1 ≤ e− 3, and, if jk−1 = e− 3,

then jk−2 ≤ e− 4;
(iii) e = k = 5 and j1 . . . jk = 01234, 01223, 00223, 01133 or 01233.

Proof. Assume that (i) and (ii) fail. If e = k = 5 and all the ij are distinct, then
clearly i1 . . . ik = 01234, as in (iii). So suppose this is not the case. Then the
number of distinct ij is less than e. Take i1 ≤ . . . ≤ ik. Applying an element of
Ze, we can assume that ik < e − 1. Therefore as (i) fails, we have ik = e − 2;
we also have i1 = 0, since otherwise we can apply the element −1 of Ze to obtain
conclusion (i).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3448 MARTIN W. LIEBECK AND GARY M. SEITZ

Thus we have i1 = 0, ik = e − 2. Applying the element 2 of Ze, we obtain (i)
again, unless some ij is e− 3 or e− 4. As (ii) fails, we deduce that either

(a) i1 . . . ik contains 0, e− 3, e− 3, e− 2, or
(b) i1 . . . ik contains 0, e− 2, e− 2.
Consider case (a). If k ≤ 4, application of the element 3 of Ze gives the tuple

3001, which satisfies (ii). Now suppose k = 5, so the tuple is 0, i, e− 3, e− 3, e− 2.
Applying 3 ∈ Ze gives the tuple 3, i+ 3, 0, 0, 1; this satisfies (i) or (ii) unless either
i = e− 4 or e = 5, i = 0. In the latter case the tuple is 33001, in the same orbit as
00223, as in (iii). And if i = e − 4 the tuple is in the orbit of 40112. As (ii) fails,
e = 5; then this is in the orbit of 01223, under (iii).

Now consider case (b). If k ≤ 4 the tuple is 0, i, e− 2, e− 2, which is in the same
Ze-orbit as 2, i+ 2, 0, 0; this satisfies (ii) unless i = e− 3, in which case the tuple is
in the orbit of 3011, which satisfies (ii).

Now suppose k = 5, so the tuple is 0, i, j, e−2, e−2 (i ≤ j), in the same orbit as
2, i+2, j+2, 0, 0. As (ii) fails, either j = e−3, or i = j = e−4, or e = 5, i = 0, j = 1.
In the last case the tuple is 00223, under (iii). If i = j = e − 4 the tuple is in the
orbit of 40022; as (i),(ii) fail, we must have e = 5 here, in which case the tuple is in
the orbit of 01133, under (iii). Finally, suppose j = e− 3. Then the tuple is in the
orbit of 3, i+3, 0, 1, 1; as (ii) fails, either i = e− 4 or e = 5, i = 0. In the latter case
the tuple is 01133, under (iii). In the former, the tuple is in the orbit of 40122; as
(ii) fails, e = 5 and this is in the orbit of 01233, under (iii).

Corollary 6.4. Let e ≥ 5, k ∈ {3, 4}, and let i1 . . . ik be an unordered k-tuple of
elements of Ze; if k = 4, assume that i1, . . . , ik are not all distinct. Then i1 . . . ik
is in the Ze-orbit of a k-tuple j1 . . . jk satisfying one of the following conditions:

(i) jr ≤ e− 3 for all r;
(ii) e = 5 and j1 . . . jk = 0013, 0023, 0113 or 013;
(iii) e = 6 and j1 . . . jk = 0024 or 024.

Proof. Consider first the case where k = 4, and take i1 ≤ . . . ≤ i4. As in the proof
of the previous result, we may take i4 = e − 2, i1 = 0. By 6.3 we may assume that
6.3(ii) holds. Thus i1 . . . i4 is either 0, i, e− 3, e− 2 (with i ≤ e − 4) or 0, i, j, e− 2
(with i ≤ j ≤ e− 4). In the first case the tuple is in the orbit of 3, i+ 3, 0, 1. This
satisfies (i) unless i = e− 4 or e = 5, i = 0; in the latter the tuple is in the orbit of
0023, under (iii), and in the former, the tuple has 4 distinct elements, contrary to
hypothesis.

Now suppose the tuple is 0, i, j, e − 2 with i ≤ j ≤ e − 4. This is in the orbit
of 2, i + 2, j + 2, 0, which satisfies (i) unless j = e − 4. Since i1, . . . i4 are not all
distinct, i must be 0 or e−4. Hence the tuple is in the orbit of 0244 or 0024. These
satisfy (i) unless e = 5 or 6, in which case they lie in the orbits of tuples under (iii).
This completes the case k = 4, and the case k = 3 is entirely similar.

As in previous sections, in the course of our proof of Theorem 1 we shall study the
embedding of our subgroup S ∼= SL2(q) in CG(a). As before, define D = CG(a)′, a
connected semisimple group. By Lemmas 3.4–3.7 we know that D is as in 3.5(5). In
particular, either D has a factor D4 or D5, or D is a product of factors Ar. For the
D4, D5 possibilities we need to study in some detail the embeddings of subgroups
SL2(q) in these groups.

For this purpose we now introduce some notation for certain connected semisim-
ple subgroups of D4, D5 (in characteristic 2). It is convenient to treat these groups
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in the forms SO8, SO10. First, we denote by A1 a connected fundamental subgroup
SL2 in SO8 or SO10. Thus A4

1 denotes a subgroup SO4SO4 in SO8, naturally em-
bedded. Taking a subgroup SO4 of SO8 fixing pointwise a non-degenerate 4-space,
we write B1 for a subgroup SO3 of this SO4 fixing a nonsingular vector. Then
SO6 contains a subgroup B2

1 , SO8 a subgroup B3
1 , and SO10 a subgroup B4

1 ; in
each case, the subgroup Bk1 fixes a unique nonsingular 1-space. Note that if v is
a nonsingular vector then (SO10)v = SO9, and a surjective morphism SO9 → Sp8

sends B4
1 → C4

1 = (Sp2)4, naturally embedded in Sp8. Finally, SO8 contains a
subgroup Sp2 ⊗ Sp2 ⊗ Sp2, which we denote by C3

1 ; and C2
1 denotes a subgroup

Sp2 ⊗ Sp2 of this.
Let S0 = A1(2e), and fix an injection ι : S0 → SL2(K). Whenever S0 =

A1(2e) maps homomorphically into a commuting product Ak1B
l
1, up to conjugacy

the projections of S0 to the factors are either trivial, or are field twists of the
injection ι. In the following result, when we say S0 has “distinct twists on the B1

factors”, we mean that the twists involved in all the nontrivial projections to B1

factors are all distinct.
Finally, if Y is a connected reductive group, we shall denote by QY a connected

group with unipotent radical Q.

Lemma 6.5. Let S0 = SL2(2e) (e ≥ 4), and suppose S0 < Dr with r = 4 or 5.
(i) If r = 4 then S0 lies in one of the following connected subgroups of D4:

A4
1, QA

3
1, B

3
1 , QB

2
1 , QC

2
1 , C

3
1 .

In the last four cases S0 has distinct twists on the B1 and C1 factors.
(ii) If r = 5 then S0 lies in one of the following connected subgroups of D5:

QA4
1, B

4
1 , A

2
1B

2
1 , QA1B

2
1 , QB

3
1 , QC

2
1 , C

3
1 .

In the third case A2
1B

2
1 < SO4SO6. Also, S0 has distinct twists on the B1 and C1

factors in all cases with such factors.

Proof. In the course of the proof we shall require information on the possible em-
beddings of S0 in the symplectic groups Sp4, Sp6, Sp8, as well as in SO6, SO8, SO10.
It is convenient to start with the smallest dimensions and work our way upwards.
For a classical group G = Sp2n or SO2n, we shall denote the natural G-module
by V2n. If S0 < G, let W be an irreducible S0-submodule of V2n; then W has
dimension 1,2,4 or 8, and W is either non-degenerate or totally singular, or, when
G is orthogonal, a nonsingular 1-space.

Suppose that S0 < Sp4, with natural module V4. As above, let W be an irre-
ducible S0-submodule of V4. If W = V4 then V4 ↓ S0 = 1(2i1 )⊗1(2i2), and S0 lies in
a connected subgroup Sp2⊗Sp2 = C1⊗C1 of Sp4. If W is a non-degenerate 2-space
then S0 < Sp2⊥Sp2 = C1C1. If W is a 1-space, then V4 ↓ S0 = 0/1(2i)/0; we can
take this to be indecomposable, as otherwise we are in the previous case. Here S0

lies in a parabolic subgroup QC1T1 of Sp4, and the unipotent radical Q has a 1-
dimensional subgroup Z such that Q/Z is an S0-module of high weight 1; moreover,
S0 acts trivially on Z. Choose S̃0 < C1 such that S0

∼= S̃0 and QS0 = QS̃0. Then
H1(S̃0, Q/Z) is 1-dimensional by 1.2, so under the action of (Q/Z)T1 there are just
2 classes of complements to Q/Z in (Q/Z)S̃0, both of which give complements to
Q in QS̃0. One of these, S̃0, lies in C1; the other, S0, lies in an indecomposable B1

contained in SO4 < Sp4. Consequently S0 < B1 < C1 ⊗ C1 = SO4 in this case.
The last possibility is that W is a singular 2-space. A graph automorphism τ of
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Sp4 maps the stabilizer of W to the stabilizer of a 1-space. Hence by the previous
case, Sτ0 lies in C1⊗C1, whence S0 lies in C1C1. Summarising, we have shown that
if S0 < Sp4 then S0 lies in either C1 ⊗ C1 or C1C1.

Next suppose S0 < SO6, with natural module V6. If W is non-degenerate of
dimension 2 or 4, then S0 < SO4 = A2

1. If W is a singular 1-space or 2-space, then
S0 < QA2

1 or QA1. The only other possibility is that W is a nonsingular 1-space,
in which case V6 ↓ S0 = 0/V4/0, where V4 is symplectic 4-space. Applying the
previous paragraph, S0 maps into a subgroup C1C1 or C1 ⊗ C1 of Sp(V4). Thus
S0 lies in a subgroup B2

1 or A2
1 of SO6. Moreover, if S0 < B2

1 with equal twists on
the factors, then V6 ↓ S0 = 0/1(2i)/1(2i)/0; as Ext1S0

(1(2i), 0) is 1-dimensional by
1.2, it follows that S0 fixes a singular 2-space, yielding S0 < QA1. Summarising, if
S0 < SO6 then either S0 < QA2

1 or S0 < B2
1 with distinct twists on the B1 factors.

Next consider S0 < Sp6, with natural module V6. If W is non-degenerate then
S0 < C1C2, so by the Sp4 case handled above, S0 lies in C1(C1⊗C1) or C3

1 . If W is
a singular 2-space then S0 < QA1C1. Moreover, either V6 ↓ S0 = 1(2i)/1(2j)/1(2i),
completely reducible by 1.2, or V6 ↓ S0 = 1(2i)/02/1(2i); hence either S0 < A1C1 or
S0 < QA1. Finally, if W is a 1-space then S0 < QC2, hence S0 lies in Q(C1 ⊗ C1)
or QC1C1.

Similarly, if S0 < Sp8 then S0 lies one of the subgroups C1 ⊗ C1 ⊗ C1 (with
S0 irreducible on V8), C2C2, C1C3, QA1C2, QC3 or QA3 (in the last case W is
a singular 4-space), and we can apply the previous conclusions for subgroups of
C2, C3 to refine this list.

Now we are ready to consider S0 < SO8, with natural module V8. If W = V8

then S0 < C3
1 , with distinct twists on the factors, and if W is a non-degenerate

4-space then S0 < A4
1. If W is a singular 4-space, then W ↓ S0 = 1(2i) ⊗ 1(2j)

and S0 < QC2
1 < QA3. If W is a singular 2-space then S0 < QA3

1. And if W is a
singular 1-space, then V8 ↓ S0 = 0/V6/0 with V6 an SO6-space, so by the SO6 case
above, S0 lies in QA2

1 or QB2
1 (with distinct twists in the latter case).

To complete the analysis of S0 < SO8, it remains to handle the case where
W is a nonsingular 1-space. Here V8 ↓ S0 = 0/V6/0, where V6 is symplectic 6-
space, and S0 maps into Sp6. By the Sp6 case above, S0 maps into a subgroup
C1(C1 ⊗ C1), C3

1 , QA1C1, Q(C1 ⊗ C1) or QC1C1 of Sp6. In the first case S0 <
B1A

2
1 < A4

1 (in SO8). In the second, S0 < B3
1 ; and if S0 has equal twists on two

of the B1 factors here, then V8 ↓ S0 = 0/1(2i)/1(2i)/..., and an application of 1.2
shows that S0 fixes a 2-space 1(2i), putting us in a previous case. In the third case
S0 < QA1B1, which lies in QA3

1 in SO8. In the fourth case S0 < QA2
1. Finally, in

the last case S0 < QB2
1 , and if S0 has equal twists in the B1 factors then S0 < QA1.

This completes the proof of part (i) of the lemma.
Now consider S0 < SO10, with natural module V10. If W has dimension 8

then S0 < C3
1 (with distinct twists). If W is a non-degenerate 4-space then S0 <

SO4SO6, so by the SO6 case S0 lies in QA4
1 or A2

1B
2
1 . If W is a singular 4-space

then V10 ↓ S0 = (1(2i) ⊗ 1(2j))2/02, and S0 < QC2
1 . And if W is a singular 1-space,

then S0 < QSO8, and conclusion (ii) follows from the SO8 case (i) (note that the
possibility S0 < QC3

1 only arises in the SO8 proof when S0 is irreducible on V8, in
which case V10 ↓ S0 is completely reducible by 1.2, giving S0 < C3

1 with distinct
twists).

Next suppose that W is a nonsingular 1-space, so V10 ↓ S0 = 0/V8/0, where
V8 is Sp8-space. By the Sp8 case above, S0 maps into a subgroup C1 ⊗ C1 ⊗ C1,
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C2C2, C1C3, QA1C2, QA3 or QC3 of Sp8. In the first case we have S0 < C3
1 with

distinct twists. Next, if S0 maps into C2C2 then, by the Sp4 case above, S0 lies
in A4

1, A
2
1B

2
1 or B4

1 in SO10. Moreover we may take it that S0 has distinct twists
on the B1 factors, since equal twists on a pair of B1 factors allow us to replace
the group B2

1 by QA1, putting S0 inside QA3
1 or QA1B

2
1 , as in the conclusion of

(ii). If S0 maps into C1C3 then, by the Sp6 case, S0 maps into C2
1 (C1 ⊗ C1), C4

1 ,
C2

1A1, QA1C1, QC1(C1⊗C1), or QC3
1 . Hence in SO10, S0 lies in A2

1B
2
1 , B4

1 , A1B
2
1 ,

QA1B1, QA2
1B1 or QB3

1 . The only subgroup here not in conclusion (ii) is QA2
1B1,

which lies in QA4
1. Next, if S0 maps into QA1C2 in Sp8, then S0 < QA3

1 or QA1B
2
1

in SO10. If S0 < QA3 then S0 < QC2
1 . Finally in this case (W a nonsingular 1-

space), if S0 maps into QC3 in Sp8, then S0 fixes a singular 1-space in V10, putting
us in a previous case.

It remains to handle the case where W is a singular 2-space. Here S0 < QA1D3,
so by the SO6 case, S0 lies in either QA3

1 or QA1B
2
1 (with distinct twists), as in

(ii).
This completes the proof of the lemma.

Corollary 6.6. If D = CG(a)′ has a factor D4 or D5, then one of the following
holds:

(i) S < QAk1 < D with k ≤ 5 (the Ak1 being fundamental A1’s in G);
(ii) S < QA1B

3
1 < A2D4 or A1D5;

(iii) S < QA2
1B

2
1 < A1D5;

(iv) S < A1B
4
1 < A1D5;

(v) S < A3
1B

2
1 < A1D5.

In cases (ii)–(v), S has distinct twists on the B1 factors.

Proof. Observe that D 6= A1A1D4, since otherwise a ∈ CG(A1A1D4) = A1A1 =
CG(D6), contradicting 3.7. Hence, as D satisfies 3.5(5), we see that D = ArD4 or
AsD5 with r ≤ 2, s ≤ 1. The projection S0 of S in the factorD4 orD5 satisfies 6.5(i)
or 6.5(ii). We see from this that either the result holds, or S0 lies in a subgroup
C3

1 or QC2
1 of the factor D4 or D5. If S0 < C3

1 , then S0 < C3
1 < D4, and NG(D4)

contains a triality automorphism of this D4. This triality sends the subgroup C3
1

to a subgroup B3
1 of D4, and hence a conjugate of S lies in a subgroup ArB

3
1 or

AsB
3
1 of D, as in (ii) of the conclusion. A similar argument applies if S0 < QC2

1 ;
here S0 < QC2

1 < D4, and application of triality gives a conjugate of S lying in
Ar(QB2

1) or As(QB2
1), yielding (ii) again.

