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We consider a multiperiod single product pricing problem with an unknown demand curve. The seller’s
objective is to adjust prices in each period so as to maximize cumulative expected revenues over a given

finite time horizon; in doing so, the seller needs to resolve the tension between learning the unknown demand
curve and maximizing earned revenues. The main question that we investigate is the following: How large of a
revenue loss is incurred if the seller uses a simple parametric model that differs significantly (i.e., is misspecified)
relative to the underlying demand curve? We measure performance by analyzing the price trajectory induced by
this misspecified model and quantifying the magnitude of revenue losses (as a function of the time horizon)
relative to an oracle that knows the true underlying demand curve. The “price of misspecification” is expected to
be significant if the parametric model is overly restrictive. Somewhat surprisingly, we show (under reasonably
general conditions) that this need not be the case.
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1. Introduction
The famous industrial statistician George E. P. Box is
widely credited for the saying

All models are wrong, but some are useful.

A direct read of the first part of the statement is that
all mathematical models are abstractions of reality and
as such can only capture some of its salient features; in
other words, they are inherently misspecified relative
to the true underlying system/phenomenon that is
being studied. There exists a rather vast literature
in statistics/econometrics that addresses this point
and develops extensions of classical estimation theory
to misspecified contexts; see White (1996) and refer-
ences therein. Yet, to the best of our knowledge, most
operations research/management science–type studies,
where decisions and control rules are usually a result of
optimizing an objective function that explicitly builds
on a system model, ignore the possibility of said model
being incorrectly specified. Our focus in this paper is
on the latter part of Box’s statement, illustrating how
it might apply in such settings. This will be done in
the context of a prototypical dynamic decision-making
problem whose details are described next.

1.1. The Problem and Key Questions
We consider a monopoly offering a single product and
operating in a stationary demand environment. Over
the time horizon of interest, the seller can modify the

price of the product, and this can only be done at
predetermined epochs; we index the periods between
such epochs by t ≥ 1. We let pt denote the price offered
during the t-th period, and we let Dt denote the
corresponding realized demand. We assume that the
mean value of Dt conditional on price is given by a
deterministic function �4 · 5 (aka the demand curve). The
seller’s objective is to sequentially set prices with the
intent of maximizing cumulative expected revenues.

We consider this dynamic optimization problem with
the added complication that the true demand curve,
�4 · 5, is not known to the seller. A common approach
would then be to postulate a demand model and over
time jointly infer its structure from observed demand
realizations while concurrently optimizing revenues.
This variant of dynamic pricing problems, often referred
to as the problem of learning and earning, has a long
and storied history, dating back to the pioneering work
of economists such as Rothschild (1974), and it has
been the focus of significant recent work in economics,
computer science, and operations research. Most of this
work makes a significant simplifying assumption: the
seller is assumed to know the structure of the demand
curve, up to a finite number of unknown parameters.
In other words, the demand model postulated by the
seller is well specified with respect to the underlying
demand curve. There are very few papers that avoid
making this assumption, and they propose to address
the potential for model misspecification using standard
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approaches in nonparametric statistics: by judiciously
expanding the scope and complexity of the model as
further data become available (using higher-degree
polynomials, more complex smoothing splines, etc.),
it is possible to approximate a very broad class of
functional relationships representing the underlying
demand curve. Roughly speaking, misspecification is
made to vanish, asymptotically. For further discussion
the reader is referred to §1.3, which contains a review
of the relevant literature.

The focus of this paper is quite different. Rather than
striving to eliminate misspecification in the manner
described above, we make it even more pronounced
by assuming that the seller adopts an exceedingly
simple parametric model for the demand curve—in
particular, the widely used linear model. With that as a
given, we would like to better understand whether,
when, and to what extent this simple and incorrect
model does support “good” pricing decisions, a more
direct interpretation of Box’s statement above. In so
doing, we restrict attention to a simple class of pricing
policies, which are abstracted away from practice, and
is in line with typical policies designed for the well-
specified cases. These policies operate in a semimyopic
manner: they loop through estimation and optimization
steps, and they price to optimize immediate revenues
given current model estimates while performing some
minimal price experimentation. Despite their simple-
minded and incorrect predicate—a linear demand
model—the aforementioned pricing policies will be
seen to be, somewhat surprisingly, quite “useful.”

1.2. Main Findings and Qualitative Insights
We start with the following thought experiment. Sup-
pose that a good policy is constructed based on the
linear model assumption in a well-specified setting
(namely, when the underlying demand curve is linear
as well). How will this policy perform in an envi-
ronment in which the demand curve is no longer
well specified—that is, when it differs from the linear
modeling assumptions?

We first explore this question numerically and, quite
surprisingly, find that the policy performs remarkably
well over a reasonable range of scenarios (several
hundred simulated problem instances) in spite of said
misspecification. Motivated by these observations, the
remainder of this paper explores the underlying theory
that helps explain these numerical findings.

Mimicking this numerical experiment, the departure
point for our theoretical investigation is a family of
good policies designed in the well-specified setting
(when the demand curve is unknown but matches
the modeling assumptions); such policies have been
identified in the literature (see §1.3) and have the
semimyopic structure discussed earlier. This broad family
of pricing policies that are based on a linear demand

model gives rise, under reasonably general conditions,
to several interesting conclusions.

First, pricing decisions generated by these policies
converge (in a suitable sense), in spite of model mis-
specification, to the optimal price corresponding to the
true underlying demand curve (Theorem 1). Second,
going beyond the property of consistency outlined
above, we prove a result that at first glance may seem
rather remarkable: the above-mentioned policies accu-
mulate revenues at a rate that is (asymptotically) close
to optimal (Theorem 2), despite their very simple
structure and the fact that they are predicated on an
incorrect demand model. To punctuate this point, note
that even if the seller were to know a priori what the
parametric structure of the demand curve is (assuming
it even belongs to a parametric family), this knowl-
edge, and the customization of the pricing policy to
it, provides only limited (asymptotic) performance
gains. (It is worth emphasizing that the yardsticks we
use to measure performance, consistency and growth
rate of the regret, are widely used analytical measures
of first- and second-order performance to benchmark
policies in the well-specified setting.) It is in this sense
that the term “sufficiency” that appears in the title of
the paper and elsewhere is used in reference to the
linear model class and its performance in the dynamic
pricing problem.

The above theory allows us to tease out the key
ingredient in mitigating the impact of misspecification:
roughly speaking, the interleaving of estimation and
optimization cycles in the “proximity” of the perceived
optimal price point results in price steps that are in
the direction of the gradient of the true underlying
revenue function. To bring this point to full focus, we
further discuss the relationship with other gradient
methods in §3.3. One should emphasize here that the
linear demand model that is adopted as a primitive in
these policies is not crucial. Similar results hold for
many parametric classes of demand models, including
many commonly used families such as exponential
and logit. We further comment on this point in §5.3.

To complement the above findings, we highlight
some potential pitfalls associated with model misspeci-
fication and their implications. Roughly speaking, we
demonstrate that if the demand model is not sufficiently
flexible (e.g., it has only a single degree of freedom), the
positive behavior reported above does not continue to
hold; the sequence of resulting prices might converge
to a strictly suboptimal value or even oscillate over
time (see Proposition 1 in §5.1 and the discussion
that follows). The oscillatory behavior illustrates that
even in a completely stable (stationary) environment,
a monopolist that is regularly recalibrating its model
might (falsely) conclude that the demand environment
is changing temporally, although the price changes
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are in fact driven by a mismatch between the adopted
model and the ambient demand curve.

In summary, the high-level contribution of this paper
is twofold. From a theoretical standpoint, the paper
identifies how incorrect models may lead to correct pric-
ing decisions under fairly general assumptions. From a
more practical viewpoint, it provides some justification
for the prevalent use of simple parametric models
because it establishes that the “price of misspecification”
may not be as high as one might expect. In particular,
it highlights the role of the estimation/optimization
cycles, the typical core elements of any pricing algo-
rithm, in mitigating the impact of misspecification. It is
worth noting that the conclusions of this paper may
extend beyond the pricing application; this point will
be discussed in further detail in §2 and in Appendix A.

We finish this section with a review of related work.
The next section formulates the problem and presents
a motivating experiment. Section 3 establishes the
main result on consistency of pricing decisions derived
from misspecified models, and §4 analyzes the more
refined revenue-optimality properties of the class of
policies under consideration. A discussion of the main
findings, modeling assumptions, and future directions
is presented in §5. All the proofs of the results are
collected in Appendices A, B, and C.

1.3. Review of Related Work
As alluded to earlier, one of the first papers to for-
mulate and study the dynamic pricing problem with
an unknown demand curve was that of Rothschild
(1974), which used a bandit-type formulation to study
optimal pricing strategies. There have been extensive
follow-ups, extensions, and generalizations of this
work, primarily in the economics literature. The prob-
lem has received significant recent attention in the
operations research/management science community,
primarily focusing on the setting where the seller
knows the structure of the unknown demand curve
up to some finite (and small) number of parameters.
The focus of these papers has mostly been on the
design of policies that suitably balance the exploration-
exploitation trade-off inherent to the problem (see, e.g.,
Broder and Rusmevichientong 2012, Harrison et al.
2012, den Boer and Zwart 2014, Keskin and Zeevi
2014). In the terminology of the present paper, all
of the above studies consider the well-specified case.
There are far fewer studies that consider the situation
where the demand curve can not be represented as a
function that is parameterized with a finite number
of parameters. Besbes and Zeevi (2009) consider this
problem and propose to address it using standard
approaches from nonparametric statistics—namely, by
building a sequence of models that are in essence
“finitely parameterized” and judiciously growing the
complexity of these models as more demand obser-
vations become available; see also Wang et al. (2014)

for further improvements on those results. We refer
the reader to Araman and Caldentey (2011) for a more
recent review paper on the topic. The issue of model
misspecification, and its potential negative implications,
has surfaced in several recent papers: see, for example,
Cachon and Kök (2007) (in a newsvendor context) and
Mersereau and Zhang (2012).

