Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

On the symplectic structures on moduli space of stable sheaves over a K3 or abelian surface and on Hilbert scheme

(revised version: February 2003)

by

Indranil Biswas and Avijit Mukherjee

Preprint no.: 3 2002

ON THE SYMPLECTIC STRUCTURES ON MODULI SPACE OF STABLE SHEAVES OVER A K3 OR ABELIAN SURFACE AND ON HILBERT SCHEME OF POINTS

INDRANIL BISWAS AND AVIJIT MUKHERJEE

ABSTRACT. Fix a smooth very ample curve C on a K3 or abelian surface X. Let \mathcal{M} denote the moduli space of pairs of the form (F,s), where F is a stable sheaf over X whose Hilbert polynomial coincides with that of the direct image, by the inclusion map of C in X, of a line bundle of degree d over C, and s is a nonzero section of F. Assume d to be sufficiently large such that F has a nonzero section. The pullback of the Mukai symplectic form on moduli spaces of stable sheaves over X is a holomorphic 2–form on \mathcal{M} . On the other hand, \mathcal{M} has a map to a Hilbert scheme parametrizing 0-dimensional subschemes of X that sends (F,s) to the divisor, defined by s, on the curve defined by the support of F. We prove that the above 2–form on \mathcal{M} coincides with the pullback of the symplectic form on Hilbert scheme.

1. Introduction

Let X be a connected smooth projective surface over \mathbb{C} with trivial canonical bundle. In other words, X is either a K3 surface or an abelian surface.

Let C be a smooth very ample curve on X. We will use C for defining the *degree* of a coherent sheaf on X. Let $\iota: C \longrightarrow X$ be the inclusion map.

Fix an integer $d \geq 1$. Let $\mathcal{M}_C(d)$ denote the moduli space of stable sheaves F over X such that the Hilbert polynomial of F coincides with the Hilbert polynomial of ι_*L , where L is a holomorphic line bundle of degree d over the curve C. The construction of $\mathcal{M}_C(d)$ can be found in [6, Ch. 4], [11]. The condition on the Hilbert polynomial for F implies that F is a torsion sheaf supported over some curve D on X and, furthermore, F is isomorphic to j_*V , where j denotes the inclusion map of D in X and V is a stable sheaf over D. The condition further implies that the support D is homologically equivalent to C.

Since a stable sheaf is simple, from [10, Theorem 0.1] we know that $\mathcal{M}_C(d)$ is a smooth quasiprojective variety of dimension

$$2H^0(X, \mathcal{O}_X(C)) + 2 - 2\chi(\mathcal{O}_X) = 2 \cdot \text{genus}(C).$$

Note that $\chi(\mathcal{O}_X) = 0$ if X is an abelian surface and $\chi(\mathcal{O}_X) = 2$ if X is a K3 surface.

¹⁹⁹¹ Mathematics Subject Classification. 53D30, 14J60, 14C05.

Fix a trivialization of K_X . By a well-known construction of Mukai [10, Corollary 0.2], the variety $\mathcal{M}_C(d)$ has a natural holomorphic symplectic structure. This symplectic form on $\mathcal{M}_C(d)$ will be denoted by Θ .

Henceforth, we will assume that $d \geq 2 \cdot \text{genus}(C) - 1$. Therefore, $H^1(X, F) = 0$ for $F \in \mathcal{M}_C(d)$. Note that since F is supported on a curve, we have $H^2(X, F) = 0$. So, $\dim H^0(X, F) = d - \text{genus}(C) + 1$ for any $F \in \mathcal{M}_C(d)$. Let

$$\phi: \mathcal{M} \longrightarrow \mathcal{M}_C(d)$$

be the projectivized Picard bundle over $\mathcal{M}_C(d)$. In other words, \mathcal{M} is a projective bundle and for any $F \in \mathcal{M}_C(d)$ the fiber $\phi^{-1}(F)$ is $PH^0(X, F)$, the space of lines in $H^0(X, F)$.

