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Abstract

In this paper we study the supremum distribution of a class of Gaussian processes having

stationary increments and negative drift using key results from Extreme Value Theory. We focus

on deriving an asymptotic upper bound to the tail of the supremum distribution of such processes.

Our bound is valid for both discrete- and continuous-time processes. We discuss the importance

of the bound, its applicability to queueing problems, and show numerical examples to illustrate

its performance.
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1. Introduction

Consider a continuous-time stochastic process {Xt : t ≥ 0} or a discrete-time stochastic process

{Xn : n = 1, 2, . . .} described by the following equations.

Continuous-time process : Xt =

∫ t

0

ξsds− κt (t ∈ [0,∞)) ,(1)
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Discrete-time process : Xn =
n∑

m=1

ξm − κn (n ∈ {0, 1, 2, . . .}) .(2)

Here ξ is a centered (zero-mean) stationary Gaussian process and κ is a positive constant that

determines the drift of X . Since ξ is a centered stationary Gaussian process, the stochastic process

X is a Gaussian process with stationary increments and negative linear drift. In this paper we

are interested in studying the supremum distribution of this process X . Specifically, we will derive

an asymptotic upper bound† to the tail of the supremum distribution of X under the following

conditions on Cξ, the autocovariance function of the centered stationary Gaussian process ξ.

(C1) Continuous-time: Cξ(τ) := E{ξtξt+τ} is absolutely integrable

and
∫∞
−∞ Cξ(τ)dτ > 0.

Discrete-time: Cξ(l) := E{ξnξn+l} is absolutely summable

and
∑∞
l=−∞ Cξ(l) > 0.

(C2) Continuous-time: τCξ(τ) is absolutely integrable.

Discrete-time: lCξ(l) is absolutely summable.

(C3) Continuous-time:
∫∞

0 τCξ(τ) > 0 and
∫ t

0 τCξ(τ)dτ +
∫∞
t tCξ(τ)dτ > 0

for all t ∈ (0,∞).

Discrete-time:
∑∞
l=1 lCξ(l) > 0 and

∑m
l=1 lCξ(l) +

∑∞
l=m+1 mCξ(l) > 0

for all m = 1, 2, . . ..

For notational simplicity, we define 〈w〉Θ := supθ∈Θwθ (we will not specify the index range Θ

when it includes the entire domain of wθ). The study of the tail distribution P({〈X〉 > x}) is

motivated by its applicability to queueing systems and high-speed telecommunication networks [6,

7, 8]. In particular, when κ and ξ are appropriately defined, one can show that the steady state

queue length distribution of a queueing system is equal to the supremum distribution of X [12, 14].

Therefore, similar problems have been studied in the queueing context. For example, using Large

Deviation techniques it has been shown for very general classes of stationary processes ξ that the

limit η := limx→∞− 1
x logP({〈X〉 > x}) exists and is finite [12], that is,

logP({〈X〉 > x}) ∼ −ηx,(3)

where f ∼ g means limx→∞
f(x)
g(x) = 1. Also, in the discrete-time case the following stronger result

has been shown for stationary ergodic Gaussian processes ξn [1]:

P({〈X〉 > x}) ∼ Ce−ηx as x→∞,(4)

†In this paper, we say a positive-valued function f asymptotically bounds a positive-valued function g from above,

if lim supx→∞ g(x)/f(x) ≤ 1 (or from below, if lim infx→∞ g(x)/f(x) ≥ 1).
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that is, the tail of the supremum distribution of X is asymptotically exponential. However, the

asymptotic constant C is in general difficult to obtain and approximations have been suggested to

evaluate it. An important result of this paper is the derivation of an asymptotic upper bound, of

an exponential form as in (4), for a fairly large class of Gaussian processes ξ given by (C1)–(C3).

This result can be stated in the form of the following theorem.

Theorem 1 Under conditions (C1)–(C3),

lim sup
x→∞

e
2κx
S P({〈X〉 > x}) ≤ e− 2κ2D

S2 .

In other words, P({〈X〉 > x}) is asymptotically bounded from above by e−
2κ
S (x+κD

S ).

Here, S and D are positive constants that will be defined later in Section 3. Note that from large

deviation studies, η in (3) has already been shown to be 2κ/S under condition (C1) [12]. Hence,

this theorem considerably strengthens the large deviation result in (3) under conditions (C1)–(C3).

Further, this theorem also provides the upper bound e−2κ2D/S2

to the asymptotic constant C which

is a useful parameter for network dimensioning.

In the continuous-time case, (4) has been shown in a more limited setting (e.g., when ξ is an

Ornstein-Uhlenbeck process [19], or when X is a Brownian Motion process with negative drift [16]).

In this paper, for the continuous-time case, our asymptotic upper bound will also be used to show

that there exists a constant η such that c1e
−ηx ≤ P({〈X〉 > x}) ≤ c2e

−ηx for some constants c1,

c2, and all large enough x.

The paper is organized as follows. In Section 2, we first introduce fundamental results from the

Extreme Value Theory for Gaussian processes; in Section 3, we derive an asymptotic upper bound

to P({〈X〉 > x}). To avoid redundancy, we derive the bound only for the continuous-time case

and refer to [8] for the derivations in discrete-time; in Section 4, we discuss the importance of the

bound in analyzing the behavior of a queueing system; finally, in Section 5 we briefly illustrate the

performance of the bound through numerical examples.

2. Results from Extreme Value Theory

Our study of the supremum distribution of X is based on the Extreme Value Theory literature.

The following two theorems (from [2]) play key roles in our study.

3



J. Choe and N. B. Shroff

Theorem 2 (Borell’s Inequality) Let {ζt : t ∈ T} be a centered Gaussian process with sample path

bounded a.s.; that is 〈ζ〉 <∞ a.s. Then E{〈ζ〉} is finite and for all x > E{〈ζ〉},

P({〈ζ〉 > x}) ≤ 2e
− (x−E{〈ζ〉})2

2〈σ2〉 ,

where 〈σ2〉 := supt∈T E{ζ2
t }.

Theorem 3 (Slepian’s Inequality) Let {ζt : t ∈ T} and {υt : t ∈ T} be two centered Gaussian

processes on an index set T with sample path bounded a.s. If E{ζ2
t } = E{υ2

t } and E{(ζs − ζt)2} ≤
E{(υs − υt)2} for all s, t ∈ T , then for all x

P({〈ζ〉 > x}) ≤ P({〈υ〉 > x}).

In addition to Theorems 2 and 3, we introduce another important result from [2, Corollary 4.15],

which provides us a way to bound E{〈ζ〉} and will be used together with Theorem 2 to derive a

bound for the tail probability P({〈ζ〉 > x}).

Theorem 4 Let {ζt : t ∈ T} be a centered Gaussian process and define a pseudo-metric‡ d on T

as d(t1, t2) :=
√
E{(ζt1 − ζt2)2}. Also, let N(ε) be the minimum number of closed d-balls of radius

ε needed to cover T , then there exists a universal constant K such that

E{〈ζ〉} ≤ K
∫ ∞

0

√
logN(ε)dε.

