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1 Introduction

We discuss higher curvature theories of supergravity which can be considered as the super-

symmetric version of the R + R2 bosonic theory. The supersymmetric extension depends

on the off-shell formulations of the supergravity. For minimal formulation with six bosonic

degrees of freedom for the auxiliary fields, the R + R2 theory is dual to a standard (two

derivative) supergravity. In the old minimal case the linearized analysis [1] reveals two

massive chiral multiplets, with the same mass, one of which contains the scalaron, i.e. the

gravitational degree of freedom of the bosonic theory. We will call the first chiral multiplet

Φ an “inflaton multiplet” and the second chiral multiplet S, a “goldstino multiplet”, which

will be explained in the context of inflationary evolution.

The full non-linear theory of the R + R2 and generalizations thereof in old minimal

supergravity was found in [2] and was shown to reduce to a standard two-derivative super-

gravity of two chiral superfields. In the new minimal supergravity full non-linear theory

of the R + R2 was found in [3] and was shown to be given by a standard two-derivative

supergravity interacting with a massive vector multiplet. However, while the new min-

imal extension appears to be unique some freedom exists in the old minimal one. This

freedom manifests in an arbitrary Kähler function for the goldstino chiral multiplet whose

θ = 0 component is the sgoldstino. The name of this second multiplet comes from the

observation that during inflation the auxiliary field FS = ∂W
∂S is not vanishing and is re-

sponsible for supersymmetry breaking during inflation. In absence of this Kähler function

one of the two chiral multiplets is no longer dynamical and the theory is not any longer

the supersymmetrization of the R+R2 gravity.
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The paper is organized as follows. In section 2 we review R + R2 supergravity and

its dual standard two-derivative supergravity description as considered in [2]. In the same

section we revisit what in the literature was called “F (R) supergravity” [4, 5]. This is

the situation where only one chiral multiplet is dynamical. In this case the supergravity

interaction of this chiral multiplet has a fixed Kähler potential but an arbitrary superpo-

tential. In section 3 we present the component expression of “F (R) supergravity”. The

resulting action shows that while the vector auxiliary field Aµ appears algebraically and

can be eliminated using its algebraic equations of motion, the auxiliary field X appears

covered by a derivative and is therefore propagating. This completely agrees with the lin-

earized analysis of [1]. Note that to confine the analysis to a sector where X only appears

algebraically, gives an inconsistent result, as already noticed in [6]. Our analysis provides

a detailed explanation why “F (R) supergravity” [4, 5] has only terms linear in bosonic

curvature R, which is important for the cosmological applications. Section 4 provides a

discussion of our findings. In an appendix some elements of a conformal tensor calculus

useful for understanding our results in components are given.

2 R + R
2 supergravity

2.1 Manifestly superconformal action

In the old minimal supergravity the most general R+R2 theory is given by a Lagrangian

of the form [2]

L = −
[

S0 · S̄0

]

D
+

[

S0 · S̄0 · h
(

R
S0

,
R̄
S̄0

)]

D

+

[

S3
0 ·W

(

R
S0

)]

F

. (2.1)

This action has a manifest superconformal symmetry, and we write it using notations of

superconformal calculus, reviewed in [7]. Old minimal supergravity uses a chiral compen-

sating multiplet S0 of Weyl weight 1. Another chiral multiplet, a curvature multiplet R of

weight 1, is defined as [8]

R = (S0)
−1 · Σ(S0) = (S0)

−1 · T (S̄0) , (2.2)

where the operation Σ or T is defined in (A.1). The multiplication of chiral multiplets leads

to new chiral multiplets, and [. . .]F denotes the ‘F ’ action formula on a chiral multiplet

of weight 3. On the other hand, [. . .]D indicate the D action formula on a real multiplet

of weight 2. We use the symbol · for products to distinguish the use of curly brackets as

arguments of a function from a multiplication by an expression in brackets.

