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We consider infinite sums derived from the reciprocals of the generalized Fibonacci numbers. We obtain some new and interesting

identities for the generalized Fibonacci numbers.

1. Introduction

For any integer n > 0, the famous Fibonacci numbers F,
and Pell numbers are defined by the second-order linear
recurrence sequences

F,

Vl+2:Fn+1+Ffl’ FOZO, Flzl,
@)

P

n+2=2Pn+1+Pn’ PO=O’ P1=1.

There are many interesting results on the properties of these
two sequences; see [1-9]. In 2009, Ohtsuka and Nakamura [5]
studied the properties of the Fibonacci numbers and proved
the following two interesting identities:
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| Fuas if n is even and n > 2;
~|F,,-1, ifnisoddand n>1,
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_|F, F,—1, ifnisevenand n>2;
F, ,F, if nis odd and n > 1,

where | x| is the floor function; that is, it denotes the greatest
integer less than or equal to x. Recently, Holliday and

Komatsu [1] (Theorems 3 and 4) and Xu and Wang [7] proved
the following interesting identities for the Pell numbers:
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if nis odd and n > 1,
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where providing P, = P, = 1. In [7, 8], the authors asked
whether there exists a computational formula for

. -1
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k=n"k

where s > 4 is a positive integer.

Let p and g be integers such that p* + 49 > 0. Define
the generalized Fibonacci sequence {U, (p, q)}, briefly {U,},
as shown: for n > 2

Un = pUn—l + qUn—Z’ (5)

where U, = 0, U; = 1. The Binet formula for {U,,} is

~ (xn _ ﬁn
U, = e (6)
where o, = (p = \[p* +4q)/2.

The main purpose of this paper related to the computing
problem of

o -1
U(s,n) = <Z%> (7)
k

k=n

for s = 3 and g = —1. For easy computation, we assume that
p = ais a positive integer and g = —1 throughout the paper.
We have the following.

Theorem 1. Let a > 3 be a positive integet, and let G, be
defined by the second-order linear recurrence sequence G,,,, =
aG,,, - G,,G, = 0,G, = 1. Then for all n > 2 one has

(£&)

( , , L(n-4)/5]
G-Gi,-3 Y Guyg-2
part (8)
3 a=3, n=3 (mod5);
= L L(n—4)/5]
G,-G,,-3 Gpssc— 1,
k=0
otherwise.

2. Proof of the Main Result

In this section, we will prove our main result. We consider the
casethatafS = 1and s = 3.

Proof. From the Taylor series expansion of (1-¢) > ase — 0,
we have
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:1+3s+6£2+O(s3).
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Using (6), we have
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It is easy to check that
10 _ 10a* - 1507 + 6 . u -
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holds fora > 3 and k > 2.
Thus
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holds fora > 3 and k > 2.
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An easy calculation shows that §; < 4/a™" holds for a > 3
and k > 2. Therefore,

Taking reciprocal, we get
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fora>3andn>2.
Consequently, we have shown that
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+A,

where 0 < A, < A; < 0.1681 fora > 3 andn > 2, and
A, <0.0053 fora > 4andn > 3.
Now the calculations show that
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(24)

The calculations also show that 3(a®+a’)/(a— [3)(¢x5 -1) >
A, fora >3andn > 2;3(a + a)/(a - f)(a® = 1) > A, for
a>3andn > 2;and 3(1 + «”)/(x — [3)(0c5 -1) > A, + 1 for
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a=3andn > 3;0.87 < 3(1+oc5)/(oc—[3)(oc5—1) <l1lfora>3
and n > 3. Combining the calculations and (23), we obtain

(&)
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G -G_ -3 G, s5.—2,
n n—1 & n-3-5k (25)
3 a=3, n=3(mod5);
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otherwise.
Therefore we have proved Theorem 1. O

Remark 2. We can also compute the cases s > 3org = 1;
however, the computations are much more complicated. So
we stop here.
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