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On the Symbol Error Probability of General Order
Rectangular QAM in Nakagami-m Fading

George K. Karagiannidis, Senior Member, IEEE

Abstract— Recently, Beaulieu, following an ingenious concept,
presented a closed-form expression for a useful integral, which
was used for the evaluation of the symbol error probability (SEP)
of general order rectangular quadrature amplitude modulation
(QAM) in slow Rayleigh fading. In this letter, these results
are extended to Nakagami-m fading channels, deriving a novel
closed-form formula for the average over Nakagami-m fading
of the product of two Gaussian Q-functions, which can be
efficiently used to study the impact of fading severity on the
error performance of general rectangular QAM constellations.

Index Terms— Gaussian Q-function, quadrature amplitude
modulation (QAM), Nakagami-m fading channels, symbol error
probability (SEP).

I. INTRODUCTION

GENERAL order rectangular quadrature amplitude mod-
ulation (QAM) constellations can be easily generated

from two independent pulse amplitude modulation (PAM)
signals (MI -PAM (in-phase) and MQ-PAM (quadrature)) and
can be also easily demodulated. Although, it is generally a
sub-optimal modulation scheme, compared to other M-QAM
constellations, in the sense that they do not maximally space
the constellation points for a given energy, the average trans-
mitted power required to achieve a given minimum distance
is only slightly greater than the corresponding one required
for the best M-QAM scheme. This is the reason that general
order rectangular QAM modulation can be efficiently used in
practical telecommunications systems [1].

Recently, Beaulieu in [2], presented a novel formula for the
symbol error probability (SEP) of general rectangular QAM,
in additive white Gaussian noise (AWGN). In the same work,
he derived a closed-form expression for the integral

Υ (a, b) =

∞∫
0

fR (r) Q (ra) Q (rb) dr (1)

where Q (x) is the Gaussian-Q function [3], a, b are real con-
stants and fR (r) is the Rayleigh probability density function
(pdf). This integral is involved in several wireless applications
(see [2], [3] and the references therein) and was used in
[2] to evaluate the average symbol error probability (ASEP)
of general rectangular QAM modulations in slow Rayleigh
fading.

In this paper, the approach of [2] is extended to Nakagami-
m fading channels. More specifically, a novel closed-form
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expression is presented for the average over Nakagami-m
fading of the product of two Gaussian Q-functions with
dissimilar origins. This expression is used to evaluate in
closed-form the ASEP of general order rectangular QAM,
operating in Nakagami-m fading channels and to present -
via numerical examples- the impact of fading severity on
the system’s error performance. Finally, it is shown that the
general results, presented in this letter, reduce to some specific
cases previously published.

II. THE AVERAGE OVER NAKAGAMI-m FADING OF THE

PRODUCT OF TWO GAUSSIAN Q-FUNCTIONS

Consider the integral Υ (a, b) in (1), but now assuming that
R follows Nakagami-m distribution with pdf given by [4]

fR(r) =
2mm

Ωm Γ (m)
r2 m−1 exp

(
−m

Ω
r2

)
(2)

where Γ (x) is the Gamma function [5, eq. (8.310/1)], Ω =
E 〈

R2
〉
, m = Ω2/E 〈

(R2 − Ω)2
〉 ≥ 1/2, and E 〈·〉 denotes

expectation. The PDF in (2) includes the cases of Rayleigh
(m = 1) and one-sided Gaussian (m = 1/2) distributions as
special ones.

A closed-form solution for (1) for integer values of m and
a = b, was given by Simon and Alouini in [3, ch. 5.1], while
-as mentioned above- for arbitrary values of a, b and m = 1,
Beaulieu presented in [2] a useful closed-form expression as

Υm=1 (a, b) =
1
4
− 1

2πh (a)
tan−1

[a

b
h (a)

]

− 1
2πh (b)

tan−1

[
b

a
h (b)

] (3)

with h (x) =
√

1+σ2x2

σ2x2 and σ2 = Ω
2 . However, to the best

of the author’ knowledge, closed-form solution to (1) for the
general case of Nakagami-m fading channel with dissimilar
values for a, b, does not exist in the literature.