The function h is a real function, and W is holomorphic. In order to have an R +R2

supergravity it is essential that hRR̄ ≡ ∂2h
∂R∂R̄

6= 0. In fact, in absence of this term, as

we will show later, the theory widely considered in the literature [4, 5] is no longer a

supersymmetric extension of the R + R2 theory. In particular, it does not contain two

chiral multiplets, as required by a linearized analysis of [1]. In fact, when hRR̄ = 0 the

goldstino multiplet is no longer dynamical.
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2.2 The dual to R+R2 supergravity

The dual theory is obtained by introducing two chiral superfields, S and Φ, both of weight 0,

so that (2.1) can be written as

L = −
[

S0 · S̄0

]

D
+
[

S0 · S̄0 · h
(

S, S̄
)]

D
+

[

S3
0 ·
(

W (S)− 3Φ ·
(

R
S0

− S

))]

F

. (2.3)

We also write the superpotential term W as follows

W (S) = S · g(S) + λ , (2.4)

where λ is a constant. By using the lemma, eq. (11) of [2], which is also explained in (A.2),

[

Φ · R · S2
0

]

F
=
[

S0 · S̄0 · (Φ + Φ̄)
]

D
+ tot.der (2.5)

we obtain

L =
[

S0 · S̄0 ·
(

−1− 3Φ− 3Φ̄ + h(S, S̄)
)]

D
+
[

S3
0 (S · (g(S) + 3Φ) + λ)

]

F
. (2.6)

This defines the Kähler potential and superpotential (see e.g. (17.67) in [7]) as

K(Φ, S, Φ̄, S̄) = −3 log

(

1

3
+ Φ + Φ̄− 1

3
h(S, S̄)

)

, W (Φ, S) = S · (g(S) + 3Φ) + λ .

(2.7)

Now we observe that the chiral function g(S) can be removed by defining

Φ′ = Φ+
1

3
g(S) , h′(S, S̄) = h(S, S̄) + g(S) + ḡ(S̄) . (2.8)

We finally obtain, according to [2]

Ldual =
[

S0 · S̄0 ·
(

−1− 3Φ′ − 3Φ̄′ + h′(S, S̄)
)]

D
+
[

S3
0 · (λ+ 3S · Φ′)

]

F
. (2.9)

We notice that the Kähler potential in (2.9) is of the no-scale type [9, 10], while the

superpotential is not, because of the S · Φ′ term. In fact, the no-scale model would give

rise to a massless mode, which is not present in the action (2.9).

A model with no-scale Kähler potential, and the superpotential as in (2.9) with λ = 0

has been constructed in [11]. It reproduces the bosonic R + R2 model without unstable

directions. In the R+R2 supergravity theory, the corresponding expression of the h function

in (2.1) is

S0 · S̄0 · h
(

R
S0

,
R̄
S̄0

)

= S0 · S̄0 + 3R · R̄ − ζ · (R · R̄)2

S0 · S̄0
, W

(

R
S0

)

= −3
R
S0

. (2.10)

The corresponding Kähler potential and superpotential of the dual theory are [11]

K = −3 log

(

Φ+ Φ̄− S · S̄ +
1

3
ζ · (S · S̄)2

)

, W = 3S · (Φ− 1) , (2.11)

where Φ is the inflaton multiplet and S is a goldstino multiplet. More general models

in this class corresponding to an action (2.1) can have extra sgoldstino-dependent terms:

– 3 –
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in the superpotential one can add W (S) and in the Kähler potential one can add some

additional terms in h(S, S̄). If these more general terms do not destroy the property of

the model that S = 0 is a minimum of the potential, these more general models will have

the same cosmological observables as the ones in [11]. This adds additional features to

the cosmological attractors described in [12]. Modified non-scale models resembling the

Starobinsky model have also been investigated [13, 14].

The equivalence between (2.6) and (2.9) can also be understood by writing in (2.1)

W

(

R
S0

)

=
R
S0

· g
(R
S0

)

+ λ , (2.12)

and using once more the lemma (A.2) we obtain

[

R
S0

· g
(R
S0

)

· S3
0

]

F

=

[

[

g
(R
S0

)

+ ḡ
( R̄
S̄0

)]

· S0 · S̄0

]

D

, (2.13)

which can then be absorbed in a redefinition as in (2.8). This shows that the F (R) =

R · g(R) term is completely irrelevant when a non-trivial h-function with hSS̄ 6= 0 is

introduced.