3. Asymptotic Upper Bound for P({〈X〉 > x})

In this section, we derive an asymptotic upper bound to the tail probability P({〈X〉 > x}) for

the stationary Gaussian processes ξ that satisfy (C1)–(C3). This section consists of two parts. We

first obtain several preliminary results in Section 3.1, and then from these results we derive our

main results in Section 3.2. Since the proofs for the discrete-time case are essentially similar to

those for the continuous-time case, we provide derivations only for the continuous-time case. The

detailed proofs for the discrete-time case can be found in [8].

3.1. Preliminaries We assume that ξt is a centered stationary Gaussian process with a continu-

ous autocovariance function Cξ(τ). Also, we assume ξt to be a separable and measurable Gaussian

‡Note that d is not a metric, since d(t1 , t2) = 0 does not necessarily imply t1 = t2.
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process in order for Xt to be a well defined stochastic process§.

From (1), the mean and the autocovariance function of Xt can be obtained as

E{Xt} = −κt, and

CX(t1, t2) := E{(Xt1 + κt1)(Xt2 + κt2)} =

∫ t2

0

∫ t1

0

Cξ(τ2 − τ1)dτ1dτ2.(5)

We now define a few parameters which will be used extensively throughout the paper.

S :=

∫ ∞

−∞
Cξ(τ)dτ, D := 2

∫ ∞

0

τCξ(τ)dτ, and D̃ := 2

∫ ∞

0

τ |Cξ(τ)|dτ.(6)

In the following proposition, we show several important properties of the variance and the autoco-

variance function of Xt, which will later be used in deriving our bounds.

Proposition 1

(a) Var{Xt}
t is a continuous and differentiable function for t > 0. Further,

d

dt

(
Var{Xt}

t

)
=

2

t2

∫ t

0

τCξ(τ)dτ for t > 0, and

lim
t↓0

Var{Xt}
t

= 0.

(b) CX(t1, t2) = 1
2

(
Var{Xt1}+ Var{Xt2} −Var{X|t1−t2|}

)
.

(c) Let α ≥ 1, then under condition (C1),

lim
t→∞

CX (αt, t)

t
= lim
t→∞

CX (t, αt)

t
= S.

In particular, limt→∞
Var{Xt}

t = S.

(d) Under conditions (C1) and (C2),

∣∣∣∣
Var{Xt1}

t1
− Var{Xt2}

t2

∣∣∣∣ ≤
D̃|t1 − t2|

t1t2
for all t1, t2 > 0, and

lim
t→∞

t

(
S − Var{Xt}

t

)
= D.

(e) Under conditions (C1)–(C3), Var{Xt}
t < S and there exists a to > 0 such that

Var{Xt}
t

= sup
0<s≤t

Var{Xs}
s

for all t ≥ to.

§Note that, from the continuity of the autocovariance function, the process ξt can always be replaced with its

separable and measurable version [11].
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Proof of Proposition 1. (a) From (5), we have

Var{Xt}
t

=
1

t

∫ t

0

∫ t

0

Cξ(τ2 − τ1)dτ1dτ2

= 2

∫ t

0

(
1− τ

t

)
Cξ(τ)dτ (by setting τ = τ2 − τ1).(7)

Differentiating both sides of (7), we get

d

dt

(
Var{Xt}

t

)
=

2

t2

∫ t

0

τCξ(τ)dτ.(8)

Also, note that |(1− τ
t )Cξ(τ)| ≤ |Cξ(τ)| ≤ Cξ(0) for τ ∈ [0, t]. Therefore,

lim
t↓0

∣∣∣∣
Var{Xt}

t

∣∣∣∣ ≤ lim
t↓0

∫ t

0

Cξ(0)dτ = 0.

(b) Without loss of generality (W.L.O.G.), assume t2 > t1. Then

2CX(t1, t2) =

∫ t2

0

∫ t1

0

Cξ(τ2 − τ1)dτ1dτ2 +

∫ t1

0

∫ t2

0

Cξ(τ2 − τ1)dτ1dτ2

=

∫ t2

0

∫ t2

0

Cξ(τ2 − τ1)dτ1dτ2 +

∫ t1

0

∫ t1

0

Cξ(τ2 − τ1)dτ1dτ2

−
∫ t2

0

∫ t2

t1

Cξ(τ2 − τ1)dτ1dτ2 +

∫ t1

0

∫ t2

t1

Cξ(τ2 − τ1)dτ1dτ2

=

∫ t2

0

∫ t2

0

Cξ(τ2 − τ1)dτ1dτ2 +

∫ t1

0

∫ t1

0

Cξ(τ2 − τ1)dτ1dτ2

−
∫ t2−t1

0

∫ t2−t1

0

Cξ(τ2 − τ1)dτ1dτ2

= Var{Xt2}+ Var{Xt1} −Var{Xt2−t1}.

(c) From the symmetry of the autocovariance function, it suffices to show that limt→∞
CX (αt,t)

t =

S. Let ht(τ) be defined as

ht(τ) =





(
1 + τ

t

)
Cξ(τ) if τ ∈ [−t, 0),

Cξ(τ) if τ ∈ [0, (α− 1)t],(
1− τ−(α−1)t

t

)
Cξ(τ) if τ ∈ ((α− 1)t, αt],

0 otherwise.

Then, again, by changing the variables of integration (τ = τ2 − τ1), we obtain

CX(αt, t)

t
=

1

t

∫ t

0

∫ αt

0

Cξ(τ1 − τ2)dτ1dτ2 =

∫ ∞

−∞
ht(τ)dτ.

However, from the definition of ht, we know that limt→∞ ht(τ) = Cξ(τ) and |ht(τ)| ≤ |Cξ(τ)|.
Therefore, from condition (C1) and the Dominated Convergence Theorem, it follows that

lim
t→∞

CX(αt, t)

t
=

∫ ∞

−∞
Cξ(τ)dτ = S.
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(d) W.L.O.G. assume t2 > t1 > 0. From (7), we have

Var{Xt2}
t2

− Var{Xt1}
t1

= 2

(∫ t2

0

(
1− τ

t2

)
Cξ(τ)dτ −

∫ t1

0

(
1− τ

t1

)
Cξ(τ)dτ

)

=
2(t2 − t1)

t1t2

(∫ t1

0

τCξ(τ)dτ +

∫ t2

t1

t1(t2 − τ)

t2 − t1
Cξ(τ)dτ

)
.