The variety \mathcal{M} is the moduli space pairs of the form (F, s), where $F \in \mathcal{M}_C(d)$ and $s \in H^0(X, F) \setminus \{0\}$. Note that such a pair is a very special case of more general objects introduced by Le Potier which are known as *coherent systems* (see [8], [9]).

Let

$$\Omega := \phi^* \Theta$$

be the holomorphic two form which is the pullback of Mukai form.

Let $\operatorname{Hilb}^d(X)$ denote the *Hilbert scheme*, which is the moduli space parametrizing 0-dimensional subschemes of X of length d.

A well-known result of Beauville, [1], says that $\operatorname{Hilb}^d(X)$ has a natural holomorphic symplectic structure. Let ω denote the symplectic form on $\operatorname{Hilb}^d(X)$.

Clearly there is a morphism

$$\pi: \mathcal{M} \longrightarrow \mathrm{Hilb}^d(X)$$

that sends a pair (F, s), where F is a stable sheaf supported on a curve D in X and $s \in PH^0(X, F)$, to the divisor on the curve D defined by s. Note that using the inclusion map D in X, a divisor on D is identified with a 0-dimensional subschemes of X.

Although we do not consider the case d = genus(C), it may be pointed out that if d = genus(C), then both the maps ϕ and π are birational.

Let

$$\Omega' := \pi^* \omega$$

be the holomorphic two form on \mathcal{M} which is the pullback of Beauville form.

The aim here is to prove

Theorem 1.1. The two holomorphic 2-forms on \mathcal{M} , namely Ω and Ω' , coincide.

Theorem 1.1 will be proved in Section 3.

See [4] and [13] for relationship between Hilbert scheme of points and semistable sheaves on a K3 surface. A result relating the symplectic structure on a moduli space of Higgs bundles on a compact Riemann surface Y with that on a Hilbert scheme of points on K_Y can be found in [2].

Acknowledgments: We wish to thank N. Nitsure for his useful comments on the exact sequence (2.3).

2. Properties of the forms

In this section we briefly recall the constructions of Θ and ω and will note some of their properties that will be useful for our purpose.

We once and for all fix a trivialization of the canonical bundle K_X . The section of K_X that defines this trivialization, which we will denote by τ , is a symplectic form on X.

Let $x=\{x_1,x_2,\cdots,x_d\}\in \mathrm{Hilb}^d(X)$ be a point with all x_i distinct. Clearly we have

$$T_x \operatorname{Hilb}^d(X) = \bigoplus_{i=1}^d T_{x_i} X.$$

If $v^j = \{v_1^j, v_2^j, \dots, v_d^j\} \in T_x \text{Hilb}^d(X)$, where j = 1, 2 and $v_i^j \in T_{x_i}X$, then

(2.1)
$$\omega(v^1, v^2) = \sum_{i=1}^d \tau(v_i^1, v_i^2),$$

where τ is the above defined symplectic form on X. Clearly this defines a holomorphic symplectic form on the Zariski open subset of $\mathrm{Hilb}^d(X)$ defined by reduced subschemes, that is, distinct d points of X. It was proved by Beauville that this form extends to a holomorphic symplectic form on $\mathrm{Hilb}^d(X)$ [1, p. 766–767], which has been denoted by ω .

For any $F \in \mathcal{M}_C(d)$, the tangent space $T_F \mathcal{M}_C(d)$ coincides with $\operatorname{Ext}^1_{\mathcal{O}_X}(F, F)$ [6, Corollary 4.5.2], where Ext is the global ext. Now consider the composition (2.2)

$$\operatorname{Ext}^{1}_{\mathcal{O}_{X}}(F,F) \otimes \operatorname{Ext}^{1}_{\mathcal{O}_{X}}(F,F) \longrightarrow \operatorname{Ext}^{2}_{\mathcal{O}_{X}}(F,F) \longrightarrow H^{2}(X,\,\mathcal{O}_{X}) \xrightarrow{\cup \tau} H^{2}(X,\,K_{X}) \cong \mathbb{C},$$

where the second homomorphism is defined using the trace map [10, p. 114]. This bilinear pairing on $\operatorname{Ext}^1_{\mathcal{O}_X}(F,F)$ is clearly skew-symmetric. The 2-form on $\mathcal{M}_C(d)$ defined by (2.2) is the Mukai symplectic form, which has been denoted by Θ .

