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ON THE SYMPLECTIC STRUCTURES ON MODULI SPACE OF
STABLE SHEAVES OVER A K3 OR ABELIAN SURFACE AND ON
HILBERT SCHEME OF POINTS

INDRANIL BISWAS AND AVIJIT MUKHERJEE

ABSTRACT. Fix a smooth very ample curve C on a K3 or abelian surface X. Let
M denote the moduli space of pairs of the form (F, s), where F is a stable sheaf over
X whose Hilbert polynomial coincides with that of the direct image, by the inclusion
map of C in X, of a line bundle of degree d over C, and s is a nonzero section of F.
Assume d to be sufficiently large such that F' has a nonzero section. The pullback of
the Mukai symplectic form on moduli spaces of stable sheaves over X is a holomorphic
2—form on M. On the other hand, M has a map to a Hilbert scheme parametrizing
O-dimensional subschemes of X that sends (F) s) to the divisor, defined by s, on the
curve defined by the support of F'. We prove that the above 2—form on M coincides
with the pullback of the symplectic form on Hilbert scheme.

1. INTRODUCTION

Let X be a connected smooth projective surface over C with trivial canonical bundle.
In other words, X is either a K3 surface or an abelian surface.

Let C' be a smooth very ample curve on X. We will use C' for defining the degree of
a coherent sheaf on X. Let ¢+ : €' — X be the inclusion map.

Fix an integer d > 1. Let M (d) denote the moduli space of stable sheaves F' over
X such that the Hilbert polynomial of F' coincides with the Hilbert polynomial of ¢, L,
where L is a holomorphic line bundle of degree d over the curve C. The construction of
M (d) can be found in [6, Ch. 4], [11]. The condition on the Hilbert polynomial for ¥
implies that F' is a torsion sheaf supported over some curve D on X and, furthermore,
F' is isomorphic to 7.V, where j denotes the inclusion map of D in X and V is a
stable sheaf over D. The condition further implies that the support D is homologically
equivalent to C.

Since a stable sheaf is simple, from [10, Theorem 0.1] we know that Mc(d) is a
smooth quasiprojective variety of dimension

2H°(X, Ox(C)) +2 — 2x(Ox) = 2 - genus(C) .

Note that x(Ox) = 0 if X is an abelian surface and x(Ox) = 2 if X is a K3 surface.
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Fix a trivialization of Kx. By a well-known construction of Mukai [10, Corollary 0.2],
the variety M¢(d) has a natural holomorphic symplectic structure. This symplectic
form on M¢(d) will be denoted by ©.

Henceforth, we will assume that d > 2 - genus(C') — 1. Therefore, H'(X, F') = 0
for F '€ Mc(d). Note that since F is supported on a curve, we have H*(X, F) = 0.
So, dim H%(X, F) = d — genus(C) + 1 for any F € Mc(d). Let

gb M — Mc(d)

be the projectivized Picard bundle over M (d). In other words, M is a projective
bundle and for any F' € M¢(d) the fiber ¢~ 1(F) is PH°(X, F), the space of lines in
HO(X, F).

The variety M is the moduli space pairs of the form (F,s), where F' € M¢(d) and

s € H°(X,F)\{0}. Note that such a pair is a very special case of more general objects
introduced by Le Potier which are known as coherent systems (see [8], [9]).

Let
Q= ¢"O
be the holomorphic two form which is the pullback of Mukai form.

Let Hilbd(X ) denote the Hilbert scheme, which is the moduli space parametrizing
0-dimensional subschemes of X of length d.

A well-known result of Beauville, [1], says that Hilb?(X) has a natural holomorphic
symplectic structure. Let w denote the symplectic form on Hilbd(X ).

Clearly there is a morphism
™ : M — Hilb%(X)

that sends a pair (F),s), where F' is a stable sheaf supported on a curve D in X and
s € PHYX, F), to the divisor on the curve D defined by s. Note that using the
inclusion map D in X, a divisor on D is identified with a 0-dimensional subschemes of

X.

Although we do not consider the case d = genus(C), it may be pointed out that if
d = genus(C'), then both the maps ¢ and 7 are birational.

Let
Q = 7w
be the holomorphic two form on M which is the pullback of Beauville form.

The aim here is to prove
Theorem 1.1. The two holomorphic 2—forms on M, namely Q and ', coincide.