Since 0 ≤ t1(t2−τ)
t2−t1 ≤ τ for τ ∈ [t1, t2], it follows that

∣∣∣∣
Var{Xt2}

t2
− Var{Xt1}

t1

∣∣∣∣ ≤
2(t2 − t1)

t1t2

(∫ t1

0

τ |Cξ(τ)|dτ +

∫ t2

t1

t1(t2 − τ)

t2 − t1
|Cξ(τ)|dτ

)

≤ 2(t2 − t1)

t1t2

∫ t2

0

τ |Cξ(τ)|dτ ≤ (t2 − t1)D̃

t1t2
.

Now, let ht(τ) be defined for τ ≥ 0 by

ht(τ) =





τCξ(τ) if τ ∈ [0, t),

tCξ(τ) if τ ∈ [t,∞).

Then, from (7) and from the definition of S and ht(τ), we get

t

(
S − Var{Xt}

t

)
= 2t

(∫ ∞

0

Cξ(τ)dτ −
∫ t

0

(
1− τ

t

)
Cξ(τ)dτ

)

= 2

∫ ∞

0

ht(τ)dτ.

On the other hand, from the definition of ht(τ), we know that ht(τ) → τCξ(τ) as t → ∞ and

|ht(τ)| ≤ τ |Cξ(τ)|. Therefore, from condition (C2) and the Dominated Convergence Theorem,

lim
t→∞

t

(
S − Var{Xt}

t

)
= 2

∫ ∞

0

τCξ(τ)dτ = D.

(e) From (7) and the definition of S,

S − Var{Xt}
t

= 2

(∫ ∞

0

Cξ(τ)dτ −
∫ t

0

(1− τ

t
)Cξ(τ)dτ

)

=
2

t

(∫ t

0

τCξ(τ)dτ +

∫ ∞

t

tCξ(τ)dτ

)

> 0 for all t > 0 (from condition (C3)).

Therefore,
Var{Xt}

t
< S for all t > 0.(9)

Now, from the Dominated Convergence Theorem and conditions (C2) and (C3), it follows that

lim
t→∞

∫ t

0

τCξ(τ)dτ =

∫ ∞

0

τCξ(τ)dτ > 0.
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The above equation with (8) implies that there exists a t1 > 0 such that d
dt (

Var{Xt}
t ) > 0 for all

t ≥ t1; that is, Var{Xt}
t is an increasing function for t ≥ t1. Let a := supt∈(0,t1]

Var{Xt}
t . From

(9), the continuity of Var{Xt}
t and the fact that limt↓0

Var{Xt}
t = 0, it then follows that a < S.

Therefore, since Var{Xt}
t → S as t →∞, there exists a to > t1 such that

Var{Xto}
to

> a. Let t ≥ to,

then for s ≤ t1,

Var{Xs}
s

≤ a <
Var{Xto}

to
(from the definition of to)

≤ Var{Xt}
t

(because Var{Xt}
t is increasing on [t1,∞)).

Also, since Var{Xt}
t is increasing on [t1,∞), Var{Xs}

s ≤ Var{Xt}
t for s ∈ (t1, t). Therefore, for all

t ≥ to, Var{Xt}
t = sup0<s≤t

Var{Xs}
s .

In this paper, we will study the supremum distribution of Xt through the Gaussian process

{Y (x)
t : t ≥ 0} defined for each x > 0 by

Y
(x)
t :=

√
x(Xt + κt)

x+ κt
=

√
x
∫ t

0 ξsds

x+ κt
.

The following relation between Xt and Y
(x)
t directly comes from the definition of Y

(x)
t and plays a

key role in studying the tail probability P({〈X〉 > x}).

For any t ≥ 0 and any x > 0, Xt > x if and only if Y
(x)
t >

√
x.(10)

It also immediately follows that Y
(x)
t is a centered Gaussian process and its autocovariance function

C
(x)
Y (t1, t2) can be obtained in terms of CX as

C
(x)
Y (t1, t2) := E{Y (x)

t1 Y
(x)
t2 } =

xCX (t1, t2)

(x+ κt1)(x+ κt2)
.(11)

Now, let σ2
x,t be the variance of Y

(x)
t . It can then be expressed in terms of Var{Xt} as

σ2
x,t =

xVar{Xt}
(x+ κt)2

.(12)

Hence, from Proposition 1(c), we have limt→∞ σ2
x,t = 0. Since σ2

x,t is a continuous function of t

(from Proposition 1(a)), there is a finite value t = t̂x at which σ2
x,t attains its maximum 〈σ2

x〉 (note

that 〈σ2
x〉 denotes the supremum of σ2

x,t over the time index t). In the next proposition (Proposition

2), we show an important property of t̂x. Before we proceed, for notational simplicity, we define a

function g(t) for t ≥ 0 as

g(t) :=





0 if t = 0,

Var{Xt}
St if t > 0.
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Note that from Proposition 1(a), g(t) is a continuous function of t ∈ [0,∞), and σ2
x,t can be written

in terms of S and g(t) as

σ2
x,t =

Sxt

(x+ κt)2
g(t).(13)

Proposition 2 Under condition (C1),

t̂x ∼
x

κ
as x→∞.

Further, under conditions (C1) and (C2), the following stronger result holds.

lim
x→∞

t̂x − x
κ

xε
= 0 for all ε > 0.

Proof of Proposition 2. From Proposition 1(c), it follows that limt→∞ g(t) = 1. Let G :=

supt≥0 g(t) (G is finite and not less than 1). Since σ2
x,t attains its maximum at t = t̂x, it follows

that

Sg(xκ)

4κ
= σ2

x, xκ
≤ σ2

x,t̂x
=
Sxt̂xg(t̂x)

(x+ κt̂x)2
≤ Sxt̂xG

(x+ κt̂x)2
.(14)

By solving (14) for t̂x, we have

(
2 G
g( xκ ) − 1− 2

√
G

g( xκ )

(
G

g( xκ ) − 1
))

x
κ ≤ t̂x ≤

(
2 G
g( xκ ) − 1 + 2

√
G

g( xκ )

(
G

g( xκ ) − 1
))

x
κ .

Since g
(
x
κ

)
→ 1 as x→∞, this implies that t̂x →∞ (consequently g(t̂x)→ 1) as x→∞.

Now, since Sxt
(x+κt)2 attains its maximum S

4κ at t = x
κ , we know from (14) that g( xκ ) ≤ g(t̂x) and

the following relation should hold.

(
2 g(t̂x)
g( xκ ) − 1− 2

√
g(t̂x)
g( xκ )

(
g(t̂x)
g( xκ ) − 1

))
x
κ ≤ t̂x ≤

(
2 g(t̂x)
g( xκ ) − 1 + 2

√
g(t̂x)
g( xκ )

(
g(t̂x)
g( xκ ) − 1

))
x
κ .(15)

Since both g(t̂x) and g( xκ ) approach 1 as x→∞, it follows from (15) that

lim
x→∞

κt̂x
x

= 1.

Thus, we have proved the first part of the proposition.