Let F be supported on a divisor D in X. The restriction of F to D will also be denoted by F. We recall that the spectral sequence for base change, [12], gives an exact sequence

$$(2.3) 0 \longrightarrow \operatorname{Ext}_{\mathcal{O}_{\mathcal{D}}}^{1}(F, F) \stackrel{\sigma}{\longrightarrow} \operatorname{Ext}_{\mathcal{O}_{\mathcal{D}}}^{1}(F, F) \stackrel{q}{\longrightarrow} H^{0}(D, \mathcal{O}_{X}(D)|_{D}) \longrightarrow \operatorname{Ext}_{\mathcal{O}_{\mathcal{D}}}^{2}(F, F).$$

Since dim D=1, we have $\operatorname{Ext}^2_{\mathcal{O}_D}(F,F)=0$. So (2.3) is a short exact sequence.

If F is a line bundle over D, then $\operatorname{Ext}^1_{\mathcal{O}_D}(F,F) \cong H^1(D,\mathcal{O}_D)$. We note that if D is a smooth divisor, then the line bundle $\mathcal{O}_X(D)|_D$ over D is identified by the Poincaré adjunction formula with the normal bundle $N_D := j^*TX/TD$, where j is the inclusion map, of D.

We noted earlier that $\operatorname{Ext}^1_{\mathcal{O}_X}(F,F)$ parametrizes infinitesimal deformation of F. The projection q in (2.3) corresponds to the infinitesimal deformations of the support of the sheaf, and the inclusion σ corresponds to deforming the sheaf keeping its support fixed.

Suppose that there is a line bundle ξ over X such that $F \cong j_*j^*\xi$, where j, as before, denotes the inclusion map of D to X. In that case F has the projective resolution

$$0 \longrightarrow \xi \otimes \mathcal{O}_X(-D) \longrightarrow \xi \longrightarrow F \longrightarrow 0$$

which is obtained by tensoring the exact sequence

$$0 \longrightarrow \mathcal{O}_X(-D) \longrightarrow \mathcal{O}_X \longrightarrow j_*\mathcal{O}_D \longrightarrow 0.$$

Therefore, from the definition of Ext [7, Ch. V, §3], it follows that

$$\operatorname{Ext}^1_{\mathcal{O}_Y}(F,F) \cong H^1(D,\mathcal{O}_D) \oplus H^0(D,N_D).$$

In other words, in this case the exact sequence (2.3) has a canonical splitting if F is of the above form $j_*j^*\xi$. As D moves over a family, the restrictions of ξ , which is defined over X, give the splitting. Note that ξ is uniquely determined the condition $F \cong j_*j^*\xi$. To explain this, let ξ_0 be a line bundle over X such that $c_1(\xi_0) = 0$. Now, since the divisor D is ample and $K_X \cong \mathcal{O}_X$, from Kodaira vanishing theorem [5, p. 154] and Serre duality it follows immediately that $H^1(X, \xi_0 \otimes \mathcal{O}_X(-D)) = 0$. Consequently, for the exact sequence

$$0 \longrightarrow \xi_0 \otimes \mathcal{O}_X(-D) \longrightarrow \xi_0 \longrightarrow j_*j^*\xi_0 \longrightarrow 0,$$

the homomorphism $H^0(X, \xi_0) \longrightarrow H^0(D, j^*\xi_0)$ is surjective. Therefore, given two line bundles ξ_1 and ξ_2 on X with $c_1(\xi_1) = c_1(\xi_2)$, setting $\xi_0 = \xi_1^* \otimes \xi_2$ we conclude that if $j^*\xi_1 \cong j^*\xi_2$ then $\xi_1 \cong \xi_2$. In other words, the restriction of line bundles to D is injective. Of course, the injectivity of the differential of this restriction homomorphism is the restatement of the fact that $H^1(X, \mathcal{O}_X) \longrightarrow H^1(D, \mathcal{O}_D)$ is injective which in turn follows from the above observation that $H^1(X, \xi_0 \otimes \mathcal{O}_X(-D)) = 0$ by setting $\xi_0 \cong \mathcal{O}_X$.

Note that the symplectic form τ on X identifies N_D with the canonical bundle K_D . The form τ defines a symplectic structure on j^*TX . Since the restriction of this symplectic form to the subbundle $TD \subset j^*TX$, vanishes, it identifies the quotient N_D of j^*TX with $K_D := (TD)^*$. Using this identification and Serre duality, we have

(2.4)
$$H^1(D, \mathcal{O}_D) \cong H^0(D, N_D)^*$$
.

From the definition of Θ in (2.2) it follows immediately that for any $\alpha \in \operatorname{Ext}^1_{\mathcal{O}_D}(F, F)$ and $\beta \in \operatorname{Ext}^1_{\mathcal{O}_X}(F, F)$, the identity

(2.5)
$$\Theta(\sigma(\alpha), \beta) = \alpha(q(\beta))$$

is valid, where σ , q are as in (2.3), and α is identified, using (2.4), with the corresponding element in $H^0(D, N_D)^*$.

3. Equality of forms

We start with a simple proposition.

Proposition 3.1. There is a 2-form Ω_0 on $\mathcal{M}_C(d)$ such that its pullback $\phi^*\Omega_0$ to \mathcal{M} coincides with Ω' .

Proof. Recall that the map ϕ , defined in the introduction, is a projective bundle. Since there is no nonzero holomorphic 2–form on a projective space, the restriction of the form Ω' to a fiber of ϕ vanishes.

Take any point $y \in \mathcal{M}_C(d)$ and a tangent vector $v \in T_y\mathcal{M}_C(d)$. Take a point $z \in \phi^{-1}(y)$ and $w \in T_z\mathcal{M}$ which is in the kernel of the differential map

$$d\phi(z): T_z\mathcal{M} \longrightarrow T_u\mathcal{M}_C(d)$$

for ϕ at z. Take $\overline{v} \in T_z \mathcal{M}$ such that $d\phi(z)(\overline{v}) = v$. Since the restriction of Ω' to $\phi^{-1}(y)$ vanishes, $\Omega'(w,\overline{v})$ is independent of the choice of lift \overline{v} of v. Therefore, v defines a holomorphic 1-form on $\phi^{-1}(y)$. Since a projective space does not have a nonzero holomorphic 1-form, this form must vanish identically.

Therefore, given another tangent vector $v' \in T_v \mathcal{M}_C(d)$ and a lift $\overline{v}' \in T_z \mathcal{M}$ with

$$d\phi(z)(\overline{v}') = v'$$
.

the pairing $\Omega'(\overline{v}, \overline{v}')$ is independent of the choice of the lifts. Therefore, the pair (v, v') defines a holomorphic function on $\phi^{-1}(y)$ which sends any z to $\Omega'(\overline{v}, \overline{v}')$. Since $\phi^{-1}(y)$ is complete and connected, this must be a constant function.

Let Ω_0 be the holomorphic 2-form on $\mathcal{M}_C(d)$ that sends any pair of tangent vectors (v, v') to the constant $\Omega'(\overline{v}, \overline{v'})$. It is clear from the construction that $\phi^*\Omega_0 = \Omega'$. This completes the proof of the proposition.

Note that since ψ is surjective, the condition $\phi^*\Omega_0 = \Omega'$ uniquely determines Ω_0 .

Note that if we know that $\dim H^0(\mathcal{M}_C(d), \Omega^2_{\mathcal{M}_C(d)}) = 1$, then from Proposition 3.1 it follows immediately that Ω' must be a constant scalar multiple of Ω .

We have a natural projection from $\mathcal{M}_C(d)$ to the space of divisors on X homologically equivalent to C – we will denote this space by S – that sends any sheaf F to its support.

Let

$$\psi: \mathcal{M}_C(d) \longrightarrow \mathcal{S}$$

be this projection map. If $D \in \mathcal{S}$ is a reduced smooth curve, then the fiber $\psi^{-1}(D)$ is the component $\operatorname{Pic}^d(D)$ of the Picard group of D. Note that since C is very ample, the points in \mathcal{S} corresponding to reduced smooth divisors in X constitute a Zariski open dense subset.

Proposition 3.3. For any divisor $D \in \mathcal{S}$, the restrictions of both Θ and Ω_0 to the subvariety $\psi^{-1}(D) \subset \mathcal{M}_C(d)$ vanish identically.

Proof. Since the support of any sheaf in $\psi^{-1}(D)$ is the fixed divisor D, and when restricted to D, the symplectic form τ vanishes identically, from the definition of ω in (2.1) it follows immediately that the restriction of Ω_0 to $\psi^{-1}(D)$ vanishes identically.

From the identity (2.5) for Θ it follows immediately that the restriction of Θ to $\psi^{-1}(D)$ vanishes identically. This is also proved in Lemma 1.3 of [3]. This completes the proof of the proposition.

Now we will show that $\Theta - \Omega_0$ is a pullback from S.

Lemma 3.4. There is a holomorphic 2-form Ω_1 on S such that

$$\psi^*\Omega_1 = \Theta - \Omega_0,$$

where ψ is defined in (3.2).

Proof. Let $U \subset \mathcal{S}$ be the subvariety defined by all reduced smooth curves in X. It was already noted that U is a Zariski open dense subvariety.

Take any $D \in U$ and a tangent vector $v \in T_D S$. Take any $L \in \psi^{-1}(D)$. Let

$$d\psi(L): T_L \mathcal{M}_C(d) \longrightarrow T_D \mathcal{S}$$

be the differential of the map ψ at the point L.

Take any $w \in T_L \mathcal{M}_C(d)$ such that $d\psi(L)(w) = 0$. From Proposition 3.3 it follows that for any $\overline{v} \in T_L \mathcal{M}_C(d)$, with $d\psi(L)(\overline{v}) = v$, both $\Theta(\overline{v}, w)$ and $\Omega_0(\overline{v}, w)$ are independent of the choice of the lift \overline{v} of v.

The identity (2.5) describes $\Theta(\overline{v}, w)$. We need to compare the expression in (2.5) for $\Theta(\overline{v}, w)$ with $\Omega_0(\overline{v}, w)$, which is described using (2.1). For this we will recall a general fact.

Let Y be a compact connected Riemann surface, and let

$$\underline{y} := (y_1, y_2, \cdots, y_l) \in Y^l$$

be a point of the l-fold Cartesian product. Let

$$\gamma:\Delta\longrightarrow Y^l$$

be a holomorphic map of the disk $\Delta := \{z \in \mathbb{C} | |z| < 1\}$ such that $\gamma(0) = \underline{y}$. The composition of γ with the projection of Y^l to the *i*-th factor will be denoted by γ_i . So, $\gamma = (\gamma_1, \gamma_2, \dots, \gamma_l)$. Sending any $t \in \Delta$ to the line bundle over Y defined by the divisor γ we get a map

$$\overline{\gamma}: \Delta \longrightarrow \operatorname{Pic}^{l}(Y).$$

The differential of $\overline{\gamma}$ at $0 \in \Delta$ is a homomorphism

$$\zeta: \mathbb{C} \longrightarrow H^1(Y, \mathcal{O}_Y)$$
.

Finally, take a holomorphic 1-form

$$\theta \in H^0(Y, K_Y)$$
.

Note that $H^0(Y, K_Y) \cong H^1(Y, \mathcal{O}_Y)^*$. For this duality pairing, the identity

(3.5)
$$\theta(\zeta(1)) = \sum_{i=1}^{l} \theta(y_i)(d\gamma_i(1))$$

is valid, where $d\gamma_i$ denotes the differential of the map γ_i at 0.

Using the identity (3.5) it is straight-forward to see that

$$\Theta(\overline{v}, w) = \Omega_0(\overline{v}, w)$$

for all w with $d\psi(L)(w) = 0$. Indeed, since $T_D \mathcal{S} \cong H^0(D, N_D) \cong H^0(D, K_D)$, where N_D and K_D are respectively the normal bundle and the canonical bundle of D, the vector $v \in T_D \mathcal{S}$ corresponds to a holomorphic 1-form on D. (We assume D to be smooth; since C is very ample, it suffices to consider smooth divisors.) Let $\theta' \in H^0(D, K_D)$ be the 1-form given by v. If we set the above map γ such that $\zeta(1) = w$, then setting θ in (3.5) to be θ' we conclude that $\Theta(\overline{v}, w)$ coincides with $\Sigma \theta'(y_i)(d\gamma_i(1))$. On the other hand, from the definition of the symplectic form ω on Hilbert scheme it follows immediately that $\Omega_0(\overline{v}, w) = \Sigma \theta'(y_i)(d\gamma_i(1))$. This establishes the equality in (3.6).

As we noted earlier, the fiber $\psi^{-1}(D)$ is a component of the Picard group of D. Therefore, there is no nonconstant holomorphic function on $\psi^{-1}(D)$. Now imitating the final part of the proof of Proposition 3.1 we conclude that there is a holomorphic 2–form Ω_1 on U such that $\psi^*\Omega_1 = \Theta - \Omega_0$ over $\psi^{-1}(U)$. But U is Zariski open and dense in \mathcal{S} , and $\Theta - \Omega_0$ is defined on $\mathcal{M}_C(d)$. Therefore, Ω_1 also extends to \mathcal{S} . This completes the proof of the lemma.

If X is a K3 surface, then Theorem 1.1 follows easily from Lemma 3.4. Indeed, for a K3 surface X we have $H^1(X, \mathcal{O}_X) = 0$. Therefore, any deformation of the divisor C is linearly (rationally) equivalent to C. Consequently, \mathcal{S} is the space of all divisors rationally equivalent to C. In other words, it is the projective space $PH^0(X, \mathcal{O}_X(C))$.

But $PH^0(X, \mathcal{O}_X(C))$ does not have any nonzero holomorphic 2-form. Consequently, the form Ω_1 in Lemma 3.4 must vanish identically. Therefore, we have

$$\Theta = \Omega_0$$

if X is a K3 surface.

To complete the proof of Theorem 1.1 we assume that X is an abelian surface.

In that case, S is a projective bundle over a component $\operatorname{Pic}^c(X)$ of the Picard group of X, where $c \in H^2(X, \mathbb{Z})$ is the homology class of C. The fiber of the projection

$$(3.7) f: \mathcal{S} \longrightarrow \operatorname{Pic}^{c}(X)$$

over $L \in \text{Pic}^c(X)$ is $PH^0(X, L)$. Since f is a projective bundle, from the proof of Proposition 3.1 it follows that

$$\Omega_1 = f^* \Omega_2$$

where Ω_2 is a holomorphic 2-form on $\operatorname{Pic}^c(X)$.

