+ON' THE SUBSTITUTION OF POLYNOMIAL FORMS

Ellis Horowitz

TR 73 - 160

January 1973

Department of Computer Science
Cornell University
Ithaca, New York 14850

LI AT a0 L AN R e

aafak Whtet SN

e

(IR

On the Substitution of Polynomial Forms

Ellis Horowitz

Abstract

The problem of devising efficient algorithms for

computlng Q(xl,...,xr_l,P(xl,...,xr_l)) where P and Q

are multivariate polynomials is considered. It is

shown that for polynomials which are completely dense an
algorithm based upon evaluation and interpolation is

more efficient than Horner's method. Then various charac-

terizations for sparse polynomials are made and the subse-

-

" anent methnds are re-analvzed. Tn conclusion a test is

devised which takes only linear time“to compute and by

which a decision can automatically be made concerning

.whether to use a substitution algorithm which exploits

sparsity or one which assumes relatively dense inputs.
This choice yields the method which takes the fewést

arithinetic operations.

CL R ARG s A as v oo YR

EUYRRE. |

s

On the Substitution of Polynomial Forms

. Ellis Horowitz

Introduction

Rscently there has been greaﬁ interest in the opera¥
tion of polynomial evaluation. For the case of compﬁting
Q(xo) where X, and the coefficients of Q are all'single
precision numbers, Horner's rule has been shown to provide
the uniquely optimal method, see Borodin in [1]. Other
work in reducing the required number of multiplications
has been accomplished when one can assume that the coeffi-
cients of Q are known in advance. In this paper I seek to

study the more general problem of substituting a multivar-

iate polynomial, say P(Xl""’xr—l) for the r-th variable

in Q(xl,.f.,xr)'thereby computing the unique polynomial in
r-1 va:iables‘Q(xl,...,xr_l,P(xl,...,X£_l)).

This operation is an important one in mathematical
symbol manipulation systems. Computer software systems
which prov1de for operatlons-on symbolic mathematlcal for-
mulas have been available for many years, e.g. see [9].
All of these systems allow for the handling of multivariate
polynomials and most provide a substitution capability.
Some of these systems, e.g. SAC-1 [4] and ALTRAN [6], use
what is essentially a direct generalization of Hsrner's
method to polynomials in several variables. It is the

purpose of this paper to show that for several different,

common classes of poiynomials other methods will be aé
good or far superior. |

_Especiélly one should note that palynomial substitu-
tion can be only one of several im?ortant operations when
symbolic manipulgtion syétems are employed by such scien-
tists as mathematicians. Ofteﬁ the cost of computing»some
expression can be far cheaper than the time for evaluating
‘that expression. Thus it is necessary to carefully con-
sidér alternate strategies for performing effectively this
task. In this paper we will see how the substitution oper-
ation can bé'quite costly-and'how other strétegies can com-
pare quite favorably to the classical schéme.i
2. A:Sumptiéns

Before we begin an analysis of the substitution algo-
rithms let us more precisely specify the types of poly-
nomials we are dealing with and the computing times for
basic operations.

We will be considering polynomials P(xl,...,kr) in
f > 1 variables whose coefficients can beleither:

“(a) singlevpreciéion fixed point nﬁmbers,

(b) single precisién flpating point numbers,
or . |

| (c) elements of a finite fieid‘with a prime, p number
of elements designated, GF(p).

We note that the arithmetic operations oh all of these

elements are bounded by a constant. The basic unit operation

| i taunde e K inl BEL A

e LAk vera it s i AL

will be a single mulﬁiplication of 2 ofetheee coefficients
and all coméuting times will be a function of this unit.
Of course we implicitly'assert that the;tetal number of
additions—subtractions'Qi;l be boueded by the number of
multlpllcatlons. o o |

All computlng times will be given 1n terms of the

commonly used O-notation.

-Definition 2.1& Let f(xl,...,x) and-g(xl,...,x) be real-

valued functlons defined on some common domaln D. Then
f = 0(g) if there exists a positive constant c such that

If(xl,,..,xr)l < clg(xl,...,xr)l for all (xl,...,xr)_e D.