In the next lemma we consider the other possibilities for D.

Lemma 6.7. Suppose that D is a product of factors Am. Then conclusion (i) or
(v) of Corollary 6.6 holds.

Proof. Recall that D is as in 3.5(5). Note also that D 6= A3A4 or A1A6 by 3.4.
Assume that 6.6(i) does not hold. Then D must have a factor A3+δ (δ ≥ 0) with
natural module V such that V ↓ S has a composition factor 1(2i) ⊗ 1(2j); and
D 6= A1A5, since otherwise a ∈ CG(A1A5) = A2 = CG(E6), contrary to 3.6.
Moreover, if D has a factor A4, then the natural module for this factor restricts to
S as 1(2i) ⊗ 1(2j)/0; this splits by 1.2, and hence S projects into a subgroup A3 of
this factor. We conclude that one of the following holds:

(a) S < D = A5 orA6, with embedding 1(2i)⊗1(2j)/1(2k)/0m or 1(2i)⊗1(2j)/02+m

(m ≤ 1);
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(b) S < A3
1A3, with projection 1(2i) ⊗ 1(2j) in the A3 factor;

(c) S < A3A3, with projection 1(2i) ⊗ 1(2j) in one of the A3 factors;
(d) S < D = A1A2A3, with projection 1(2i) ⊗ 1(2j) in the A3 factor.
Consider first case (b), S < A3

1A3. Now A3
1A3 < A3

1D4 in G, and NG(A3
1D4)

contains an element τ of order 3 inducing a triality automorphism on the D4 factor
and permuting the A1 factors cyclically. Since the projection of S to the A3 factor
is 1(2i) ⊗ 1(2j), we see that for some k, Sτ

k

projects into a subgroup B2
1 in the

D4 factor. Hence S < A3
1B

2
1 < A3

1D4. Moreover this A3
1B

2
1 < A3

1D3 < A3
1D4, so

S < A3
1B

2
1 < A3

1D3 < A1D5, as in 6.6(v). Note that the twists on the B1 factors
are distinct.

Now suppose case (a) holds, and let V be the natural module for D = A5 or
A6. If V ↓ S is completely reducible then S < A1A3 < D, as in case (b) handled
above. So assume V ↓ S is not completely reducible. Then applying a twist to the
labelling of S, we can take V ↓ S = 1⊗ 1(2i)/1(2j)/0m for some i, j. If j 6= 0, i then
by 1.2, V ↓ S = (1⊗1(2i))⊕ (1(2j)/0m), so S < A3A2 < A3A3, as in case (c), which
we handle below.

Thus we assume now that j = 0 or i. Applying a twist, we may take j = 0,
so V ↓ S = 1 ⊗ 1(2i)/1/0m. Recall that q = 2e with e ≥ 4, and the nontrivial
composition factors of L(G) ↓ D are of the form VD(λr), together with adjoint
modules of the factors ([LS2, §2]). If i ≤ e−3 then we can choose a rank 1 torus T1 in
D (namely T1 = {diag(c2

i+1, c2
i−1, c−2i−1, c−2i+1, c, c−1, 1m) : c ∈ K∗}) containing

an element t ∈ S of order q+1, such that t and T1 fix the same subspaces of L(G),
contrary to (†). If i = e − 1, we can twist to take V ↓ S = 1(2) ⊗ 1/1(2)/0m and
apply the same T1 argument. And if i = e−2 we twist to V ↓ S = 1(4)⊗1/1(4)/0m,
and the T1 argument applies unless q = 16. Thus to complete this case (a), assume
now that

q = 16, V ↓ S = 1⊗ 1(4)/1/0m.

By [LS2, Table 8.1], L(G) ↓ A5 = L(A5)/λ6
1/λ

3
2/λ

2
3/λ

3
4/λ

6
5/0

11. Using [LS2, 2.13]
we deduce from this that

L(G) ↓ S = (1⊗ 1(2))2/(1⊗ 1(4))16/(1⊗ 1(8))2/(1(2) ⊗ 1(4))8/
(1(2) ⊗ 1(8))1/116/(1(2))9/(1(4))16/(1(8))8/034.

As q = 16, we have A = B2(16) or G2(16). If A = B2(16) then S contains a
conjugate b of a (of order 17). But from L(G) ↓ S we see that dimCG(b) = 34,
whereas dimCG(a) ≥ dimA5T3 = 38, a contradiction. Now suppose A = G2(16).
Since L(G) ↓ S has composition factor 1(2) ⊗ 1(8) with multiplicity 1, we see from
Lemma 6.1 that L(G) ↓ A must have a composition factor 01 ⊗ 01(4); but the
restriction of this to S has composition factor 1 ⊗ 1(8) with multiplicity 4, which
contradicts L(G) ↓ S given above. This completes the argument for case (a).

Next consider case (c), S < A3A3. If S < A2
1A3 then we are in case (b), so assume

this is not so. Then the embedding of S in A3A3 is either 1(2i1 ) ⊗ 1(2i2), 1(2i3) ⊗
1(2i4) or 1(2i1 ) ⊗ 1(2i2 ), 1(2i3)/02, and in the latter case the second representation
is indecomposable. By [LS2, p.60], the composition factors of L(G) ↓ A3A3 are
among L(A3A3), λi ⊗ λj , λi ⊗ 0 and 0⊗ λj , and include λ1 ⊗ λ1.

Suppose first that the embedding is 1(2i1)⊗ 1(2i2), 1(2i3)⊗ 1(2i4). If i1, . . . , i4 are
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all distinct, then L(G) ↓ S has a composition factor 1(2i1) ⊗ 1(2i2 ) ⊗ 1(2i3 ) ⊗ 1(2i4)

(coming from λ1⊗λ1), and either no 1(2i1)⊗1(2i2)⊗1(2i3) or no 1(2i1)⊗1(2i2)⊗1(2i4);
this contradicts 6.2(i,ii). Therefore i1, . . . , i4 are not all distinct. If e ≥ 5 we can
twist to take i1 . . . i4 to satisfy (i), (ii) or (iii) of 6.3. Now S < S̄ < A3A3, where
S̄ ∼= SL2(K) has embedding 1(2i1) ⊗ 1(2i2), 1(2i3) ⊗ 1(2i4) in A3A3, and it is easily
checked that S̄ has all weights on L(G) less than q. Then by 1.5, S and S̄ fix the
same subspaces of L(G), contradicting (†). Finally suppose e = 4. We can twist to
take the embedding the embedding of S in A3A3 to be

1⊗ 1(2), 1(2) ⊗ 1(4) or 1⊗ 1(4), 1⊗ 1(2) or 1⊗ 1(4), 1(2) ⊗ 1(4) or

1⊗ 1(2), 1⊗ 1(2) or 1⊗ 1(4), 1⊗ 1(4).

Choose S̄ ∼= SL2(K) with S < S̄ < A3A3 and S̄ having one of these embeddings
in A3A3. Then in the first, second and fourth embeddings, S̄ has all weights on
L(G) less than q = 16. In the third case, S̄ could have a composition factor of
high weight 16 coming from a composition factor λ2 ⊗ λ2 for L(G) ↓ A3A3. By
[LS2, p.60], the presence of a composition factor λ2 ⊗ λ2 implies that there are no
composition factors λi ⊗ λ2 with i ∈ {1, 3}; so we see that S̄ has highest weight 16
on L(G), and has no composition factor of high weight 1. Hence 1.4 implies that
S and S̄ fix the same subspaces of L(G), contradicting (†). The same argument
handles the final embedding 1⊗ 1(4), 1⊗ 1(4).

Now suppose that the embedding of S in A3A3 is 1(2i1)⊗1(2i2), 1(2i3 )/02. Assume
first that e ≥ 5. Then we can take i1i2i3 (in some order) to satisfy the conclusion
of 6.4. If ir ≤ e − 3 for all r, then the T1 argument applies (i.e. there is a
torus T1 in A3A3 containing an element t ∈ S of order q + 1 and fixing the same
subspaces of L(G) as t, contrary to (†)). Otherwise, by 6.4, we have e = 5 or
6 and {i1, i2, i3} = {0, 1, 3} or {0, 2, 4} respectively. In the first case, either the
T1 argument applies, or the embedding of S is 1(2) ⊗ 1(8), 1/02. From the two
possible restrictions L(G) ↓ A3A3 given in [LS2, p.60], we deduce that L(G) ↓ S
has 8 composition factors 1⊗ 1(2)⊗ 1(8), but no composition factors 1⊗ 1(8); hence
A 6= Aε2(q) by 6.2(ii). Thus A = B2(q), whence S contains a conjugate b of a
(of order q + 1). Again using [LS2, p.60], we see that CG(b) has dimension 34.
Now A3A3 lies in a subgroup D4D4 of G, which in turn lies in a subgroup D8.
Consideration of the eigenvalues of b on the natural D8-module shows that CD8(b)′

is either A5
1 or A1D4. Since CG(b) has dimension 34, this forces CG(b) = A1D4T3,

contrary to the hypothesis of the lemma.
To complete case (c), assume that e = 4 (and the embedding of S in A3A3 is

1(2i1)⊗1(2i2), 1(2i3)/02). If we can twist to take (i1, i2, i3) = (0, 1, 2), (0, 2, 1), (0, 1, 0)
or (0, 1, 1), then the T1 argument applies. The only remaining possibilities are
(i1, i2, i3) = (1, 2, 0) or (0, 2, 0). For A = B2(16) these are handled as in the
previous paragraph. For A = G2(16) in the (0, 2, 0) case, we find that L(G) ↓ S
has composition factor 1 ⊗ 1(2) with multiplicity 2, conflicting with 6.1. And for
A = G2(16) in the (1, 2, 0) case, we work out the composition factors of L(G) ↓ S
(using [LS2, p.60]), and show that these conflict with 6.2. This completes case (c).

It remains to consider case (d), S < D = A1A2A3. We can take it that the
projections of S to each of the 3 factors are nontrivial (otherwise we are in a
previous case). Say the embedding is 1(2i1), 1(2i2)/0, 1(2i3)⊗ 1(2i4). Now D lies in a
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maximal rank subgroup A1A2A5 of G, and from [LS2, §2] we have

L(G) ↓ A1A2A5

= L(A1A2A5)/1⊗ λ1 ⊗ λ1/1⊗ λ2 ⊗ λ5/1⊗ 0⊗ λ3/0⊗ λ1 ⊗ λ2/0⊗ λ2 ⊗ λ4.

If i1, . . . , i4 are all distinct then L(G) has a composition factor 1(2i1) ⊗ . . .⊗ 1(2i4)

(from 1 ⊗ λ1 ⊗ λ1), but no composition factor 1(2i1) ⊗ 1(2i2) ⊗ 1(2i3), contrary to
6.2(i,ii). Thus i1, . . . , i4 are not all distinct.

Assume now that e ≥ 5. Then we can take i1 . . . i4 to satisfy the conclusion of
6.4. If ir ≤ e−3 for all r then the T1 argument applies. Otherwise, i1 . . . i4 (in some
order) is one of 0013, 0023, 0113 (all with e = 5) or 0024 (with e = 6). If i2 > 0
then S < S̄ < D, where S̄ ∼= SL2(K) with embedding 1(2i1 ), 1(2i2)/0, 1(2i3) ⊗ 1(2i4)

(the point being that by 1.2, for SL2(K), the indecomposable 1(2i2) exists only if
i2 > 0, in which case ExtS(1(2i2 ), 0) ∼= ExtSL2(K)(1(2i2 ), 0)). But now S̄ has all
weights on L(G) less than q. Hence i2 = 0, and the embedding of S in D is one of

1, 1/0, 1(2) ⊗ 1(8) or 1(2), 1/0, 1⊗ 1(8) or 1(8), 1/0, 1⊗ 1(2) (e = 5),
1, 1/0, 1(4) ⊗ 1(8) or 1(4), 1/0, 1⊗ 1(8) or 1(8), 1/0, 1⊗ 1(4) (e = 5),
1(2), 1/0, 1(2) ⊗ 1(8) (e = 5),
1, 1/0, 1(4) ⊗ 1(16) or 1(4), 1/0, 1⊗ 1(16) or 1(16), 1/0, 1⊗ 1(4) (e = 6).

Twist the embeddings in the first and third rows by 22, those in the second row by
23, and those in the fourth row by 22; so for example, the embeddings in the first
row now read

1(4), 1(4)/0, 1(4) ⊗ 1 or 1(8), 1(4)/0, 1(4) ⊗ 1 or 1, 1(4)/0, 1(4) ⊗ 1(8) (e = 5).

Now S < S̄ < D, with S̄ embedded in D with the new labelling, and we see that
the highest weight of S̄ on L(G) is less than q. This completes the proof for e ≥ 5.

To complete the proof for case (d), assume finally that e = 4. Then we can take
i1 . . . i4 (in some order) to be 0012, 0112, 0122 or 0022 (in all other cases the T1

argument applies). As above, i2 = 0.
For the tuple 0012, the embedding of S is 1, 1/0, 1(2) ⊗ 1(4) or 1(2), 1/0, 1⊗ 1(4)

or 1(4), 1/0, 1⊗ 1(2). In the last case, the T1 argument applies. In the second case,
L(G) ↓ S has composition factor 1⊗ 1(2) ⊗ 1(4) with multiplicity 3, so A 6= G2(16)
by 6.2(iii); also if b ∈ S of order 17, we calculate from L(G) ↓ D above that
CL(G)(b) has dimension 24, so A 6= B2(16) (as otherwise b is conjugate to a, whereas
CG(a) = A1A2A3T2, of dimension 28). In the first case, we twist to take the
embedding to be 1(2), 1(2)/0, 1(4) ⊗ 1(8). As explained before, we have S < S̄ < D,
where S̄ ∼= SL2(K) has this embedding in D. The composition factors of S̄ on L(G)
of high weight 16 or more are 1(16) and 1(2) ⊗ 1(16), both of which are irreducible
for S; moreover, S̄ has no composition factors 1 or 1(2) ⊗ 1. Hence S and S̄ fix the
same subspaces of L(G), by 1.4, contradicting (†).

The other tuples 0112, 0122 and 0022 are handled in a similar fashion. This
completes the proof of the lemma.

In view of the lemma just proved, it remains to deal with S as in cases (i)–(v) of
Corollary 6.6. To handle cases (ii)–(v), we require information about the restriction
of L(G) to the subgroups A1B

4
1 and A2

1B
3
1 , which is provided by the next lemma.

In the conclusion, by a “1-fold tensor” we mean a module for the product A1B
4
1 or

A2
1B

3
1 in which only one of the simple factors acts nontrivially.
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Lemma 6.8. (i) For A1B
4
1 < A1D5 < G, the nontrivial composition factors of

L(G) ↓ A1B
4
1 are as follows:

1-fold tensors 1 or 1(2),

0⊗ 1(2) ⊗ 1(2) ⊗ 0⊗ 0, . . . , 0⊗ 0⊗ 0⊗ 1(2) ⊗ 1(2) (one for each pair
of B1 factors, each with mult. 1),
1⊗ 1(2) ⊗ 0⊗ 0⊗ 0, . . . , 1⊗ 0⊗ 0⊗ 0⊗ 1(2) (one for each B1 factor,
each with mult. 2),
1⊗ 1⊗ 1⊗ 1⊗ 1 (mult. 2), 0⊗ 1⊗ 1⊗ 1⊗ 1 (mult. 4).

(ii) For A3
1B

2
1 = A1(A2

1B
2
1) < A1(D2D3) < A1D5 < G, the nontrivial composi-

tion factors of L(G) ↓ A3
1B

2
1 are:

1-fold tensors 1 or 1(2) (only 1(2) for B1 factors),
0⊗ 1⊗ 1⊗ 0⊗ 0, 0⊗ 1⊗ 1⊗ 1(2) ⊗ 0, 0⊗ 1⊗ 1⊗ 0⊗ 1(2),

0⊗ 0⊗ 0⊗ 1(2) ⊗ 1(2), 1⊗ 1⊗ 1⊗ 0⊗ 0, 1⊗ 0⊗ 0⊗ 1(2) ⊗ 0,
1⊗ 0⊗ 0⊗ 0⊗ 1(2), 0⊗ 1⊗ 0⊗ 1⊗ 1, 0⊗ 0⊗ 1⊗ 1⊗ 1,
1⊗ 1⊗ 0⊗ 1⊗ 1, 1⊗ 0⊗ 1⊗ 1⊗ 1 (both with mult. 2).