We next prove the second part of the proposition for which the autocovariance function Cξ

satisfies both conditions (C1) and (C2). From Proposition 1(d), note that

|g(t1)− g(t2)| = 1

S

∣∣∣∣
Var{Xt2}

t2
− Var{Xt1}

t1

∣∣∣∣ ≤
D̃|t2 − t1|
St1t2

.(16)
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Since both g( xκ ) and t̂xκ
x approach 1 as x increases, we know that g( xκ), t̂xκx ∈ [ 1

2 , 2] for all x

sufficiently large. Therefore, for sufficiently large x,

∣∣∣t̂x −
x

κ

∣∣∣ ≤ 2x

κg(xκ )

(∣∣∣g(t̂x)− g(
x

κ
)
∣∣∣+

√
g(t̂x)

∣∣∣g(t̂x)− g(
x

κ
)
∣∣∣
)

(from (15))

≤ 4x

κ

(
D̃|t̂x − x

κ |
St̂x

x
κ

+

√
GD̃|t̂x − x

κ |
St̂x

x
κ

)
(from (16) and the definition of G)

= 4

(
D̃|t̂x − x

κ |
St̂x

+

√
GD̃|t̂x − x

κ |
St̂x

κ
x

)

≤ 4


D̃
S

+

√
2GD̃|t̂x − x

κ |
S


 .(17)

Now assume that limx→∞
t̂x− xκ
xε = 0 for some ε > 0 (from the fact that t̂x ∼ x

κ as x → ∞, this

holds with any ε > 1). Then, from (17),

∣∣∣∣∣
t̂x − x

κ

x
ε
2

∣∣∣∣∣ ≤ 4


 D̃

Sx
ε
2

+

√
2GD̃|t̂x − x

κ |
Sxε


→ 0, as x→∞.

Therefore, limx→∞
t̂x− xκ
x
ε
2

= 0. Thus, by induction we have

lim
x→∞

t̂x − x
κ

xε
= 0, for all ε > 0.

The following proposition is a direct result of Propositions 1(c) and 2, and describes the limit of

〈σ2
x〉 as x→∞.

Proposition 3 Under condition (C1),

lim
x→∞

〈σ2
x〉 =

S

4κ
.

Proof of Proposition 3. From (12), we have

〈σ2
x〉 =

xVar{Xt̂x
}

(x+ κt̂x)2
=

1

κ

Var{Xt̂x
}

t̂x

κt̂x
x

1

(1 + κt̂x
x )2

.

Since
Var{Xt̂x}

t̂x
→ S (Proposition 1(c)), κt̂x

x → 1 (Proposition 2), as x → ∞, it follows that

limx→∞〈σ2
x〉 = S

4κ .

10
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3.2. Main Result In this section although we provide proofs only for the continuous-time case,

all the results are also valid for the discrete-time case with the process {Y (x)
n : n = 0, 1, . . .} and

the parameters S and D redefined as

Y (x)
n :=

√
x(Xn + κn)

x+ κn
, S :=

∞∑

l=−∞
Cξ(l), and D := 2

∞∑

l=1

lCξ(l).(18)

Now as mentioned in Section 1, it has been shown for many classes of stationary processes ξt,

that (3) holds for some η [12]. In particular, for the case when ξt is a stationary Gaussian process

that satisfies (C1), it has been shown that η = 2κ
S , that is,

lim
x→∞

1

x
logP({〈X〉 > x}) = −2κ

S
.(19)

Let us next consider a simple lower bound to the tail probability P({〈X〉 > x}) expressed in

terms of the maximum variance 〈σ2
x〉. From (10), it follows that

P({〈X〉 > x}) = P({〈Y (x)〉 > √x}) ≥ P({Y (x)

t̂x
>
√
x}).

However, note that Y
(x)

t̂x
is a centered Gaussian random variable with variance 〈σ2

x〉. Therefore,

Ψ

( √
x

〈σx〉

)
≤ P({〈X〉 > x}),(20)

where Ψ(x) := 1√
2π

∫∞
x
e−

y2

2 dy is the tail of the standard Gaussian distribution. It is important to

note that Ψ
( √

x
〈σx〉

)
is the probability that Y

(x)
t is greater than

√
x at t = t̂x, which is that value

of t for which the variance of Y
(x)
t attains its maximum 〈σ2

x〉. In the Extreme Value Theory for

Gaussian processes, it has been frequently emphasized that the maximum variance of a centered

Gaussian process with nonconstant variance, is a very important factor in studying the supremum

distribution of the Gaussian process (as can be seen in Borell’s inequality) [2, 3, 17, 20]. Also,

it has been found that if {ζt : t ∈ T} is a centered Gaussian process with nonconstant variance

which attains its maximum variance at t = t̂, P({〈ζ〉 > x}) the tail of the supremum distribution

of ζt can often be closely approximated by the tail probability P({ζt̂ > x}). Therefore, it would

not be surprising if the lower bound, given by (20), accurately approximates the tail probability

P({〈X〉 > x}). In fact, the lower bound has been used to approximate the tail probability in [6, 7]

and found to be quite accurate over a wide range of x. Additionally, it has also been shown in [6]

that

lim
x→∞

1

x
log Ψ

( √
x

〈σx〉

)
= −2κ

S
.(21)

11
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Therefore, from (19) and (21), the lower bound is asymptotically similar to the tail probability in

the logarithmic sense; that is,

log Ψ

( √
x

〈σx〉

)
∼ logP({〈X〉 > x}) as x→∞.

Qualitatively, the above observations on the lower bound suggests that the tail probability P({〈X〉 >
x}) is concentrated on or around the maximum variance index t̂x. However, similarity in the

logarithmic sense does not imply that Ψ
( √

x
〈σx〉

)
= P({Xt̂x

> x}) ∼ P({〈X〉 > x}) as x → ∞. In

fact, this relation does not hold in general [8]. Therefore, a natural question to ask is whether (and

how) we can choose some neighborhood Fx around t̂x for each x such that P({〈Y (x)〉Fx >
√
x}) ∼

P({〈Y (x)〉 > √x}) as x→∞. The following theorem gives us an answer to this question, and will

be used to obtain an asymptotic upper bound to P({〈X〉 > x}).

Theorem 5 Under condition (C1), for any α > 1,

lim
x→∞

P({〈X〉[ xακ ,αxκ ] > x})
P({〈X〉 > x}) = lim

x→∞

P({〈Y (x)〉[ xακ ,αxκ ] >
√
x})

P({〈Y (x)〉 > √x}) = 1.

Proof of Theorem 5. The first equality directly follows from (10). Now, in order to show the

second equality, it suffices to show that

lim
x→∞

P({〈Y (x)〉[ xακ ,αxκ ]c >
√
x})

P({〈Y (x)〉 > √x}) = 0 for all α > 1,

where Ac denotes the complementary set of A.

Let α > 1. Since g(t)→ 1 as t→ ∞, there exists a to such that g(t) ≤ α+1
2
√
α

for all t ≥ to. Now,

let G := supt≥0 g(t), then there exists an xo > ακto such that

SxtoG

(x+ κto)2
≤ S

√
α

2κ(α+ 1)
for all x ≥ xo.