2.3 The dual of “F (R) supergravity” revisited

We can now retrieve as a particular case of the dual theory the “F (R) supergravity” [4, 5]

when hSS̄ = 0. In this case h′ = g(S) + ḡ(S̄) so that (2.9) becomes

Ldual =
[

S0 · S̄0 ·
(

−1− 3Φ′ − 3Φ̄′ + g(S) + ḡ(S̄)
)]

D
+
[

S3
0 · (λ+ 3S · Φ′)

]

F
. (2.14)

By defining Φ = Φ′ − 1
3g(S) we get

Ldual =
[

S0 · S̄0 · (−1− 3Φ− 3Φ̄)
]

D
+
[

S3
0 · (λ+ S · (3Φ + g(S))

]

F
. (2.15)

Since S is not dynamical, we can now integrate over S so we obtain the superpotential

term λ+ w(Φ) given by the Legendre transform

w(Φ) = −S2 · g′(S)
∣

∣

(S·g(S))′=−3Φ
. (2.16)

The final Lagrangian is

Ldual =
[

S0 · S̄0 · (−1− 3Φ− 3Φ̄)
]

D
+
[

S3
0 · (λ+ w(Φ))

]

F
. (2.17)

The Lagrangian (2.17) is dual to “F (R) supergravity” [4, 5], where only theX auxiliary

field becomes propagating and not the R + R2 scalaron mode and not the ∂µA
µ auxiliary

scalar, see section 3. In this situation only the vector field Aµ is auxiliary and satisfies an

algebraic equation.

– 4 –
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3 The structure of “F (R) Supergravity”

3.1 Review of “F (R) Supergravity” and cosmology

The theories that have been called “F (R) Supergravity” in [4, 5] are defined in superspace as

∫

d4x d2θ E · F (R(x, θ)) + h.c. , (3.1)

where E is the chiral superspace density, and R(x, θ) is a chiral superfield containing the

spacetime curvature R(x) in the θ2 part:

R(x, θ) = X + . . .+ θ2 ·R(x) + . . . . (3.2)

This action does not contain the bosonic termsR+αR2. Since inN = 1 supersymmetry

θ2n = 0 for n > 1, integration of F (R) over d2θ does not produce a non-linear dependence

on space-time curvature R(x).1 However, if the first component X in (3.2) would be an

auxiliary field, its elimination could produce R2 or higher powers.

For example, with the choice made by Ketov and Starobinsky [5]

F (R) =
1

2
f1R+

1

2
f2R2 +

1

6
f3R3 , (3.3)

the supersymmetric action (3.1) according to [4, 5] has the bosonic part

Lbos =
√
g · ReF ′(X̄) ·

(

2

3
R+ 8X · X̄

)

+ 6
√
g · Re

(

X · F (X̄)
)

, (3.4)

where X is the complex auxiliary scalar of the supergravity multiplet. Since the equation

of motion for the auxiliary field X following from (3.4) is algebraic, one solves X(x) in

terms of R(x) and in approximation of high curvature one produces the non-linear in R(x)

action of the form

L =
1

2

√
g ·
(

R+
R2

6M2
+

3
√
105

100

R3/2

m

)

, (3.5)

where M,m depend on fi in (3.3). Such actions have been used by cosmologists, see

for example [15] for applications, such as reheating and non-Gaussianity in supergravity

R2-inflation.

However, we will show in section 3.2 that the action (3.5) is unrelated to the super-

symmetric expression in (3.1), because the field X appears with derivatives. The super-

symmetric action (3.1) in fact has some extra terms beyond the ones in (3.4) depending

on Aµ, an auxiliary field of supergravity. Rescaling2 the result of section 3.2 reads

Lbos =
√
g · ReF ′(X̄) ·

(

2

3
R+ 8X · X̄

)

− 12
√
g · Re

(

X · F (X̄)
)

+4
√
g · ReF ′(X̄) ·Aµ ·Aµ − 4

√
g ·Aµ · ∂µ ImF ′(X̄) . (3.6)

1For example we may look at the R2 term in F (R(x, θ)). The bosonic term R2(x) there comes with θ4,

which vanishes for N = 1 supersymmetry since there are only 2 components θα.
2The variable X of section 3.2 is replaced here by X/

√
3 and F by 4F/(3

√
3).
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If F ′′(X̄) = 0 one finds that Aµ = 0, however for F ′′(X̄) 6= 0 one finds that upon elimination

of Aµ on its equations of motion, there are extra terms in the bosonic action. For example,

in case of (3.3) the action includes terms proportional to (see complete expression below)

f2 ∂µX · ∂µX̄ + . . . . (3.7)

Therefore the complete bosonic part of the supersymmetric action (3.1) does not lead to

an algebraic equation of motion for X, this field is not auxiliary anymore, it is propagating,

and in fact is the only propagating complex scalar degree of freedom.