Proof. By [LS2, §2], L(G) ↓ A3D5 = L(A3)/L(D5)/λ2⊗λ1/λ1⊗λ4/λ3⊗λ5, whence

L(G) ↓ A1D5

= (L(A3) ↓ A1)/L(D5)/(1⊗ λ1)2/(0⊗ λ1)2/1⊗ λ4/(0⊗ λ4)2/1⊗ λ5/(0⊗ λ5)2.

Let V = VD5 (λ1), the usual 10-dimensional module. Then from the definition of
B4

1 < D5, we have V ↓ B4
1 = 1(2)/1(2)/1(2)/1(2)/02 (where 1(2) stands for a 1-fold

tensor, one for each factor B1), and V ↓ A2
1B

2
1 = 1 ⊗ 1/1(2)/1(2)/02 (where 1 ⊗ 1

has the A2
1 acting, and the 1(2) have a single factor B1 acting). It follows, using

[LS2, 2.6 and 2.7], that for m = 4, 5, we have

VD5(λm) ↓ B4
1 = 1⊗ 1⊗ 1⊗ 1, VD5 (λm) ↓ A2

1B
2
1 = 1⊗ 0⊗ 1⊗ 1/0⊗ 1⊗ 1⊗ 1.

Using this and the above description of L(G) ↓ A1D5, we obtain the conclusion.

Lemma 6.9. Case (iv) of 6.6 does not hold.

Proof. Suppose 6.6(iv) holds, so S < A1B
4
1 with distinct twists of the B1 factors. If

S projects nontrivially to each B1 factor, say with projections 1(2i1 ), . . . , 1(2i4), then
we see from 6.8(i) that L(G) ↓ S has a composition factor 1(2i1) ⊗ . . .⊗ 1(2i4 ), but
no composition factor

⊗
r∈A 1(2ir ) for some 3-set A ⊆ {1, 2, 3, 4}. This contradicts

6.2(i,ii).
Hence S projects trivially to some B1 factor. Let 1(2i1 ), . . . , 1(2ik ) be the non-

trivial projections of S into the factors of A1B
4
1 ; thus k ≤ 4. Then S < S̄ < A1B

4
1 ,

where S̄ ∼= SL2(K) also has these projections.
If e ≥ 5 then we can twist to take ir ≤ e − 2 for all r. Then from 6.8(i) we see

that the weights of S̄ on L(G) are all less than q. Then by 1.5, S and S̄ fix the
same subspaces of L(G), contradicting (†).

Now suppose e = 4. If S projects trivially into two or more of the B1 factors,
then we can twist to take ir ≤ 2 for all r, giving a contradiction as above. Therefore
S projects trivially into just one B1 factor. We can take the projections into the
other B1 factors to be 1, 1(2), 1(4); then the weights of S̄ on L(G) are all less than
q, unless the projection into the A1 factor is 1(8). But then by 6.8(i), L(G) ↓ S has
a composition factor 1⊗1(2)⊗1(4)⊗1(8), contrary to 6.2(i) (recall that A = B2(16)
or G2(16) when q = 16).
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Lemma 6.10. Case (v) of 6.6 does not hold.

Proof. Assume 6.6(v) holds, so S < A3
1B

2
1 with distinct twists on the B1 factors.

Observe that S < S̄ < A3
1B

2
1 , where S̄ ∼= SL2(K).

Suppose first that e ≥ 5. If S has distinct nontrivial twists on all five factors
of A3

1B
2
1 , we obtain a contradiction using 6.8(ii) together with 6.2(i,ii). Otherwise,

we can twist to take all nontrivial projections of S̄ to be of the form 1(2i) with
i ≤ e− 2, and then the highest weight of S̄ on L(G) is less than q, giving the usual
contradiction.

Now suppose e = 4. Assume first that S projects nontrivially into all five factors
of A3

1B
2
1 , with projections 1(2i1), . . . , 1(2i5). If all ir ≤ 2 then, twisting if necessary,

S̄ has all weights less than q, so some ir = 3. Then we can twist to take i1 . . . i5
(in some order) to be 00123. Now L(G) ↓ S has no 4-fold tensor composition
factor, by 6.2(i); it follows from 6.8(ii) that (with the factors ordered as in 6.8(ii)),
the projections of S in A1A1A1B1B1 are 1, 1(2), 1(4), 1, 1(8) or 1, 1(2), 1(8), 1, 1(4) or
1, 1(4), 1(8), 1, 1(2). In the first case, by 6.8(ii), L(G) ↓ S has a composition factor
1 ⊗ 1(4) ⊗ 1(8), but no composition factor 1 ⊗ 1(8), contrary to 6.2(iii). We obtain
similar contradictions in the other cases.

Therefore S projects trivially to at least one of the factors of A3
1B

2
1 . The only

case where S̄ cannot be chosen to have all weights less than q is that in which S
has four nontrivial projections 1, 1(2), 1(4), 1(8). By 6.2(i), L(G) ↓ S has no 4-fold
tensor composition factor. Hence by 6.8(ii), we see that the projections of S in
A1A1A1B1B1 can be taken to be one of the following (up to reordering the 3 A1

factors and the 2 B1 factors):
(a) 1(2i1), 1(2i2), 1(2i3), 1, 02 (where {i1, i2, i3} = {1, 2, 3}),
(b) 02, 1(4), 1(8), 1, 1(2),
(c) 02, 1(2), 1(8), 1, 1(4).

In cases (a) and (b), the highest weight of S̄ on L(G) is 16, and there are no
composition factors of high weight 1, so 1.4 implies that S and S̄ fix the same
subspaces of L(G), a contradiction. And in case (c), the composition factors of S̄
having high weight 16 or more are 1(16) and 1(2)⊗ 1(16); using 6.8(ii) we check that
S̄ has no composition factors 1 or 1(2) ⊗ 1, so again 1.4 gives a contradiction.

The next lemma is useful in dealing with case (ii) of 6.6, in which S < QA1B
3
1 ,

lying in either A2D4 or A1D5. In the conclusion there is a certain subgroupB1B
′
1B

′′
1

of D5; this is a commuting product of three subgroups SO3 of SO10, where the
radicals of the associated 3-spaces may be different.

Lemma 6.11. Let S0 = SL2(2e) (e ≥ 4). Suppose that S0 < QB3
1 < D5, and

S0 has three distinct nontrivial twists on the B1 factors. Then there is a subgroup
B1B

′
1B

′′
1
∼= B3

1 of D5 such that QB3
1 = QB1B

′
1B

′′
1 and S0 < B1B

′
1B

′′
1 .

Proof. Let V10 be the usual 10-dimensional D5-module. Now QB3
1 < QD4 < D5,

so S0 fixes both a singular vector v and a nonsingular vector w in V10. Write V8

for the C4-space w⊥/〈w〉. By hypothesis, V8 ↓ S0 has three nontrivial composition
factors 1(2i), 1(2j), 1(2k), where i, j, k are distinct. Pulling back to V10, we see that
S0 fixes just three indecomposable 3-spaces in V10 of the form 0/1(2i), 0/1(2j) and
0/1(2k); call these Wi,Wj ,Wk respectively, and let wi, wj , wk be nonzero vectors
fixed by S0 in Wi,Wj ,Wk.
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Now (D5)Wi is a subgroup B1B3 of B4 = (D5)wi ; similarly (D5)Wj = B′1B
′
3 and

(D5)Wk
= B′′1B′′3 . The group B1 acts trivially on the image of Wj mod 〈wi〉, and

also on 〈wi〉, hence acts trivially on Wj , and similarly on Wk. Hence B1 lies in the
kernel of the action of (D5)Wj on Wj , which is B′3, and consequently [B1, B

′
1] = 1.

Similarly [B1, B
′′
1 ] = [B′1, B′′1 ] = 1. Finally, (D5)Wi,Wj ,Wk

= B1B
′
1B

′′
1 , so this group

contains S0.

Lemma 6.12. Case (ii) of 6.6 does not hold.

Proof. Suppose 6.6(ii) holds, so S < QA1B
3
1 , lying in either A1D5 or A2D4, and

S has distinct twists on the B1 factors. Moreover, by 6.7, D = CG(a)′ is not a
product of factors Am, and hence D has a factor D4 or D5.

Suppose first that the projections of S to the factors A1B
3
1 are all nontrivial;

say they are 12(i1)
, . . . , 12(i4)

. If these are all distinct, then by 6.8(i), L(G) ↓ S has
a composition factor 12(i1) ⊗ . . .⊗ 12(i4)

, but no 12(i1) ⊗ 1(2i3) ⊗ 12(i4)
, contrary to

6.2(i,ii). Hence i1, . . . , i4 are not all distinct; since the B1 twists are distinct, we
may take i1 = i2 (where i1 is the twist on the A1 factor), and i2, i3, i4 are distinct.

If QA1B
3
1 < A1D5, then by the previous lemma we have S < A1B1B

′
1B

′′
1 , and

the conclusion follows from 6.9. Therefore QA1B
3
1 < A2D4, with QA1 < A2 and

B3
1 < D4. Observe that if i1 > 0, then S < S̄ < A2D4 with S̄ ∼= SL2(K), by 1.2.
When e ≥ 5, we can take i1 . . . i4 to be as in (i), (ii), or (iii) of 6.4. In case (i),

the usual T1 argument applies: there is a rank 1 torus T1 in A1B
3
1 fixing the same

subspaces of L(G) as some element of order q+ 1 in S. In cases (ii) and (iii) of 6.4,
we have (i1, . . . , i4) = (0, 0, 1, 3), (0, 0, 2, 3), (1, 1, 0, 3) (e = 5) or (0, 0, 2, 4) (e = 6).
For the (1, 1, 0, 3) case, we have S < S̄ < A2D4 as observed above, and S̄ has all
weights on L(G) less than q. In the (0, 0, 1, 3), (0, 0, 2, 3), (0, 0, 2, 4) cases, L(G) ↓ S
has composition factors 1⊗ 1(2)⊗ 1(8), 1⊗ 1(4)⊗ 1(8), 1⊗ 1(4)⊗ 1(16) (respectively),
but no 1 ⊗ 1(8), 1 ⊗ 1(4), 1 ⊗ 1(4) (respectively), so A 6= Aε2(q) by 6.2(ii). And for
A = B2(q), picking a conjugate b of a lying in S, we find from L(G) ↓ A2D4 that
CL(G)(b) has dimension 22, contradicting the fact that CG(a)′ has a factor D4 or
D5.

To complete the case of four nontrivial projections, consider e = 4. Here we
can take (i1, . . . , i4) = (0, 0, 1, 2), (1, 0, 1, 2) or (2, 0, 1, 2). Then L(G) ↓ S has
composition factors 1⊗ 1(2)⊗ 1(4), 1⊗ 1(4), the latter with multiplicity less than 8,
so A 6= G2(16) by 6.2(iv). And for A = B2(16) we find that dimCL(G)(a) = 30 or
26, which is impossible.

Now suppose S has just three nontrivial projections to the factors of A1B
3
1 ,

say 12(i1)
, 1(2i2), 12(i3)

. If the projection to the A1 factor is trivial, then using the
previous lemma we see that either S < B3

1 < D4 or S < B1B
′
1B

′′
1 < D5, and the

conclusion follows from 6.9. Hence the projection to the A1 factor is nontrivial; say
it is 12(i1)

.
When ir ≤ e − 3 for all r, the usual T1 argument gives a contradiction. Hence

by 6.4, we can take i1i2i3 (in some order) to be 012, 013 or 024 with e = 4, 5 or 6,
respectively.

For the e = 6 case, we can twist to take (i1, i2, i3) = (4, 2, 0), and now the usual
T1 argument works.

Now consider the e = 5 case. If i1 = 3, the T1 argument works; and if i1 = 1,
we twist to take (i1, i2, i3) = (3, 2, 0), and now the T1 argument again works. In
the remaining case, (i1, i2, i3) = (0, 1, 3). Here L(G) ↓ S has a composition factor
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1 ⊗ 1(2) ⊗ 1(8), but no 1 ⊗ 1(2), so A 6= Aε2(q) by 6.2(ii). Thus A = B2(32), and S
contains a conjugate b of a of order 33. Now S < QA1B

2
1 < A2D4 or A1D5, from

which we calculate that CL(G)(b) has dimension 34, whence CG(a)0 = A1D4T3.
Thus S < QA1B

2
1 < A1D4, where QB2

1 < D4. The proof of 6.11 shows that in fact
S < A1B1B

′
1 < A1D4, where QB2

1 = QB1B
′
1. Hence S < S̄ < A1D4, and S̄ has all

weights on L(G) less than q.
To conclude the case of three nontrivial projections, consider the e = 4 case,

in which {i1, i2, i3} = {0, 1, 2}. We find that L(G) ↓ S has a composition factor
1 ⊗ 1(2) ⊗ 1(4), but either no 1 ⊗ 1(4) or no 1(2) ⊗ 1(4), so A 6= G2(16). Thus
A = B2(16), and working with a conjugate b of a lying in S we calculate that
CL(G)(b) has dimension 34, 38 or 38, according as i1 = 0, 1 or 2; consequently
CG(a)′ is A1D4, A2D4 or A2D4 in the respective cases. Now it follows as before
that S < S̄ < CG(a)′, where S̄ has all weights on L(G) less than q.

Finally, when S has fewer than three nontrivial projections, the usual T1 argu-
ment works in all cases, after twisting suitably. This completes the proof.

We next handle case (i) of 6.6, in which S < QAk1 < D with k ≤ 5 (and Ak1 is a
commuting product of fundamental A1’s).

Lemma 6.13. Case (i) of 6.6 does not hold if q ≥ 32.

Proof. We begin by discussing the composition factors of L(G) ↓ A5
1. Now A5

1 lies
in a maximal commuting product A8

1 of fundamental A1’s in G, and NG(A8
1)/A8

1
∼=

AGL3(2), acting 3-transitively on the set of 8 factors (see [As, Theorem 2]). Further,
A8

1 lies in the subgroup D4D4 of G, with each D4 containing A4
1. As AGL3(2) has

only one orbit on 5-sets, we may take our A5
1 to lie in D4D4, with 4 of the A1

factors lying in a D4 factor; thus A5
1 < A1D4 < D4D4 < G. Now by [LS2, 2.1],

L(G) ↓ D4D4 = L(D4D4)/λ1 ⊗ λ1/λ3 ⊗ λ3/λ4 ⊗ λ4, whence

L(G) ↓ A1D4 = (L(D4) ↓ A1)/L(D4)/(1⊗ λ1)2/(0⊗ λ1)4/(1⊗ λ3)2/
(0⊗ λ3)4/(1⊗ λ4)2/(0⊗ λ4)4.

Moreover,

L(D4) ↓ A4
1 = 1⊗ 1⊗ 1⊗ 1/1(2)/1(2)/1(2)/1(2)/04,

VD4 (λ1) ↓ A4
1 = 1⊗ 1⊗ 0⊗ 0/0⊗ 0⊗ 1⊗ 1,

VD4 (λ3) ↓ A4
1 = 1⊗ 0⊗ 1⊗ 0/0⊗ 1⊗ 0⊗ 1,

VD4 (λ4) ↓ A4
1 = 1⊗ 0⊗ 0⊗ 1/0⊗ 1⊗ 1⊗ 0.

From this we see that L(G) ↓ A5
1 has no 5-fold tensor composition factors, and has

a unique 4-fold tensor composition factor (coming from L(D4) ↓ A4
1).

Suppose now that q = 2e ≥ 32, and S < QAk1 with nontrivial projections
12(i1)

, . . . , 12(ik)
(k ≤ 5) in to the A1 factors. If i1 . . . ik is as in (i) or (ii) of 6.3,

then the usual T1 argument works: an element b of order q + 1 in S lies in a rank
1 torus

T1 = {(c2i1
, . . . , c2

ik ) : c ∈ K∗} < Ak1

(where each entry c2
ir stands for the matrix diag(c2

ir
, c−2ir ) in the corresponding

factor A1); the weights of T1 on L(G) are all at most 2e−1, so b and T1 fix the same
subspaces of L(G), contrary to (†).