Since SxtG
(x+κt)2 is an increasing function of t on [0, xκ ], this fact in conjunction with (13) implies that

σ2
x,t ≤

SxtG

(x+ κt)2
≤ SxtoG

(x+ κto)2
≤ S

√
α

2κ(α+ 1)
for all x ≥ xo and t ≤ to.(22)

Further, it can be easily verified that

Sxt

(x+ κt)2
≤ Sα

κ(α+ 1)2
for t ∈ [

x

ακ
,
αx

κ
]c.(23)

From the definition of to and (23), we have

σ2
x,t =

Sxtg(t)

(x+ κt)2
≤ S

√
α

2κ(α+ 1)
for x ≥ xo and t ∈ (to,

x
ακ ) ∪ (αxκ ,∞).(24)

12
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Hence, from (22) and (24), it follows that

〈σ2
x〉[ xακ ,αxκ ]c ≤

S
√
α

2κ(α+ 1)
for all x ≥ xo.(25)

We now define a pseudo-metric d(x) on [0,∞) as d(x)(t1, t2) :=
√
E{(Y (x)

t2 − Y
(x)
t1 )2}. Also, let

B(x)
ε (t) := {s ∈ [0,∞) : d(x)(t, s) ≤ ε} be a d(x)-ball of radius of ε centered at t, and let N (x)(ε)

be the minimum number of d(x)-balls of radius of ε needed to cover [0,∞). Since Var{Y (x)
t } ≤

SGxt
(x+κt)2 ≤ SG

4κ and since Y
(x)

0 = 0, B
(x)
ε (0) cover [0,∞) when ε ≥

√
SG
4κ . Therefore, for all x > 0,

N (x)(ε) = 1 if ε ≥
√
SG

4κ
.(26)

Now, assume that ε <
√

SG
4κ and t2 > t1. Then,

d(x)(t1, t2) =

√
E
{(√

x(Xt2 +κt2)

x+κt2
−
√
x(Xt1 +κt1)

x+κt1

)2
}

=

√
E
{(√

x(Xt2 +κt2)

x+κt2
−
√
x(Xt1 +κt1)

x+κt2
+
√
x(Xt1 +κt1)

x+κt2
−
√
x(Xt1 +κt1)

x+κt1

)2
}

≤
√
E
{(√

x(Xt2−Xt1 +κ(t2−t1))

x+κt2

)2
}

+

√
E
{(

κ(t2−t1)
√
x(Xt1 +κt1)

(x+κt2)(x+κt1)

)2
}

=
√
x

x+κt2

√
Var{(Xt2 −Xt1)}+ κ(t2−t1)

√
x

(x+κt2)(x+κt1)

√
Var{Xt1}.(27)

However, since the stationarity of ξt implies that Var{(Xt2−Xt1)} = Var{Xt2−t1}, Var{(Xt2−Xt1)}
and Var{Xt1} are bounded by SG(t2 − t1) and SGt1, respectively. Therefore, from (27)

d(x)(t1, t2) ≤
√
SGx(t2 − t1)

x+ κt2
+
κ(t2 − t1)

√
SGxt1

(x+ κt1)(x + κt2)

≤
( √

SGx

x+ κt2
+

κ
√
SGxt1t2

(x+ κt1)(x+ κt2)

)
√
t2 − t1

≤
(√

SG

x
+

1

4

√
SG

x

)
√
t2 − t1 ≤

√
2SG

x

√
t2 − t1

(from the fact that
√
x

x+κt2
≤ 1√

x
and

√
t

(x+κt) ≤ 1
2
√
xκ

).

This implies that if |t2 − t1| ≤ x
2SGε

2, then d(x)(t1, t2) ≤ ε. Consequently,

[t− x
2SGε

2, t+ x
2SGε

2] ⊂ B(x)
ε (t).(28)

Also, it can easily be shown that Var{Y (x)
t } ≤ ε2 for t ≥ SGx

ε2κ2 . Since Y
(x)

0 = 0, this implies that

[SGxε2κ2 ,∞) ⊂ B(x)
ε (0).(29)

13
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Therefore, from (28) and (29), d(x)-balls of radius of ε centered at ti (i = 0, 1, . . . , dSGxε2κ2 /
xε2

SGe)
covers [0,∞), where dwe is the smallest integer that is larger than or equal to w and

ti =





0 if i = 0,

i xSGε
2 − x

2SGε
2 otherwise.

Hence, for ε <
√

SG
4κ , the minimum number of d(x)-balls to cover [0,∞) is bounded by the following

inequality:

N (x)(ε) ≤
⌈
SGx

ε2κ2
/
xε2

SG

⌉
+ 1 ≤ S2G2

κ2ε4
+ 2.(30)

From (26) and (30), N̄(ε) defined by

N̄(ε) :=





S2G2

κ2ε4 + 2 if ε <
√

SG
4κ ,

1 otherwise,

bounds N (x)(ε) for all x, ε > 0. Now, let M := K
∫∞

0
log

1
2 N̄(ε)dε, where K is the universal constant

in Theorem 4 (it can easily be shown that the integral is finite). Then, from Theorem 4,

E{〈Y (x)〉} ≤M for all x > 0.

Hence, by applying Theorem 2 to Y
(x)
t on t ∈ [ xακ ,

αx
κ ]c, we get

P({〈Y (x)〉[ xακ ,αxκ ]c >
√
x}) ≤ 2e

−

(√
x−E

{
〈Y (x)〉[ x

ακ
, αx
κ

]c

})2

2〈σ2
x〉[ x

ακ
, αx
κ

]c

≤ 2e
−κ(

√
x−E{〈Y (x)〉})2(α+1)

S
√
α

(from (25) and the fact that 〈Y (x)〉[ xακ ,αxκ ]c ≤ 〈Y (x)〉)

≤ 2e
−κ(

√
x−M)2(α+1)

S
√
α for x sufficiently large.

Therefore, it directly follows that

lim sup
x→∞

1

x
logP({〈Y (x)〉[ xακ ,αxκ ]c >

√
x}) ≤ lim

x→∞
−κ(
√
x−M)2(α + 1)

Sx
√
α

= −κ(α+ 1)

S
√
α

.(31)

Since −κ(α+1)
S
√
α

< − 2κ
S for all α > 1, (19) and (31) imply that

lim
x→∞

P({〈Y (x)〉[ xακ ,αxκ ]c >
√
x})

P({〈Y (x)〉 > √x}) = 0.

14
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We will now use Theorem 5 and a well known property of Brownian Motion process to obtain

an asymptotic upper bound to P({〈X〉 > x}). Let {Bt : t ≥ 0} be the standard Brownian Motion

(Wiener) process, and let {Vt : t ≥ 0} be defined as

Vt := aBt − bt.