Our work differs markedly from the streams of work
outlined above. Taking as our departure point that
most models tend to be misspecified, the present paper
attempts to provide some explanation for the reasons
simple models might perform reasonably well in a
broad set of scenarios. From a philosophical standpoint,
this is somewhat related, at least in spirit, to a study
by Dawes (1979) that emphasizes the usefulness of
improper linear models in the context of clinical pre-
diction. One of the main points that the current paper
attempts to elucidate is the fundamental distinction
between capturing the “correct” model and arriving
at the correct decision, a point that was the focus in
Besbes et al. (2010), Chehrazi and Weber (2010), and
Kao et al. (2009).

Most closely related to our work are probably Cooper
et al. (2006) and (2009). These papers also focus on
the interplay between misspecification and decisions
in the context of estimation/optimization cycles. The
emphasis in Cooper et al. (2006) is on potential negative
aspects of misspecification (the spiral-down effect)
in the context of capacity booking problems, but the
authors also identify some special cases in which deci-
sions end up being optimal despite the presence of
misspecification. From a somewhat different angle,
Cooper et al. (2009) establish that in an oligopoly setting,
players that ignore the impact of their competitors deci-
sions (leading to some form of misspecification) may
end up in a better equilibrium than the one that would
arise had they predicated their actions on the true
model of competition. In the present paper, we establish
that in pricing problems, the impact of misspecifica-
tion is mitigated (if not completely eliminated) as a
result of judiciously designed estimation/optimization
cycles, and we shed some theoretical light on the main
elements contributing to this phenomenon.

2. Problem Formulation and
Motivating Experiment

2.1. The Model
We consider a multiperiod single-product pricing prob-
lem where a seller (acting as a monopolist) needs to
set prices, pt , in each period t = 1121 0 0 0, chosen from a
set of feasible prices given by the interval 6p4l51p4h57.
As described in §1, the aggregate market response at
time t to the posted price pt is given by

Dt = �4pt5+ �t1 t ≥ 11 (1)
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where �2 �+ →�+ is a deterministic function represent-
ing the mean demand conditional on the prevailing
price, and �t is a zero-mean random variable with
finite variance representing demand shocks. We assume
that the random variables �t , t ≥ 1 are independent
and identically distributed. We denote by ç the class
of all admissible pricing policies available for use by
the seller. Each policy is represented by a sequence
� = 4p11 p21 0 0 05, where each entry within the sequence
is restricted to depend only on past demand obser-
vations and past decisions; namely, pt is adapted to
the filtration generated by 4p11 0 0 0 1 pt−11D11 0 0 0 1Dt−15
for t ≥ 1.

In our setting, the demand curve, �4 · 5, is not known,
and the seller can only learn about it indirectly by
observing market response to offered prices. In other
words, the seller is faced with the joint problem of
learning demand while concurrently trying to max-
imize revenues—the so-called learning-and-earning
problem. We assume throughout that �4 · 5 is positive,
strictly decreasing, and twice continuously differen-
tiable on the price domain 6p4l51 p4h57, and we denote by
�−14 · 5 its inverse on 6�4p4h551�4p4l557. In addition, we
assume that the revenue function r4p5= p�4p5 admits a
unique maximizer p∗ ∈ 4p4l51 p4h55. Instances of families
of demand functions satisfying such assumptions are
given in Example 1 in §3. Clearly, if the seller were
to know �4 · 5 prior to the start of the selling season,
he would simply set pt ≡ p∗ for all times t ≥ 1, hence
maximizing the per-period expected revenues.

Remark. For mathematical purposes and for the
results to come, it is not necessary to assume that
�4pt5 + �t ≥ 0 almost surely for all possible prices.
However, this is an assumption that would hold in
the pricing application we consider. We note that
independence and homogeneity of the 8�t9 sequence
can be relaxed in various ways. For example, if for
each time index t we let �t depend on the past only
through the current price pt (and hence form a mar-
tingale difference sequence relative to the history
of past prices and demand realizations), this would
cover additional dynamic pricing settings and still
lend itself to the analysis methods we employ in this
paper. To that end, the lack of homogeneity can be
controlled by assuming a slight variation on Assump-
tion 1 (which will be advanced shortly): for some
�> 0, there is a function �4s5 thrice continuously dif-
ferentiable on 4−�1�5, such that for any pt ∈ 6p4l51 p4h57,
Ɛ6exp8s�t9 � pt7≤ exp8�4s59 for all s ∈ 4−�1�5.

2.2. Performance Metric
The efficacy of any admissible policy will be measured
in two ways. The first (and more rudimentary) mea-
sure examines the long-term behavior of the prices
generated by the policy and assesses whether the
sequence of prices converge to the true optimal price

p∗ = arg max8r4p59. More specifically, a pricing policy is
said to be consistent if

pt → p∗ as t → �1 (2)

in probability.
It is fairly clear that the absence of consistency

renders essentially no hope of maximizing cumulative
expected revenues. At the same time, it is important
to note that consistency focuses on the asymptotic
behavior of the decision variable and thus has little
to say on how said decisions will impact generated
revenues over any finite time horizon. To address that,
we will also evaluate the expected cumulative revenues
generated by a policy � = 4p11 p21 0 0 05 over a given time
horizon T :

Ɛ�

[ T
∑

t=1

ptDt

]

1 (3)

where Ɛ�6 · 7 denotes the expectation operator with
respect to the true underlying statistical model (1)
under �. In particular, we will compare those to the
revenues generated by an oracle that knows the ambient
demand curve. More specifically, we define the regret
of any admissible policy � ∈ç as follows:

R4�1T 5 = p∗�4p∗5T − Ɛ�

[ T
∑

t=1

ptDt

]

0 (4)

Clearly, the smaller the regret, the better the perfor-
mance of a given policy, as the oracle revenues (first
term on the right-hand side above) are a strict upper
bound on the performance of any pricing policy. The
magnitude of the regret, and in particular the way it
scales as the time horizon increases, provides a more
refined lens to view the performance of a given policy.

2.3. The Class of Pricing Policies
We will focus on pricing policies whose salient fea-
tures are (i) modeling the demand curve with a linear
function whose two parameters need to be inferred
from demand observations and (ii) determining prices
at judicious time instants, called recalibration points,
by essentially maximizing a proxy of the revenue
function r4 · 5, which is constructed from the estimated
linear demand function. More specifically, the proposed
policies operate in stages, the terminal point of each
stage corresponding to a recalibration point. At the
commencement of each stage, which we index by i
for i = 1121 0 0 0 1 the seller has an estimate of (what he
considers to be) the optimal price p̂i. The seller then
sets two prices to be used at stage i, the values of which
are suitable perturbations of p̂i. Each such price will be
used for Ii periods. At the end of stage i, estimates of
the model parameters 4�1�5 are updated using least
squares regression based on a subset of past observa-
tions, whose indices will be denoted by Ti. The seller
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then computes the next estimate of the revenue maxi-
mizing price p̂i+1, and the process repeats indefinitely,
or until the end of the time horizon. Let P2 � → �
be the projection operator on 6p4l51 p4h57, defined for all
x ∈� as P4x5= min8max8x1p4l591 p4h59. The algorithm
below provides a detailed description.

Semimyopic pricing scheme: �̂4p̂11 8Ii1�i1Ti2 i ≥ 195
Set t1 = 0.
For i ≥ 1:

Step 1. Pricing and information collection
Set prices

pt = p̂i1 t = t + 11 0 0 0 1 t + Ii1

pt = p̂i + �i1 t = t + Ii + 11 0 0 0 1 t + 2Ii0

Set ti+1 = ti + 2Ii.
Step 2. Recalibration

4�̂i+11 �̂i+15 = arg min
�1�

{

∑

t∈Ti

6Dt − 4�−�pt57
2

}

0 (5)

Step 3. Reoptimization

p̂i+1 = P

(

�̂i+1

2�̂i+1

)

0 (6)

The above family of policies is predicated on a simple
(linear) demand model, which is most likely misspeci-
fied relative to the ambient demand curve. In addition,
it combines estimation and optimization in a man-
ner that is effectively identical to how these elements
would be executed in the well-specified setting. To that
end, the structure proposed above is abstracted away
from common practice in applied revenue management.
The common working assumption there is to adopt a
simple parametric family as a demand model, linear
models being a prototypical example, and “solve” the
dynamic optimization problem (see (3)) by separating
and cycling between estimation and optimization (see,
for example, Phillips 2005, §11.5), essentially invok-
ing a type of certainty equivalence principle while
concurrently conducting proper price experimentation.

In more recent papers on learning and pricing, Broder
and Rusmevichientong (2012) and den Boer and Zwart
(2014) propose policies that are shown to have desirable
theoretical properties, in the sense that they achieve
(or almost achieve) the minimum rate of growth of
the regret (4) with respect to the time horizon. More
broadly, Keskin and Zeevi (2014) establish simple suffi-
cient conditions for a policy to achieve the best possible
growth rate of regret. In essence, that theory stipu-
lates that myopic-type pricing policies are “optimal”
provided that statistical information on the parameter
estimates (in the sense of Fisher) accumulates at a
suitable rate, but the deviations that this forces from
myopic decisions do not happen too frequently. In

particular, when Ii = 1, Ti = 811 0 0 0 1 ti+19 and �i = t−1/4,
the policy above is among the simplest instances that
essentially satisfies these two sufficient conditions
in Keskin and Zeevi (2014, Theorem 2)1 and can be
thought of as a simplified version of the controlled
variance policy proposed in den Boer and Zwart (2014).