Therefore by 6.3, we have e = k = 5, and we may take i1 . . . i5 to be one of the
following (in some order):

01234, 01223, 00223, 01133, 01233.
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Take 1(2i1) to be the projection of S into the factor A1 of A5
1 not lying in the D4

chosen above (where A5
1 < A1D4).

If i1 . . . i5 = 01234, then from the above description, L(G) ↓ S has a unique
composition factor 12(i2) ⊗ . . .⊗ 12(i5)

, contrary to 6.2(i).
Now suppose i1 . . . i5 = 01223. For this case, the above T1 argument works unless

i1 = 1, in which case we calculate that

L(G) ↓ S = (1⊗ 1(2) ⊗ 1(4))4/(1⊗ 1(2) ⊗ 1(8))2/(1(2) ⊗ 1(4) ⊗ 1(8))4/
(1(2) ⊗ 1(8))2/(1⊗ 1(2))0/ . . .

If A = Aε2(q), the presence of ten 3-fold tensor composition factors in L(G) ↓ S
implies the same for L(G) ↓ A, whence dimL(G) ≥ 10.27, a contradiction. And
if A = B2(q), the composition factors (1 ⊗ 1(2) ⊗ 1(8))2/(1(2) ⊗ 1(8))2/(1 ⊗ 1(2))0

conflict with 6.2(v).
Next consider i1 . . . i5 = 00223. The usual T1 argument works unless i1 = 0, so

suppose this is the case. Then

L(G) ↓ S = (1⊗ 1(4) ⊗ 1(8))4/(1⊗ 1(16))1/(1(16))1/ . . .

and the (1⊗ 1(4) ⊗ 1(8))4 are the only 3-fold tensor composition factors appearing.
If A = Aε2(q), then the single factor 1⊗ 1(16) must occur in the restriction of a self-
dual composition factor of L(G) ↓ A, which must be 11(8) ⊗ 11(16) (see 6.1); but
the restriction of this module to S has composition factor 1(16) with multiplicity 6,
a contradiction. And if A = B2(q), then the single factor 1 ⊗ 1(16) must occur in
the restriction of a factor 01 ⊗ 01(16) in L(G) ↓ A (see 6.1), but the restriction of
this to S has 1(16) with multiplicity 2.

Now suppose i1 . . . i5 = 01133. If i1 = 1 or 3, we find that

L(G)↓S = (1⊗ 1(2) ⊗ 1(16))1/(1⊗ 1(16))0/ . . . or (1⊗ 1(4) ⊗ 1(8))1/(1⊗ 1(4))0/ . . .

respectively, contrary to 6.2(iii). Thus i1 = 0. Here

L(G) ↓ S = (1 ⊗ 1(2) ⊗ 1(8))8/(1⊗ 1(2))0/ . . . ,

so A 6= Aε2(q) by 6.2(ii). Hence A = B2(q), and S contains a conjugate b of a.
We calculate that CG(b) has dimension 34. As S < QA5

1 < CG(a)′, it follows
that CG(a)′ = A1D4. Since a subgroup A4

1 of D4 cannot normalize a nontrivial
unipotent group therein, it follows that Q = 1, and hence S < S̄ < A1D4, where
S̄ ∼= SL2(K) has all weights on L(G) less than q.

To conclude, let i1 . . . i5 = 01233. If i1 = 3 then L(G) ↓ S has a unique 4-fold
tensor composition factor, contrary to 6.2(i). Otherwise, according as i1 = 0, 1 or
2, we find that

L(G) ↓ S = (1(2) ⊗ 1(4) ⊗ 1(16))1/(1(4) ⊗ 1(16))0/ . . . ,

or (1 ⊗ 1(4) ⊗ 1(16))1/(1(4) ⊗ 1(16))0/ . . .

or (1 ⊗ 1(2) ⊗ 1(16))1/(1(2) ⊗ 1(16))0/ . . . ,

respectively. All of these possibilities conflict with 6.2(iii). This completes the
proof.

Lemma 6.14. Case (i) of 6.6 does not hold if q = 16.
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Proof. As in the previous proof, let S < QAk1 (k ≤ 5), with nontrivial projections
12(i1)

, . . . , 12(ik)
. If k ≤ 3, we can take i1 . . . ik to be one of 1, 11, 14, 111, 112, 114,

122, 124, and the usual T1 argument works in all cases.
Now suppose k = 4. Then either the T1 argument works, or we can twist to take

i1 . . . i4 to be one of the following:

0123, 0122, 0112, 0022.

Consider the first case. If S < QA4
1 with the A4

1 lying in a subgroup D4 of G, then
L(G) ↓ S has a 4-fold tensor factor, contrary to 6.2(i). Otherwise, we find that

L(G) ↓ S = (1⊗ 1(2) ⊗ 1(4))2/(1⊗ 1(2) ⊗ 1(8))2/(1⊗ 1(4) ⊗ 1(8))2/
(1(2) ⊗ 1(4) ⊗ 1(8))2/ . . . .

Hence we see using 6.1 that dimL(G) ≥ 4.43 if A = B2(16), and dimL(G) ≥ 2.63

if A = G2(16), both of which are false.
Now suppose i1 . . . i4 = 0122. If S < QA4

1 with the A4
1 < D4, then L(G) ↓ S =

(1 ⊗ 1(2) ⊗ 1(8))1/(1 ⊗ 1(8))0/ . . . , contrary to 6.2(iii). So assume the A4
1 6< D4.

Then L(G) ↓ S = (1 ⊗ 1(2) ⊗ 1(4))4/ . . . , ruling out A = G2(16) by 6.2(iv).
Thus A = B2(16), and S contains a conjugate b of a. We can choose a sub-
group D4D4 containing b, and lying in a subgroup D8 of G, such that b has
weights 42,−42, 04 and 3,−3, 1,−1, 42,−42 on natural modules for the D4 factors,
and weights 44,−44, 3,−3, 1,−1, 04 on the natural D8-module. Hence CD8(b)0 =
A1A1A3T3. Moreover, from the above description of L(G) ↓ A5

1 we calculate that
dimCL(G)(b) = 24, so it follows that CG(a)0 = A1A1A3T3. Now S < QA4

1 <

A1A1A3. Hence Q = 1 and S < S̄ < A4
1, where S̄ ∼= SL2(K) has all weights on

L(G) less than q.
Next consider i1 . . . i4 = 0112. If S < QA4

1 with the A4
1 not in D4, then the usual

T1 argument works. Otherwise, we find that L(G) ↓ S has no 3-fold tensor factors,
and has 1⊗ 1(8)/10; this is not possible, by 6.1.

To complete the k = 4 case, let i1 . . . i4 = 0022. The T1 argument works if
S < QA4

1 with A4
1 < D4, so suppose this is not the case. If A = B2(16), then we

work out CG(a)0 as above, and find that it is A3A3T2. Then S < S̄ < A4
1 < A3A3,

where S̄ has all weights less than q. Now suppose A = G2(16). Here we find that

L(G) ↓ S = (1⊗ 1(8))4/(1(2) ⊗ 1(4))4/(1⊗ 1(4))16/(1(4))24/(1(8))6/(1(2))6/124/032.

By 6.1, the factors (1⊗ 1(8))4 must occur in the restriction of a composition factor
10⊗ 10(8) or 10⊗ 01(4) of L(G) ↓ A.

Suppose there is a factor 10⊗10(8). This restricts to S as (1⊗1(8))4/(1(8))4/14/04.
The remaining factors (1 ⊗ 1(4))16 in L(G) ↓ S must come from (10 ⊗ 10(4))4

in L(G) ↓ A, and this restricts to S as (1 ⊗ 1(4))16/116/(1(4))16/016. Now the
remaining factors (1(2) ⊗ 1(4))4 must come from 10(2) ⊗ 10(4), which restricts to
S as (1(2) ⊗ 1(4))4/(1(2))4/(1(4))4/04. Of the factors in L(G) ↓ S, there remain
14/(1(2))2/(1(4))4/(1(8))2/08, of total dimension 32. These factors must come from
composition factors of L(G) ↓ A which are twists of 10 (say a of them), 01 (say b
of them) and 00. Since 10 ↓ S = 12/02 and 01 ↓ S = 14/1(2)/04 (see 6.1), counting
2-dimensional composition factors for S gives 2a + 5b = 12, while counting trivial
composition factors yields 2a + 4b = 8. Therefore b = 4, forcing a to be negative,
a contradiction. This completes the argument when L(G) ↓ A has a composition
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factor 10⊗ 10(8). The other case, in which there is a composition factor 10⊗ 01(4),
is handled by an entirely similar argument.

The case where k = 4 is now settled.
Assume from now on that k = 5. We have A5

1 < A1D4; take 1(2i1) to be the
projection of S into the A1 not lying in the D4. Then either the usual T1 argument
works, or we can twist to take i1 . . . i5 to be one of the following (in some order):

00022, 00112, 00122, 01112, 01122, 01222, 00123.

Moreover, either the T1 argument works, or we have i1 = 0 in the second case, and
i1 6= 2 in the fourth case. Let b be an element of order q + 1 in S. In the following
table we present some information for each of the above possibilities, which in
almost all cases is sufficient to obtain a contradiction:

i1, i2 . . . i5 some comp. factors of L(G) ↓ S CG(b)′

0, 0022 (1(2) ⊗ 1(8))1/(1⊗ 1(8))2 A1D4

2, 0002 (1⊗ 1(2) ⊗ 1(4))1 A2D4

0, 0112 (1⊗ 1(2) ⊗ 1(4))4 A1A4 or A2
1A2A3

0, 0122 (1⊗ 1(2) ⊗ 1(8))1/(1(2) ⊗ 1(8))0

1, 0022 (1⊗ 1(2) ⊗ 1(4))8/(1⊗ 1(2))0 A2D4

2, 0012 (1⊗ 1(2) ⊗ 1(4))4 A1A1A3

0, 1112 (1⊗ 1(2) ⊗ 1(4))6/(1⊗ 1(2))0 A2D4

1, 0112 (1⊗ 1(2) ⊗ 1(4))2 A1A4 or A2
1A2A3

0, 1122 (1⊗ 1(2) ⊗ 1(4))8/(1⊗ 1(2))0 A1D4

1, 0122 (1⊗ 1(2) ⊗ 1(8))1/(1⊗ 1(8))0

2, 0112 (1⊗ 1(2) ⊗ 1(8))4 A2A3

0, 1222 (1⊗ 1(2) ⊗ 1(4))6 A2D4

1, 0222 (1⊗ 1(2) ⊗ 1(4))6 A2D4

2, 0122 (1⊗ 1(2) ⊗ 1(8))1 A1A3

0, 0123 1⊗ 1(2) ⊗ 1(4) ⊗ 1(8)

1, 0023 (1(2) ⊗ 1(4) ⊗ 1(8))2 A2A3

2, 0013 (1(2) ⊗ 1(4) ⊗ 1(8))2 A1A3

3, 0012 (1(2) ⊗ 1(4) ⊗ 1(8))2 A1A1A3

In each case, using 6.1 and 6.2, we see that the information in the composition
factors column rules out A = G2(16), and also rules out A = B2(16) in rows 4, 10
and 15 of the table. Therefore A = B2(16) (and we are not in row 4, 10 or 15),
and the element b ∈ S is conjugate to a. We know that S < QA5

1 < CG(a)′. This
implies that CG(a)′ is A1D4, A2D4 or A2

1A2A3; the last case is ruled out by 3.4,
and in the first case, S < S̄ < A1D4 with S̄ ∼= SL2(K) having all weights on L(G)
less than q. Thus CG(a)′ = A2D4. Then S < (QA1)A4

1 < A2D4 with QA1 < A2

and A4
1 < D4. If i1 > 0 then using 1.2 we have S < S̄ < A2D4 with all weights of S̄

less than q. The surviving cases are those in rows 7 and 12 of the table. For row 7,
twist to take i1, i2 . . . i5 = 3, 0001; then S < S̄ < A2D4, where S̄ has highest weight
16 on L(G), and has no composition factor of high weight 1. The conclusion now
follows from 1.4. For row 12, we twist to 2, 3000 and apply the same argument.

To complete the proof of Theorem 1, it remains to handle case (iii) of 6.6.

Lemma 6.15. Case (iii) of 6.6 does not hold if q ≥ 32.
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Proof. Assume 6.6(iii) holds, so S < QA2
1B

2
1 < A1(QA1B

2
1) < A1D5. Moreover,

CG(a)′ = A1D5: for otherwise by 6.5 and 6.7, we are in a different case of 6.6,
already ruled out. Thus CG(a)0 = A1D5T2, of dimension 50.

If S projects trivially to one of the B1 factors then S < QA4
1 (as B1 < A2

1),
contrary to 6.13 and 6.14. Hence S projects nontrivially to both the B1 factors
(and with distinct twists, by 6.6). Let the nontrivial projections of S to the factors
A1(A1B1B1) < A1D5 be 1(2i1), . . . , 1(2ik ), written in the order of the factors given
(so 1(2ik−1 ), 1(2ik ) are the projections to the B1 factors). Take ik−1 < ik.

If k = 2, then the usual T1 argument goes through, so assume k ≥ 3. Also, if
k = 4 and i1, . . . , i4 are all distinct, then by 6.8(ii), L(G) ↓ S has a composition
factor 1(2i1)⊗ . . .⊗ 1(2i4 ) but no composition factor 1(2i1 )⊗ 1(2i2 )⊗ 1(2i4), contrary
to 6.2(i,ii).

Thus if k = 4 then i1, . . . , i4 are not all distinct. When ir ≤ e − 3 for all r, the
usual T1 argument goes through. As e ≥ 5 by hypothesis, we may therefore apply
6.4 to take one of the following to hold:

(1) e = 5 and i1 . . . ik = 0013, 0023, 0113 or 013 (in some order);
(2) e = 6 and i1 . . . ik = 0024 or 024.
Consider first case (1). We have S < A1(QA1B

2
1) < A1D5. Given i1, . . . , ik,

the composition factors of L(G) ↓ S can be worked out from the restrictions
L(G) ↓ A1D5 and VD5 (λm) ↓ A1B

2
1 (m = 1, 4, 5) given in the proof of 6.8(ii).

From 6.8(ii), we see that if neither ik−1 nor ik is 3, then the usual T1 argument
goes through. Hence we may take it that ik = 3. In the table below, for each pos-
sibility for (i1, . . . , ik), we give various composition factors of L(G) ↓ S and their
multiplicities; we also give the dimension of CG(b), where b is an element of order
q + 1 in S. In the left hand column, a symbol “–” indicates a trivial projection.

(i1, . . . , ik) L(G) ↓ S dimCG(b)
(0, 0, 1, 3) (1 ⊗ 1(2) ⊗ 1(8))8/(1⊗ 1(8))0/.... 24
(0, 1, 0, 3) (1 ⊗ 1(2) ⊗ 1(8))4/(1(2) ⊗ 1(16))3/(1⊗ 1(2))6/18/.... 20
(1, 0, 0, 3) (1 ⊗ 1(2) ⊗ 1(8))4/(1(2) ⊗ 1(16))3/(1⊗ 1(2))6/18/.... 20
(0, 0, 2, 3) (1 ⊗ 1(4) ⊗ 1(8))8/(1⊗ 1(4))0/.... 24
(0, 2, 0, 3) (1 ⊗ 1(4) ⊗ 1(8))4/(1(2) ⊗ 1(4) ⊗ 1(8))2/

(1(4) ⊗ 1(8))4/.... 16
(2, 0, 0, 3) (1 ⊗ 1(4) ⊗ 1(8))4/(1(2) ⊗ 1(4) ⊗ 1(8))2/

(1(4) ⊗ 1(8))4/.... 16
(0, 1, 1, 3) (1 ⊗ 1(2) ⊗ 1(8))4/(1⊗ 1(4) ⊗ 1(8))2/(1⊗ 1(8))4/.... 16
(1, 0, 1, 3) (1 ⊗ 1(2) ⊗ 1(8))4/(1⊗ 1(4) ⊗ 1(8))2/(1⊗ 1(8))4/.... 16
(1, 1, 0, 3) (1 ⊗ 1(2) ⊗ 1(8))8/(1⊗ 1(2))0/.... 32
(0,−, 1, 3) (1 ⊗ 1(2) ⊗ 1(8))4/(1⊗ 1(2))0/.... 34
(−, 0, 1, 3) (1 ⊗ 1(2) ⊗ 1(8))8/(1⊗ 1(2))0/.... 34
(1,−, 0, 3) (1 ⊗ 1(2) ⊗ 1(8))8/(1⊗ 1(2))0/.... 38
(−, 1, 0, 3) (1 ⊗ 1(2) ⊗ 1(8))8/(1⊗ 1(2))0/.... 38

If A = B2(q) then S contains a conjugate b of a; but CG(a) has dimension 50,
which conflicts with the dimension of CG(b) given in the table.