Definition 2.2: Let M(r,m) ='{P(xl,.;.,xr): P has r > 1

_variables with single precision coefficients such that

deg(P) in x; <m for 1 <1 < r}.

-

We now state without proof the computing times for the

arithmetic operations on elements in M(r,m).

Theorem 2. l Let P(xl,...,x } and Q(xl,...,x) € M(r,m).

Then an upper bound on the computing time to form P + Q

ls.O((m+l)) and to form P - Q is O((m+l))
Proof see e.g. [4]

These times represent the classical algorithms for addition

and multiplication and reflect the methods that are

-4~

co@monly used in these systems today. There is hope that
faster methods may soon be adopted for polynomial multipli-
cation butjat the moment we will assume the classical
algorithms.

There are- some othe; operations-for which we will need
the coﬁputing times. In particular we need to know the times

for evaluation ahd interpolation of multivariate polynomials.

Theorem 2.2 Let P(xl,...,xr) € M(r,m) and suppose that

b €GF(p). The time needed to compute P(xl,...,xr_l,b)

is o((m+1)).

?roof' P cah be expressed.in the form P =

L Wi . i .
0<§<m ai(xl""’xr-l) Sulps Computing b~ for 0 < i < m

takes m~1 multiplications. The ay each have (m+l)r"l

r—i

terms so the total time is m(m+1l) +m-1= O((m+1)r).

Next we will need to use an iterative'method for interpo-

'lation. Thus I first give the algorithm

Algorithm INTERPOLATION

) €M(r-1,m)

Input: P(xl""'xr-l

b €GF(p)
Q(Xl"‘°'xr):e M(r,m) except deg(Q)in X = k
D(xr):'deg(D) = x
Output: R(xl,...,xr) such that
R(Xl""’xr—l'b) = P(xl,...,xr_l)

R(xl,...,xr_l;bi)==Q(xl,...,xr_l,bi) where

PR A N ek e s

—i

'bi are the roots of D.

l) Q(Xl'°'°'xrfl)+ Q(le""xr—lfb)’
2) . c < D(b);
3) H(xl,...,x

r-l?-+ (p - 5)/0;

4) R(xl,...,xi) «H - D‘f Q;

Theorem 2.3 An uppér bound on the computing time for one

r-1l

execution of algorithm Interpolation‘ié O ((m+1) k).

Proof The time for step (1) is O((m+l)r_lk) by Theorem 2.2.
Step (2) is O(m+l) using Horner's rule. Since P and e} |

have (m+l)r—1 terms step (3) takes no more than O((m+l)r—l)

1

' operations. 7Then step (4) takes O((m+1)r— k) operations

since D has degree k.

3. Dense Model _ -
We are now in a position to analyze 3 methods for'
polynomial substitution. Two of these methods are well
known'while'the third (SUBST) is newly presented. In this
section the analysis will be carried out assuming that all
the inputs are completely dense polynomials. 1In this case
the assumption is that if Q(xl,...,xr)’é M(r,m) then all
possible (m+l)r possible terms occur. Moreover as powers
of Q are computed, these polynomials also remain completely

dense.

The first method is due to Horner and generalized for

" its use with multivariate polynomials. -

‘Algorithm HORNER(P,Q)

Input: P(xi,,..,xr;l), Q(Xl""’¥r).

I a;(xy,eeerX q) ° X ;;;; >1, m_ > 0.