2.4. An Illustrative Numerical Experiment
The main question that we will start pursuing, in this
section numerically and later theoretically, is, what is
the impact of basing a pricing policy on an incorrect
demand specification—specifically, a linear model—
when the true underlying demand curve (according to
which observations are generated) is different?

Consider the policy �̂, which is designed based
on the premise that the linear model is well specified.
We examine the performance of this policy in three
demand curve environments (for the sake of simplicity,
these are normalized to be between 0 and 1):

1. linear: L1 = 84� − �p5+92 � ∈ 6�1 �̄71� ∈ 6�1 �̄7,
where 6�1 �̄7 = 6008117 and 6�1 �̄7 = 6002117 (a well-
specified setting);

2. exponential: L2 = 8exp8�− �p92 � ∈ 6�1 �̄71� ∈

6�1 �̄79, where 6�1 �̄7= 6−002107 and 6�1 �̄7= 6003117 (a
misspecified setting); and

3. logit: L3 = 8exp8�−�p9/41 + exp8�−�p95−12 � ∈

6�1 �̄71�∈ 6�1 �̄79, where 6�1 �̄7= 60117 and 6�1 �̄7=
6005117 (a misspecified setting).

For each of the above specifications, Li, i = 11213,
we take 500 draws from the parameters � and �
according to a uniform distribution on 6�1 �̄7 and 6�1 �̄7,
respectively. Each draw determines the parameters
for the demand curve in that particular instance. We
then pit that against our proposed policy, which is
oblivious to the correct specification and is predicated
on the two-parameter linear model. We simulate a
sample path under the ambient demand curve and
policy and compute the fraction of oracle revenues that
are achieved:

∑T
t=1 ptDt

p∗�4p∗5T
3

the higher this ratio, the better the performance of the
policy. Note that there are two sources of loss: statistical
error that stems from real time inference of model
parameters and a misspecification error that impacts
performance in the latter two demand curve instances,
when the linear model used for the policy is incorrectly
specified.

In Table 1, we report the average ratio over the
500 instances for each case. The random variables �t

are assumed to be normally distributed with standard
deviation � , and we assume that the policy uses block

1 A formal verification is provided in Remark C1 in Appendix C for
the case in which �t values are uniformly bounded almost surely.
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size Ii = 1, Ti = 811 0 0 0 1 ti+19, with initial price p̂1 = 1
and with �t = �t−1/4. We test different values of noise
variance �2 and tuning parameter �. Throughout, we
fix the price domain to be 6p4l51 p4h57= 60157.

Focusing on the columns of Table 1 corresponding
to the well-specified case (draws from the linear class
L1), one observes that the policy performs very well.
This is not surprising and simply confirms the the-
ory and numerical experiments developed in more
recent literature; see Broder and Rusmevichientong
(2012), den Boer and Zwart (2014), and Keskin and
Zeevi (2014).

Turning attention to columns corresponding to the
misspecified cases, L2 and L3, the performance of the
policy is still surprisingly very good and on similar
order to the fraction of optimal revenues achieved
in the well-specified setting. In other words, in terms
of the two sources of revenue losses highlighted above,
the extent of losses that stem from misspecification
appear surprisingly small. The rest of the paper focuses
on identifying the drivers for this phenomenon and
developing pertinent theory.

Remark (A More General Problem Formulation).
The dynamic pricing problem presented above is a
special instance of a more general class of problems in
which the decision maker seeks a decision x in some
feasible compact set X⊂� to optimize an objective
function that directly depends on some unknown
response function �4x5. That is,

max
x∈X

G4x1�4x550 (7)

Here, G4 · 1 · 5 is the objective function, and conditional
on selecting xt in period t, the decision maker has only
access to noisy observations of �4xt5 given by �4xt5+�t ,
with �t independent and identically distributed random
variables with zero mean and finite variance. In the
pricing problem, G4x1y5 = xy. Although the paper
focuses on the pricing application, we keep the proofs
at an abstract level and show how these apply to (7)
above under appropriate conditions imposed on the
mapping G4 · 1 · 5.

3. Consistency of the Price Process
Motivated by the illustrative numerical example
detailed in the previous section, we now seek to
develop some theory to buttress the observations
gleaned from that experiment. For the purposes of the
analysis, we will focus on policies �̂ that “forget” about
past data. In particular, from here on we assume that
Ti = 8ti + 11 0 0 0 1 ti+19; i.e., the parameter recalibration
step (5) uses only the most recent data. This restriction
is made for tractability purposes and enables us to
highlight the main effects at play in a transparent
fashion.

3.1. Theory
For the purpose of our main result, we impose the
following conditions.

Assumption 1. (i) For some � > 0, Ɛ6exp8s�197 < �

for all s ∈ 4−�1�5.
(ii) For all p ∈ 6p4l51 p4h57, 41/25�4p5��′′4p5�/4�′4p552 < 1.

The first condition ensures that the demand shock
distribution is suitably “light tailed,” which greatly
facilitates analysis (examples of standard distributions
satisfying this property include Bernoulli, Normal,
Exponential, and Poisson). The latter condition imposes
some shape restrictions on the true underlying demand
function. Although there is no direct economic inter-
pretation of this condition, it is satisfied for a large
class of widely used demand functions, as seen below.

Example 1 (Models Satisfying Assumption 1(ii)).
1. Linear models: If �4p5= a− bp, then 41/25�4p5�

�′′4p5�/4�′4p552 = 0, and the assumption is always
satisfied.

2. Exponential models: If �4p5= exp8a− bp9, then
41/25�4p5��′′4p5�/4�′4p552 ≤ 41/25 < 1, and the assumption
is always satisfied.

3. Logit models: If �4p5= exp8a−bp9/41+exp8a−bp95,
then �′4p5= −b�4p561 −�4p57, and

1
2
�4p5��′′4p5�

4�′4p552
=

1
2

∣

∣

∣

∣

1 − 2�4p5
1 −�4p5

∣

∣

∣

∣

3

hence the assumption is satisfied as long as �4p5 < 3/4
for all p ∈ 6p4l51 p4h57.

We next analyze in detail the sequence of prices
generated by the class of policies. In the context of
the semimyopic pricing schemes, the least squares
estimates of 4�1�5 are given by

�̂i+1 = −

∑ti+1
t=ti+14pt − p̄i54Dt − D̄i5
∑ti+1

t=ti+14pt − p̄i5
2

1 (8)

�̂i+1 = D̄i + �̂i+1p̄i1 (9)

where

D̄i =
1

2Ii

ti+1
∑

t=ti+1

Dt1 and p̄i =
1

2Ii

ti+1
∑

t=ti+1

pt0

The next result shows that if the sequence of batch
sizes corresponding to recalibration points is suitably
chosen, the resulting sequence of prices 8p̂t2 t ≥ 19 will
be consistent.

Theorem 1 (Consistency). Let Assumption 1 hold.
Suppose that in the linear-model semimyopic policy �̂,
Ti = 8ti + 11 0 0 0 1 ti+19, �i → 0, and �iI

1/2
i / log4Ii5→ � as

i → �. Then, for any initial price p̂1, the sequence of prices
8pt2 t ≥ 19 generated by �̂ converges in probability to the
true revenue-maximizing price p∗.
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Table 1 The Impact of Misspecification

Well specified Misspecified

Demand functions L1 (linear) L2 (exponential) L3 (logit)

Time periods 4T 5 Time periods 4T 5 Time periods 4T 5

� 100 500 103 100 500 103 100 500 103

� = 0025 0025 0090 0094 0095 0091 0094 0095 0084 0090 0092
005 0087 0093 0095 0093 0096 0096 0087 0093 0095
0075 0079 0088 0091 0094 0096 0097 0091 0095 0096

� = 005
0025 0083 0089 0091 0082 0087 0089 0069 0077 0080
005 0080 0088 0091 0087 0092 0093 0076 0084 0087
0075 0074 0084 0087 0090 0094 0095 0081 0088 0091

Notes. Fraction of optimal (oracle) revenues achieved by the linear-based pricing policy, averaged over a set of 500 random test instances. The standard error of the
mean was always below 0.0125.

In other words, under the above conditions, a two-
parameter linear model, in conjunction with the rather
simple structure of the semimyopic pricing policy, guar-
antees that the resulting sequence of prices recovers the
optimal price corresponding to the true (and unknown)
underlying demand curve, regardless of the functional
form of the latter.

3.2. Basic Intuition Underlying Theorem 1
The proof of Theorem 1 relies on establishing that the
mapping from the estimate of the price decision in
stage i, p̂i, to the estimate of the price decision in stage
i+ 1, p̂i+1, is some perturbation of a contraction and
that the contraction admits p∗ as a unique fixed point.
This enables us to establish the convergence of p̂i to p∗.
To flesh out some of the key ideas and intuition that
underlie the result, it will be conducive to consider a
setting in which �t = 0 for all t ≥ 1 and assume that
Ii = 1.

Suppose that the demand curve is given by a logit
function �4p5 = exp8401 − p9/41 + exp8401 − p95. Let
�i = i−1. With an initial price estimate of p̂1 = 8, we
depict in Figure 1, panel (a) the true demand curve
as well as the estimated demand models at times 2,
3, and 30. The corresponding revenue functions are
shown in Figure 1, panel (b).