Therefore A = Aε2(q). By 6.2(ii,vi), the information given in the second column
of the table rules out all possibilities for (i1, . . . , ik) except (0, 1, 0, 3) and (1, 0, 0, 3).
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In these cases we have

L(G) ↓ S = (1 ⊗ 1(2) ⊗ 1(8))4/(1(2) ⊗ 1(16))3/(1⊗ 1(2))6/18/....

The 3-fold tensor factors force L(G) ↓ A to have four composition factors of the form
α⊗ β(2) ⊗ γ(8) with α, β, γ ∈ {10, 01}. As 1(2)⊗ 1(16) occurs with odd multiplicity,
it must occur as a composition factor in a self-dual factor of L(G) ↓ A, which
must therefore by 6.1 be 11 ⊗ 11(8). Now (11 ⊗ 11(8)) ↓ S and the four factors
(α ⊗ β(2) ⊗ γ(8)) ↓ S account for all eight composition factors 1 in L(G) ↓ S.
However, two of the composition factors 1 ⊗ 1(2) are still to be accounted for in
other composition factors of L(G) ↓ A. By 6.1, there is no irreducible A-module V
such that V ↓ S has 1⊗ 1(2) but not 1, so this is impossible.

Now consider case (2), in which e = 6 and i1 . . . ik = 0024 or 024. The usual T1

argument works unless ik = 4. As above, we calculate the following information.

(i1, . . . , ik) L(G) ↓ S dimCG(b)
(0, 0, 2, 4) (1⊗ 1(4) ⊗ 1(16))8/(1⊗ 1(4))0/.... 20
(0, 2, 0, 4) (1⊗ 1(4) ⊗ 1(16))4/(1(2) ⊗ 1(4) ⊗ 1(16))2/

(1(4) ⊗ 1(16))4/.... 16
(2, 0, 0, 4) (1⊗ 1(4) ⊗ 1(16))4/(1(2) ⊗ 1(4) ⊗ 1(16))2/

(1(4) ⊗ 1(16))4/.... 16
(0,−, 2, 4) (1⊗ 1(4) ⊗ 1(16))8/(1⊗ 1(4))0/.... 34
(−, 0, 2, 4) (1⊗ 1(4) ⊗ 1(16))8/(1⊗ 1(4))0/.... 34
(2,−, 0, 4) (1⊗ 1(4) ⊗ 1(16))8/(1⊗ 1(4))0/.... 34
(−, 2, 0, 4) (1⊗ 1(4) ⊗ 1(16))8/(1⊗ 1(4))0/.... 34

Now we obtain a contradiction as before. This completes the proof of the lemma.

Lemma 6.16. Case (iii) of 6.6 does not hold if q = 16.

Proof. Assume q = 16 and 6.6(iii) holds. Then A = B2(16) or G2(16). As in the
previous lemma, dimCG(a) = 50.

Again let the nontrivial projections of S to the factors A1(A1B1B1) < A1D5 be
1(2i1), . . . , 1(2ik ). As in the previous lemma, the projections to the B1 factors are
nontrivial and distinct. Twisting if necessary, we can take i1i2 ∈ {00, 01, 02, 11, 12,
22, 0−, 1−} and i3i4 ∈ {01, 02, 12}. Moreover, the T1 argument goes through in all
cases where i3i4 = 01, except when i1i2 = 12 or 22.

For all the possibilities for i1 . . . ik, we calculate L(G) ↓ S and dimCG(b) as in the
previous lemma. In all cases we find that dimCG(b) < 50, ruling out A = B2(16)
in the usual way. Therefore A = G2(16). If i3i4 6= 02 or i1i2 6∈ {02, 0−}, we find
that L(G) ↓ S is either

(1⊗ 1(2) ⊗ 1(4))r/.... with r < 8,

or

(1⊗ 1(2) ⊗ 1(4))8/(1(2i) ⊗ 1(2j))0/.... for some i, j ∈ {0, 1, 2}.
Both possibilities contradict 6.2(ii,iv).

Finally, consider the cases where i3i4 = 02 and i1i2 = 02 or 0−. Assume first
that (i1, i2, i3, i4) = (0, 2, 0, 2). Then we find that

L(G) ↓ S = (1⊗ 1(2))2/(1⊗ 1(4))12/(1⊗ 1(8))6/(1(2) ⊗ 1(8))3/(1(4) ⊗ 1(8))2/....
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The composition factor 1(2) ⊗ 1(8) appears with odd multiplicity. By 6.1, the only
way this can happen is if L(G) ↓ A has a composition factor 01⊗01(4) (of dimension
196). However, (01 ⊗ 01(4)) ↓ S has 1 ⊗ 1(4) with multiplicity 16, whereas it only
occurs with multiplicity 12 in L(G) ↓ S, a contradiction. Similar contradictions are
reached for the other possibilities for (i1, . . . , i4).

This completes the proof of Theorem 1.

7. Proof of Theorem 4

Let G be a simple algebraic group over the algebraically closed field K of char-
acteristic p. Let X = X(q) < G with q = pe and X not of the same type as G, and
suppose that X is irreducible on each G-composition factor of L(G). We aim to
show that X and G are as in the conclusion of Theorem 4. We may as well assume
that G is of adjoint type; as X is irreducible on each G-composition factor of L(G),
we then have Z(X) = Z(G) = 1. The G-composition factors of L(G) are given by
1.10.

We now embark upon the proof of Theorem 4. We first dispose of classical
groups.

Lemma 7.1. Theorem 4 holds if G is classical.

Proof. First observe that X does not lie in a parabolic subgroup of G: for if X < P ,
a parabolic, then X leaves invariant the series 0 < L(Ru(P )) < L(P ) < L(G), hence
cannot be irreducible on all nontrivial G-composition factors of L(G), by 1.10. We
now apply [ST1, Theorem 1]; this implies that X lies in a closed, connected, simple
subgroup X̄ of G of the same type as X . Then X fixes L(X̄).

We now claim that dim X̄ < dimG − 2. For suppose dim X̄ ≥ dimG − 2. If a
maximal unipotent subgroup of X̄ is also one of G, then X̄ = G (see [Se4, 1.6] for
instance), which is not the case. The dimension of a simple algebraic group is equal
to the rank of the group plus twice the dimension of a maximal unipotent subgroup;
it follows that X̄ is a subgroup of maximal rank in G, and that a maximal unipotent
subgroup of X̄ has dimension just one less than a maximal unipotent subgroup of
G. It is trivial to check that this cannot happen.

It follows from the previous paragraph and 1.10 that (G, p) must be (Bn, 2)
or (Cn, 2). Moreover, X̄ is irreducible on VG(λ1) and VG(λ2). At this point [Se1,
Theorem 1] determines all possibilities for X̄ : either X̄ = Dn, or n = 3 and X̄ = G2,
as in the conclusion of Theorem 4.

In view of 7.1, we assume from now on that G is of exceptional type.
Let V be a nontrivial G-composition factor of L(G), so that X is irreducible on

V . Write V = VG(λ) with λ as in 1.10 (up to twists).
If PX = QXLX is a parabolic subgroup of X with unipotent radical QX and Levi

subgroup LX , then by [BT], there is a parabolic subgroup P = QL of G containing
PX and such that QX ≤ Q, the unipotent radical of P . The next result follows
from the argument in [ST1, p.565] (third paragraph).

Lemma 7.2. We have CV (QX) = CV (Q), and PX and P are both irreducible on
this space. The high weight of CV (Q) as an L-module is the restriction of λ to L.
Assuming this action is nontrivial, we have λ = λi for some i, and if L0 is the
simple factor of L involving the root αi, then the possibilities for CV (Q) ↓ L0 are
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as in Table 5. Moreover, if (G,L0) = (E7, E6) or (E6, D5), then Q and QX are
abelian.

Table 5

G L0 CV (Q) ↓ L0 (up to auts. of L0)
E8 D7 or Ar (r ≤ 7) VL0(λ1)
E7 E6, D5 or Ar (r ≤ 6) VL0(λ1)
E6 D5, D4 VL0(λ4)

Ar (r ≤ 4) VL0(λ1)
F4 B3, C3(p = 2), or Ar (r ≤ 2) VL0(λ1)

Lemma 7.3. X is not A1(q).

Proof. Suppose X = A1(q), and let t be a generator for a Cartan subgroup of X .
By the representation theory of X , CV (t) has dimension 1 unless V is the Steinberg
module for X ; the latter is impossible as dim V cannot be equal to q (see 1.10).
However, t lies in a maximal torus of G, so CV (t) must certainly be bigger than 1,
which is a contradiction.

Lemma 7.4. X is not Aε2(q).

Proof. Suppose that X = Aε2(q). Now V is a self-dual X-module, so by [ST1], V
lifts to a self-dual A2(K)-module. This is a tensor product of twists of modules of
the form VA2(aa), where 0 ≤ a ≤ p− 1.

Now by 1.8, either WX(aa) = VX(aa), of dimension (a+1)3, or WX(aa) has two
composition factors, namely VX(aa) and VX(p− a− 2, p− a− 2); in the latter case,
2a+ 2 > p ≥ a+ 2 and VX(p− a− 2, p− a− 2) = WX(p− a− 2, p− a− 2), whence
dimVX(aa) = (a+ 1)3 − (p− a− 1)3.

If p = 2 then V is a tensor product of twists of VX(11), which has dimension 8;
but from 1.10 we see that dimV is not a power of 8. Hence p > 2.

Suppose first that G = E8. Then dim V = 248 = 8.31, so there is a restricted
module VX(aa) of dimension 2r.31 (r ≤ 3). Therefore 2r.31 must be equal to
(a+ 1)3 − (p − a− 1)3. This has a factor 2a+ 2 − p, which, since p is odd, forces
2a+ 2− p = 1. Then 2r.31 = (a+ 1)3 − a3, which is not possible.

Now let G = E7. Then dimV = 133 = 7.19 (recall p 6= 2). As 133 is not a
difference of cubes, we must have V ↓ X ∼= VX(aa) ⊗ VX(bb)(p

i) with (a + 1)3 −
(p− a− 1)3 = 7 and (b+ 1)3 − (p− b− 1)3 = 19. This is impossible.

Next consider G = E6 or F4. Here dim V = 52, 77 or 78, none of which is the
product of a difference of cubes.

Finally, if G = G2, then as 14 is not a product of differences of cubes, we
must have p = 3 and dimV = 7. Subgroups Aε2(q) of G2 are identified by [LST,
Theorem 2]: they lie in maximal rank connected subgroups A2. However these are
not irreducible on both VG(λ1) and VG(λ2), so no examples arise here.

Lemma 7.5. Theorem 4 holds if G = G2.

Proof. Suppose G = G2. By 7.3, rk(X) ≥ 2 (recall that rk(X) denotes the rank of
the simple algebraic group corresponding to X).

Since a parabolic of X lies in a parabolic of G (by [BT]), we deduce that X
is of type Aε2(q), B2(q), G2(q), 3D4(q) or 2A3(q). The first case is out by 7.4, and
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X 6= G2(q) as X is assumed not to have the same type as G; also X 6= 3D4(q)
since 3D4(q) has no nontrivial representation of dimension 7. By the argument in
[ST1, p.565] (third paragraph), up to twists, V ↓ X is 10, 01 or 11 if X = B2(q),
and is 101 or 010 if X = 2A3(q). As dim V = 14 − 7δp,3, the only possibility is
that X = 2A3(q), V ↓ X = 101 with p = 2. But here X has a parabolic subgroup
QXLX with L′X ∼= A1(q2) acting on CV (QX) as 1⊗1(q), which does not agree with
the action of a parabolic of G containing QXLX .

We assume from now on that G 6= G2.

Lemma 7.6. X is not Bε2(q) or Gε2(q).

Proof. Suppose thatX = Bε2(q) or Gε2(q), and let V ↓ X ∼= VX(ab) ∼= VX(a0b0)⊗. . .
with a0, b0 ≤ p− 1. At several points in the proof we make use of the sum formula
in [An], which can be used to calculate the dimensions of many modules VX(cd)
with c, d reasonably small.

First assume p = 2 or 3. By [GS] for X = Gε2(q), and by the sum formula [An]
for X = Bε2(q), the possibilities for dimVX(a0b0) are as follows:

X p a0b0 dimVX(a0b0)
Bε2(q) 2 10, 01, 11 4, 4, 16 (resp.)
G2(q) 2 10, 01, 11 6, 14, 64
B2(q) 3 10, 20, 01, 11, 21, 02, 12, 22 5, 14, 4, 16, 40, 10, 25, 81
Gε2(q) 3 10, 20, 01, 11, 21, 02, 12, 22 7, 27, 7, 49, 189, 27, 189, 729

As dimV is a product of dimensions in the table, we have a contradiction.
Thus p > 3. At this point we make use of 7.2. Take a parabolic subgroup

PX = QXLX of X , with L′X ∼= A1(q). Then PX lies in a parabolic subgroup QL
of G with QX ≤ Q, and LX is irreducible on the space CV (Q), which is given as
L-module in Table 5. We can choose PX so that CV (Q) ↓ LX ∼= VLX (a) or VLX (b).

We claim that one of the following holds:

G = E8 : a0, b0 ≤ 7,
G = E7 : a0, b0 ≤ 6,
G = E6 : a0, b0 ≤ 4,
G = F4 : a0, b0 ≤ 6.

To see this we argue as follows. If the claim is false, then from Table 5 we see that
L0 = D7, E6, D5, D5 orD4 and L′X is irreducible on VL0(λ), where λ = λ1, λ1, λ1, λ4

or λ4, respectively. This is impossible for VDr (λ1) and VD4 (λ4), by 1.1, and for
VD5(λ4), by [LS2, 2.13]. Finally, if L0 = E6 then X 6= G2(q) since QX is abelian
by 7.2, so X = B2(q). We shall see in the next paragraph that VX(ab) is restricted;
hence a or b must be 26. But it is easy to see that this forces dim V > dimL(G) =
133, a contradiction. This establishes the claim.

As p > 3, dim V is 248, 133, 78 or 52. The irreducible KX-modules of dimension
8 or less, dividing dimV , are as follows:

X = B2(q) : VX(01) of dimension 4,
X = G2(q) : VX(10) of dimension 7.
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Hence, if VX(ab) is not restricted, then it is a tensor product of one of the above
modules with a twist of a restricted module VX(cd); the latter module has dimension
62 or 13 (for X = B2(q), G = E8 or F4), or dimension 19 (for X = G2(q), G = E7).
When X = G2(q), G = E7, we have CV (Q) ↓ LX ∼= VLX (1) ⊗ VLX (c)(p

i) or
VLX (d)(p

i), whence c ≤ 2 and d ≤ 6 by 7.2. It is easy to see that no such module
VX(cd) has dimension 19: use [GS] for the small weights, and count conjugates
for the others. A similar argument applies when X = B2(q). Here c ≤ 7, d ≤ 3.
Moreover, since Z(X) = 1 and V ↓ X ∼= 01⊗ cd(pi), the module V (cd) must admit
the action of the simply connected group of type B2, and hence d must be odd;
in particular, the central element −1 has determinant 1 on V (cd), so dimV (cd)
is even, hence equal to 62. Now [Pr] shows that all weights of the Weyl module
WB2(cd) appear as weights of VB2(cd), and counting conjugates of such weights
shows that the only possibilities with dimVB2(cd) ≤ 62 are among the following:

cd = 01, 03, 11, 13, 21, 23, 31, 41.

The dimensions of these modules can be calculated using the sum formula in [An];
we find that none of them is equal to 62.