Output: R(xl,...,xr_l) = Q(Xl"‘f'xrfl'P)'

1) [Initialize] R =+« a, i :
' r

2) [qup] Fof i« mr—l,...,O do'
| " R< R . P+ a,;
A i

3) [End] Return (R);

Theorem 3.1 Let P(xl,...,xr_l) and'Q(xl,...,xr) be dgnge
polynomials in r > 1 variables with single precision coef-
ficients. Further suppose n = deg(P) in X1 1 <i<r-1

and m = deg(Q) in xi; 1 <i<r. Then the computing time

for HORNER(P,0) is o(m® (n+1)2 ™10y,

Proof Since P and Q are dense P has (n+l>)r-l terms and Q

has (m+l)r terms. In step (2) of the algorithm, at the
first iteration R has (_m+].)r—l terms, at the second itera-
tion R has-(1.n+n+l)r'-l terms, at the third iterétion R has
(m+2n+l)r—l terms and at the i-th itefation R has
(m+(i—l)n+l)r—l terms for 1 < i < m. Thus the time for

step (2) is

e

g (m(i-L)n+1) T ey TL . (3.1)

r-1

- B M+l (mt(i-1)n+1)

< w1l (mr(m-1ne1) T

= m(n+l)r—A]'(mi-(m—l)n+l)r"1

O(m(n+1)rflmr—l(n+l)r—l) _ O(m?(n+l)2(r_;)).

A

In order to use for later analysis, let us now derive
thé.exact cOmputing time of Horner's method for two and
three variables. Using equation (3.1) from the proof of
Theorem 3.1 we find that the exact compﬁting time for

Horner's method with r=2 is

(n+1))3 m+ (i-1l)n + 1
l<i<m

(n+1)] (m+l)m + n I (i - l)]
' _ l<i<m

-

(n+l) | (m+1l)m + n-m(m~l)]
L 2

m(n+l) (2(m+1) + n(n-1)) | (3.2)
— |

i

Again using equation (3.1) we find that the time for

three variables becomes

n

(n+1) 2
(n+l)2

(n+1) 2

-

—

L

(m2

+2m+l)m+ nkt

1<i<m

(m2+2(i—l)mn+2m+(i—l)2n
1<i<m L o

2+2(i—1)n+1)

(2(i-1)m +(i—;),n +2(i-1))

St

W

(m24+2m+1) m+nn (m-1) +n°m (m-1) (2m-1) +m (m-1) n
6 .

-

= m(n+l)2 (m+l)2+nm(m—l)+n2(m—l)(2m—l)+(m—l)n
, _ 6 ,

m(ntl) 2] (mr1) 24 (nmtl) (me1) +n2 (m=1) (2m=1) | -
| ERE

"Now let us look at a new method.for accomplishing
the substitution. In this case evaluation points are'
_chosen and P and Q are reduced until only a single variable
;remains in Q. Evaluations are then done using the conven;
tional Horner's rule and.thé results aré then intefpolated
to produce the correct polynomial. This technique has
been successfully applied for spéeding ué other algebraic
operations, e.g. see W. S. Brown [21, G. E.‘Collins [‘31

and E. Horowitz [71.

Algorithm SUBST(P,Q)

Input: P(xl,...,xr_l), Q(xl,...,xr) r > 1;

(3.3)

4
N e s e

g

Output: R(Xl""’xr—l) = Q(xl,...,xr_l;P);

1) [Initial Case] If r = 1 then use Horner's rule to

‘compute Q(P) and return.

2) [Initialize] b+ -l; C+0; D«1; n_; +deg(P) in
X, 17 M. * deg(Q) in X.i Mg +'deg(Q) in
, Xp-1f
3) [Choose a b<+«Db+ 1;
new point]
* ‘ .
4) [Evaluate] P (xl""'xr—Z) < P(xl,...,xr_z,b),

Q*(xl""’xr—Z’xr) + Q(xl,...,xr_z,b,xr);

5) [Recursion] R¥(X)s...sX,_,) + SUBST(P*,Q%*);
6) [Interpolate] C(xl""’xr—l) «iR* - C(X1’°"’xr—2’b)
’ D(b)
D(xr_l) i C;
7) [Update] " D « (x__,-b)°D; if deg(D) < m.mn__,+m

then go to (3)}

;8) [End] R(x X _l) « C and End.

1,.-0,r

Theorem 3.2 Let P(gl,...,xr_l) and Q(xl,...,kr) be dense
polynomials in r > 1 variables with coefficients in GF(p).

Further suppose that n = deg(P)in x;, 1 < i <r-landm=

deg(Q) in x 1 <i<xr. Then the computing time for

il
SUBST (P,Q) is O((m+1)™(n+1)7).