Theorem 1.1 will be proved in Section 3.
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See [4] and [13] for relationship between Hilbert scheme of points and semistable
sheaves on a K3 surface. A result relating the symplectic structure on a moduli space
of Higgs bundles on a compact Riemann surface Y with that on a Hilbert scheme of
points on Ky can be found in [2].

Acknowledgments: We wish to thank N. Nitsure for his useful comments on the exact
sequence (2.3).

2. PROPERTIES OF THE FORMS

In this section we briefly recall the constructions of © and w and will note some of
their properties that will be useful for our purpose.

We once and for all fix a trivialization of the canonical bundle Kx. The section of
Kx that defines this trivialization, which we will denote by 7, is a symplectic form on

X.

Let © = {xy,29,- -, 24} € Hilb(X) be a point with all z; distinct. Clearly we
have

d
T HilbY(X) = P T, X .
i=1
If vl = {v],0v},--- ,v}} € T HilbY(X), where j = 1,2 and v} € T},, X, then

(2.1) wh,v?) = 3 (v, 0}),

i=1
where 7 is the above defined symplectic form on X. Clearly this defines a holomorphic
symplectic form on the Zariski open subset of Hilbd(X ) defined by reduced subschemes,
that is, distinct d points of X. It was proved by Beauville that this form extends to a
holomorphic symplectic form on Hilbd(X ) [1, p. 766-767], which has been denoted by
w.

For any F' € Mc(d), the tangent space TpMc(d) coincides with Exte, (F, F) [6,
Corollary 4.5.2], where Ext is the global ext. Now consider the composition
(2.2)
Exty, (F, F) ® Exty, (F, F) — Ext} (F,F) — H*(X, Ox) = H*(X, Kx) = C,

where the second homomorphism is defined using the trace map [10, p. 114]. This
bilinear pairing on Ext}gx(F , F') is clearly skew-symmetric. The 2-form on M¢(d)
defined by (2.2) is the Mukai symplectic form, which has been denoted by ©.

Let F' be supported on a divisor D in X. The restriction of F' to D will also be
denoted by F. We recall that the spectral sequence for base change, [12], gives an
exact sequence
(2.3)

0 — Exty, (F,F) -5 Exty (F,F) - H(D, Ox(D)|p) — Exty (F,F).
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Since dim D = 1, we have Ext, (F,F) = 0. So (2.3) is a short exact sequence.

If F'is a line bundle over D, then Ext, (F,F) = H'(D, Op). We note that if D is
a smooth divisor, then the line bundle Ox(D)|p over D is identified by the Poincaré
adjunction formula with the normal bundle Np := j*T'X/T D, where j is the inclusion
map, of D.

We noted earlier that Ext, (F, F) parametrizes infinitesimal deformation of F'. The
projection ¢ in (2.3) corresponds to the infinitesimal deformations of the support of

the sheaf, and the inclusion ¢ corresponds to deforming the sheaf keeping its support
fixed.

Suppose that there is a line bundle £ over X such that F' =& j,7%¢, where j, as before,
denotes the inclusion map of D to X. In that case F' has the projective resolution

0 — ¢é®0x(-D) — & — F — 0
which is obtained by tensoring the exact sequence
0 — Ox(-D) — Ox — j.0Op — 0.
Therefore, from the definition of Ext [7, Ch. V, §3], it follows that
Exty (F,F) = H'(D, Op) @ H°(D, Np).

In other words, in this case the exact sequence (2.3) has a canonical splitting if F' is
of the above form j,7°¢. As D moves over a family, the restrictions of &, which is
defined over X, give the splitting. Note that £ is uniquely determined the condition
F = j,5%¢. To explain this, let & be a line bundle over X such that ¢;(§) = 0.
Now, since the divisor D is ample and Kx = Oy, from Kodaira vanishing theorem
[5, p. 154] and Serre duality it follows immediately that H'(X, & ® Ox(—D)) = 0.
Consequently, for the exact sequence

0 — &®O0x(—D) — & — jiuj"é — 0,

the homomorphism HY(X, &) — H°(D, j*&) is surjective. Therefore, given two
line bundles & and & on X with ¢1(&) = ¢1(&), setting § = & ® & we conclude
that if j*&; = j%& then & = &. In other words, the restriction of line bundles to D is
injective. Of course, the injectivity of the differential of this restriction homomorphism
is the restatement of the fact that H'(X, Ox) — H'(D, Op) is injective which in
turn follows from the above observation that H'(X, & ® Ox(—D)) = 0 by setting
§o = Ox.