We conclude that VX(ab) is restricted (that is, a = a0, b = b0). Now suppose
X = B2(q). As Z(X) = 1, b is even. The dimensions of VX(ab) with a, b ≤ 7 can
be calculated using the sum formula in [An], and we find that the only cases where
this dimension is less than or equal to 248 are as follows:

ab dimVB2(ab)
06 84
16 231
04 35
14 105
24 220− 105δp,5 − 71δp,7
02 10
12 35
22 81− 13δp,5 − 10δp,7
32 154− 68δp,5
42 260− 54δp,7 − 81δp,11
52 199 (p = 7)
10 5
20 14− δp,5
30 30− 5δp,7
40 55− δp,7
50 91− 30δp,11
60 140− 14δp,11 − 55δp,13
70 204− 5δp,11 − 30δp,13

None of these dimensions is equal to dimV , a contradiction.
Now let X = G2(q), and recall that p > 3. Again, application of the sum formula

shows that the only cases where VX(ab) (with a, b ≤ 7) has dimension at most 248
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are:
ab dimVG2(ab)
40 182− 27δp,11
30 77
21 189− 64δp,11
20 27− δp,7
13 244 (p = 13)
12 286− 189δp,5 − 38δp,7
11 64− 26δp,7
10 7
03 273− 77δp,5 − 125δp,11
02 77
01 14

The only possibility where dimVX(ab) = dim V is

G = E8, p = 7 and V ↓ X ∼= VX(12).

In this case, let α, β be fundamental roots for a G2 root system, and let t =
hα(−1) ∈ X . We calculate dimCV (t), where V = VX(12). (We shall then obtain a
contradiction by comparing this with the known possibilities for dimCL(G)(t).) All
the weights appearing in V and their multiplicities are listed in [GS]. The dominant
weights which are subdominant to 12 are

12, 40, 21, 02, 30, 11, 20, 01, 10, 00,

and these appear in VX(12) with multiplicities 1,1,2,2,3,4,6,6,8,8, respectively. The
orbits of these weights under the Weyl group of X are as follows:

orbit of 12 : 12, 1(−3), 8(−3), 8(−5), 7(−5), 7(−2) and negatives
orbit of 40 : 40, 4(−4), 8(−4) and negatives
orbit of 21 : 21, 2(−3), 7(−3), 7(−4), 5(−4), 5(−1) and negatives
orbit of 02 : 02, 6(−2), 6(−4) and negatives
orbit of 30 : 30, 3(−3), 6(−3) and negatives
orbit of 11 : 11, 1(−2), 5(−2), 5(−3), 4(−3), 4(−1) and negatives
orbit of 20 : 20, 2(−2), 4(−2) and negatives
orbit of 01 : 01, 3(−1), 3(−2) and negatives
orbit of 10 : 10, 1(−1), 2(−1) and negatives

The dimension of CV (t) is equal to the number of weights appearing in V with
first coordinate even. Hence we find dimCV (t) = 124. But CG(t) is D8 or A1E7,
whence dimCL(G)(t) = dimCG(t) = 120 or 136, a contradiction. This completes
the proof of the lemma.

Lemma 7.7. Theorem 4 holds if G = F4.

Proof. Let G = F4. By 7.3, 7.4 and 7.6, rk(X) ≥ 3. First suppose that q > 2. Then
by [LST, Theorem 2] there is a connected simple subgroup X̄ of G containing X
and of the same type as X . As X fixes L(X̄), we deduce from 1.10 that L(X̄) has
all its X̄-composition factors of dimension 52 − 26δp,2. By 1.10, there is no such
group X̄.

Now let q = 2. The only possible subgroups X having an irreducible module of
dimension 26 are Dε

4(2) and B4(2) ∼= C4(2), the unique such module being VX(λ2).
It is enough to rule out X = Dε

4(2) (since B4(2) contains D4(2) acting irreducibly
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on V (λ2)). So suppose X = Dε
4(2) and pick a parabolic subgroup PX of X of type

QXD
ε
3(2) if ε = ±, and of type QXL2(8) if ε = 3. By [BT], PX < QL, a parabolic

of G. If ε = ±, this must be a B3- or C3-parabolic. Moreover, by 7.2, L must act
irreducibly and nontrivially on CV (Q) = CV (QX), for V = VG(λi), i = 1, 4. But
this is not the case, as L in fact acts trivially on CV (Q) for one of these values of i.

Finally, suppose ε = 3. Then the factor L2(8) acts trivially on CV (QX) (where
V = VX(λ2)), so QL is a B2- or A1-parabolic as it must be trivial on both 26-
dimensional composition factors of L(G). The 8-dimensional module VX(λ1) re-
stricts to L2(8) as 1(2) ⊗ 1(4)/1/1, hence VX(λ2) ↓ L2(8) has a composition factor
1 ⊗ 1(2) ⊗ 1(4). But on restriction to QL, the modules VG(λi) (i = 1, 4) have all
composition factors of dimension at most 5, which is a contradiction.

From now on, we assume that G = E6, E7 or E8. Also, by 7.3–7.6, rk(X) ≥ 3.

Lemma 7.8. Let L0 be a connected simple group of type Ar (r ≤ 7), D4, D5, D5,
D7 or E6, and let W = VL0(µ), where µ = λ1, λ1, λ1, λ4, λ1 or λ1, respectively.
Suppose that Y = Y (q) is a quasisimple subgroup of L0 such that rk(Y ) ≥ 2,
Y 6= Gε2(q) and Y is irreducible on W . Then one of the following holds (where
V ↓ Y is given up to twists):

Y ν, where V ↓ Y = VY (ν) L0

Aε2(q) 10, 01, 20, 02, 11, 22, A2, A2, A5, A5, A7−δp,3

or D4, E6,

α⊗ β(pi) ⊗ γ(pj) E6 (resp.)
(α, β, γ ∈ {10, 01})

Bε2(q) 10, 01, 02, 20, 11, 01⊗ 01(pi), A4−δp,2 , A3, D5, D7, D5, D5,

10⊗ 10(2i), 10⊗ 01(2i)(p = 2) D5, D5 (resp.)
Aε3(q) 100, 001, 010 A3, A3, A5

B3(q) 100, 200(p 6= 7), 001 A6−δp,2 , E6, A7 or D4

C3(q) (q odd) 100, 010(p 6= 3) A5, D7

B4(q) (q odd) 0001 D5

C4(q) 1000, 0100, 0001(p= 2) A7, E6, D5

Dε
4(q) 1000, 0010, 0001 A7 or D4

same type as L0 µ L0

Proof. The dimension of W is r + 1, 8, 10, 16, 14 or 27 in the respective cases for
L0. The Y -modules of dimension up to 10 (self-dual if the dimension is 9 or 10)
are well known (cf. [Li, 1.1]), and all possibilities are in the table. So assume
dimW = 14, 16 or 27. Let W = VY (λ). If this is a nontrivial tensor product,
then the tensor factors have dimension at most 9 and either W is in the table or
Y = Aε3(q), L0 = D5, λ = λ4 and W ↓ Y = α ⊗ β(pi) with α, β ∈ {100, 001};
however, in the latter case, VD5 (λ1) ↓ Y must be either 100/001/0002 or 010/0004,
and in neither case does the spin module VD5(λ4) restrict irreducibly to Y , so this
case does not occur. Now assume VY (λ) is not a nontrivial tensor product; then
we may assume λ is restricted.

Suppose Y is not of type L0. When Y = Aε2(q), 1.8 shows that the only possibility
is λ = 22 (giving dim VY (λ) = 27). For other types, we argue by counting conjugates
of subdominant weights appearing in VY (λ) that the only possibilities for (Y, λ),
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with VY (λ) having dimension between 11 and 27, are among the following:

Y λ
B2(q) 20, 30, 03, 11, 12
B3(q) 200, 002
C3(q) 200, 010, 001
B4(q) 0100, 0001
C4(q) 0100

For Y = B2(q) the tables in the proof of 7.6 exclude all but λ = 20, 11; for the other
cases, [BW] excludes all but (Y, λ) = (B3(q), 200), (C3(q), 010 or 001), (B4(q), 0001)
and (C4(q), 0100). All of these except (C3(q), 001) (q odd) are in the conclusion;
in the exceptional case, the 14-dimensional module VC3(001) is symplectic rather
than orthogonal. Note also that p 6= 7, 3 for the B3(q), C3(q) cases in the table,
respectively, as otherwise VY (λ) does not have the correct dimension.

Lemma 7.9. We have V ∼= VX(δ), where δ is as in Table 6 (given up to twists).

Table 6

X δ
A3(q) 111, 202, 222
2A3(q) 0a0 (a ≤ 7), 1a1 (a ≤ 5)
2A4(q) 0110, 1111
B3(q) 011, 020, 110, 111, 102, 202, 220
C3(q) 002, 020, 011, 101, 111, 202, 220, 110(p= 2)
2D4(q) 2010, 2001, 1100
3D4(q) a000, 0b00, 1c00 (a≤ 4, b ≤ 3, c ≤ 3), 2100,

1010, 1110, 2010, 3010, 3110,
1d10, 1d11, 2d10 (p≤ 3, d ≤ p− 1)

F4(q) 2000, 0010
2F4(q) 0100, 1100

Proof. Recall that V is a self-dual G-module. We show first that if V ↓ X = VX(δ),
then the weight δ is restricted. If not, then V ↓ X is a nontrivial tensor product. As
dimV is 78− δp,3, 133− δp,2 or 248, we see that one of the tensor factors must have
dimension x ≤ 8. Thus X has a self-dual irreducible VX(χ) of dimension x, from
which we deduce that (X,χ, x) = (Aε3(q), 010, 6), (B3(q), 100, 7), (B3(q), 001, 8),
(C3(q), 100, 6) (C4(q), λ1, 8) or (Dε

4(q), λi, 8) (i = 1, 3, 4). We have V ↓ X = χ⊗γ(r),
where y = dimVX(γ) is 13 or 22, 11 or 19, 31, 13 or 22, 31, or 31, respectively.
Excluding the cases (X, y) = (Aε3(q), 22) or (B3(q), 31), we see in the usual way
(counting conjugates of subdominant weights, etc.) that the only possibility for a
self dual X-module of dimension y is X = C3(q), γ = λ2 with p = 3 and y = 13;
but then xy = 78, whereas dimV = 77 for G = E6, p = 3. For the excluded case
with X = Aε3(q), we have xy = 132, so G = E7, p = 2. The only possibility for
γ is 111; but it is easy to see by counting conjugates of subdominant weights that
VX(111) has dimension greater than 22. The other excluded case with X = B3(q)
is handled by counting conjugates of dominant weights in the usual way. Thus the
weight δ is restricted.
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Consider first X = A3(q), and let δ = aba. Choose a parabolic PX = QXLX of
X such that L′X ∼= A2(q) and CV (QX) ↓ LX ∼= VLX (ab). Then from 7.2 and 7.8,
we see that ab is as in the conclusion of 7.8 for A2(q), and so

ab = 00, 10, 01, 20, 02, 11, or 22.

Therefore δ = 101, 010, 202, 020, 111 or 222. Clearly 101, 010 and 020 have dimen-
sion less than 77, leaving the possibilities in Table 6 for X = A3(q).

For X = Ar(q) with r ≥ 4, we first use the same argument with an Ar−1-
parabolic: if δ = a1 . . . ar, we see that a1 . . . ar−1 is equal to 0 . . . 0, 10 . . .0 or 0 . . . 01
(or, if r = 4, to 010). As V ↓ X is self-dual, we conclude that a1 . . . ar = 10 . . .01.
Now choose another parabolic Q

(1)
X L

(1)
X of type A2 × Ar−3; then CV (Q(1)

X ) has
dimension 3(r − 2), and we deduce using 7.2 that 3(r − 2) ≤ 8. Hence r = 4 and
V ↓ X = VX(1001); but dimVX(1001) ≤ 24, which is a contradiction.

Next let X = B3(q), with δ = abc. From an A2-parabolic and 7.8 we get
ab = 00, 10, 01, 20, 02, 11 or 22; and from a B2-parabolic we get bc = 00, 10, 01, 20, 02
or 11. Hence δ is in the following list:

001, 002, 100, 101, 102, 010, 011, 200, 201, 202, 020, 110, 111, 220.

If δ = 001, 002, 100, 101, 010or 200, then VX(δ) appears in a tensor product VX(λi)⊗
VX(λj) with i, j ∈ {1, 3}, hence has dimension less than 77; and if δ = 201 then
p 6= 2 and the acting group is the simply connected group Spin7(q), with centre
of order 2, contrary to the fact that Z(X) = 1. All other possibilities for δ are in
Table 6.

Now consider X = Br(q) with r ≥ 4 and δ = a1 . . . ar. Observe that r ≤ 8,
as can be seen from an easy inductive argument (embed a Br−1-parabolic of X in
a parabolic of G, and repeat). Working with parabolics of types Ar−1 and Br−1

as above, we find a1 . . . ar−1 = 00...0, 10...0 or 0...01 (or 010 with r = 4), and
a2 . . . ar = 00...0 (or 100, 200, 001 with r = 4, or 0001 with r = 5). Hence δ is one
of the following:

10...0, 0001, 00001, 1001, 10001, 0100.

The first three cases have dimension 2r + 1 or 2r, 16 and 32 respectively, so are
impossible; and the last has dimension less than 77. If δ = 10001, then an A2B2-
parabolic acts on the fixed space of its radical as 10 ⊗ 01, so this fixed space
has dimension 12, contrary to 7.2. This leaves only δ = 1001; here also p = 2,
since otherwise the acting group has centre of order 2 again. But when p = 2,
VB4(1001) ∼= VB4(1000) ⊗ VB4(0001) (see [Bor2, 7.6]), of dimension 8.16, so this
case cannot occur either.

The cases X = Cr(q) (r ≥ 3) or Dr(q) (r ≥ 4) are handled in just the same way
as Br(q) (for Dr(q) we use two Ar−1-parabolics).

For X = F4(q) with δ = abcd, use of a B3-parabolic and 7.2 gives abc =
000, 100, 200 or 001, and use of a C3-parabolic gives bcd = 000, 100, 010 or 001(p =
2). Hence δ = 1000, 1001(p= 2), 2000, 0010 or 0001(p = 2). Of these, the first and
last have dimension less than 77, and 1001 ∼= 1000⊗0001 ([Bor2, 7.6]), of dimension
26.26; the rest are in Table 6.

When X = E6(q), E7(q) or E8(q), use of suitable parabolics forces δ = λ2, λ1

or λ8 respectively, whence X has the same type as G, contrary to our original
assumption.

This completes the case where X is of untwisted type.
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Now suppose X = 2A3(q) and δ = aba. Choose a parabolic PX = QXLX of
X with L′X ∼= A1(q2). Then CV (QX) ↓ LX = a ⊗ a(q). Also QX is non-abelian,
so we deduce from 7.2 that dimCV (QX) = (a + 1)2 ≤ 8, whence a ≤ 1. The
usual argument using an A1(q)-parabolic shows that b ≤ 7. Now choose a subgroup
B ∼= B2(q) of X . Then V ↓ B has a composition factor VB(b, 2a). Using the list of
B2-modules given in the proof of 7.6, we see that either a = 0, b ≤ 7 or a = 1, b ≤ 5,
as in Table 6.

Now consider X = 2A4(q), δ = abba. There is a parabolic QXLX with LX ∼=
2A2(q) and CV (QX) ↓ LX ∼= VLX (bb). Hence by 7.8, we have b ≤ 2; moreover,
if b = 2 then dimCV (QX) = 27; but this is impossible by 7.2, as QX is non-
abelian. Thus b ≤ 1. As in the previous paragraph, we see that a ≤ 1. Clearly
0000 and 1001 have dimension less than 77, leaving 0110 and 1111, as in Table 6.
For X = 2Ar(q) with r ≥ 5 and δ = a1 . . . ar, an A2(q2) parabolic QXLX has
CV (QX) ↓ LX = a1a2 ⊗ a2a

(q)
1 , whence a1 = a2 = 0, and a 2Ar−2(q) parabolic

now gives either ai = 0 for all i, or r = 5, δ = 00100; in the latter case, VX(δ) has
dimension 20, a contradiction.

Next let X = 2Dr(q) (r ≥ 4). Note again that r ≤ 9. Use of 7.8 with parabolics
of types 2Dr−1 and Ar−2 yield the following possibilities for δ:

λ1, λr−1, λr , λ1 + λr−1, λ1 + λr, 01000, 2000, 2010, 2001, 0100, 1100.