Using the additive structure of X, and the divisor C, the variety $\operatorname{Pic}^c(X)$ gets identified with X. More precisely, for any $x \in X$, the corresponding divisor is the translation

$$C_x := C + x$$

of C by x. Fix once and for all a reduced divisor

$$B := \{x_1, x_2, \cdots, x_d\} \subset C$$

of degree d the Riemann surface C. Note that $B_x := B + x$ is a divisor of degree d on C_x . In other word, we have map

$$\lambda: X \longrightarrow \mathcal{M}_C(d)$$

that sends x to the pair $(j_*\mathcal{O}_{C_x}(B_x), 1_x)$, where j is the inclusion map of C_x in X and 1_x is the section of the line bundle $\mathcal{O}_{C_x}(B_x)$ defined by the constant function 1. So $\pi(\lambda(x))$ coincides with $B_x \in \operatorname{Hilb}^d(X)$ for every $x \in X$. It is clear that using the identification of X with $\operatorname{Pic}^c(X)$, the composition $f \circ \psi \circ \lambda$ coincides with the identity map of X, where ψ is defined in (3.2) and f is defined in (3.7). Therefore, to complete the proof of Theorem 1.1 it suffices to show that $\lambda^*\Theta = \lambda^*\Omega_0$.

The symplectic form τ on X is invariant under the translations of the abelian variety. Using this it is easy to deduce that $\lambda^*\Omega_0$ coincides with $d \cdot \tau$. Similarly, it is straightforward to deduce that $\lambda^*\Theta = d \cdot \tau$. This completes the proof of Theorem 1.1 assuming that X is an abelian surface. We already proved it when X is a K3 surface and hence the proof of Theorem 1.1 is complete.

References

[1] A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle. Jour. Diff. Geom. 18, 755–782 (1983).

- [2] I. Biswas and A. Mukherjee, Symplectic structures of moduli space of Higgs bundles over a curve and Hilbert scheme of points on the canonical bundle. Comm. Math. Phys. **221**, 293–304 (2001).
- [3] R. Donagi, L. Ein and R.K. Lazarsfeld, Nilpotent cones and sheaves on K3 surfaces. "Birational algebraic geometry" (Baltimore, MD, 1996), 51–61, Contemp. Math., 207, Amer. Math. Soc., Providence, RI, 1997.
- [4] L. Göttsche and D. Huybrechts, Hodge numbers of moduli spaces of stable bundles on K3 surfaces. Int. J. Math. 7, 359–372 (1996).
- [5] P. Griffiths and J. Harris, Principals of Algebraic Geometry. A Wiley–Interscience Publication, John Wiley & Sons Inc., 1978.
- [6] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves. Aspects of Mathematics, E31. Friedr. Vieweg & Sohn, Braunschweig, 1997.
- [7] S. Kobayashi, Differential Geometry of Complex Vector Bundles. Publications of the Math. Society of Japan 15, Iwanami Shoten Publishers and Princeton University Press, 1987.
- [8] J. Le Potier, Systèmes cohérents et structures de niveau. Astérisque, 214 (1993).
- [9] J. Le Potier, Faisceaux semi-stables et systèmes cohérents. "Vector bundles in algebraic geometry" (Durham, 1993), 179–239, London Math. Soc. Lecture Note Ser., 208, Cambridge Univ. Press, Cambridge, 1995.
- [10] S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or K3 surface. Invent. Math. 77, 101–116 (1984).
- [11] C.T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. II. Inst. Hautes Études Sci. Publ. Math. 80, 5–79 (1994).
- [12] C.A. Weibel, An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, Cambridge, 1994.
- [13] K. Yoshioka, Some examples of Mukai's reflections on K3 surfaces. Jour. Reine Angew. Math. 515, 97–123 (1999).

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, INDIA

E-mail address: indranil@math.tifr.res.in

MAX-PLANCK-INSTITUT FÜR MATHEMATIK IN DEN NATURWISSENSCHAFTEN, INSELSTR. 22-26, D-04103 LEIPZIG, GERMANY

E-mail address: avijit@mis.mpg.de