In Appendix is proved that such a solution is

Υ (a, b) =
1
4
− [g (a, b) + g (b, a)] (4)

where

g (a, b) =
1√
π

m−1∑
k=0

2k−1mka
√

Ω Γ
(
k + 3

2

)
(a2Ω + 2m)k+ 1

2 k! (1 + 2k)

− 1
4π

m−1∑
k=0

Ω a b 2k+1mk
2F1

(
1, 1 + k; 3

2 ; b2Ω
a2Ω+2m+b2Ω

)
(a2Ω + 2m + b2Ω)k+1

(5)
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Fig. 1. ASEP for a 8x4-QAM in Nakagami-m fading.

with 2F1 (x, y; z;w) being the Gauss Hypergeometric function
[5] and m integer.

For the special case of m = 1 (Rayleigh fading), using
[5, eq. (9.121/14)] and after manipulations, (4) reduces to (3).
Also, for a = b and integer m, using [5, eq. (9.121/14)], [6]
and after laborious manipulations, (4) coincides to the already
published result [3, (5.30)].

III. THE IMPACT OF FADING SEVERITY ON THE

ERROR PERFORMANCE OF GENERAL ORDER

RECTANGULAR QAM

The SEP of general order rectangular QAM in AWGN is
[2]

PS (AI , AQ) = 2
(

1 − 1
MI

)
Q (AI) + 2

(
1 − 1

MQ

)
Q (AQ)

− 4
(

1 − 1
MI

)(
1 − 1

MQ

)
Q (AI) Q (AQ)

(6)

where MI -PAM and MQ-PAM are the in-phase and quadra-
ture PAM signals, AI = dI/σn and AQ = dQ/σn, with dI ,
dQ be the decision distances and σ2

n the noise power.
The ASEP over Nakagami-m fading channels can be written

as

P =

∞∫
0

fR (r) PS (rAI , rAQ) dr (7)

or

P =2
(

1 − 1
MI

)
Ψ (AI) + 2

(
1 − 1

MQ

)
Ψ (AQ)

− 4
(

1 − 1
MI

)(
1 − 1

MQ

)
Υ (AI , AQ)

(8)

with

Ψ (a) =

∞∫
0

Q (ar) fR (r) dr (9)

Fig. 2. ASEP for a 16x8-QAM in Nakagami-m fading.

being the average over Nakagami-m fading of Q (ax). Fortu-
nately, a closed-form solution to Ψ (a) for integer values of
m was given in [3, eq. (5.17)] as

Ψ (a) =
1
2
− M (a)

2

m−1∑
k=0

(
2k
k

)(
1 − M (a)2

4

)k

(10)

where M (x) =
√

x2Ω
1+x2Ω . Substituting (4) and (10) in (8), the

ASEP of general order rectangular QAM can be evaluated in
closed-form. Next, using the above formulation, we give two
examples for different rectangular constellations, to show the
impact of fading severity on the system’s error performance.

Let us consider a 8x4-QAM system, as in [2]. In Fig. 1
the ASEP is depicted as a function of the average symbol
energy-to-noise power, ET

σ2
n

(dB), where the signal-to-noise
ratio (SNR) is

ET

σ2
n

= 21Ω d2
I + 5Ω d2

Q =
(
21 + 5γ2

)
ΩAI (11)

with γ = dQ

dI
= AQ

AI
. It is evident that a decrease in the

fading severity (greater m) significantly affects the system’s
error performance. A transition from m = 1 (Rayleigh) to
m = 2 leads to a performance improvement that ranges
from 5 to 10 dB (depending on the γ and SNR), while from
m = 1 to m = 4 this improvement may be greater than 10
dB. Moreover, it is interesting to observe that in low fading
environments, the ASEP improvement is higher for the equal
decision distance case (γ = 1) compared to equal average
energy (γ =

√
21/5) in about 0.5 dB in Rayleigh fading to

2.5 dB for m = 4. Also, when the quadrature signal has 21/5
times the average energy of the in-phase signal (γ = 21/5),
the ASEP deteriorates substantially in lower fading conditions.