The first three possibilities have dimensions 2r, 2r−1, 2r−1 respectively, so these
cannot hold. For the next two cases, when r ≥ 6 an Ar−4(q) × 2A3(q) parabolic
rules them out; for r = 5 they are not self dual; and for r = 4 they have dimension
less than 77. Finally, the cases with δ = 01000, 2000, 0100 have dimension less than
77 also. This leaves just the possibilities in Table 6.

Similarly, for X = 2E6(q) we use parabolics of types 2A5 and 2D4 to force
δ = λ1, λ6, λ2, λ1 + λ2 or λ6 + λ2. Of these, only λ2 is self dual. But this is the
high weight of the adjoint module for X , which means that X and G must have
the same type, contrary to assumption.

It remains to deal with X = 2F4(q) or 3D4(q). In the first case, V ↓ X =
VX(abcd) ∼= VX(ab00) ⊗ VX(00cd). Each tensor factor is either trivial or has di-
mension at least 26, so one of them, say 00cd, is trivial. Thus V ↓ X = 1000, 0100
or 1100; the first has dimension 26, and the others are in Table 6.

Finally, let X = 3D4(q), and suppose δ = abcd. Pick a parabolic QXLX with
L′X ∼= A1(q3). Then CV (QX) ↓ LX = a⊗ c(q)⊗ d(q2). Moreover QX is non-abelian,
so we deduce from 7.2 and 1.1 that (a + 1)(c + 1)(d + 1) ≤ 8. Therefore, taking
a ≥ c ≥ d, we have

(a, c, d) = (a, 0, 0) (a ≤ 7), (a, 1, 0) (a ≤ 3) or (1, 1, 1).

Now take a subgroup C = G2(q) of X , so that V ↓ C has a composition factor
VC(a+ c+ d, b). This module is restricted unless acd = 210, 110 or 111 and p ≤ 3.
These cases are included in Table 6 of the statement. In the restricted case, we see
from the list of G2-modules given in the proof of 7.6 that

a+ c+ d, b = 40, 30, 21, 20, 13, 12, 11, 10, 03, 02, or 01.

Hence abcd is as in Table 6.

The proof of Theorem 4 is completed by the next lemma.
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Lemma 7.10. Let X and δ be as in Table 6. Then dimVX(δ) is not equal to
77− δp,3, 133− δp,2 or 248.

Proof. For many of the possibilities in Table 6, the dimension of VX(δ) is given by
[BW] or [GS]. For several of the remaining cases, counting conjugates of subdom-
inant weights in VX(δ) shows that dimVX(δ) > 248. The final surviving cases are
handled using the programme described in [GS] to determine the precise dimension
of VX(δ).

This completes the proof of Theorem 4.

8. Proof of Theorem 6 and corollaries

We begin with the proof of Theorem 6. As in the hypothesis of Theorem 6, let G
be a simple adjoint algebraic group of exceptional type in characteristic p, and σ be
a Frobenius morphism such that L = Op

′
(Gσ) is a finite simple group of exceptional

Lie type. Let L1 be a finite group with socle L (i.e. L ≤ L1 ≤ Aut L). Suppose
that H is a maximal subgroup of L1 such that F ∗(H) = X = X(q), a simple group
of Lie type over Fq, with q as in the hypothesis of Theorem 1. Assume further that
X is not of the same type as G (otherwise (i) of Theorem 6 holds).

By Corollary 5, there is a proper connected subgroup X̄ of G containing X such
that X and X̄ fix the same subspaces of L(G).

Let M be the set of all X-invariant subspaces of all G-composition factors of
L(G), and define

Y =
⋂

W∈M
GW .

As every automorphism of L extends to a morphism G→ G, it follows from 1.12(iii)
that Y is H〈σ〉-stable. Moreover, by Theorem 4, Y is a proper closed subgroup
of G, and X < X̄ ≤ Y . Let Z be a maximal connected H〈σ〉-invariant proper
subgroup of G containing Y 0. By the maximality of H we have H = NL1(Z).
Clearly Z is reductive (otherwise H normalizes Ru(Z)σ, hence is parabolic). Hence
X = Op

′
(Zσ). Consequently (ii) of Theorem 6 holds.

This completes the proof of Theorem 6.

Remark. As remarked after Theorem 6 in the Introduction, the above proof shows,
more generally, that if H is any (not necessarily maximal) subgroup of L1 such
that F ∗(H) = X(q) with q as in Theorem 1, then H ≤ N(X̄σ) for some X̄ as in
conclusion (ii) of Theorem 6.

Proof of Corollary 7. Assume the hypotheses of Corollary 7, so thatH is a maximal
subgroup of L1 as above, and F ∗(H) = X = X(q) with q as in Theorem 1. We may
take it that K = F̄p, the algebraic closure of Fp, since the conclusions of Corollary
7 concern finite groups only. (This allows us to apply 1.13 at a suitable point in
the argument.)

Assume that H is not a subgroup of maximal rank, and that X(q) is not of the
same type asG. By Theorem 6, we haveX = Op

′
(X̄σ), where X̄ is a maximal closed

connected reductiveH〈σ〉-stable subgroup ofG. By assumption, X̄ does not contain
a maximal torus of G. Moreover, Z(X̄)0 = 1, since otherwise H ≤ N(C(Z(X̄)0),
a group of maximal rank, which is impossible as H is not of maximal rank by
assumption. Therefore X̄ is semisimple. If X̄ is not simple, then, by [LS1, Theorem
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1], X̄ is as in the second column of [LS1, Table II]; from this we see that Op
′
(X̄σ)

is not simple, a contradiction.
Hence X̄ is simple. Therefore, since X = X(q) = Op

′
(X̄σ), by 1.13 we have

q = q1 (where Gσ = G(q1)), as in (iii) of Corollary 7. Moreover, if p > N(X,G),
then the possibilities for X̄ are given by [LS1, Theorem 1]; note also from [LS1,
Theorem 1] that these maximalH〈σ〉-stable subgroups X̄ are also maximal σ-stable.

There remain two points to establish: first, that the fixed point groups X(q) =
Op

′
(X̄σ) are as in conclusion (iii) of Corollary 7; and second, the conjugacy state-

ment at the end of Corollary 7.
The conjugacy statement is straightforward: first, the assertion of the uniqueness

of Aut(G)-classes of maximal connected subgroups X̄ is given by [Se2, Theorem 1].
And second, by [SS, I,2.7], the Gσ-classes contained in a given G-class of subgroups
X̄ correspond to classes in the groupH1(σ,NG(X̄)/X̄); however, clearlyNG(X̄)/X̄
has order 1 unless X̄ = A2, in which case it has order 2 by Lemma 8.1 below, so
the conclusion is immediate.

The statement that the fixed point groups X(q) = Op
′
(X̄σ) are as in conclusion

(iii) of Corollary 7 is clear, except when X̄ = A2, in which case we must establish
that both the fixed point groups A2(q) and 2A2(q) arise. This follows from the next
lemma.

Lemma 8.1. Let X̄ ∼= A2 be a maximal connected subgroup of G = E6 or E7. Then
NG(X̄) induces a nontrivial graph automorphism on X̄ (and hence NG(X̄)/X̄ has
order 2).

Proof. We may assume that G is of adjoint type. When G = E6, the conclusion is
immediate from [Te2, Claim on p. 314]. So assume from now on that G = E7. The
class of maximal subgroups A2 in E7 for p ≥ 7 is constructed in [Se2, 5.8].

Choose a parabolic subgroup QJαTα of X̄ , where Jα is a fundamental SL2, Tα a
rank 1 torus and Q the unipotent radical. Then by [Se2, p. 83], CG(Tα) = T2A1A4,
Jα projects onto the factor A1, and Jα projects onto a regular A1 in the factor A4.

We claim that there is an involution z ∈ NG(T2A1A4) normalizing Jα and in-
verting T2. To see this, we work first in E8, and observe that there is an involution
u normalizing a maximal rank subgroup A4A4 of E8, inducing a graph automor-
phism on each factor. Then u normalizes a fundamental A1 in one of the factors
A4, inducing a nontrivial inner automorphism on this A1. Therefore u ∈ A1E7 and
is a product yz of elements y, z of order 4, where y ∈ A1, z ∈ E7, and y2 = z2

is a generator of Z(E7). Then z projects to an involution in the adjoint group of
type E7. Now CA4A4(A1) = T1A2A4; therefore u, hence z, normalizes this group,
acting as a graph automorphism on the A2, A4 factors and inverting the T1. Now z
centralizes a subgroup B2 of the A4 factor, and a subgroup PSL2 therein. Adjust-
ing z by a suitable involution of this PSL2, we obtain an element z normalizing a
subgroup T2A1A4 of T1A2A4, acting in the fashion claimed at the beginning of this
paragraph.

Let t be the central involution in Jα. Then CG(t) = A1D6, and L(G) ↓ A1D6 =
L(A1D6)⊕ (VA1(1)⊗ VD6(λ5)). The restriction of VD6(λ5) to the projection of Jα
in A4 (which lies in D6) is 62/42/22/02; tensoring with VJα(1), we obtain

VA1(1)⊗ VD6 (λ5) ↓ Jα = 72/54/34/14.

We claim that there is an 8-dimensional Jα-submodule isomorphic to 14. Two
of the required four summands are provided by L(Q) and L(Q−). Now consider
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the action of T = Tα; say it acts with weight β on L(Q), hence with weight −β
on L(Q−). Now T2 centralizes Jα, so acts on the homogeneous component A of
the socle of L(G) ↓ Jα corresponding to high weight 1. It also centralizes T , hence
acts on the β and −β weight spaces in A; and z interchanges these. If the β
weight space is just 2-dimensional (i.e. equal to L(Q)), then so is the −β weight
space, and conversely. But then the Lie algebra span of this part of the socle is just
〈L(Q), L(Q−)〉 = L(X̄). However, this is not T2-invariant, so this is a contradiction.
Therefore the β and −β weight spaces of A have dimension 4, and A ∼= 14, proving
the claim.

Let Wβ ,W−β be the ±β weight spaces in A. These are fixed by T2 and inter-
changed by z. If CT2(Wβ)0 6= 1, then there is a 1-dimensional torus acting trivially
on Wβ , hence also on W−β (as z inverts T2). But this torus then acts trivially on
〈L(Q), L(Q−)〉 = L(X̄) (Lie algebra span), which is impossible (as X̄ is maximal).
Therefore CT2(Wβ)0 = 1. ConsequentlyWβ = W1⊕W2, a sum of two 2-dimensional
T2-weight spaces with different T2-kernels; similarly W−β = W3 ⊕W4.

Now none of the Wi is equal to L(Q) or L(Q−) (otherwise we would get a 1-
dimensional torus acting trivially on L(X̄) as above). Hence L(Q) is diagonal in
W1 ⊕W2. As a JαT2-module, we have Wβ

∼= M ⊗ N , where M is a natural 2-
dimensional module for Jα and N is a direct sum of two 1-dimensional T2-modules
with T2-kernels having different connected components. As T2 has three orbits
on the nonzero vectors of N , it follows that T2 has three orbits on the set of 2-
dimensional Jα-invariant subspaces of Wβ . Since L(Q−)z is such a subspace, and
is diagonal in W1 ⊕W2, there is therefore an element a ∈ T2 such that L(Q−)za =
L(Q). Then za is an involution normalizing the Lie algebra span 〈L(Q), L(Q−)〉 =
L(X̄). Consequently za normalizes X̄, inducing a graph automorphism, and this
completes the proof of the lemma.

Proof of Corollary 8. Let L1 be as in the first paragraph of this section, and let H
be a maximal subgroup of L1. Assume first that H is not almost simple. Then by
[LS1, Theorem 2], one of the following holds:

(i) H = N(X̄σ), where X̄ is a maximal connected H〈σ〉-stable subgroup of G;
(ii) H is the normalizer of a subgroup of the same type as G;
(iii) H one of the local subgroups 23.L3(2), 33.L3(3), 33+3.L3(3), 25+10.L5(2),

53.L3(5) (in G2, F4, E6, E8, E8 respectively), given in [LSS, Theorem 1(II)];
(iv) F ∗(H) = Alt5 ×Alt6.

Taking c > 215|L5(2)|, we see that (i) or (ii) of Corollary 8 holds for |H | > c.
Now assume that H is almost simple, and let X = F ∗(H). If X is alternating,

sporadic, or of Lie type in p′-characteristic, then H has bounded order (see [LSS,
§4] for instance); so we may choose c so that this does not occur for |H | > c.
Finally, let X = X(q) with q = pe. The BN -rank of X is at most that of G (since
a parabolic of X must lie in a parabolic of G), so again choosing c appropriately,
we may assume that q satisfies the hypothesis of Theorem 1. Now the conclusion
follows from Theorem 6.

9. Proofs of Theorems 9 and 10

For the proof of Theorem 9, we shall need the information on first cohomology
groups given in the next two results. The first is taken from [Ja, 2.3].

Proposition 9.1 (Jantzen). Let Y be a simply connected simple algebraic group
over F̄p, and let σ be a Frobenius morphism of Y such that Yσ is not of type 2B2,
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2G2 or 2F4. Let Yσ = Y (q), a finite group of Lie type over Fq, with q = pr, and let
α0 be the highest short root of the root system of Y . Suppose that λ is a dominant
weight for Y satisfying

〈λ, αv
0〉 ≤

{
pr − 2pr−1 − 3, if Y 6= G2,

pr − 3pr−1 − 3, if Y = G2,

and let V = VY (λ). Then the natural restriction map

H1(Y, V ) → H1(Yσ, V )

is an isomorphism.

Proposition 9.2. Let Y be a simple algebraic group in characteristic p, let Y (q) =
Yσ be a quasisimple group of Lie type over Fq, q = pe, and let V = VY (q)(λ). Then
H1(Y (q), V ) = 0 for all λ in Table 7.

Table 7

Y (q) λ conditions on p, q
Aεr(q) λ1, λ2, λ3 q > 3, and p > 2 if r = 1
Br(q) (r ≥ 2) λ1, λr p > 2 if λ = λ1 or r = 2,

Y (q) 6= B2(3)
Dε
r(q) (r ≥ 4) λ1, λr−1, λr

Gε2(q) 10 p > 2, q > 3
C4(q) λ1, λ3 p > 2
F ε4 (q) λ4 p 6= 3, q > 8
Eε6(q) λ1

E7(q) λ7

Aε2(q) 20, 30, 60, 11, 21, 22, p ≥ 5 (p ≥ 7 for 60), q ≥ 11
10⊗ 10(pi), 10⊗ 01(pi),

10⊗ 11(pi), 10⊗ 20(pi),

10⊗ 02(pi)

B2(q) 02, 03, 20, 11, 13, p ≥ 5, q ≥ 11 (p ≥ 7 for 20,
10⊗ 10(pi), 10⊗ 01(pi), p = 3 allowed for λ = 02)
01⊗ 01(pi), 01⊗ 02(pi)

G2(q) 20, 01, 11, 10⊗ 10(pi) p ≥ 11
Aε3(q) 101, 110, 200, 100⊗ 100(pi), p > 2, q ≥ 11

100⊗ 001(pi), 100⊗ 010(pi)

B3(q) 010, 002, 101, 001⊗ 001(pi) p > 2, q ≥ 11
C3(q) 100, 010, 001, 110 p > 2 (p > 3 for λ = 010), q ≥ 11
C4(q) 0100, 0010 p > 2, q ≥ 11
Dε

4(q) 0100, 0011 p > 2, q ≥ 11

Proof. For Y (q) as in the first eight rows of the table (i.e. Y (q) = Aεr(q), . . . ,
E7(q)), the result follows immediately from [JP] and [LS3, 1.8]. For the other
cases, our assumptions on p, q imply that H1(Y (q), V ) ∼= H1(Y, V ) by 9.1. (For
cases where λ is non-restricted, we twist V by an automorphism of Y (q) to take
i ≤ r/2.) It follows from [LS2, 1.7 and 1.9–1.15] that H1(Y, V ) = 0 in all cases.
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We shall also need some elementary lower bounds for the numbers t(G) defined
in the Introduction.

Proposition 9.3. We have t(G2) ≥ 12, and t(Σ(G)) ≥ 16 for G = F4, E6, E7, E8.

Proof. For G = G2, take simple roots α (short) and β (long), and set

y = (3α+ 2β)− (−3α− β) = 6α+ 3β, z = β − (−β) = 2β

(the middle terms in these equations are written simply to demonstrate that y and
z are root differences); then 12α = 2y − 3z, but 6α and 4α are not in Zy + Zz.
Hence t(Σ(G)) ≥ 12.