3.2 The action in components

We use the superconformal methods for N = 1 supergravity with a chiral compensating

multiplet S0, which is reviewed in [7]. The multiplet is identified by its first component,

and we use therefore the same name S0 for this complex scalar with Weyl weight 1. Using

this compensating multiplet implies that in usual supergravity (without higher curvature

terms) we have as auxiliary fields: the vector field of the Weyl multiplet, Aa, and the

complex scalar that is the highest component of S0. That scalar (in fact its complex

conjugate) is proportional to the lowest component of the kinetic multiplet Σ(S0) (see

appendix A), or thus also proportional to the lowest component of R defined in (2.2). The

proportionality is always with factors of S0, which in a gauge fixing as in (16.40) in [7],3

implies a proportionality with powers of the gravitational coupling constant κ. We will

parametrize it as the lowest component of the chiral multiplet that appears in (2.1):

X̄ =
R
S0

=
Σ(S0)

S2
0

. (3.8)

X̄ has Weyl weight 0. We will thus construct

L =

(

−1

2

)

[

S3
0 · F (X̄)

]

F
, (3.9)

which is, up to normalization, the same as (3.1), or as (2.1) with W (X̄) = 1
2 [X̄−F (X̄)] and

h = 0. In order to evaluate (3.9), we need the highest components of the various multiplets.

Using the definition (3.8) and (16.36), which gives the highest component of Σ(Z) for any

chiral multiplet Z, the various multiplets have the following highest components:

S0 → S2
0 ·X , Σ(S0) → �

C S̄0 , X̄ → S−2
0 ·�C S̄0 − 2S0 ·X · X̄ . (3.10)

Therefore, the bosonic part of (3.9) is

Lbos = −1

2

√
g ·
{

3S4
0 ·X · F (X̄) + S3

0 · F ′(X̄) ·
(

S−2
0 ·�C S̄0 − 2S0 ·X · X̄

)}

+h.c. . (3.11)

We will now use a gauge-fixing of the dilatations, where S0 is a constant. Then the

superconformal d’Alembertian gets the simple form as in (16.42) We can use here (16.37)

for the �
C S̄0:

�
C S̄0 = S̄0 ·

[

ieaµ ·
(

∂µAa + ωµab ·Ab
)

+ 2fµ
µ −Aa ·Aa

]

+ fermionic , (3.12)

3Such high equation numbers below refer always to this book.
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and fµ
µ = − 1

12R. With the gauge fixing S0 = S̄0 =
√
3, we obtain

Lbos = −1

2

√
g ·
{

27X · F (X̄) (3.13)

+3F ′(X̄) ·
[

ieaµ
(

∂µAa + ωµab ·Ab
)

− 1

6
R−Aa ·Aa − 6X · X̄

]}

+ h.c. .

Note that for the case W (X̄) = 0, i.e. F (X̄) = X̄, the term with the derivative of Aa is

a total derivative, and this reproduces pure supergravity as in (16.44), now rewritten in

terms of X. In that case also X is auxiliary.

After adding a total derivative, we can write

Lbos = −1

2

√
g ·
{

27X · F (X̄)− 3iAµ · ∂µF ′(X̄)

+F ′(X̄) ·
[

−1

2
R− 3Aµ ·Aµ − 18X · X̄

]}

+ h.c. . (3.14)

The field equation that follows from (3.14) determines

Aµ =
∂µ Im

(

F ′(X̄)
)

2Re
(

F ′(X̄)
) . (3.15)

The action after inserting this value is

Lbos =
√
g ·
{

−27 Re
(

X · F (X̄)
)

+
1

2

(

ReF ′(X̄)
)

·
(

R+ 36X · X̄
)

−3

4

[

∂µ Im
(

F ′(X̄)
)]2

Re
(

F ′(X̄)
)

}

. (3.16)

Hence, the implications of F (X̄) are as follows: we have seen above that a linear term

in X̄ (with minus sign for the signature of the gravity term) produces pure supergravity.

Adding a constant term produces a cosmological term (anti-de Sitter). When F ′′(X̄) 6= 0,

there are two real scalar physical fields: the imaginary part of F ′(X̄) has its kinetic term ex-

plicitly in the last term. The real part of F ′(X̄) is coupled to R. The action in (3.16) is pre-

sented in a Jordan frame, and the transformation to Einstein frame transforms this term as

LJ =
1

2

√
g · ReF ′(X̄) ·R → LE =

√
g ·
[

1

2
R− 3

4

(

∂µReF
′(X̄)

ReF ′(X̄)

)2
]

. (3.17)

So this theory describes a propagating complex scalar (X = S + iP ) and is not an

R+R2 theory.