Proof We get the following table of computing times:

r-1

Step Time

Now steps (3) - (7) are executed mn + m

(4) m(n+l){m+n+(n+l)r_l+(m+l)

(5) m(n+1) T(r-1)

(6)

1<i<m(n+1)

+

(7)

liiﬁm(n+l)

Thus.

T(r).

(1) m
‘(2) om
(3) m(n+1)

"+ m(n+1l) (m+1)

i(m(n+l)}l)
1<i<m(n+1)

i(m(n+1)+1) 72
1<i<m(n+1)

3m + mn + m{n+l) {(m+n) + (n+l)

- Comments : - !

" since ?‘e GF (p)

assuming any reasonable
data structure for poly-

nqmials.

times.

computing b’ m and n
times and then substi-

tuting}

C(Xl, .o e ,Xr_2 ,b)
D(x._;)/D(b)

(R* - C)D(x__;)
Dm) -

D(x__,) (xX__;-b)

r-1 r-1

3m + mn + m(n+l)(m{n) + m(n+l)r + m(n+l)T(r—l)

(2i + 2i(m(n+l) + 1)T72)
l§i§m<n+l> :

r-1 (m+1)r--1

(n+l) + 1)

+ T(r-1)} + 2 m(n+l) (m

-11-

B O
-

+ 2m(n+l) (m(n+1)+1) (m(n+1)+1)T 2
2 o

= 3m + mn 4 mn+l) {Gn) + (DT 4 @D 4 (-1}
+ m(n+l) (m(n+1)+1) (1 + (m(n+1)+1)572)

Let

P
"

: m(n+l) + 1
Aand ‘

: b=3m+mn + m(n+1)(m+n).

Then, working oﬁt the recurrence relatioh
T(r) = b + m(n+1l) {a(at 2+1) + (1T 4 @) T 4 T(z-1)}

we get T(r) =

b(l + (a-1) + (a=1)2 + ... + (a-1)F7%)

r-3

Foa((a-1) (a57241) + (a-1)2(aT 341 + ...+ (@-DF7h

+ (n+1) T (m + m2 + ... t mr_l)

2

£ (a1 @D T 4 (@D 2@ T2 4 L+ (a1 T ()

(a-1) ¥t (1) - | » (3.4)

+

which we can approximate by

T(r) < bf(a-DTF - N\ + (r-DatarD T+ @I
a-2 J (3.5)

+ D)5 mf -1 -1\ + (DT (D -1 -1
m-1 n

-12-

PR

I have retained this unwieldy expression in order to keep

track of the constant. But asymptoticaily itAfolloWs from

equation (3.

totic time for SUBST is O((m+1)™ (n+1)¥).

Now we

for two and

T(2) =

-and

T(3) =

5) and the values for a and b that the asymp- .

derive the exact.computing time for this method

three variables using equation (3.4).

b +'2a(a—l) + (n+l)2m + (a—l)(m+l)‘+ (a;l)m
3m + mn + m(n+l) (mén) + 2m(n+1) (m(n+1)+1)

+ m(n+1)2 + m(m+l) (n+1) + m2 (n+l)

mn+l){m + n + 2m(n+l) + 2+ n+ 1 +n + 1 + m}
+.3m + mn

m(n+l) {2m(n+1) + 2m + 3n + 7} " (3.6)

b(l+a-1) + a((a-1) (a+l) + (a-1)°22)
+ (n+1) 3 (mim?) + (a-1) (m+1)2 + (a-1) 2 (m+1)

+ (a—l)2 m

ab + a(a-1) (a+1) + 2a(a-1)2 + (n+1) m(m+1)

4+ (a-1) (m+1)2 + (a—l)2(m+1) + (a-1)3m

(a-l)2{2a + 2m + 1} + (a-—l){(m+1)2 + a{at+l)}

+ ab + (n+1)>m(m+l) (3.7)

BT EYCNER S WAL LA A T e

U |

" =13~

Now let us analyze a third method which is perhaps

the most obvious algorithm to use.