Although the fitted demand model and correspond-
ing revenue function do not coincide with their true
underlying counterparts, we do observe that as time
goes by, the fitted revenue function and true revenue
function grow closer in the region around p∗, the price
that maximizes revenues of the true revenue function.
This “local convergence” is exactly what allows the
seller to tease out a near-optimal price decision from a
wrong model.

From a technical standpoint, Assumption 1(ii) is
the key ingredient in establishing a contraction-type
property of the mapping that generates the pricing
decisions. Among other things, this ensures systematic

convergence of the price sequence regardless of the
initial condition. Having said that, the question of why
the limit is in fact p∗ = arg maxp∈6p4l51 p4h578p�4p59 remains
open.

3.2.1. Why Is the Limit Point p∗ the Maximizer of
the True Revenue Function? We outline the intuition
behind this below. Absent noise, it is straightforward
to establish that

�̂i+1 = −
�4p̂i + �i5−�4p̂i5

�i

1 (10)

�̂i+1 = �̂i+1p̂i +�4p̂i51 (11)

p̂i+1 =
�̂i+1

2�̂i+1

0 (12)

Now suppose that p̂i converges to some limit p̃. By (10),
it must be that the sequence �̂i converges to �̃, where
�̃= −�′4p̃5. Similarly, the above, in conjunction with
(11), implies that �̂i converges to �̃, where �̃= �̃p̃+�4p̃5.
Equation (12) now implies that p̃ must satisfy the
following:

p̃ =
�̃

2�̃
=

p̃

2
−�4p̃5

1
2�′4p̃5

3

i.e., p̃ satisfies p̃+�4p̃5/�′4p̃5= 0, which is exactly the
first-order condition for revenue maximization when
the demand function is �4p5. This equation admits p∗

as a unique solution by assumption. Hence, it must be
that p̃ = p∗, and the limit can only be the price that
maximizes the true revenue function.

The above arguments ignore the noise associated
with the observations. Note that, in general,

�̂i+1 = −�′4p̂i5+O4�i5+
1
�i

1
2Ii

ti+1
∑

t=ti+1

�t1

where we use O4�5 to represent a quantity that is
of order �. Now, 42Ii5−1∑ti+1

t=ti+1 �t will be “close” to
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Figure 1 (Color online) Convergence of the Price Process When Fitting Two Parameters
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Notes. The demand curve is given by a logit exp8401 − p9/41 + exp8401 − p95. The fitted model is linear given by �− �p. The price process is started at various
initial prices.

zero, and using an exponential bound, we can show
that, with high probability, it will be bounded above
by a factor of log4Ii5/I

1/2
i . As a result, as long as �i

converges to zero and the batch sizes are such that
�−1
i log4Ii5/I

1/2
i converges to zero as i grows large (the

condition required in the theorem), then �̂i+1 ≈ −�′4p̂i5
as i grows large. Roughly speaking, this condition
ensures that the deterministic skeleton argument we
presented first continues to hold when one accounts
for the noise associated with the observations.

3.2.2. A Different Lens Through Which to View
the Convergence to p∗. Let us examine closely the price
sequence produced by the linear-based semimyopic
pricing policies, focusing for transparency on the case
where there is no noise (�t ≡ 0). Approximating terms
up to �i factors, the estimation step leads to

�̂i+1 ≈ −�′4p̂i51

�̂i+1 ≈ �4p̂i5+ �̂i+1p̂i0

The optimization step yields the price in stage i+ 1,
which is given by (assuming it is interior)

p̂i+1 ≈
p̂i
2

−
�4p̂i5

�′4p̂i5

= p̂i +
1

−2�′4p̂i5
6�4p̂i5+ p̂i�

′4p̂i570

In other words, the price sequence roughly satisfies the
recursion

p̂i+1 ≈ p̂i +
1

−2�′4p̂i5
r ′4p̂i51 i ≥ 10 (13)

Hence, in each iteration, the estimation/optimization
cycle produces a price point that follows the gradient of
the true revenue function, and the step size is approxi-
mately given by 1/�2�′4pi5�. Consequently, in spite of
model misspecification, the estimation/optimization
cycles naturally yield a direction of improvement in the
underlying objective function. We further explore con-
nections to gradient methods in the next subsection.2

3.3. Relation to Gradient Methods
Given the discussion above, a natural question is
whether (13) is a variant of classical stochastic approxi-
mation. The method of stochastic approximation, specif-
ically the Kiefer–Wolfowitz (KW) algorithm of Kiefer
and Wolfowitz (1952), is perhaps the most general
“model-free” approach for solving the dynamic pricing

2 In the absence of noise and derivative approximation, determin-
ing conditions for convergence of the price process is akin to
determining the stability of the dynamic price process. Let H4p5=

p− 41/42�′4p555r ′4p5. The price process is locally stable if H ′4p∗5 < 1
and globally stable if �H ′4p5�< 1 for all p in the price domain. The
latter is exactly what Assumption 1(ii) ensures.
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problem under demand model uncertainty. In particu-
lar, fixing an initial price p1, that method produces the
following sequence of price updates:

pi+1 = pi + ai
4pi + ci5Di4pi + ci5− 4pi − ci5D

′
i4pi − ci5

2ci
1

i ≥ 11

where 8ai2 i = 1121 0 0 09 is the step size sequence, 8ci2 i =
1121 0 0 09 is the gradient differencing sequence, and
Di and D′

i are two successive (independent) demand
observations evaluated at the input prices pi + ci and
pi − ci, respectively. (Recall, conditionally, realized
demand is given by Dt = �4pt5 + �t , where �4 · 5 is
the true underlying demand function.) The recursion
above is effectively a steepest-ascent algorithm that
seeks to optimize the objective function r4p5 2= p�4p5
using noisy estimates of the gradient of the revenue
function in lieu of direct gradient observations. Under
suitable conditions on the primitive sequences, and
assuming strong concavity of the underlying objective
function, the price process can be shown to converge
to p∗ = arg min8r4p59.

Restricting attention again to the noise-free setting,
let us contrast (13) with the (noise-free) stochastic
approximation price recursion,

pi+1 ≈ pi + air
′4pi51 i ≥ 11

where in the above the notation “≈” is due to the
gradient approximation (also used in deriving (13)).
Comparing the above and (13), we see that, like its
stochastic approximation counterpart, the linear-based
semimyopic policy we analyze prescribes prices that
ultimately follow the direction of the gradient; however,
the method is not local and does not rely on a prescribed
sequence of step sizes. In particular, whereas the tuning
sequence 8ai9 in the context of stochastic approximation
is typically specified to be proportional to 81/i9, and
hence is monotonically decreasing, the step size in (13)
may be “large” and does not necessarily shrink with
the number of iterations; for further connections with
stochastic approximation variants with nonvanishing
step size, see, e.g., Nemirovski et al. (2009).

In settings where second-order (Hessian) informa-
tion is available, a prevalent iterative (deterministic)
optimization scheme is given by Newton’s method and
its variants (see, e.g., Bertsekas 1999). Adapting this to
our context, the sequence of price iterates generated by
the method would be given by

pi+1 = pi − r ′4pi5/r
′′4pi51 i ≥ 10

In essence, the recursion is predicated on approxi-
mating the objective function by a quadratic function
r4p5≈ r4pi5+ r ′4pi54p−pi5+ 41/25r ′′4pi54p−pi5

2, using
the local curvature parameters evaluated at pi, and

selecting the next price pi+1 so as to maximize this
approximation. Note that, here too, the step size is
variable and not predetermined as in the KW stochas-
tic approximation scheme. In contrast to the (zero-
noise) recursion corresponding to the linear-based
semimyopic policy, here the step size is inversely pro-
portional to the (negative) second derivative of the
objective function, whereas in the former the step
size is inversely proportional to twice the gradient
value. To better understand where this is derived
from, recall that the approximation underlying New-
ton’s method is given by r4p∗5+ 41/25r ′′4p∗54p− p∗52

and relies on the correctly specified first and second
derivatives of the objective function evaluated at p∗.
In contrast, the linear-based semimyopic policy is a
“first-order” method that uses the misspecified demand
model as a primitive. To that end, the approximation
of the revenue function at p∗ discussed in (10)–(12) is
given by r̃p∗4p5≈ 46�4p∗5− p∗�′4p∗57+�′4p∗5p5p. Note
that r̃ ′′

p∗4p∗5= 2�′4p∗5, which differs in general from the
second-order approximation r ′′4p∗5= 2�′4p∗5+ p∗�′′4p∗5.

In summary, the interplay of estimation and opti-
mization loops leads the firm to follow the (noisy)
gradient of the true underlying revenue function. This
is quite notable in that here we do not attempt to con-
struct a policy that is robust to misspecification in the
first place. Rather, the starting point is to understand
whether policies that are typically used for learning
and earning (and designed for well-specified scenarios)
suffer from misspecification.

4. Revenue Optimality
Having established consistency of price estimates
under fairly general conditions, we next investigate
the efficacy of these pricing decisions as measured
by cumulative revenue performance. Recall from (4)
that the regret R4�1T 5 measures the gap between the
performance of an oracle that has access to the true
underlying demand curve �4 · 5 and the performance of
any given (admissible) policy.