4 Discussion

In this paper we have revisited the supersymmetric completion of R + R2 supergravity in

the old minimal formulation. The manifestly superconformal action is given in (2.1). It is

defined by a real function h
(

R

S0
, R̄

S̄0

)

and a holomorphic function W
(

R̄

S̄0

)

. Here S0 is a

chiral conformon supermultiplet and R is the curvature supermultiplet.

– 7 –
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We have elucidated its degrees of freedom and the corresponding properties of the

dual theory, in agreement with the original results of [2]. We stress the fact that any

supersymmetric theory of R + R2 gravity has to contain two chiral multiplets with some

universal interactions. The first multiplet, is the inflaton Φ, the second one is the goldstino

S, according to their role during inflation.

We have found a new form of the Kähler -type symmetry between h
(

R

S0
, R̄

S̄0

)

and

W
(

R̄

S̄0

)

at the level of the superconformal theory, before the extra symmetries absent

in Poincaré supergravity are fixed. Namely, we have shown that there is a possibility to

absorb the part of the superpotential of the form W (S) = S · g(S) into the modification of

the real function h(S, S̄) → h(S, S̄) + g(S) + ḡ(S̄).

We described the relation of this class of theories with the cosmological model of infla-

tion in [11], where the corresponding Kähler potential and superpotential of the ordinary

two-derivative supergravity are given in (2.11). During inflation only the real scalar of the

inflaton multiplet (the inflaton) is evolving; the 3 other scalars are stabilized in this model.

The most general models dual to a supersymmetric completion of R+R2 in (2.1) may add

to [11] some arbitrary superpotentials W (S), depending only on the goldstino multiplet,

as well as more general goldstino depending terms A(S, S̄) in the Kähler potential of the

form KA = −3 log
(

Φ+ Φ̄− S · S̄ + 1
3ζ · (S · S̄)2 +A(S, S̄)

)

. If in presence of these new

terms W (S) and A(S, S̄) the generalized models still have a stable minimum at the van-

ishing sgoldstino, we find a new attractor property of these models in addition to the one

described in [12]: the inflaton potential and, consequently, the cosmological observables

during inflation do not depend on the choice of W (S) and A(S, S̄). An example of such a

deformation is a superpotential gS3 with a sufficiently small g.

We have then revisited the so-called “F (R) supergravity” [4, 5], where only one chiral

multiplet occurs. We clarified the physical degrees of freedom of the gravity theory and its

dual counterpart and showed that the bosonic action of “F (R) supergravity” [4, 5] is linear

in the space-time curvature R(x) and does not have non-linear terms in the curvature. In

particular, it does not contain R2(x) term required for inflation in this model.

It is interesting to observe that in the cosmological models based on supersymmetry

of which R + R2 supergravity is a particular realization, three chiral multiplets come to

play a role: in addition to an inflaton multiplet Φ and the goldstino multiplet S, also

the conformon (the conformal compensator multiplet S0) has an important role. The

later helps in the use of some hidden symmetries that are remnants of the full underlying

superconformal formulation of the theory.
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A Elements of conformal tensor calculus

The chiral projection is in superspace an operation D̄2, applied to the complex conjugate

superfield. We define on a chiral multiplet S with (Weyl, chiral) weight (see table 17.1)

(w, c) = (1, 1) the map to another chiral multiplet by

Σ(S) = T (S̄) : S (w, c) = (1, 1) → Σ(S) = T (S̄) (w, c) = (2, 2) . (A.1)

This is the map that is explicitly given in (16.36), which associates to the chiral multiplet

S = (X,PLΩ, F ) the multiplet starting with F̄ .

For any two chiral multiplets Λ (with w = 0) and Z (with w = 1) we have the lemma

[

Z · Z̄ · (Λ + Λ̄)
]

D
= [Λ · Z · Σ(Z)]F . (A.2)

We show this by checking the bosonic parts. The left-hand side is a function of chiral

multiplets, and we can use (17.19):

[

Z · Z̄ · (Λ + Λ̄)
]

D
=

√
g ·
(

−Dµ(ΛZ) · DµZ̄ + ΛF · Z · F̄ + Λ · F · F̄

−1

6
Λ · Z · Z̄ ·R(ω)

)

+ h.c.

=
√
g ·
(

(Λ · Z) ·�CZ̄ + ΛF · Z · F̄ + Λ · F · F̄
)

+ h.c. , (A.3)

where ΛF is the F component of Λ. From (16.36) we see that �CZ̄ is the F component of

Σ(Z). Thus the three terms are the 3 ways in which to get the F component indicated in

the right-hand side of (A.2), which proves the lemma.
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