Note that the symplectic form 7 on X identifies Np with the canonical bundle
Kp. The form 7 defines a symplectic structure on j*T°X. Since the restriction of this
symplectic form to the subbundle T'D C j*T' X, vanishes, it identifies the quotient Np
of j*T'X with Kp := (T'D)*. Using this identification and Serre duality, we have

(2.4) H'(D, Op) = H°(D, Np)*.
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From the definition of © in (2.2) it follows immediately that for any o € Extg, (F, F)
and [ € ExtéX(F, F), the identity

(2.5) O(o(a),d) = alq(B))

is valid, where o, g are as in (2.3), and « is identified, using (2.4), with the corresponding
element in H°(D, Np)*.

3. EQUALITY OF FORMS
We start with a simple proposition.

Proposition 3.1. There is a 2—form Qy on M (d) such that its pullback ¢*Qy to M
coincides with €.

Proof. Recall that the map ¢, defined in the introduction, is a projective bundle.
Since there is no nonzero holomorphic 2—form on a projective space, the restriction of
the form € to a fiber of ¢ vanishes.

Take any point y € Mc(d) and a tangent vector v € T,Mc(d). Take a point
z € ¢! (y) and w € T, M which is in the kernel of the differential map

dp(z) : TTM — T,Mc(d)

for ¢ at z. Take 7 € T, M such that d¢(z)(T) = wv. Since the restriction of ' to
¢~ (y) vanishes, '(w,v) is independent of the choice of lift © of v. Therefore, v defines
a holomorphic 1-form on ¢~!(y). Since a projective space does not have a nonzero
holomorphic 1-form, this form must vanish identically.

Therefore, given another tangent vector v' € T, Mc(d) and a lift 7/ € T, M with
dp(z)(V') = ',
the pairing €'(7,7’) is independent of the choice of the lifts. Therefore, the pair (v, v’)

defines a holomorphic function on ¢~!(y) which sends any z to €'(7,7). Since ¢~(y)
is complete and connected, this must be a constant function.

Let €y be the holomorphic 2-form on M(d) that sends any pair of tangent vectors
(v, ") to the constant () (7,7"). It is clear from the construction that ¢*Qy = €. This
completes the proof of the proposition. a

Note that since 1 is surjective, the condition ¢*Qy = Q' uniquely determines §2q.

Note that if we know that dim H°(M¢(d), Q3,.) = 1, then from Proposition 3.1
it follows immediately that €’ must be a constant scalar multiple of €.

We have a natural projection from M (d) to the space of divisors on X homologically
equivalent to C' — we will denote this space by & — that sends any sheaf F' to its support.
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Let
(3.2) Y Mo(d) — S

be this projection map. If D € S is a reduced smooth curve, then the fiber vy ~1(D) is
the component Pic?(D) of the Picard group of D. Note that since C' is very ample, the
points in § corresponding to reduced smooth divisors in X constitute a Zariski open
dense subset.

Proposition 3.3. For any divisor D € S, the restrictions of both © and €y to the
subvariety =1 (D) C Mc(d) vanish identically.

Proof. Since the support of any sheaf in ¢)~!(D) is the fixed divisor D, and when
restricted to D, the symplectic form 7 vanishes identically, from the definition of w in
(2.1) it follows immediately that the restriction of €y to ¢y~!(D) vanishes identically.

From the identity (2.5) for © it follows immediately that the restriction of © to
¢~ Y(D) vanishes identically. This is also proved in Lemma 1.3 of [3]. This completes
the proof of the proposition. a

Now we will show that © — ) is a pullback from §.

Lemma 3.4. There is a holomorphic 2—form €21 on S such that
P = 0 -,

where 1 is defined in (3.2).

Proof. Let U C S be the subvariety defined by all reduced smooth curves in X. It
was already noted that U is a Zariski open dense subvariety.

Take any D € U and a tangent vector v € TpS. Take any L € ~1(D). Let

dib(L) : ToMo(d) — TpS

be the differential of the map v at the point L.

Take any w € Ty Mc(d) such that diy(L)(w) = 0. From Proposition 3.3 it fol-
lows that for any 7 € Ty Me(d), with dy(L)(0) = v, both ©(T, w) and Qy(T, w) are
independent of the choice of the lift T of v.

The identity (2.5) describes ©(v, w). We need to compare the expression in (2.5) for

O(7, w) with Qo(T, w), which is described using (2.1). For this we will recall a general
fact.