Let I0 denote some positive integer and � > 1 some
positive number, and define the following sequence of
block sizes:

Ii = ��iI0�1 i = 1121 0 0 0 0 (14)

Theorem 2 (Revenue Optimality). Let Assumption 1
hold. Suppose that in the linear-model semimyopic policy �̂ ,
Ti = 8ti + 11 0 0 0 1 ti+19, and the block sequence is selected
as in (14) with �i = I−1/4

i , i ≥ 1. Then, for an appropriate
value of �, for any initial price p̂1, the sequence of prices
8pt2 t ≥ 19 generated by �̂ satisfies

R4�̂1T 5 ≤ C4logT 52
√
T

for some positive constant C and all T ≥ 2.
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The result above establishes that the average revenue
loss per period, R4�̂1T 5/T , converges to zero. In other
words, the revenue gap between the oracle and the
proposed policy vanishes. The obvious question is
whether the size of this gap can be improved upon; the
smaller the size of the gap, the better the performance
of the policy. It stands to reason that if one has prior
knowledge on the structure of the demand curve—for
example, if it belongs to a parametric family that is
known a priori to the designer of the policy—then
the size of this gap could be reduced considerably.
Surprisingly, this intuition is essentially false. In a
recent paper, Keskin and Zeevi (2014) consider a well-
specified setting where the demand curve is a linear
function of two unknown parameters, and the seller
knows this structure, up to the values of the parameters.
They prove that no policy can have a revenue gap
(regret) that is smaller than order

√
T (uniformly over

all parameter values of the demand curve).3 In light
of this result, and that the growth rate of 4logT 52 is
negligible compared with

√
T , the somewhat surprising

conclusion is that the revenue performance of the
semimyopic linear-based pricing policies achieves a
growth rate in terms of regret that is close to optimal,
whether or not the linear model is misspecified relative
to the underlying demand curve.

The result above provides further theoretical evi-
dence of the limited impact of model misspecification
within the context of our dynamic pricing problem.
The specific structure of the policy that is used in
making this point is rather crude, insofar as it discards
“most” of past observations to reestimate parameters,
and concurrently, it relatively rarely reoptimizes prices.
We should clarify that this structure is imposed for
mathematical tractability; recalling the numerical exper-
iments presented in §2.4, it appears that aggregating
all the data (while resolving often) results in finite
time performance that is on par with, or close to, that
achieved in the well-specified setting. With regard
to the tuning of the policy in the above result, and
the intuition underlying this, recall from Theorem 1
that to have consistency we need that �−1

i log4Ii5/I
1/2
i

converges to zero, which is satisfied with the above
policy tuning specification. The proof of Theorem 2
establishes that the regret in the ith batch is bounded
by O4log4Ii−15I

−1/2
i−1 Ii + �2

i Ii5. The first error term stems
from the error still present from the previous inference
batch, and the second source of error stems from the
losses due to price experimentation in the current
batch. The selection of �i taken in Theorem 2 minimizes
the growth rate of this loss, up to logarithmic terms.
This selection of �i could be seen as ensuring that the

3 We conjecture that the 4log T 52 term in the upper bound in Theorem 2
is an artifact of proof technique and that it is possible to improve the
bound by eliminating this term.

cumulative squared price variation used in any batch
of size Ii is of order

√

Ii, which is a similar requirement
to the one made in the well-specified case (see Keskin
and Zeevi 2014).

4.1. Numerical Performance
We have conducted experiments over a large set of
scenarios with regard to the constant associated with
Theorem 2. The constant appeared to lie somewhere
between 1 and 12 for the policy that does not aggregate
all observations (the one analyzed theoretically) and
decreases for the policy that aggregates all observa-
tions. In the theoretical policy proposed, there are
three sources of losses: one as a result of the lack of
aggregation of data, one as a result of misspecifica-
tion, and another as a result of the structure of the
policy that updates decisions relatively rarely (only
order logT times, as opposed to, say, order T for the
controlled variance pricing (CVP) policy in den Boer
and Zwart 2014). Testing the exact performance of
such a policy does not allow for teasing out the dif-
ferent sources of losses and hence provides limited
information. Already in the well-specified case, Broder
and Rusmevichientong (2012) separate the theoretical
analysis of the maximum likelihood estimate (MLE)
cycle (which only uses exploration samples) and the
practical testing of the policies, which then aggregate
all samples: performance is significantly improved
when aggregating all the data. We observe the same
here. If one were to tune of the parameters of the
policy, a possible approach would be to generate a
large number of demand curve scenarios that one
could face, simulate the performance under those for
the time horizon of interest using different parameter
selections, and pick the parameters that lead to the
best performance among those scenarios.

5. Discussion
5.1. The Need for Two Parameters
In earlier sections we have witnessed that a simple
family of policies that is predicated on a two-parameter
linear model can effectively achieve excellent perfor-
mance (theoretically as well as numerically) despite
the fact that the underlying demand curve is not linear.
It turns out that having two degrees of freedom in the
model used by the policy is critical.

Consider the case where the model used by the
policy is restricted to a single parameter. For concrete-
ness, suppose the value of the intercept � is fixed
a priori; i.e., �̂t = �̃ for all t ≥ 1. To isolate the effect
of misspecification and disentangle it from the fact
that observations of the demand curve are confounded
by statistical noise, we again consider the zero-noise
setting, �t ≡ 0 for all t ≥ 0.

Consider the simple semimyopic pricing policy
described in the previous section, with stages of length
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Ii = 11 i≥ 1, which uses only one price at each stage
given by p̂i. (Note that in the well-specified case, if a
single parameter is unknown, then there is no need
for two prices to be used for model calibration.) It is
then straightforward to establish that the sequence of
estimates and prices satisfies for t ≥ 1

�̂t+1 =
�̃−�4p̂t5

p̂t
1 (15)

p̂t+1 =P

(

4�̃/25p̂t
�̃−�4p̂t5

)

0 (16)

5.1.1. Behavior of the Price Process. Based on (16),
it is evident that behavior of the sequence of prices gen-
erated by the policy will be determined by properties
of the mapping x 7→P44�̃/25x/4�̃−�4x555, and if prices
converge, it can only be to a fixed point of this mapping.
This allows us to characterize the unique possible limit
point associated with the sequence 8p̂t2 t ≥ 19.

Proposition 1 (Limit Points). Suppose that �4p4l55 <
�̃. Consider the sequence of prices 8p̂t2 t ≥ 19 generated by
the semimyopic pricing policy with Ii = 1. If 8p̂t2 t ≥ 19
converges, then the only possible limit point is p̌ given by

p̌ = P4�−14�̃/2550 (17)

The condition �4p4l55 < �̃ precludes the situation
where the true demand curve and estimated demand
model may never cross on the price domain for any
parameter value (if �4 · 5 decreases “slowly”). It is
straightforward to check that if �4p5 = �̃ − �p for
some � > 0, and hence the model is well specified,
then p̌ = p∗, and thus the limit point is the price that
maximizes the true revenue function. If, however, the
model is misspecified, then p̌ and p∗ will in general
differ, and hence even if prices converge, the generated
revenues will be strictly suboptimal in almost all time
periods.

The result above leaves open the question of estab-
lishing convergence. In Example 2 in Appendix B, we
illustrate that convergence may not take place and the
price path may oscillate indefinitely over time. The
reader may question whether such an example, via
the choice of demand models and specific parameter
values, is pathological in some way and potentially not
representative. It is, in fact, possible to further analyze
the properties of the price process and establish a
relationship between the local stability of that process
and the elasticity of the underlying demand curve at
the limiting price—namely, E�4p̌5= −p̌�′4p̌5/�4p̌5. In
particular, it can be shown that whenever E�4p̌5 < 2,
the price process will be locally stable, and whenever
E�4p̌5 > 2, it will be unstable. We do not document the
proof of these results here because the purpose of this
section is mainly illustrative.

We note that the convergence of prices to a sub-
optimal price can be interpreted as a form of the
“spiral-down effect,” related in spirit to the study of
Cooper et al. (2006), that analyzes a booking limit
capacity allocation problem. There, the failure to prop-
erly model the distributions of arrival classes is the
main driver behind this behavior.

It is worthwhile to contrast the observations above
to existing results regarding the lack of convergence of
prices to an optimal price in the presence of demand
learning. Convergence of the price process to a sub-
optimal limit point (i.e., not the optimal price) may
take place even in the more favorable setting where
the demand curve belongs to a parametric family,
and the seller therefore knows the structure of this
demand curve up to the value of some finite number
of unknown parameter. The driver behind this incom-
plete learning phenomenon is essentially the presence
of an indeterminate equilibrium; roughly speaking,
this is a point in parameter space that serves as an
attractor for the dynamical system generating price
updates, and at that point, no further information can
be learned about the unknown parameter values. The
reader is referred to McLennan (1984) and Harrison
et al. (2012) for further discussion. In the context of
the present section, the phenomenon is very differ-
ent: the driver of suboptimal pricing as outlined in
Proposition 1 is primarily the mismatch between the
functional form of the (true) demand curve and the
demand model used by the seller. In particular, if the
demand model was well specified, convergence to p∗

would always take place (in a single iteration when
there is no noise). The oscillatory behavior discussed
above appears to be a novel phenomenon, at least in
the context of monopoly pricing. Somehow relatedly, in
the context of competition, rich structures of price best-
response dynamics have been reported in Puu (1991)
and more recently in Cooper et al. (2009), where firms
ignore the presence of competition when selecting their
prices.

5.2. Aggregation of Past Data for Inference
For illustrative purposes, we focused on one particular
semimyopic scheme in which estimation of model
parameters is based on data only from the most recent
“batch.” From a practical standpoint, this can be viewed
as an extreme case of exponential smoothing (a scheme
that weighs down past data and is used heavily in
revenue management applications). From an analysis
perspective, it enables us to decouple batch periods and
facilitates dealing with dependencies in the observation
process. Having said that, an interesting question is
what would happen when all past data are used to
fit the demand model (say, again, a linear model). In
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Figure 2 (Color online) The Impact of Aggregation
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Notes. The figure depicts the histogram of p̂t after 104 periods based on 103 simulations for the pricing scheme that uses only most recent observations versus a
scheme that aggregates all observations. The true demand curve is exponential given by exp8−005p9, and the fitted model is linear given by �− �p; � = 001.

other words, instead of recalibrating according to (5),
one would now recalibrate using all past observations:

4�̂i+11 �̂i+15 = arg min
�1�

{ti+1
∑

t=1

6Dt − 4�−�pt57
2

}

0 (18)

As an illustration of some of the possible consequences,
we consider in Figure 2 the histograms of the esti-
mate of the optimal price p̂t after 104 periods and for
different starting prices. Here, the (true) underlying
demand curve is taken to be exponential, given by
exp8−005p9, for which the optimal price maximizing
the corresponding revenue function is p∗ = 2.