This process is often called Brownian Motion process with drift¶ and has been studied extensively.

In particular, the supremum distribution of Vt has been found in a simple closed form (see, for

example, [16, page 199]) as

P({〈V 〉 > x}) = P
({

there exists a t ≥ 0 such that Bt >
bt

a
+
x

a

})
= e−

2bx
a2 .(32)

We are now ready to prove Theorem 1, which provides a simple single-exponential based asymp-

totic upper bound to P({〈X〉 > x}), when ξt satisfies conditions (C1)–(C3). As will soon be evident,

this bound is obtained by comparing P({〈X〉 > x}) and the tail of the supremum distribution of a

Brownian Motion process with drift, through Slepian’s inequality. For the reader’s convenience we

restate Theorem 1.

Theorem 1 Under conditions (C1)–(C3),

lim sup
x→∞

e
2κx
S P({〈X〉 > x}) ≤ e− 2κ2D

S2 .

In other words, P({〈X〉 > x}) is asymptotically bounded from above by e−
2κ
S (x+κD

S ).

Proof of Theorem 1. Let Vt =
√
SBt − κt and define a centered Gaussian process {Z (x)

t : t ≥ 0}

for each x > 0 by

Z
(x)
t :=

√
xg(t)(Vt + κt)

x+ κt
=

√
xg(t)SBt
x+ κt

.

Using this definition, C
(x)
Z the autocovariance function of Z

(x)
t can easily be obtained as

C
(x)
Z (t1, t2) =

Sxmin{t1, t2}
√
g(t1)g(t2)

(x+ κt1)(x + κt2)
.(33)

From (13) and (33), we can verify that the variance of Z
(x)
t is equal to that of Y

(x)
t for any t ≥ 0

and x > 0.

¶An interesting fact is that even though Vt cannot be expressed in the form of (1), Proposition 2, Proposition 3,

and Theorem 5 hold with Xt, κ, and S replaced by Vt, b, and a2, respectively. From the simple autocovariance

function CV (t1, t2) = a2 min{t1, t2} of Vt, these results can be obtained in almost the same way as (or usually easier

than) in the case of Xt.
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Now, let α > 1 and consider Y
(x)
t and Z

(x)
t on the interval [ xακ ,

αx
κ ]. From Proposition 1(e), there

exists a to > 0 such that for all t ≥ to,

Var{Xs}
s

≤ Var{Xt}
t

for all s < t.(34)

Hence if we assume that t2 > t1 ≥ to, then

CX (t1, t2)

t1
=

1

2t1
(Var{Xt1}+ Var{Xt2} −Var{Xt2−t1}) (from Proposition 1(b))

=
1

2

(
Var{Xt1}

t1
+

Var{Xt2}
t2

+
t2 − t1
t1

(
Var{Xt2}

t2
− Var{Xt2−t1}

t2 − t1

))

≥ 1

2

(
Var{Xt1}

t1
+

Var{Xt2}
t2

)
(from (34))

≥
√

Var{Xt1}Var{Xt2}
t1t2

(since Var{Xt}
t ≥ 0).

This implies that

Smin{t1, t2}
√
g(t1)g(t2) = t1

√
Var{Xt1}Var{Xt2}

t1t2
(from the definition of g(t))

≤ CX(t1, t2) if t2 > t1 ≥ to.(35)

Therefore, from (11), (33), and (35), and from the fact that Var{Y (x)
t } = Var{Z(x)

t }, it follows for

any x ≥ ακto that

E{(Y (x)
t1 − Y

(x)
t2 )2} ≤ E{(Z(x)

t1 − Z
(x)
t2 )2} for all t1, t2 ∈ [

x

ακ
,
αx

κ
].

Hence, from Theorem 3,

P({〈Y (x)〉[ xακ ,αxκ ] >
√
x}) ≤ P({〈Z(x)〉[ xακ ,αxκ ] >

√
x}) for all x ≥ ακto.(36)

We now obtain an upper bound to P({〈Z (x)〉[ xακ ,αxκ ] >
√
x}) for x ≥ ακto.

P({〈Z(x)〉[ xακ ,αxκ ] >
√
x}) = P({Z(x)

t >
√
x for some t ∈ [

x

ακ
,
αx

κ
]})

= P({
√
Sg(t)Bt > x+ κt for some t ∈ [

x

ακ
,
αx

κ
]})

(from the definition of Vt and Z
(x)
t )

≤ P({
√
Sg(

αx

κ
)Bt > x+ κt for some t ≥ 0})

(since g(t) is increasing on [ xακ ,
αx
κ ])

= e
− 2κx
Sg(αx

κ
) (from (32)).(37)
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Hence, from (36) and (37),

P({〈Y (x)〉[ xακ ,αxκ ] >
√
x}) ≤ e−

2κx
Sg(αx

κ
) for x ≥ ακto.(38)

Further, from Proposition 1(d) and the fact that g(t)→ 1 as t→∞, we have

e
2κx
S e
− 2κx
Sg(αx

κ
) = e

− 2κx
Sg(αx

κ
)

(
1− 1

S x
ακ

Var
{
X x
ακ

})

(from the definition of g(t))

= e
− 2κ2

S2αg(αx
κ

)
αx
κ

(
S− 1

αx
κ

Var
{
Xαx

κ

})

→ e−
2κ2D
αS2 as x→∞.(39)

Therefore, from Theorem 5 and from (10), (38) and (39), it follows that

lim sup
x→∞

e
2κx
S P({〈X〉 > x}) ≤ e− 2κ2D

αS2 .

Since α > 1 is arbitrary, the theorem follows.

An interesting observation is that the asymptotic upper bound given in Theorem 1 can also be

achieved by a simple expression given in terms of the maximum variance 〈σ2
x〉.

Proposition 4 Under conditions (C1) and (C2),

e
− x

2〈σ2
x〉 ∼ e− 2κ

S (x+κD
S ) as x→∞.

Proof of Proposition 4. From (12) and the definition of t̂x, we have

〈σ2
x〉 =

xVar{Xt̂x
}

(x + κt̂x)2
.

Therefore,

2κx

S
− x

2〈σ2
x〉

=
−4κ x

t̂x
t̂x
(
S − Var{Xt̂x}

t̂x

)
− Sκ2

t̂x

(
x
κ − t̂x

)2

2S
Var{Xt̂x}

t̂x

.(40)

Since x
t̂x
→ κ,

Var{Xt̂x}
t̂x

→ S,
(
S − Var{Xt̂x}

t̂x

)
t̂x → D, and

( xκ−t̂x)2

t̂x
→ 0 as x → ∞ from

Propositions 1 and 2, and from (40) we get

lim
x→∞

2κx

S
− x

2〈σ2
x〉

= −2κ2D

S2
.

Hence, limx→∞ e
2κx
S e
− x

2〈σ2
x〉 = e−

2κ2D
S2 .