Algorithm STRAIGHT (P,Q)

Inpup: P(X1'~"'Xr-1)' Q(xl,...,xr).

= z ai(xl,.J.,xr_l) * X

0<i<m r
—="r

Output: R(xl,...,xr_l) = Q(xl""’xr-l’P)'
| - 2 .3 my
1) [Powers] Compute P, P7, ..., P 7; R <« 0;
2) [Main loop] For i <« 0, ..., m do

i B
R « R + aiP ;

Theorem 3.3 Let P(Xi""'xr-l) and Q(Xl""'xr) be dense
polynomials in r > 1l variables with single precision coef-

ficients. Further suppose n = deg(P) in Xy 1 <i<r-l

and m = deg(Q) in x;, 1 < ic<r. Then the computing time

“for STRAIGHT(P,Q) is o+ T i) T+ @)

Proof By [8], p. 19, with q replaced by (n+l), n replaced

by m and r replaced by r~1l, the time for step (1) is

2(r-l)mr

o((n+l)). This can also be obtained directly from

the formula

r (DT) T <) T e T 0 m
liijm—l
<)5 Ymnim) T in = o((ne1) 2D Ty, (3.8)

-14-~

r-1 r-1

Now p' has (in+1) terms while the ai_havé (m+1)

terms. Thus the total time for step (2) is given by

g (it T @) Tl < mm+1) T (ntm) TTL
1<i<m) -

= nf (mr1) F T ey FTY Coe (3.9)
Thus the total time for algorithm STRAIGHT is

o (nt1) 2D 4 T i) T (i) BT
r"l})

= o(m-r(n+1)r_l{(n+1)r"1 + (mt+l)

Using equations (3.8) and (3.9):the exact time for-

. algoritiuu STRAIGHT io

. T anen T sz @i T anrn T
1§i§m—l' 1<i<m’

’ | (3.10)
Thus for r=2 this exact time reduces to

(n+1) {nm(m=1) + m-1} +}(m+l) nm(m+l) + m
2 2

= (n+1) (m-1) (mn+2) +2(m+l)<mn(m+l) + 2m) . (3.11)_

For r=3 we get from equation (3.10)

TR TSRS P T s Y e s e

-15-

n+1)2 (in+1) 2 + m+1)2 § (int+l)2
lﬁiﬁm—l 1<i<m .

2 + @21z (e ?) - (mn+1) 2 (n+1)
o 1<i<m . ,

[+1)2 + (m+1)2] (n2m(m+l) (2mtl) + 2nm(mtl) + m]
5 2

- (mn+1) % (n+1) 2

[(n+1)2 + (m+l)2][nm(m+l)(n(2m+l) + 1)+~ﬁ]
‘ 3

- @n+1) 2 (n+1) 2 o (3.12)

lloon examing the exact computing times for HORNER
versus STRAIGHT we see that for all m, n and r > 1 Horner's
method requires fewer operations. Thus let us carefully
compare the times for SUBST and HORNER.

7’

Asymptotically we find that

suBsT _ (mD T+ _ (m+1)T

HORNER mr(n+l)2(r—l) mr(n+l)r_2

Thus we see that for r > 2, SUBST will outstrip HORNER's
method as leng as n is sufficiently large. Therefore,
let us determine some representative values of n for this
cut-off point. |

Using equations (3.6) and (3.2) when r=2 we are

-16-

comparing the time for SUBST which is
m(n+l){2m(n+1) + 2m + 3n + 7}
and the time for HORNER which is

m(n+l) {2(ﬁ+l) + h(m—l)}

2.

Some elementary algebra quickly shows that for all values
of m, n > 1 SUBST requires more multiplications than HORNER
thereby supporting our previous conclusion.