Focusing on the two top panels corresponding to the
cases in which no aggregation takes place, we observe
that the impact of the initial price p̂1 dissipates and the
empirical distribution concentrates around the optimal
price p∗ (as highlighted earlier in the paper). When
all observations are used (the two bottom panels),
the variance of the estimate p̂t appears to be much
lower than the case with no aggregation. However, the
impact of the initial price does not dissipate anymore:
after 104 periods, the distribution of p̂t has a mode of
2.75, which is strictly suboptimal when p̂1 = 405. This
suggests that schemes that use all existing data might
be sensitive to initial conditions (the initial price) in
the presence of misspecification. Exploring properties
of schemes that use exponential smoothing for past

data appears to be an important practical avenue of
future research.

5.3. Discussion of Modeling Assumptions and
Directions for Future Research

5.3.1. On the Linear Modeling Assumption. The
main results derived in this paper, both consistency
and revenue optimality, are predicated on the choice
of a linear function to model the unknown demand
curve. Our focus on linear models stems from their
ubiquitous presence in academic studies as well as in
the practice of revenue management. A close inspec-
tion of the proofs reveals that the main results can be
extended straightforwardly, exactly along the same
lines, if the policy uses a generalized linear model, e.g.,
exponential `4p3�1�5= exp8�−�p9, logit `4p3�1�5=

exp8�−�p941 + exp8�−�p95−1, and the like. The only
difference would be the conditions under which global
convergence takes place; for example, it is possible to
show that if the inference class is exponential, then
the main results continue to hold, provided that the
added condition �4p5�′′4p5≥ 4�′4p552 is satisfied. On
the positive front, this highlights that the virtues of
the estimation/optimization cycles do not rely on the
linear structure. However, this also begs the following
question: Acknowledging the possibility of model mis-
specification, which is the “best” misspecified model?
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This topic lies in the general domain of model selection
and offers an interesting avenue for future research.

5.3.2. Which Policies Have Potential to Work
Under Misspecification? More specifically, will every
policy that is designed to work optimally or near
optimally in the well-specified case perform well also
in the misspecified setting? This a very general ques-
tion that is beyond the scope of the present paper.
As we indicated earlier, antecedent literature mostly
provides anecdotal findings; for example, Cooper et al.
(2006) highlight specific conditions under which it is
possible that decisions predicated on a misspecified
model converge to an optimal value for the capacity-
booking problem. Our present work identifies two
key ingredients that appear necessary for a policy to
mitigate the impact of misspecification: (i) the inference
model should be sufficiently rich (in the present case,
it was critical to have two degrees of freedom), and
(ii) in blending estimation and optimization, inference
should be based on observations “around” the optimal
decision point (given the postulated model). Among
other things, this allows us to examine recent policies
developed in the well-specified setting, to determine
whether there is hope in transferring them to misspeci-
fied scenarios. For example, the CVP policy of den Boer
and Zwart (2014) has the above-mentioned property,
but the basic version of MLE cycle analyzed in Broder
and Rusmevichientong (2012) would not satisfy the
said condition, as the inference is based on only two
fixed experimentation prices. The MLE cycle policy
that bases inference on all past data (also analyzed in
Broder and Rusmevichientong 2012) might again have
the potential to mitigate the impact of misspecification,
as it does possess the “localization” property. The
broader question of porting “good” policies from the
well-specified to the misspecified setting for general
joint learning and optimization problems is worthy of
further investigation.
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Appendix A. Proofs of Main Results
Preliminaries. For later use, we define � =

√
Ɛ�2

1,

m0 = min
p∈6p4l51 p4h57

��4p5�1 m1 = min
p∈6p4l51 p4h57

��′4p5�1

M1 = max
p∈6p4l51 p4h57

��′4p5�1 M2 = max
p∈6p4l51 p4h57

��′′4p5�0

Note that under the assumptions on �4 · 5, m01m1 > 0 and
M11M2 <�.

We will prove the conclusions of Theorems 1 and 2 under
more general conditions, corresponding to formulation (7),
where X= 6p4l51 p4h57 and the same assumptions on �4 · 5 hold.
As mentioned in §2, the pricing example is a special case

of (7) with G4x1y5= xy. In particular, we will further assume
that G4 · 1 · 5 satisfies the following conditions:

1. G4x1y5 is continuously differentiable on 6p4l51p4h57×
601+�5.

2. Let Ḡ4p5 2=G4p1�4p55, where Ḡ4p5 is twice differentiable
with a bounded second derivative, is unimodal, and admits
a unique interior maximizer denoted by p∗ in 6p4l51 p4h57.

3. For any � > 0, � > 0, G4x1�− �x5 is unimodal and
admits a unique maximizer h4�1�5 in 601+�5. Further-
more, h is continuously differentiable with bounded partial
derivatives on 6m0/21+�5× 6m1/21+�5.

Note that under the assumptions of the main text, all these
assumptions hold in the special case in which G4x1y5= xy. Let

�̌4p5 2= �4p5−�′4p5p1

�̌4p5 2= −�′4p50

Let h� denote the derivative of h with respect to its first
argument, and let h� denote the derivative of h with respect to
its second argument. We also make the following assumption.

Assumption A1.

max
p∈6p4l51 p4h57

��′′4p56ph�4�̌4p51 �̌4p55−h�4�̌4p51 �̌4p557�< 10

Note that in the pricing problem (when G4x1y5 = xy)
studied in the main text, this assumption reduces to Assump-
tion 1(ii). Of course, we want to emphasize that for each
general instance of problem (7), Assumption A1 may take
a different form. For the pricing problem, it holds under
many models and parameter combinations for usual demand
curves as highlighted in Example 1.

We denote by �̂G4p̂11 8Ii1�i2 i ≥ 195 the policy that mimics
�̂ , with the exception that when reoptimization is conducted,
one attempts to maximize G4p1 �̂i+1 − �̂i+1p5. In other words,
Step 3 is replaced by the following:

Step 3. Reoptimization

p̂i+1 = P4h4�̂i+11 �̂i+1550 (A1)

Theorem A1. Let Assumption A1 hold. Suppose that in the
linear-model semimyopic policy �̂G, Ti = 8ti + 11 0 0 0 1 ti+19, �i → 0,
and �iI

1/2
i / log4Ii5→ � as i → �. Then, for any initial decision p̂1,

the sequence 8pt 2 t ≥ 19 generated by �̂G converges in probability
to the decision p∗ that maximizes G4p1�4p55.

Proof of Theorem 1. Since Assumption A1 reduces to
Assumption 1(ii) in this setting, and since h4�1�5= �/42�5,
this result follows from Theorem A1. �

Proof of Theorem A1. We will establish L2 convergence
of the sequence p̂i to p∗. The proof analyzes the expected
deviations from p∗ and Ɛ4p̂i+1 − p∗52 and how they relate to
those in the previous iteration Ɛ4p̂i −p∗52 when i is sufficiently
large. In particular, we will establish that the expected
deviations shrink geometrically fast, up to a correcting factor
as a result of the noise in the system. To show the latter, we
show that the probability that the actual deviations do not
behave as such is appropriately small.
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Define

W 1
i =

1
Ii

ti+Ii
∑

j=ti+1

�j1 W 2
i =

1
Ii

ti+1
∑

j=ti+Ii+1

�j 0

Let ai = �42 log4Ii551/2, and

Ai =8�2 �W
j
i �≤aiI

−1/2
i 1j=11293

Ɛ4p̂i+1 −p∗52
≤ Ɛ64p̂i+1 −p∗52

�Ai7�8Ai9

+Ɛ64p̂i+1 −p∗52
�Ac

i 7�8A
c
i 9

≤ Ɛ64p̂i+1 −p∗52
�Ai7

+�p4h5−p4l5�2�8Ac
i 90 (A2)

Next, we analyze Ɛ64p̂i+1 − p∗52 �Ai7 and �8Ac
i 9 separately.

Analysis of Ɛ64p̂i+1 − p∗52 �Ai7: We will establish that for
all � ∈ Ai, �p̂i+1 − p∗� ≤ ��p̂i − p∗� + vi, where � < 1 will be
specified later, and vi is an appropriately shrinking sequence
to be specified in the analysis below.