Proposition 4 and Theorem 1 tell us that when the process ξ satisfies conditions (C1)–(C3),

the tail of the supremum distribution is asymptotically bounded by e
− x

2〈σ2
x〉 . Note that the class
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Qtλt µtAmount of fluid
at time t

Fluid input rate
at time t

Service rate
at time t

Infinite Buffer

Server

Figure 1. A fluid queueing system with an infinite buffer and a server. λt is the instantaneous amount

of fluid (work) fed into the system at time t, µt is the maximum rate at which fluid can be

served at time t, and Qt is the amount of fluid in the queue at time t.

of stationary Gaussian processes that satisfy conditions (C1)–(C3) is fairly large. For example,

any autocovariance function that vanishes faster than τ−ε (l−ε) for some ε > 2, satisfy conditions

(C1) and (C2) (of course, except for those with S = 0). Also, condition (C3) which is somewhat

more restrictive, is satisfied by any nonnegative autocovariance function. Hence, the fact that an

asymptotic upper bound to P({〈X〉 > x}) can be obtained merely from 〈σ2
x〉, again indicates the

importance of the maximum variance in studying the supremum distribution of Gaussian processes.

In the next section, we will discuss the applications and importance of the asymptotic upper

bound for the study of queueing systems.

4. Application to Queueing Systems

Consider a queueing system shown in Figure 1. Let Λt be an increasing function defined in such

a way that Λt−Λs is the amount of fluid that arrives into the system during the time interval (s, t].

Similarly, we define Mt to be an increasing function such that Mt−Ms is the maximum amount of

fluid that can be served during the time interval (s, t]. Then assuming that the queue is empty at

t = 0, Qt the amount of fluid in the system (workload) at time t can be expressed as

Qt = sup
0≤s≤t

(Nt −Ns) ,

where Nt := Λt −Mt (see for example [12, 14]).

If we assume that Λt and Mt are independent stochastic processes with stationary increments,

then

P({Qt > x}) = P
({

sup
0≤s≤t

(Nt −Ns) > x

})

= P
({

sup
−t≤s≤0

(N0 −Ns) > x

})

18
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→ P
({

sup
s≤0

(N0 −Ns) > x

})
as t→∞.(41)

Hence, P({Q > x}) := limt→∞ P({Qt > x}) = P
({

sups≤0 (N0 −Ns) > x
})
. In other words, the

steady state (limiting) queue length distribution coincides with the distribution of sups≤0 (N0 −Ns).

The tail of the steady state queue length distribution is an important measure of network congestion

and very useful in the design and control of communication networks. Now let λt be defined as the

instantaneous rate of fluid input and µt as the maximum rate at which fluid can be served at time

t. Then, Nt −Ns can be given by

Continuous-time : Nt −Ns =
∫ t
s νudu, and

Discrete-time : Nt −Ns =
∑t
m=s+1 νm,

(42)

where νt := λt−µt is the net input rate into the queue (note that νt can take on both positive and

negative values).

Hence, from (41) and (42), it follows under the stationarity of νt (or under the stationarity and

independence of λt and µt) that

Continuous-time : P({Q > x}) = P
({

supt≥0

∫ t
0 ν−sds > x

})
, and

Discrete-time : P({Q > x}) = P
({

supn≥0

∑n
m=0 ν−m > x

})
.

Fluid queueing models have frequently been employed for the analysis of multiplexers in emerging

high-speed communications such as Asynchronous Transfer Mode (ATM) networks [10, 13]. In these

applications, the stationary process λt models the aggregate traffic input to a multiplexer, and µt

is often fixed to a constant µ to represent the link capacity of the multiplexer which is usually not

time-varying. Since commercial ATM multiplexers and switches are already equipped with very

high-capacity links, many traffic sources can be served at a multiplexer. Therefore, the net input

traffic (the aggregate traffic input minus the link capacity of the multiplexer, which corresponds

to νt) can usually be accurately characterized by a stationary Gaussian process [6, 7]. Further, it

has been found that some important types of individual traffic sources themselves can be modeled

as a stationary Gaussian process [15]. Once the net input traffic is characterized by a stationary

Gaussian process, as we will discuss next, our asymptotic analysis of P({〈X〉 > x}) can be directly

applied to study P({Q > x}), the tail of the queue length distribution, in such networks.

Assuming that νt is a stationary Gaussian process, it is easy to see that the steady state queue

length distribution is equal to the supremum distribution of X (given by (1) or (2)) with ξ and κ

defined as

Continuous-time : ξt = ν−t − E{ν0}, and κ = −E{ν0} or

Discrete-time : ξn = ν1−n − E{ν0}, and κ = −E{ν0}.
(43)
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Therefore, when the net traffic input can be effectively characterized by a stationary Gaussian

process that satisfies conditions (C1)–(C3), Theorem 1 provides us an asymptotic upper bound to

P({Q > x}), the tail of the queue length distribution. Here it should be noted that while µt = µ

for high-speed ATM networks, it may not be true for other networks; however, all our results are

also valid for general time-varying µt as long as the net input rate can be effectively modeled as a

Gaussian process. Now let us briefly discuss the relevance of our work in the context of the existing

literature.

Discrete-Time Case: As mentioned in Section 1, in the discrete-time setting [1], it has been

shown for stationary ergodic Gaussian net input processes νn that

P({Q > x}) = P({〈X〉 > x}) ∼ Ce− 2κx
S as x→∞,(44)

where ξn and κ are given by (43), and S defined by (18). From the above relation, Ce−
2κx
S has

been suggested as an approximation to P({Q > x}) for large x. This approximation is often called

the asymptotic approximation. However, since the exact value of the asymptotic constant C cannot

be obtained in general, the following simpler approximation (obtained by setting C = 1) has also

been suggested:

P({Q > x}) ≈ e− 2κx
S .

This approximation is the well known effective bandwidth approximation, which can be extended to

fairly general classes of net input processes νt [12, 13]. In recent papers, however, it has been argued

that the effective bandwidth approximation does not account for the advantage of multiplexing and

could lead to significant underutilization of the network [9, 18]. Therefore, there is renewed interest

in the accurate approximations and bounds for the asymptotic constant C.

It is important to note that the decay rate of the asymptotic upper bound given in Theorem 1

coincides with the decay rate of the tail P({Q > x}) which is equal to − 2κ
S . Therefore, the

asymptotic upper bound provides us an upper bound e−
2κ2D
S2 to the asymptotic constant C when

νn is a stationary Gaussian process that satisfies conditions (C1)–(C3). As previously mentioned, a

fairly large class of stationary Gaussian processes satisfy these conditions. Hence, the upper bound

to the asymptotic constant is expected to help us to better exploit the advantage of multiplexing

when designing these networks.

Continuous-Time Case: In contrast to the discrete-time case, (44) has been shown to be valid in

the continuous-time case only for a very limited class of stationary Gaussian processes νt. Therefore,
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obtaining an asymptotic result for the tail probability, which is similar to (44), is very important.