Examing the case for r=3 equations (3.7) and (3.3)

yield

(a-1)2(2a + 2m + 1} + (a-1) {(m+1)2 + a(a+1)} + ab
+ (n+1) 2m(m+1) |

for SUBST and -

() 2{ (1) 2 + (mn+1) (m-1) + n°(m-1) (2m-1)}
_ ‘ 3 E

for HORNER.
The leading.term for SUBST is
3m3(n+l)3
and for HORNER it is '

m3n2(n+l)2
3

Thus, SUBST will be better -roughly for n > 9. Notice that

TR RO, R S, UL L T e

17

the relation is independentiéf m, the déérees of Q, but
simply relies on n. Fof a larger number of Variablés
SUBST will continue to get better than HORNER for even
- smaller values of n. :
In concluéion then for dense polynomials we have'tﬁat
a) rél, Hérner's rule is optimal; B
b) r=2, Horner‘é rule is always better by a constanﬁ
factor; o
c) for r > 3, SUBST is asymptotically.the better method
and for r=3 a value of approximately'n=9 is the

cut-off point.

4. Completely Sparse

‘;A;’e hAatrAa anArn In +hA nvcx_jlc‘l.s Sectlor\

data v W LS e B T St

v that an evaluztion-
interpolation élgorithm can work quite éfficiently when ap-
plied to dense polynomials. The question naturally arises |
.as to whether or not this algorithm will work as well on

- polynomials which are less than dense. .The difficulty is
in precisely defining the class of polynomials we are
referring to. A sparse polynomial has very few non-zero
terms but this definition is really not gquantitative
enough to be satisfying (or what is more important not
capable of being analyzed). However, even without a pre;‘
ciseAdefinition of sparsity we can say that SUBST will not

work very well. The reason for this is that steps (3 - (7),

the main loop, are governed by the degrees of the inputs.

-18~-

e e o e

The number of evaluation points which muét be chosen is
fixed despite the fact that the inputslor;thelfesulﬁ may
be quite sparse. Thus, a method such as Horner's rule
" becomes more attréétive for cases other thaﬁ_completely
dense. -

One quantitative définition of a-spaféé polynomial
. has been given by M. Gentleman in [5]. Ié P has t terms

then he assumes that P will have (f : E 1 '

) terms. For
example one such polynomial P which bbeyé this definition
is

P(xl,...,xn) = xl-+ X, + s + xn

which I believe we would all agree is sparse, since‘it
only has n out of 21 possible terms;_ This definition is
certainly an extreme case of polynomial growth, yet it is
interesting to re-analyze our algorithms for this class

'of polynomials.

Theorem 4.1 Let P(Xl""’xr—l) be a completely sparse

o _ i
polynomial and Q(xl,...,xr) Oiﬁim ai(xl,...,xr_l) X5

be a polynomial where each a; has s terms. Then the time

needed to compute Q(xl;...,xr_l,P) using algorithm HORNER

is O(st(t:m)).

Proof Looking at the main loop in Horner's method, we need

PR - VAN T

iy

-19-

to determine the number of terms of R. Initially R has

s terms by the hypothesis. Then as i véries.from m-1

- to 0, we find that_for"

i m;l,'R has s terms
o b o t

i=m2, R hass(t_l> -
. (t+1 .
i=m-3, R hass(t_l) _ _

and it follows by our assumption of cémpléte sparsity that
rR(1) nas s(%+$:i—%> terms where m > 1 for 0 < i < m-1. Thus,

the computing time for step (2) becomnes
t+m-—-i—2) I_ t+i—l> _ (t+m>
z s(-1 t = st z l(t—l = st . .

Now let us compare this computing time with the result we
get by using the straightforward method or Algorithm

“STRAIGHT.

Theorem 4.2 Let P(Xl""’xr—l) be a completely sparse

. = L4 i
Polynoglal and Q(Xl""'xr) 0<§<m ag(Rypeevrx,) xr

be a polynomial where each a; has s terms. Then the time

needed to compute Q(xl;...,xr_l,P) using algorithm STRAIGHT

is O((s+t) '(t:m)) :

Proof In order to compute the powers of P, P2,...,Pn

-20-

the time needed 1is
z t(f:f;l> - t{(f:m) - 1} .
Ofiim-l ' .