Let Y be a compact connected Riemann surface, and let

Yy = (91792,"‘ 7yl) € Yl

be a point of the [-fold Cartesian product. Let
y:A— Y
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be a holomorphic map of the disk A := {z € (C‘ |z| < 1} such that y(0) = y. The
composition of v with the projection of Y to the i-th factor will be denoted by ~;.
So, v = (71,72, - ,7). Sending any t € A to the line bundle over Y defined by the
divisor v we get a map

7 : A — Pic(Y),
The differential of 7 at 0 € A is a homomorphism
(:C — HY Y, Oy).
Finally, take a holomorphic 1-form
0 € H(Y, Ky).

Note that H(Y, Ky) = H'(Y, Oy)*. For this duality pairing, the identity

l

(3.5) 0(C(1) = >_0(y:)(dvi(1))

i=1
is valid, where d~; denotes the differential of the map ~; at 0.
Using the identity (3.5) it is straight-forward to see that

(3.6) o7, w) = (T, w)

for all w with dy(L)(w) = 0. Indeed, since TpS = H°(D, Np) = H°(D, Kp),
where Np and Kp are respectively the normal bundle and the canonical bundle of D,
the vector v € TpS corresponds to a holomorphic 1-form on D. (We assume D to
be smooth; since C' is very ample, it suffices to consider smooth divisors.) Let ¢ €
H°(D, Kp) be the 1-form given by v. If we set the above map 7 such that ((1) = w,
then setting 6 in (3.5) to be 6’ we conclude that O (7, w) coincides with Y- ' (y;)(d7;(1)).
On the other hand, from the definition of the symplectic form w on Hilbert scheme it
follows immediately that Qo(7,w) = Y 0'(y;)(dy;(1)). This establishes the equality in
(3.6).

As we noted earlier, the fiber ¢~ (D) is a component of the Picard group of D.
Therefore, there is no nonconstant holomorphic function on 1~*(D). Now imitating
the final part of the proof of Proposition 3.1 we conclude that there is a holomorphic
2—form Q; on U such that ¢*Q; = © — Qg over ¢~ }(U). But U is Zariski open and
dense in S, and © — Q) is defined on M(d). Therefore, €y also extends to S. This
completes the proof of the lemma. O

If X is a K3 surface, then Theorem 1.1 follows easily from Lemma 3.4. Indeed, for
a K3 surface X we have H'(X, Ox) = 0. Therefore, any deformation of the divisor
C' is linearly (rationally) equivalent to C'. Consequently, S is the space of all divisors
rationally equivalent to C. In other words, it is the projective space PH?(X, Ox(C)).
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But PH°(X, Ox(C)) does not have any nonzero holomorphic 2-form. Consequently,
the form €2y in Lemma 3.4 must vanish identically. Therefore, we have
0 = O

if X is a K3 surface.

To complete the proof of Theorem 1.1 we assume that X is an abelian surface.

In that case, S is a projective bundle over a component Pic®(X) of the Picard group
of X, where ¢ € H?*(X, Z) is the homology class of C. The fiber of the projection
(3.7) f: S — PicY(X)

over L € Pic’(X) is PH°(X, L). Since f is a projective bundle, from the proof of
Proposition 3.1 it follows that

Q= [,
where ()5 is a holomorphic 2—form on Pic®(X).

Using the additive structure of X, and the divisor C, the variety Pic®(X) gets identi-
fied with X. More precisely, for any x € X, the corresponding divisor is the translation

C, =C+zx
of C' by x. Fix once and for all a reduced divisor
B = {x1,29, -+ ,x4} C C

of degree d the Riemann surface C'. Note that B, := B+ z is a divisor of degree d on
C.. In other word, we have map

A X — Mce(d)

that sends x to the pair (j,Oc¢, (B,), 1,), where j is the inclusion map of C, in X and
1, is the section of the line bundle O¢, (B,) defined by the constant function 1. So
7(A(z)) coincides with B, € Hilb*(X) for every z € X. It is clear that using the
identification of X with Pic®(X), the composition f o o A coincides with the identity
map of X, where ® is defined in (3.2) and f is defined in (3.7). Therefore, to complete
the proof of Theorem 1.1 it suffices to show that A*© = \*(),.

The symplectic form 7 on X is invariant under the translations of the abelian variety.
Using this it is easy to deduce that A\*()y coincides with d - 7. Similarly, it is straight-
forward to deduce that A*© = d-7. This completes the proof of Theorem 1.1 assuming
that X is an abelian surface. We already proved it when X is a K3 surface and hence
the proof of Theorem 1.1 is complete.
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