In the following part of this section, we show how our asymptotic upper bound can be used to

obtain an asymptotic result for P({Q > x}) which is nearly comparable to (44).

Using the results for the discrete-time case, we can show that there exists an asymptotic lower

bound to the tail probability P({〈X〉 > x}) of the form Ce−
2κx
S , that is, lim infx→∞ e

2κx
S P({〈X〉 >

x}) > 0. Now, consider the continuous-time process Xt expressed by (1). Given a ∆ > 0, an

asymptotic lower bound to the tail probability P({〈X〉 > x}) can be found by looking at the

sampled stochastic process {Ẋn = Xn∆ : n = 0, 1, 2, . . .}. Note that Ẋn can be expressed as

Ẋn =
n∑

m=1

∫ m∆

(m−1)∆

ξsds− κn∆

=
n∑

m=1

ξ̇m − κ̇n,

where ξ̇m :=
∫m∆

(m−1)∆
ξsds and κ̇ := κ∆. ξ̇n is a stationary Gaussian process (from its definition)

and Cξ̇(l) its autocovariance function can be obtained in terms of Cξ(τ) as

Cξ̇(l) =

∫ ∆

−∆

(∆− |τ |)Cξ(τ + l∆)dτ,

from which one can verify that

Ṡ :=
∞∑

−∞
Cξ̇(l) = ∆

∫ ∞

−∞
Cξ(τ)dτ = ∆S.

Hence, from (44) there exists a c1 > 0 such that

P({〈Ẋ〉 > x}) ∼ c1e−
2κ̇x
Ṡ = c1e

− 2κx
S .

Therefore, we get

lim inf
x→∞

e−
2κx
S P({〈X〉 > x}) ≥ lim inf

x→∞
e−

2κx
S P({〈Ẋ〉 > x})

(since 〈X〉 ≥ 〈Ẋ〉 = 〈X〉{0,∆,2∆,...})

= c1 > 0 (from (4)).(45)

Now, by combining Theorem 1 and (45), it follows that for stationary Gaussian processes ξt that

satisfy conditions (C1)–(C3),

c1 ≤ lim inf
x→∞

e−
2κx
S P({〈X〉 > x}) ≤ lim sup

x→∞
e−

2κx
S P({〈X〉 > x}) ≤ e− 2κ2D

S2 ,
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κ=8

κ=16

Asymptotic Upper Bound

Tail Probability

Figure 2. The tail probability P({〈X〉 > x}) estimated through simulation and its asymptotic upper

bound e−
2κ
S

(x+κD
S

) for a continuous-time process Xt expressed by (1). In this example, the

autocovariance function of ξt is given as Cξ(τ ) = 80× e−|τ | + 40× e−| τ20 | and κ is set to two

different values, 8 and 16.

where D is defined by (6). Therefore, if we let c2 := e−
2κ2D
S2 , then the above equation implies that

for a fluid queue whose net input rate νt (= ξ−t− κ) is a stationary Gaussian process that satisfies

conditions (C1)–(C3), for any ε > 1,

c1
ε
e−

2κx
S ≤ P({Q > x}) = P({〈X〉 > x}) ≤ εc2e

− 2κx
S for all sufficiently large x.(46)

Even though the above relation is not as strong as (44), it tells us that P({Q > x}) is asymptotically

enclosed within an exponential envelope when conditions (C1)–(C3) are satisfied by the net input

rate νt.

5. Numerical Examples

In this section we provide two numerical examples to illustrate the performance of the asymptotic

upper bound P({〈X〉 > x}) ≤ e−
2κ
S (x+κD

S ). Our analytical results are compared with simulation

results using the Importance Sampling technique described in [5], which has been developed to

estimate the queue length distribution efficiently. Therefore, to estimate P({〈X〉 > x}), we use the

fact that the supremum distribution of X is equal to the queue length distribution if ξ and κ are

related to ν by (43). Also, in order to show the accuracy of the simulation estimates, 99% confidence

intervals are computed by the method of batch mean [4], and displayed as vertical segments around

the estimates of the tail probability.
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κ=8

κ=16

Asymptotic Upper Bound

Tail Probability

Figure 3. The tail probability P({〈X〉 > x}) estimated through simulation and its asymptotic upper

bound e−
2κ
S

(x+κD
S

) for a discrete-time process Xn expressed by (2). In this example, the

autocovariance function of ξn is given as Cξ(l) = 25× 0.9|l| + 20× 0.97|l| and κ is set to two

different values, 8 and 16.

In the first example, we consider a continuous-time processXt given by (1) where ξt is a stationary

Gaussian process with autocovariance function Cξ(τ) = 80×e−|τ |+40×e−| τ20 |. Since the (queueing)

simulation with a Gaussian net input rate cannot be performed in continuous-time, we show the

tail probability P({〈Ẋ〉 > x}) instead of P({〈X〉 > x}) where Ẋn is the sampled sequence of Xt

introduced in the previous section. More precisely, we set ∆ to 0.05 to obtain Ẋn = Xn∆ from

Xt. In Figure 2, we compare the tail probabilities P({〈Ẋ〉 > x}) estimated via simulation, and the

asymptotic upper bounds given in Theorem 1 for κ = 8 and κ = 16. Remember that the decay rates

of the exact tail probability and the asymptotic upper bound are equal to − 2κ
S . Therefore, as one

can see in the figure, the simulation and analytical curves are parallel to each other for large x. Also

note that the the asymptotic upper bound is fairly close to the tail probability for sufficiently large

x. Although the tail probability P({〈X〉 > x}) cannot be directly estimated through simulation, it

is bounded by P({〈Ẋ〉 > x}) from below. Hence, for this case, we can conclude that the envelope

given by (46) is fairly narrow.

In the second example, we consider a discrete-time processXn given by (2) where ξn is a stationary

Gaussian process with its autocovariance function Cξ(l) = 25 × 0.9|l| + 20 × 0.97|l|. In Figure 3,

we show the tail probability and the asymptotic upper bound again for κ = 8 and κ = 16. As

in the previous example, the exact tail probability curve estimated by simulation is parallel to

the asymptotic upper bound for large values of x. Also, from the figure, we can deduce that
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the asymptote of the tail probability (as described by (44), there is an exponential asymptote

of the tail probability in the discrete-time case) will be quite close to the bound. This suggests

that e−
2κ2D
S2 is a tight upper bound to the asymptotic constant C in (44) which can be used as a

dimensioning parameter for network design and control. Extensive experimentation with a wide

variety of different processes ξn has indicated that the upper bound to the asymptotic constant is

usually quite tight [8]. It should be noted, however, that the asymptotic constant C is but one

important parameter in network design and control. Using a single exponential approximation of

the form in (44) may not be enough to accurately predict P({Q > x}) over a large range of x

[6, 7, 9]. We are currently developing analytical techniques to address this problem.
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