Similar observations can be obtained from Fig. 2, where a
16x8-QAM is studied. In this case, the SNR is

ET

σ2
n

= 85Ω d2
I + 21Ω d2

Q =
(
85 + 21γ2

)
ΩAI . (12)

It is interesting to note here that γ has a greater effect to the
ASEP compared to 8x4-QAM, especially in higher values of
m.
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APPENDIX

Following the concept of [2, Appendix], the integral Υ (a, b)
in (1) can be splited into two triple integrals, named Υ1 (a, b)
and Υ2 (a, b), as

Υ (a, b) =

∞∫
0

b
a x1∫
0

x2
b∫

0

f (x1)f (x2) fR (r) dr dx2 dx1

+

∞∫
0

a
b x2∫
0

x1
a∫

0

f (x2)f (x1) fR (r) dr dx1 dx2

= Υ1 (a, b) + Υ1 (b, a)

(13)

where f (x) = e− x2
2√

2π
.

The inner integral in Υ1 (a, b) is the Nakagami-m cumu-
lative distribution function (cdf) at x2

b , which can be solved
using [5, eq. (3.381)], resulting in

Υ1 (a, b) =
1

2π Γ (m)
∞∫
0

b
a x1∫
0

f (x1) f (x2)
[
Γ (m) − Γ

(
m,

mx2
2

b2Ω

)]
dx2 dx1

(14)

with Γ (x, y) being the incomplete Gamma function [5, eq.
(8.350.2)]. Substituting f (x1) and f (x2) in (14) one has

Υ1 (a, b) =
1
2π

∞∫
0

b
a x1∫
0

exp
(
−x2

1

2
− x2

2

2

)
dx2 dx1 − 1

2π Γ (m)

∞∫
0

b
a x1∫
0

exp
(
−x2

1

2
− x2

2

2

)
Γ

(
m,

mx2
2

b2Ω

)
dx2 dx1.

(15)

Now, after replacing the incomplete Gamma function with
its finite series representation for integer values of m [5,
(8.352/2)]

Υ1 (a, b) =
1
2π

tan−1

(
b

a

)
− (m − 1)!

2π Γ (m)
∞∫
0

b
a x1∫
0

exp
(
−x2

1 + x2
2

2
− mx2

2

b2Ω

) m−1∑
k=0

(
mx2

2
b2Ω

)k

k!
dx2 dx1

(16)

=
1
2π

tan−1

(
b

a

)
−

m−1∑
k=0

mk(
b2Ω+2m

2b2Ω

)k+ 1
2 b2kΩkk! (2 + 4k)

[
√

2π Γ
(

k +
3
2

)
− (2k + 1)

∞∫
0

exp
(
−x2

1

2

)
Γ

⎛
⎝k +

1
2
,
b2

(
b2Ω+2m

2b2Ω

)
x2

1

a2

⎞
⎠ dx1].

(17)

The integral in (17) can be solved using [5, eq. (6.455)]
resulting after manipulations in

Υ1 (a, b) =
1
2π

tan−1

(
b

a

)

− 1√
π

m−1∑
k=0

2k−1mkb
√

Ω Γ
(
k + 3

2

)
(b2Ω + 2m)k+ 1

2 k! (1 + 2k)

+
1
4π

m−1∑
k=0

Ω b a 2k+1mk

(b2Ω + 2m + a2Ω)k+1

2F1

(
1, 1 + k;

3
2
;

a2Ω
b2Ω + 2m + a2Ω

)
.

(18)

Now, using (13), (4) is proved.
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