For G = F4, take simple roots α, β, γ, δ with α and β long and β joined to γ. Set
x = (α+ 2β + 2γ)− (−α− β − 2γ) = 2α+ 3β + 4γ, y = (α+ β)− (−β) = α+ 2β,
z = α− (−α) = 2α; then 16γ = 4x− 6y− z, but 8γ is not in Zx+ Zy+ Zz. Hence
t(Σ(G)) ≥ 16.

For G = E6, E7 or E8 take four simple roots α, β, γ, δ forming an A4 subsystem.
Set w = (α+β)−(−α) = 2α+β, x = (β+γ)−(−β) = 2β+γ, y = (γ+δ)−(−γ) =
2γ + δ, z = δ − (−δ) = 2δ; then 16α = 8w − 4x + 2y − z, but 8α is not in
Zw + Zx+ Zy + Zz. Hence t(Σ(G)) ≥ 16.

Proof of Theorem 9. Let G be a simple exceptional adjoint algebraic group over
the algebraically closed field K of characteristic p, let X = X(q) < G with q as in
the hypotheses of Theorem 1, and assume that p > N ′(X,G) (as defined before the
statement of Theorem 9). Suppose that X < P = QL, a parabolic subgroup of G
with unipotent radical Q and Levi subgroup L. We aim to show that X lies in a
Q-conjugate of L.

We follow closely the proof of [LS2, Theorem 1], which appears in [LS2, §3].
Assume first that P is minimal subject to containing X , and choose a subgroup X1

of L such that QX = QX1.
Suppose that X 6∼= A1(q). By Theorem 1, X1 < X̄ ≤ L, where X̄ is connected

and X1 and X̄ stabilize the same subspaces of the Lie algebra of L. Since X̄ lies in
no parabolic subgroup of L, it is semisimple, say X̄ = X̄1 . . . X̄r with all X̄i simple.
The fact that X1 is irreducible on each X̄-composition factor of L(X̄i) implies that
all the X̄i are of the same type as X . Therefore X lies in a connected simple
subgroup X̄0 of L of the same type (a diagonal subgroup of X̄1 . . . X̄r). Hence the
possible embeddings of X1 in L are given by [LS2, 3.3] (with the same proof). The
L′-composition factors within Q have the structure of rational KL′-modules, with
high weights given by [LS2, 3.1]. We deduce as in the proof of [LS2, 3.4] that the
restrictions to X1 of such modules have composition factors with high weights λ all
twists of those occurring in the table of Proposition 9.2. Moreover, the conditions
on p, q given in the table are satisfied (since we are assuming p > N ′(X,G) and
q > 9), except in the following cases:

(1) X1
∼= Br(q) (r ≥ 5), p = 2, λ = λ1, L

′ = Dr+1

(2) X1
∼= C3(q), p = 3, λ = λ2, L

′ = A5

(3) X1
∼= F4(q), p = 3, λ = λ4, L

′ = E6.
Therefore, excluding these cases, the group QX1 has just one Q-conjugacy class of
complements to Q, and so X is equal to a Q-conjugate of X1, as required. Finally,
cases (1),(2),(3) above are dealt with exactly as in the proof of [LS2, 3.6], using 9.1.

Now let X ∼= A1(q). First assume that q = p. By hypothesis, we have q >
2t(Σ(G)); and by 9.3, t(Σ(G)) ≥ 12 if G = G2, t(Σ(G)) ≥ 16 otherwise; so q = p >
24 if G = G2, and q = p > 32 otherwise. By 1.2, we have H1(X,VX(r)) = 0 when

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3478 MARTIN W. LIEBECK AND GARY M. SEITZ

r < p − 3. Now [LS2, 2.4],together with the first row of the table of [LS2, 2.13]
shows that all X-composition factors within Q have high weights at most 27 (at
most 4 if G = G2). Hence H1(X,V ) = 0 for all such composition factors V , and
we deduce as before that X is a Q-conjugate of X1.

Finally, suppose q = pe with e ≥ 2. By 1.2, if H1(X,VX(r)) 6= 0 then VX(r)
must be a twist of the module VX(p − 2) ⊗ VX(1)(p). Now the proof of [LS2, 3.5]
shows that such a module can appear as an X-composition factor within Q only if

p = 11 or 17, L′ = D7 (and G = E8).

The embedding of XQ/Q in D7 is such that the action on the natural module is
10⊕ 2(p), and the composition factor (p− 2)⊗ 1(p) occurs within the module Q/Q′

with multiplicity 1; moreover, no nontrivial twist of this composition factor occurs
within Q/Q′.

Suppose X does not lie in a Q-conjugate of L. By 1.3, the restriction map
H1(A1(K), (p − 2) ⊗ 1(p)) → H1(X, (p − 2) ⊗ 1(p)) is injective. Hence there is a
connected subgroup F of QL containing XQ′ such that F/Q′ is of type A1. A
similar analysis took place in [LS2, 3.7], except that there we were dealing with a
connected subgroup of type A1 instead of the finite group X . In [LS2, 3.7] it is
shown that this connected A1 subgroup lies in a Q-conjugate of L. This implies that
the group F does not contain a closed complement to Q′. Now Q′ ↓ X = 10⊕ 2(p).
Since F contains X , it follows that the restriction map H2(A1(K), 10 ⊕ 2(p)) →
H2(X, 10⊕ 2(p)) is not injective. However, this map is in fact injective: to see this,
we verify the injectivity condition (5.4) of [CPSK] for n = 2, and the isomorphism
condition (5.5) for n = 1, upon which the assertion follows from [CPSK, 5.1].

Therefore X lies in a Q-conjugate of L.
We have now proved Theorem 9 (except for the last sentence concerning σ-

stability), in the case where P = QL is minimal subject to containing X . The
proof for non-minimal parabolics containing X follows as in [LS2, p. 43].

We finally deal with the σ-stability statement in the last sentence of Theorem 9.
Suppose then that X < Gσ and X < P = QL, a σ-stable parabolic. By what we
have already proved, we can assume that X < L. Define

∆ = {Lu : u ∈ Q,X < Lu}.

Observe first that if X < Lu (u ∈ Q), then Xu−1
< L ∩QX = X , whence u ∈

NQ(X) = CQ(X). Consequently CQ(X) acts transitively on ∆. Write C = CQ(X).
We claim now that C is connected. To see this, let T = Z(L)0. ThenX < CG(T ),

so T normalizes C. Obviously T acts trivially on the finite group C/C0, so if this
group is nontrivial, then T fixes a nonzero vector in some composition factor of
Q ↓ T . However CQ(T ) = 1, so this is impossible. Hence C is connected, as
claimed.

Thus the connected group C acts transitively on the σ-stable set ∆. It now
follows from [SS, I,2.7] that ∆ contains an element fixed by σ. In other words, X
lies in a σ-stable Q-conjugate of L. This completes the proof of Theorem 9.

Proof of Theorem 10. As in the hypothesis of Theorem 10, assume that X = X(q)
< G, with q as in Theorem 1 and p > N ′(X,G). We first aim to prove part (i) of
Theorem 10.
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By Corollary 5, there is a proper closed connected subgroup X̄ of G containing
X and fixing the same subspaces of L(G) as X . Take X̄ to be minimal subject to
these conditions.

Lemma 9.4. X̄ is reductive.

Proof. Suppose false, so Ru(X̄) 6= 1. By [BT], X̄ lies in a parabolic subgroup P =
QR of G (with unipotent radical Q and Levi subgroup R) such that Ru(X̄) ≤ Q.
Then by Theorem 9, X lies in a Q-conjugate of R, so we may take it that X < R.

Now X fixes L(R), and hence so does X̄. But NQR(L(R))0 = R: for if not,
NQR(L(R))0 = Q0R with Q0 a nontrivial connected subgroup of Q. Then L(Q0)
commutes with L(R). However, CL(G)(L(R)) ∩ L(Q) = 0, since if T is a maximal
torus of R, then CL(G)(L(R)) ⊆ CL(G)(L(T )) = L(T ) by 1.11; this contradicts
the previous sentence. Therefore X̄ ≤ NQR(L(R))0 = R. But this means that
Ru(X̄) ≤ R, which is absurd.

By the minimality of X̄ we have X̄ ′ = X̄, and hence X̄ is semisimple. Write
X̄ = X̄1 . . . X̄t, a commuting product of connected simple groups X̄i.

Lemma 9.5. All the X̄i are of the same type as X.

Proof. Since X and X̄ fix the same subspaces of L(G), X must be irreducible on
each X̄i-composition factor of L(X̄i) (for all i). Hence by Theorem 4, for each
i, either X and X̄i are of the same type, or (X̄i, X, p) is (Bn or Cn, Dε

n(q), 2) or
(B3 or C3, G2(q), 2). In each of these exceptional cases, the projection of X in X̄i

lies in a connected simple subgroup of X̄i of the same type as X (as this projection
is determined up to conjugacy in X̄i). Hence the result follows by the minimality
of X̄.

We now have

X < X̄1 . . . X̄t

with each X̄i connected and simple of the same type as X .
We now argue that X < X̃ ≤ X̄1 . . . X̄t, where X̃ is connected and simple of the

same type as X . This is clear if t = 1, so suppose t > 1. Let φi : X → X̄i/Z(X̄i)
be the ith projection map.

Let Y be a simple algebraic group of the same type as X , and containing X .
If Y is classical, then [ST1] implies that each φi extends to a morphism φ̂i : Y →
X̄i/Z(X̄i); and if not, then as t > 1, we have X = G2(q), and the same conclusion
follows from [LS3, 5.1]. Now define

X̂ = {yφ̂1 . . . yφ̂t : y ∈ Y },
and take X̃ to be the connected preimage of X̂ in X < X̄1 . . . X̄t. Then X̃ is a
closed, connected, simple subgroup of G of the same type as X , and containing X .
Moreover X̃ ≤ X̄ , so by minimality, X̃ = X̄. This completes the proof of the first
part of Theorem 10(i).

For the last part of Theorem 10(i), we must show that CG(X)0 = CG(X̃)0. This
is obvious if CG(X)0 = 1, so assume CG(X)0 6= 1.

We now argue that CG(X)0 is reductive. The proof of this follows closely that
of [LS2, Theorem 4.1]. Let C = CG(X)0, and suppose U = Ru(C) 6= 1. Then
XC lies in a parabolic subgroup P = QL, with U ≤ Q. Certainly X fixes L(P ),
hence so does X̃, and therefore X̃ < P . Then by Theorem 9, we may assume
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that X̃ ≤ L. Now Lemmas 4.2–4.4 of [LS2] show that there exists l ∈ L such
that w̄0l normalizes X̃ (where w̄0 is an automorphism of G normalizing a maximal
torus of L and inducing −1 on Σ(G)). Using [LS3, 5.1], we may take it that w̄0l
also normalizes X . But now we have 1 6= |CQ(X)| = |CQw̄0l(X w̄0l)| = |CQ−(X)|,
where Q− is the unipotent radical of the parabolic opposite to P . This gives
1 6= CQ−(X) ≤ Q− ∩ P = 1, a contradiction.

Thus CG(X)0 is reductive. Let T be a torus in CG(X)0. Then R = CG(T ) is a
Levi subgroup of G containing X . Now R = P ∩P−, the intersection of a parabolic
P and its opposite P−. Hence X fixes L(P ) and L(P−), and therefore so does
X̃. Since NG(L(P )) = P and NG(L(P−)) = P−, we deduce that X̃ ≤ P ∩ P− =
R. Thus X̃ centralizes T . The reductive group CG(X)0 is generated by tori, so
we conclude that CG(X)0 = CG(X̃)0, as required. This completes the proof of
Theorem 10(i).

Now we prove part (ii) of Theorem 10. Suppose that X = X(q) < G, with q as
in Theorem 1. By Theorem 1, we can choose a σ-stable connected subgroup X̄ of
G, minimal subject to containing X and fixing the same subspaces as X of every
G-composition factor of L(G).

We claim that X̄ is reductive. Suppose false, so that by [BT], X̄ lies in a σ-stable
parabolic P = QR of G, with Ru(X̄) ≤ Q; then by Theorem 9, X lies in a σ-stable
Q-conjugate of R. If L(G) is G-irreducible, the proof of Lemma 9.4 shows that
Ru(X̄) ≤ R, a contradiction. Otherwise, by 1.10, we have (G, p) = (E7, 2), (E6, 3),
(F4, 2) or (G2, 3). In the first two cases we may assume that G is simply connected,
so that G is irreducible on L(G)/Z(L(G)) and X̄ fixes each X-invariant subspace
of L(G)/Z(L(G)). As L(R) > L(T ) > Z(L(G)) (where T is a maximal torus of R),
we conclude that X fixes L(R), and at this point the proof of 9.4 works as before
to give the claim. For the F4 and G2 cases, by the prime restrictions p > N ′(X,G),
the only possibility is that (G, p,X) = (F4, 2, Aε3(q)). Then QL = QB3 or QC3.
Let I be the 26-dimensional ideal of L(G) generated by short root elements. We
may take it that X < L; hence X fixes L(B3)∩ I or L(C3)∩ I. Therefore X̄ lies in
the stabilizer of one of these subspaces, hence lies in a subgroup B3Ã1 or C3A1 of
F4. Moreover, X , hence X̄ , fixes every subspace of L(Ã1) or L(A1), from which it
follows that X̄ < B3T1 or C3T1, whence X̄ < L.

Thus X̄ is reductive. By minimality, X̄ is semisimple, say X̄ = X̄1 . . . X̄t with
each X̄i simple. We claim also that each X̄i is of the same type as X . As in the
proof of Lemma 9.5, this follows from Theorem 4, unless for some i, (X̄i, X, p) is
(Bn or Cn, Dε

n(q), 2) or (B3 or C3, G2(q), 2). Assume then that one of the latter
two cases holds. The fact that p > N ′(X,G) implies that the first case holds with
t = 1, n ≥ 4. But then X lies in a σ-stable subgroup Dn of X̄, contrary to the
minimality of X̄. This proves our claim.

To finish the proof of Theorem 10(ii), we need to show that CG(X)0 = CG(X̄)0.
We showed for part (i) of Theorem 10 that CG(X)0 = CG(X̃)0, where X̃ is a
suitable simple connected diagonal subgroup of X̄ of type X . Define CC0(X) =
CG(CG(X)0)0. This group contains X̃ and is σ-stable. If

Y = 〈X̃σi

: all i〉,
then Y lies in X̄ and is σ-stable; hence Y = X̄ by the minimality of X̄ , and
consequently CC0(X) contains X̄ . It follows that CG(X)0 ≤ CG(X̄)0. The reverse
inclusion is trivial, so CG(X)0 = CG(X̄)0, as required.
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10. Proof of Theorem 11

In this final section we prove Theorem 11. Let C be a finite classical group in
characteristic p with usual module V , and suppose X,Y are simple groups of Lie
type in characteristic p, not of the same type, such that X < Y < C and X is
absolutely irreducible on V . Suppose also that if Y is of exceptional type, then
X = X(q) with q as in the hypothesis of Theorem 11.

First observe that by [ST1], the embedding Y < C lifts to an embedding Ȳ ≤ C̄
of corresponding simple algebraic groups. Let V̄ be the usual module for C̄. If Ȳ
is classical, then again by [ST1], X < Y lifts to an embedding X̄ < Ȳ , giving the
required conclusion.

Thus we assume that Ȳ is exceptional. By Theorem 1, X < Z ≤ Ȳ for some
closed connected subgroup Z of Ȳ fixing the same subspaces of L(Ȳ ) as X . By
Theorem 4, X is reducible on some Ȳ -composition factor of L(Ȳ ), and so Z < Ȳ .
Now X , and hence Z, is irreducible on V̄ , so Z is semisimple.

At this point we have

X < Z < Ȳ < C̄.

Now we apply [Se1, Theorem 1]; this says that the triple (Z, Ȳ , C̄) is one of those
in Table 1 of [Se1]. Inspection of that table (recalling that Ȳ is exceptional) shows
that Z must be simple. If Z is classical, then [ST1] again implies that X < X̄ ≤ Z
for some simple connected group X̄ of the same type as X , as required. If Z is
exceptional and of the same type as X , we take X̄ = Z. Finally, if Z is exceptional
and not of the same type as X , we replace Ȳ with Z and repeat the argument;
eventually we obtain a suitable group X̄. This completes the proof of Theorem 11.
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