A simple derivation yields that

�̂i+1 = −
�4p̂i + �i5−�4p̂i5

�i
−

1
�i
6−W 1

i +W 2
i 71 (A3)

�̂i+1 = D̄i + �̂i+1p̄i0 (A4)

Given this, the recursion for decisions may be written as
p̂i+1 =P4h4D̄i + �̂i+1p̄i1 �̂i+155, or alternatively,

p̂i+1 = P4h4�̌4p̂i51 �̌4p̂i55+Zi51 (A5)

with

Zi = h4D̄i + �̂i+1p̄i1 �̂i+15−h4�̌4p̂i51 �̌4p̂i550

Next, we analyze Zi. First note that

�̂i+1 = −
�4p̂i + �i5−�4p̂i5

�i
−

1
�i
6−W 1

i +W 2
i 7

= −

[

�′4p̂i5+
1
2
�′′4qi5�i

]

−
1
�i
6−W 1

i +W 2
i 7

= �̌4p̂i5+Z1
i 1 (A6)

where the second equality follows from Taylor’s theorem
applied to �4 · 5 with qi ∈ 6p̂i1 p̂i + �i7 and where

Z1
i = −

1
2
�′′4qi5�i −

1
�i
6−W 1

i +W 2
i 70

Similarly, one has that �̂i+1 is a “perturbation” of �̌4p̂i5 in the
following sense:

�̂i+1 = D̄i + �̂i+1p̄i

=
1
2
�4p̂i5+

1
2
�4p̂i + �i5+W 1

i +W 2
i

= �4p̂i5+
1
2
�′4q′

i5�i +W 1
i +W 2

i −�′4p̂i5p̂i −�′4p̂i5
�i
2

+Z1
i 4p̂i + �i/25

= �̌4p̂i5+Z2
i 1 (A7)

where the third equality follows from Taylor’s theorem
applied to �4 · 5 with q′

i ∈ 6p̂i1 p̂i + �i7 and where

Z2
i =

1
2
�′4q′

i5�i +W 1
i +W 2

i −�′4p̂i5
�i
2

+Z1
i 4p̂i + �i/250

Let Y 1
i = 1

2M2�i + 2aiI
−1/2
i �i−1 and Y 2

i =M1�i + 2aiI
−1/2
i +

Y 1
i 4p

4h5 + �i/25. Note that Y 1
i and Y 2

i converge to zero as i
grows to infinity since, by assumption, �i and �−1

i aiI
−1/2
i con-

verge to zero. Let i0 = min8i ≥ 12 Y 1
i <m1/2 and Y 2

i <m0/29.
For i ≥ i0 and � ∈Ai, �Z1

i �<m1/2 and �Z2
i �<m0/2. By assump-

tion, h is continuously differentiable around 4�̌4p̂i51 �̌4p̂i55,
with bounded partial derivatives. Putting together (A6) and
(A7), one obtains

Zi = h4�̌4p̂i5+Z1
i 1 �̌4p̂i5+Z2

i 5−h4�̌4p̂i51 �̌4p̂i55

= h�4ai1 bi5Z
1
i +h�4ai1 bi5Z

2
i

for some 4ai1 bi5 on the line segment joining 4�̌4p̂i51 �̌4p̂i55 to
4�̌4p̂i5+Z1

i 1 �̌4p̂i5+Z2
i 5. Note that �Z1

i � ≤K16�i + �−1
i aiI

−1/2
i 7

and �Z2
i � ≤K26�i + �−1

i aiI
−1/2
i 7 for some positive constants K1

and K2, and hence for some positive K3,

�Zi� ≤K36�i + �−1
i aiI

−1/2
i 70

On another hand, we have h4�̌4p̂i51 �̌4p̂i55= h4�̌4p∗51 �̌4p∗55+
�′4q′′

i 54p̂i − p∗5 for some q′′
i ∈ 6p̂i1 p̂i + �i7, where �4p5 =

h4�̌4p51 �̌4p55.
The next lemma, whose proof is deferred to Appendix C,

establishes that p∗ is a fixed point of h4�̌4p51 �̌4p55.

Lemma A1. We have that h4�̌4p∗51 �̌4p∗55= p∗.

We deduce that

h4�̌4p̂i51 �̌4p̂i55 = p∗
+�′4q′′

i 54p̂i − p∗50

Let

� = max
p∈6p4l51 p4h57

�′4p5= max
p∈6p4l51 p4h57

{

��′′4p56ph�4�̌4p51 �̌4p55

−h�4�̌4p51 �̌4p557�
}

0 (A8)

Note that since h4 · 1 · 5 is continuously differentiable and �4 · 5
is twice continuously differentiable, the maximum above is
achieved, and Assumption A1 implies that � < 1.

We obtain that for all � ∈Ai,

�p̂i+1 − p∗
� = �P4h4D̄i + �̂i+1p̄i1 �̂i+155− p∗

�

≤ �h4D̄i + �̂i+1p̄i1 �̂i+155− p∗
�

≤ ��p̂i − p∗
� + vi1 (A9)

where vi =K36�i + �−1
i aiI

−1/2
i 7.

Analysis of �8Ac
i 9: We use the following lemma, whose

proof, deferred to Appendix C, relies on a large deviations
argument.

Lemma A2. For some suitably large constant K4 > 0, for
j = 112,

�8W
j
i > aiI

−1/2
i 9 ≤

K4

Ii
for all i ≥ 10
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From the above, we deduce that

�8Ac
i 9 = �

{

max
j=112

�W
j
i �> aiI

−1/2
i

}

(a)
≤ 2�8�W 1

i �> aiI
−1/2
i 9

(b)
≤

4K4

Ii
1 (A10)

where (a) follows from a union bound and (b) follows from
Lemma A2.

Bounding Ɛ4p̂i+1 − p∗52: Using (A2), (A9), and (A10), one
obtains

Ɛ4p̂i+1 − p∗52
≤ �2 Ɛ4p̂i − p∗52

+ v2
i + 2� Ɛ �p̂i+1

− p∗
�vi + �p4h5 − p4l5�2

4K4

Ii
0

Noting that

2Ɛ �p̂i − p∗
�vi ≤ 26�/41 −�257v2

i

+ 641 −�25/42�57Ɛ4p̂i − p∗521

one has that

Ɛ4p̂i+1 − p∗52
≤

1 +�2

2
Ɛ4p̂i − p∗52

+wi1

where

wi = 41 + 2�/41 −�255v2
i + 4�p4h5 − p4l5�2K4/Ii0 (A11)

Take i sufficiently large such that wj is decreasing for all
j ≥ i− �i/2�. Let � = 41 +�25/2 and j4i5= �i/2�:

Ɛ4p̂i+1 − p∗52
≤ �i4p1 − p∗52

+

i−1
∑

j=0

�jwi−j

≤ �i4p1 − p∗52
+

j4i5
∑

j=0

�jwi−j +

i−1
∑

j=j4i5+1

�jwi−j1

≤ �i4p1 − p∗52
+

wi−j4i5

1 −�
+�j4i5+1

i
∑

j=1

wj 0 (A12)

Since � < 1 and wi → 0 as i → �, one obtains that wi−j4i5 → 0
and �j4i5+1∑i

j=1 wj → 0 as i → �. Hence,

Ɛ4p̂i+1 − p∗52
→ 00

Since L2 convergence implies convergence in probability, the
result follows and the proof is complete. �

Theorem A2 (Revenue Optimality). Let Assumption A1
hold. Suppose that in the linear-model semimyopic policy �̂G,
Ti = 8ti + 11 0 0 0 1 ti+19, and the block sequence is selected as in
(14) with �i = I−1/4

i , i ≥ 1. Then, for an appropriate value of �,
for any initial decision p̂1, the sequence of decisions 8pt 2 t ≥ 19
generated by �̂G satisfies

Ɛ

[ T
∑

t=1

6Ḡ4p∗5− Ḡ4pt57

]

≤ C max811�294logT 52
√
T

for some positive constant C independent of � , and all T ≥ 2.

Proof of Theorem 2. Let r denote the mapping p 7→ p�4p5
and note that r4 · 5 is twice continuously differentiable with
second derivative bounded by 42M1 + p4h5M25, where M1 and
M2 are as defined at the start of the appendix. The result
follows from applying Theorem A2 to the special case of
interest. �

Proof of Theorem A2. Note that throughout the proofs,
all constants introduced, C11C21 0 0 0, are constants that do not
depend on � . Fix a time horizon T , and let k = inf8j ≥ 1 2

2
∑j

i=1 Ii ≥ T 9. The regret after T periods is given by

R4�̂G1T 5 = Ɛ

[ T
∑

t=1

6Ḡ4p∗5− Ḡ4pt57

]

0

By assumption, Ḡ is twice differentiable with a bounded
second derivative. We deduce, through a Taylor expansion,
that

�Ḡ4p∗5− Ḡ4p5� ≤K4p− p∗520

Hence,

R4�̂G1T 5 ≤ Ɛ

[ k
∑

i=1

46Ḡ4p∗5− Ḡ4p̂i57+ 6Ḡ4p∗5− Ḡ4p̂i + �i575Ii

]

≤ K
k
∑

i=1

4Ɛ4p̂i − p∗52
+ Ɛ4p̂i + �i − p∗525Ii

= K
k
∑

i=1

42Ɛ4p̂i − p∗52
+ �2

i + 2Ɛ �p̂i − p∗
��i5Ii

≤ K
k
∑

i=1

42Ɛ4p̂i − p∗52
+ �2

i + 26Ɛ4p̂i − p∗5271/2�i5Ii0

Recall the sequence 8wi2 i ≥ 19 defined in (A11) and note
that wi ≤ C1 max811�29i�−1/2 for some appropriate C1. Using
the first part of Equation (A12) from the proof of Theorem A1,
one has that

Ɛ4p̂i − p∗52
≤ �i4p̂1 − p∗52

+C1 max811�29�−i/2
i
∑

j=0

4��1/25j

≤ C2 max811�29 log4Ii5I
−1/2
i 1

where C2 is some appropriate positive constant, and in the
last inequality, we have assumed that � is selected so that
��1/2 < 1. Hence, for some suitable constant C3 > 0,

R4�̂G1T 5 ≤ C3K max811�29
k
∑

i=1

64log Ii5I
−1/2
i + �2

i 7Ii

≤ C4 max811�29
k
∑

i=1

41 + log Ii5I
1/2
i 0

Bounding each term in the sum by the last one, one obtains
that the regret is bounded by C4 max811�29k41 + log Ik5I

1/2
k .

Noting that k ≤C5 logT for some C5 > 0, one obtains

R4�̂G1T 5 ≤ C6 max811�294logT 52T 1/20

This completes the proof. �
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Appendix B. Supplement to §5.1

Proof of Proposition 1. Let

W4p5=
4�̃/25p
�̃−�4p5

and W̃ 4p5 = P4W4p550

Then, the recursion for the decisions may be rewritten as

p̂t+1 = W̃ 4p̂t51 t ≥ 10

Since W̃ 4 · 5 is continuous on 6p4l51 p4h57, the only possible limit
points of the sequence 8p̂t 2 t ≥ 19 are fixed points of W̃ 4 · 5.
We next establish that W̃ 4 · 5 has exactly one fixed point in
6p4l51 p4h57, and this fixed point is given by p̌ defined in (17).

A fixed point of W4 · 5 in 401+�5 needs to satisfy

W4p5/p = 10

Since �4 · 5 is assumed to be decreasing on 6p4l51 p4h57, W4p5/p =

4�̃/25/4�̃−�4p55 is decreasing, which implies that W4p5/p = 1
has at most one solution in 401+�5.

If �̃/2 ∈ 4�4p4h551�4p4l555, then W4 · 5 admits a fixed point in
4p4l51 p4h55, and the latter is given by �−14�̃/25= p̌. Noting that
W4p4h55/p4h5 < 1 and W4p4l55/p4l5 > 1, p̌ is also the unique fixed
point of W̃ 4 · 5 in 6p4l51 p4h57.

If �̃/2 ≥ �4p4l55, then W4p4l55/p4l5 ≤ 1. In such a case, W4 · 5
does not admit any fixed point in 4p4l51+�5, and the only
fixed point of W̃ 4 · 5 on 6p4l51 p4h57 is p4l5. If �̃/2 ≤ �4p4h55, then
W4p4h55/p4h5 ≥ 1. In such a case, W4 · 5 does not admit any
fixed point in 401 p4h55, and the only fixed point of W̃ 4 · 5 on
6p4l51 p4h57 is p4h5. This completes the proof. �

Example 2 (Price Behavior). To illustrate the possible
issues that may arise, consider the following illustrative
example. The price domain is taken to be 6p4l51 p4h57= 601107.
We assume the true demand model is of logit form, �4p5=

exp8a− bp9/41 + exp8a− bp95 with a > 0 and b > 0, and that
the seller fits the linear model, 1 −�p; i.e., the only parameter

Figure B.1 (Color online) Behavior of the Price Process
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Notes. Prices converge to p̌ 6= p∗ in (a) and never settle in (b). The true
model is a logit model given by exp83 − p9/41 + exp83 − p95 in (a) and by
exp8401 − p9/41 + exp8401 − p95 in (b). The fitted model is linear given by
1 − �p. The price process is started at the price that maximizes the profit rate
associated with the true model, p∗.

that is inferred is �. A simple calculation yields that the
only possible limit point is p̌ = a/b and that the revenue-
maximizing price is given by p∗ = b−1W4exp8−1 + a95, where
W4 · 5 is the Lambert W function (the inverse of x 7→ x exp8x9).
Clearly, p̌ and p∗ need not coincide.

In Figure B.1, we depict two simulation runs, each includ-
ing 30 price iterates. In both runs, the initial price, p̂1, is
taken to be p∗, the optimal price. In the first case in panel (a),
the underlying demand function is a logit with parame-
ters a= 3 and b = 1, with p∗ ≈ 2055 and p̌ = 3. We observe
that the price iterates converge to p̌. In the second case in
panel (b), the underlying demand function is a logit with
parameters a= 401 and b = 1, with p∗ ≈ 3027 and p̌ = 401. We
observe that the price iterates do not converge; rather, they
oscillate around p̌. Note that the oscillations occur despite
the underlying demand environment being stationary.

Appendix C. Proofs of Auxiliary Results

Proof of Lemma A1. Let

�∗
= �̌4p∗5= �4p∗5−�′4p∗5p∗1

�∗
= �̌4p∗5= −�′4p∗51

where p∗ is an interior maximum to G4p1�4p55 and uniquely
satisfies

Gx4p
∗1�4p∗55+�′4p∗5Gy4p

∗1�4p∗55= 00 (C13)

On the other hand, the unique maximizer of G4p1�∗ −�∗p5
satisfies

Gx4p1�
∗
−�∗p5−�∗Gy4p

∗1�∗
−�∗p5= 00 (C14)

Note that �∗ −�∗p∗ = �4p∗5, and hence, by (C13), p = p∗ solves
(C14); i.e., h4�∗1�∗5= p∗. �

Proof of Lemma A2. Fix j ∈ 81129. For s ∈ 4−�1�5, define

�4s5= logƐ6exp8s�1970

Note that for any s ∈ 4−�1�5 and any x > 0, Markov’s
inequality yields that

�8W
j
i > x9 ≤ exp8Ii4�4s5− sx590

Fix x = aiI
−1/2
i = 2�4log Ii5

1/2I−1/2
i , and let s∗ = x/�2. Select

i sufficiently large so that s∗ < �/2. A third-order Taylor
expansion around 0 yields that for some s̃ ∈ 601 s∗7

�4s∗5 = 1
2�

24s∗52
+ 1

6�
′′′4s̃54s∗530

This implies that

�4s∗5− s∗x ≥ −
1
2
x2

�2
−C4

x3

�6
1

where C4 = maxs∈6−�/21�/278��
′′′4s5�9, which in turn yields

�8W 1
i > x9 ≤ exp

{

−Ii

(

−
1
2
x2

�2
−C4

x3

�6

)}

0

Substituting the value of x, one obtains for some suitably
large constant C5 > 0

�8W 1
i > aiI

−1/2
i 9≤ exp8− log Ii + 4C4/�

65I−1/2
i 4log Ii5

3/29≤
C5

Ii
0

This completes the proof. �

Remark C1 (Verification). We verify that policy �̂ (with
Ii = 1, Ti = 811 0 0 0 1 ti+19, and �i = t−1/4) satisfies sufficient con-
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ditions for minimax optimality when �t values are uniformly
bounded almost surely—namely, the two sufficient conditions
in Keskin and Zeevi (2014, Theorem 2) are satisfied. Suppose
that the support of �t is in 6−U1U7 for some U > 0.

(i) We first check the information accumulation condition
and upper bound

∑2t
s=14ps − p̄2t5

2:

2t
∑

s=1

4ps − p̄2t5
2

=

2t
∑

s=2

41 − s−154ps − p̄s−15
2

≥

t
∑

s=2

4p2s−1 − p̄2s−25
2
+

t
∑

s=2

4p2s − p̄2s−15
2

=

t
∑

s=2

A2
s +

t
∑

s=2

B2
s 1

where As = p2s−1 − p̄2s−2 and Bs = p2s − p̄2s−1.
Suppose first that As ≤ −�s/2. Then, A2

s ≥ �2
s/4.

Suppose now As >−�s/2. Note that Bs = p2s − p̄2s−1 = p2s−1 +

�s − p̄2s−2 + 41/42s− 2554p2s−1 − p̄2s−25≥ �s − 41 + 1/42s− 255�s/2.
Hence, for s ≥ 2, Bs ≥ �s/4. We deduce that B2

s ≥ �2
s/16.

Hence, we have that
∑t

s=2 A
2
s +B2

s ≥ �0

√
t for some �0 > 0.

(ii) We now bound the deviations from the greedy solution:
∑2t

s=14�4�s1�s5−ps+15
2, where �4�1�5=P4�/42�55 and 4�s1�s5

are the least squares estimates based on all observations up
to and including time s. We define 4�01�05 2= 41115:

2t
∑

s=1

4�4�s1�s5− ps+15
2

=

t
∑

s=1

4�4�2s−21�2s−25− p2s−15
2

+

t
∑

s=1

4�4�2s−11�2s−15− p2s5
2

=

t
∑

s=1

4�4�2s−11�2s−15

−�4�2s−21�2s−25− �s5
20

Next, we evaluate �4�2s−11�2s−15−�4�2s−21�2s−25.
Let us =

∑s
i=14pi − p̄s5�i and As =

∑s
i=14pi − p̄s5

2. Then,
standard derivations lead to

�s+1 −� =
us+1

As+1
=

us

As

1
1 + 4As+1 −As5/As

+
us+1 −us

As+1
0

We know from (i) that As ≥ �
√
s almost surely. We deduce

that 4As+1 −As5/As ≤ �p4h5 −p4l5 +�1�
2/4�0

√
s + 15 almost surely.

In addition, since �t is assumed to have finite support,
�us+1 − us�/As+1 ≤ �p4h5 − p4l5�C1/4�0

√
s + 15 for some C1 > 0.

We deduce that

��s+1 −�s� ≤
C2
√
s

for some constant C2 > 0. It follows that

��s+1 −�s� = �D̄s+1 − D̄s +�s+1p̄s+1 −�s p̄s�

≤
2U
s + 1

+ ��s+1 −�s� +
1

s + 1
�s+1p

4h50

We deduce that

��s+1 −�s� ≤
C3
√
s
0

Concluding, one has for some C4 > 0

��4�2s−11�2s−15−�4�2s−21�2s−25� ≤

∣

∣

∣

∣

�s+1

2�s+1
−

�s

2�s

∣

∣

∣

∣

≤
C4
√
s
0

This implies that for some �1 > 0,

2t
∑

s=1

4�4�s1�s5− ps+15
2

≤

2t
∑

s=1

4C4s
−1/2

+ �s5
2
≤ �1

√
s0
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