In order to compute the products aiPl for 0 < i < m we need

to do

5 s<%+l_l> - s(?““) _mQ1tiplications
 em t-1 t ‘ -

t+m

£). So the

and the number of additions required is s(

total time is O((s+t)<F:m>).

Now comparing these two methods their ratio is

STRAIGHT _ s + t
HORNER st

.which reveals that algorithm STRAIGHT can actually be more
efficient for these especially sparse classes of polynomialé.
Intuitively this springs from the fact that cémputing the
powers takes all of the work. Thus Horner;s method which
continually adds more terms causeé more arithmetic operations
to be needed as the powers are computed. Unfortunately we
cannot tell for most polynomials in a reasonable amount of
time whether they satisfy Gentleman‘s'definition-of sparsity.
Hence we cannot construct a simple decision procedure which

wisely chooses between SUBST, HORNER or STRAIGHT.

T WAL At R T R4 A

LAt s st ma i N sk et i

- =21-

Another approach for including sparse polynomials in
. s Sy r-1
the analysis is to assume that P(le""xr-l) has t
terms where t is a parameter which varies as 1 i‘t < n+l.
Then the computing time for algorithm HORNER becomes
m:tz(r_l)'and we can then produce a rule which tells us
when Horner's method will perform better than SUBST. Namely

HORNER _ mit? (f~1)

SUBST [(;+1) (n+1)]

r+l

and HORNER is better than SUBST when the number of non—zerb

terms in P, namely £F71 satisfies

£ < _Im(n+l)r+l . (4.1)

This equation is quite useful since it provides a test

which can be computed in linear time and which adequately

‘discriminates between the two methods, SUBST versus HORNER.
Another extreme form of a polynomial substitution

problem would have Q in the form

)

m _—
Q(xl,...,xr) = X + Q(Xl”"’xr—l

Computing Q(xl""’xr—l’P) in this case really reduces to
computing polynomial powers efficiently, namely
P(xl"°°’xr—l)m' For a comparison of algorithms for poly-

nomial powering which includes sparse and dense polynomials

-22-~

as subcases, see Horowitz and Sahni [8].
In conclusion, Horner's method stilljremains the most
versatile of the substitution algorithms. The test given

in equation (4;1) allows us to modify SUBST so that at

each level of recursion we can decide whether to continue .

evaluating or to switch to Horner's method. Thus within
. our existing symbol manipulation system both SUBST and
Horner's method can be made available with an automatic

test for deciding when to use either aigorithm.

P X

-

P o L T

. =23-

References

Borodin, Allan "Horner's Rule is Uniquely Optimal",
Theory of Machines and Computations, ed. by
. %. Kohavi and A. Paz, Academic Press, 1971,
pp. 45-59. :

Brown, W.S. "On Euclid's Algorithm and the Computa-
tion of Polynomial Greatest Common Divisors”,
J.ACM, Vol. 18, No. 4, October 1971, pp. 478-504.

Collins, G.E. "The Calculation of Multivariéte Poly-
" nomial Resultants", J.ACM, Vol. 18, No. 4, October
1971, pp. 515-532.

Collins, G.E. "The SAC-1 Polynomial System", University
of Wisconsin, Comp. Sci. Tech. Report No. 115,
March 1971.

Gentleman, W.M. "Optimal Multiplication Chains for Com-

puting a Power of a Symbolic Polynomial", Mathe-
matics of Computation, Vol. 26, No. 120, October
1972, pp. 935-940. -

Hall, A.D. “The ALIKAN system for Kational runction
Manipulation - A Survey", Proc. Second Symposium on
Symbolic and Algebraic Manipulation, ACM, N.Y. 1971,
pp. 153-157. ‘

Horowitz, E. "The Efficient Calculation of Polynomial
Powers", J.CSS (to appear). .

Horowitz, E. and Sahni, S. "On the Computation of
Powers of a Class of Polynomials", C.S. Tech. Report
No. 72-143, Cornell University, Ithaca, August 1972.

Petrick, S., ed. Proceedings of the Second Symposium
~on Symbolic and Algebraic Manipulation, ACM, New
York, 1971. '

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif

