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ON THE SYMPLECTIC STRUCTURES ON MODULI SPACE OF
STABLE SHEAVES OVER A K3 OR ABELIAN SURFACE AND ON

HILBERT SCHEME OF POINTS

INDRANIL BISWAS AND AVIJIT MUKHERJEE

Abstract. Fix a smooth very ample curve C on a K3 or abelian surface X . Let
M denote the moduli space of pairs of the form (F, s), where F is a stable sheaf over
X whose Hilbert polynomial coincides with that of the direct image, by the inclusion
map of C in X , of a line bundle of degree d over C, and s is a nonzero section of F .
Assume d to be sufficiently large such that F has a nonzero section. The pullback of
the Mukai symplectic form on moduli spaces of stable sheaves over X is a holomorphic
2–form on M. On the other hand, M has a map to a Hilbert scheme parametrizing
0-dimensional subschemes of X that sends (F, s) to the divisor, defined by s, on the
curve defined by the support of F . We prove that the above 2–form on M coincides
with the pullback of the symplectic form on Hilbert scheme.

1. Introduction

Let X be a connected smooth projective surface over C with trivial canonical bundle.

In other words, X is either a K3 surface or an abelian surface.

Let C be a smooth very ample curve on X. We will use C for defining the degree of

a coherent sheaf on X. Let ι : C −→ X be the inclusion map.

Fix an integer d ≥ 1. Let MC(d) denote the moduli space of stable sheaves F over

X such that the Hilbert polynomial of F coincides with the Hilbert polynomial of ι∗L,

where L is a holomorphic line bundle of degree d over the curve C. The construction of

MC(d) can be found in [6, Ch. 4], [11]. The condition on the Hilbert polynomial for F

implies that F is a torsion sheaf supported over some curve D on X and, furthermore,

F is isomorphic to j∗V , where j denotes the inclusion map of D in X and V is a

stable sheaf over D. The condition further implies that the support D is homologically

equivalent to C.

Since a stable sheaf is simple, from [10, Theorem 0.1] we know that MC(d) is a

smooth quasiprojective variety of dimension

2H0(X, OX(C)) + 2 − 2χ(OX) = 2 · genus(C) .

Note that χ(OX) = 0 if X is an abelian surface and χ(OX) = 2 if X is a K3 surface.
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Fix a trivialization of KX . By a well-known construction of Mukai [10, Corollary 0.2],

the variety MC(d) has a natural holomorphic symplectic structure. This symplectic

form on MC(d) will be denoted by Θ.

Henceforth, we will assume that d ≥ 2 · genus(C) − 1. Therefore, H1(X, F ) = 0

for F ∈ MC(d). Note that since F is supported on a curve, we have H2(X, F ) = 0.

So, dimH0(X, F ) = d− genus(C) + 1 for any F ∈ MC(d). Let

φ : M −→ MC(d)

be the projectivized Picard bundle over MC(d). In other words, M is a projective

bundle and for any F ∈ MC(d) the fiber φ−1(F ) is PH0(X, F ), the space of lines in

H0(X, F ).

The variety M is the moduli space pairs of the form (F, s), where F ∈ MC(d) and

s ∈ H0(X,F )\{0}. Note that such a pair is a very special case of more general objects

introduced by Le Potier which are known as coherent systems (see [8], [9]).

Let

Ω := φ∗Θ

be the holomorphic two form which is the pullback of Mukai form.

Let Hilbd(X) denote the Hilbert scheme, which is the moduli space parametrizing

0-dimensional subschemes of X of length d.

A well-known result of Beauville, [1], says that Hilbd(X) has a natural holomorphic

symplectic structure. Let ω denote the symplectic form on Hilbd(X).

Clearly there is a morphism

π : M −→ Hilbd(X)

that sends a pair (F, s), where F is a stable sheaf supported on a curve D in X and

s ∈ PH0(X, F ), to the divisor on the curve D defined by s. Note that using the

inclusion map D in X, a divisor on D is identified with a 0-dimensional subschemes of

X.

Although we do not consider the case d = genus(C), it may be pointed out that if

d = genus(C), then both the maps φ and π are birational.

Let

Ω′ := π∗ω

be the holomorphic two form on M which is the pullback of Beauville form.

The aim here is to prove

Theorem 1.1. The two holomorphic 2–forms on M, namely Ω and Ω′, coincide.

Theorem 1.1 will be proved in Section 3.
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See [4] and [13] for relationship between Hilbert scheme of points and semistable

sheaves on a K3 surface. A result relating the symplectic structure on a moduli space

of Higgs bundles on a compact Riemann surface Y with that on a Hilbert scheme of

points on KY can be found in [2].

Acknowledgments: We wish to thank N. Nitsure for his useful comments on the exact

sequence (2.3).

2. Properties of the forms

In this section we briefly recall the constructions of Θ and ω and will note some of

their properties that will be useful for our purpose.

We once and for all fix a trivialization of the canonical bundle KX . The section of

KX that defines this trivialization, which we will denote by τ , is a symplectic form on

X.

Let x = {x1, x2, · · · , xd} ∈ Hilbd(X) be a point with all xi distinct. Clearly we

have

TxHilbd(X) =
d⊕

i=1

Txi
X .

If vj = {vj
1, v

j
2, · · · , vj

d} ∈ TxHilbd(X), where j = 1, 2 and vj
i ∈ Txi

X, then

(2.1) ω(v1, v2) =
d∑

i=1

τ(v1
i , v

2
i ) ,

where τ is the above defined symplectic form on X. Clearly this defines a holomorphic

symplectic form on the Zariski open subset of Hilbd(X) defined by reduced subschemes,

that is, distinct d points of X. It was proved by Beauville that this form extends to a

holomorphic symplectic form on Hilbd(X) [1, p. 766–767], which has been denoted by

ω.

For any F ∈ MC(d), the tangent space TFMC(d) coincides with Ext1
OX

(F, F ) [6,

Corollary 4.5.2], where Ext is the global ext. Now consider the composition

(2.2)

Ext1
OX

(F, F ) ⊗ Ext1
OX

(F, F ) −→ Ext2
OX

(F, F ) −→ H2(X, OX)
∪τ−→ H2(X, KX) ∼= C ,

where the second homomorphism is defined using the trace map [10, p. 114]. This

bilinear pairing on Ext1
OX

(F, F ) is clearly skew-symmetric. The 2–form on MC(d)

defined by (2.2) is the Mukai symplectic form, which has been denoted by Θ.

Let F be supported on a divisor D in X. The restriction of F to D will also be

denoted by F . We recall that the spectral sequence for base change, [12], gives an

exact sequence

(2.3)

0 −→ Ext1
OD

(F, F )
σ−→ Ext1

OX
(F, F )

q−→ H0(D, OX(D)|D) −→ Ext2
OD

(F, F ) .
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Since dimD = 1, we have Ext2
OD

(F, F ) = 0. So (2.3) is a short exact sequence.

If F is a line bundle over D, then Ext1
OD

(F, F ) ∼= H1(D, OD). We note that if D is

a smooth divisor, then the line bundle OX(D)|D over D is identified by the Poincaré

adjunction formula with the normal bundle ND := j∗TX/TD, where j is the inclusion

map, of D.

We noted earlier that Ext1
OX

(F, F ) parametrizes infinitesimal deformation of F . The

projection q in (2.3) corresponds to the infinitesimal deformations of the support of

the sheaf, and the inclusion σ corresponds to deforming the sheaf keeping its support

fixed.

Suppose that there is a line bundle ξ over X such that F ∼= j∗j∗ξ, where j, as before,

denotes the inclusion map of D to X. In that case F has the projective resolution

0 −→ ξ ⊗OX(−D) −→ ξ −→ F −→ 0

which is obtained by tensoring the exact sequence

0 −→ OX(−D) −→ OX −→ j∗OD −→ 0 .

Therefore, from the definition of Ext [7, Ch. V, §3], it follows that

Ext1
OX

(F, F ) ∼= H1(D, OD) ⊕H0(D, ND) .

In other words, in this case the exact sequence (2.3) has a canonical splitting if F is

of the above form j∗j∗ξ. As D moves over a family, the restrictions of ξ, which is

defined over X, give the splitting. Note that ξ is uniquely determined the condition

F ∼= j∗j∗ξ. To explain this, let ξ0 be a line bundle over X such that c1(ξ0) = 0.

Now, since the divisor D is ample and KX
∼= OX , from Kodaira vanishing theorem

[5, p. 154] and Serre duality it follows immediately that H1(X, ξ0 ⊗ OX(−D)) = 0.

Consequently, for the exact sequence

0 −→ ξ0 ⊗OX(−D) −→ ξ0 −→ j∗j∗ξ0 −→ 0 ,

the homomorphism H0(X, ξ0) −→ H0(D, j∗ξ0) is surjective. Therefore, given two

line bundles ξ1 and ξ2 on X with c1(ξ1) = c1(ξ2), setting ξ0 = ξ∗1 ⊗ ξ2 we conclude

that if j∗ξ1 ∼= j∗ξ2 then ξ1 ∼= ξ2. In other words, the restriction of line bundles to D is

injective. Of course, the injectivity of the differential of this restriction homomorphism

is the restatement of the fact that H1(X, OX) −→ H1(D, OD) is injective which in

turn follows from the above observation that H1(X, ξ0 ⊗ OX(−D)) = 0 by setting

ξ0 ∼= OX .

Note that the symplectic form τ on X identifies ND with the canonical bundle

KD. The form τ defines a symplectic structure on j∗TX. Since the restriction of this

symplectic form to the subbundle TD ⊂ j∗TX, vanishes, it identifies the quotient ND

of j∗TX with KD := (TD)∗. Using this identification and Serre duality, we have

(2.4) H1(D, OD) ∼= H0(D, ND)∗ .
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From the definition of Θ in (2.2) it follows immediately that for any α ∈ Ext1
OD

(F, F )

and β ∈ Ext1
OX

(F, F ), the identity

(2.5) Θ(σ(α), β) = α(q(β))

is valid, where σ, q are as in (2.3), and α is identified, using (2.4), with the corresponding

element in H0(D, ND)∗.

3. Equality of forms

We start with a simple proposition.

Proposition 3.1. There is a 2–form Ω0 on MC(d) such that its pullback φ∗Ω0 to M
coincides with Ω′.

Proof. Recall that the map φ, defined in the introduction, is a projective bundle.

Since there is no nonzero holomorphic 2–form on a projective space, the restriction of

the form Ω′ to a fiber of φ vanishes.

Take any point y ∈ MC(d) and a tangent vector v ∈ TyMC(d). Take a point

z ∈ φ−1(y) and w ∈ TzM which is in the kernel of the differential map

dφ(z) : TzM −→ TyMC(d)

for φ at z. Take v ∈ TzM such that dφ(z)(v) = v. Since the restriction of Ω′ to

φ−1(y) vanishes, Ω′(w, v) is independent of the choice of lift v of v. Therefore, v defines

a holomorphic 1–form on φ−1(y). Since a projective space does not have a nonzero

holomorphic 1-form, this form must vanish identically.

Therefore, given another tangent vector v′ ∈ TyMC(d) and a lift v′ ∈ TzM with

dφ(z)(v′) = v′ ,

the pairing Ω′(v, v′) is independent of the choice of the lifts. Therefore, the pair (v, v′)
defines a holomorphic function on φ−1(y) which sends any z to Ω′(v, v′). Since φ−1(y)

is complete and connected, this must be a constant function.

Let Ω0 be the holomorphic 2–form on MC(d) that sends any pair of tangent vectors

(v, v′) to the constant Ω′(v, v′). It is clear from the construction that φ∗Ω0 = Ω′. This

completes the proof of the proposition. �

Note that since ψ is surjective, the condition φ∗Ω0 = Ω′ uniquely determines Ω0.

Note that if we know that dimH0(MC(d), Ω2
MC(d)) = 1, then from Proposition 3.1

it follows immediately that Ω′ must be a constant scalar multiple of Ω.

We have a natural projection from MC(d) to the space of divisors onX homologically

equivalent to C – we will denote this space by S – that sends any sheaf F to its support.
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Let

(3.2) ψ : MC(d) −→ S
be this projection map. If D ∈ S is a reduced smooth curve, then the fiber ψ−1(D) is

the component Picd(D) of the Picard group of D. Note that since C is very ample, the

points in S corresponding to reduced smooth divisors in X constitute a Zariski open

dense subset.

Proposition 3.3. For any divisor D ∈ S, the restrictions of both Θ and Ω0 to the

subvariety ψ−1(D) ⊂ MC(d) vanish identically.

Proof. Since the support of any sheaf in ψ−1(D) is the fixed divisor D, and when

restricted to D, the symplectic form τ vanishes identically, from the definition of ω in

(2.1) it follows immediately that the restriction of Ω0 to ψ−1(D) vanishes identically.

From the identity (2.5) for Θ it follows immediately that the restriction of Θ to

ψ−1(D) vanishes identically. This is also proved in Lemma 1.3 of [3]. This completes

the proof of the proposition. �

Now we will show that Θ − Ω0 is a pullback from S.

Lemma 3.4. There is a holomorphic 2–form Ω1 on S such that

ψ∗Ω1 = Θ − Ω0 ,

where ψ is defined in (3.2).

Proof. Let U ⊂ S be the subvariety defined by all reduced smooth curves in X. It

was already noted that U is a Zariski open dense subvariety.

Take any D ∈ U and a tangent vector v ∈ TDS. Take any L ∈ ψ−1(D). Let

dψ(L) : TLMC(d) −→ TDS
be the differential of the map ψ at the point L.

Take any w ∈ TLMC(d) such that dψ(L)(w) = 0. From Proposition 3.3 it fol-

lows that for any v ∈ TLMC(d), with dψ(L)(v) = v, both Θ(v, w) and Ω0(v, w) are

independent of the choice of the lift v of v.

The identity (2.5) describes Θ(v, w). We need to compare the expression in (2.5) for

Θ(v, w) with Ω0(v, w), which is described using (2.1). For this we will recall a general

fact.

Let Y be a compact connected Riemann surface, and let

y := (y1, y2, · · · , yl) ∈ Y l

be a point of the l-fold Cartesian product. Let

γ : ∆ −→ Y l
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be a holomorphic map of the disk ∆ := {z ∈ C

∣∣∣ |z| < 1} such that γ(0) = y. The

composition of γ with the projection of Y l to the i-th factor will be denoted by γi.

So, γ = (γ1, γ2, · · · , γl). Sending any t ∈ ∆ to the line bundle over Y defined by the

divisor γ we get a map

γ : ∆ −→ Picl(Y ) .

The differential of γ at 0 ∈ ∆ is a homomorphism

ζ : C −→ H1(Y, OY ) .

Finally, take a holomorphic 1–form

θ ∈ H0(Y, KY ) .

Note that H0(Y, KY ) ∼= H1(Y, OY )∗. For this duality pairing, the identity

(3.5) θ(ζ(1)) =
l∑

i=1

θ(yi)(dγi(1))

is valid, where dγi denotes the differential of the map γi at 0.

Using the identity (3.5) it is straight-forward to see that

(3.6) Θ(v, w) = Ω0(v, w)

for all w with dψ(L)(w) = 0. Indeed, since TDS ∼= H0(D, ND) ∼= H0(D, KD),

where ND and KD are respectively the normal bundle and the canonical bundle of D,

the vector v ∈ TDS corresponds to a holomorphic 1–form on D. (We assume D to

be smooth; since C is very ample, it suffices to consider smooth divisors.) Let θ′ ∈
H0(D, KD) be the 1–form given by v. If we set the above map γ such that ζ(1) = w,

then setting θ in (3.5) to be θ′ we conclude that Θ(v, w) coincides with
∑
θ′(yi)(dγi(1)).

On the other hand, from the definition of the symplectic form ω on Hilbert scheme it

follows immediately that Ω0(v, w) =
∑
θ′(yi)(dγi(1)). This establishes the equality in

(3.6).

As we noted earlier, the fiber ψ−1(D) is a component of the Picard group of D.

Therefore, there is no nonconstant holomorphic function on ψ−1(D). Now imitating

the final part of the proof of Proposition 3.1 we conclude that there is a holomorphic

2–form Ω1 on U such that ψ∗Ω1 = Θ − Ω0 over ψ−1(U). But U is Zariski open and

dense in S, and Θ − Ω0 is defined on MC(d). Therefore, Ω1 also extends to S. This

completes the proof of the lemma. �

If X is a K3 surface, then Theorem 1.1 follows easily from Lemma 3.4. Indeed, for

a K3 surface X we have H1(X, OX) = 0. Therefore, any deformation of the divisor

C is linearly (rationally) equivalent to C. Consequently, S is the space of all divisors

rationally equivalent to C. In other words, it is the projective space PH0(X, OX(C)).
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But PH0(X, OX(C)) does not have any nonzero holomorphic 2–form. Consequently,

the form Ω1 in Lemma 3.4 must vanish identically. Therefore, we have

Θ = Ω0

if X is a K3 surface.

To complete the proof of Theorem 1.1 we assume that X is an abelian surface.

In that case, S is a projective bundle over a component Picc(X) of the Picard group

of X, where c ∈ H2(X, Z) is the homology class of C. The fiber of the projection

(3.7) f : S −→ Picc(X)

over L ∈ Picc(X) is PH0(X, L). Since f is a projective bundle, from the proof of

Proposition 3.1 it follows that

Ω1 = f ∗Ω2 ,

where Ω2 is a holomorphic 2–form on Picc(X).

Using the additive structure of X, and the divisor C, the variety Picc(X) gets identi-

fied with X. More precisely, for any x ∈ X, the corresponding divisor is the translation

Cx := C + x

of C by x. Fix once and for all a reduced divisor

B := {x1, x2, · · · , xd} ⊂ C

of degree d the Riemann surface C. Note that Bx := B + x is a divisor of degree d on

Cx. In other word, we have map

λ : X −→ MC(d)

that sends x to the pair (j∗OCx(Bx), 1x), where j is the inclusion map of Cx in X and

1x is the section of the line bundle OCx(Bx) defined by the constant function 1. So

π(λ(x)) coincides with Bx ∈ Hilbd(X) for every x ∈ X. It is clear that using the

identification of X with Picc(X), the composition f ◦ ψ ◦ λ coincides with the identity

map of X, where ψ is defined in (3.2) and f is defined in (3.7). Therefore, to complete

the proof of Theorem 1.1 it suffices to show that λ∗Θ = λ∗Ω0.

The symplectic form τ on X is invariant under the translations of the abelian variety.

Using this it is easy to deduce that λ∗Ω0 coincides with d · τ . Similarly, it is straight-

forward to deduce that λ∗Θ = d ·τ . This completes the proof of Theorem 1.1 assuming

that X is an abelian surface. We already proved it when X is a K3 surface and hence

the proof of Theorem 1.1 is complete.
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