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We study synchronization of two eccentric rotors (ERs) with common rotational axis in the vibration system of the far-resonant
spatial motion. We deduce the dimensionless coupling equation of two ERs with applying the average method of small parameters.
We convert the synchronization problem into the existence and stability of solving the zero solutions for the dimensionless coupling
equations. By introducing the synchronization torque and the di
erence between the residual torques of two motors, we obtain the
synchronization condition that two ERs achieve the synchronized motion. We derive the stability condition of the synchronized
motion, which satis�es Routh-Hurwitz criterion. We discuss numerically the choosing motion feature of the vibration system,
which indicates that the vibration system has two steady motion modes. 	e synchronization torque forces the phase di
erence
to approach � when the structural parameters of the vibration system satisfy the condition of the spatial cone motion, and the
synchronization torque drives the phase di
erence to approach zero when those satisfy the condition of the spatial circle motion.
Finally, through the comparison and analysis of experimental data, the structural parameters of the vibration system satisfying the
above two conditions can guarantee the synchronization stability for two ERs.

1. Introduction

In vibration utilization engineering, synchronization of ERs
(also called exciter) is a special phenomenon of the nonlinear
vibration system, which is used to design the vibration
conveyer, the vibration screen, the vibration centrifuge, and
so forth [1].	e vibrationmill is a kind of grinding equipment
with high e�ciency and energy saving, which has beenwidely
used in many �elds, such as metallurgy, chemical, mining,
medical, ceramics, cement. In order to satisfy the increas-
ing of powder processing, the vibration mill is large-scale
development. However, for the large-scale vibration mill, its
longer barrel is not driven by only one motor. 	ere are
many questions about the design of this vibrationmill excited
by multiple ERs, for example, two motors drive separately
two ERs running in synchronization state to replace forced
synchronization.Hence, applying the synchronization theory
to design the large-scale vibration mill can simplify structure
of the vibration mill, decrease production cost of that, and
enhance work e�ciency of that.

For a long time, utilizing the advantage of synchroniza-
tion in engineering and technology �elds has been the main
aims of scholars, who have paid attention to synchronization
of two or more ERs. When it comes to synchronization,
we may date back to that of pendulum clocks found �rstly
by Huygens [2]. In the 1960s, Blekhman �rst clari�ed syn-
chronization principle of two ERs in a vibration system and
has successfully solved some problem about synchronization
[3–8]. Since then, there are many excellent results which
pushed the researches of the synchronization theory. Wen et
al. selected the phase di
erence of ERs as object and applied
themethod of integral average to simplify the solution of syn-
chronization [1]. Based on this concept, Zhao et al. applied the
average method of small parameters to obtain the synchro-
nization condition and the synchronization stability for two
ERs [9–11]. 	is method considers the e
ect of damping and
dynamic characteristics of induced motor. By applying the
averagemethod of small parameters, Zhang deduced the con-
dition that vibration synchronization transmission for two
ERswith reverse rotational direction and gave the result of the
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Figure 1: Dynamical model of the vibration system: (a) schematic diagram of structure; (b) the coordinate frames: �� = {� �� �� ��}, the
earth �xed inertial frame, �� = {� �� �� ��}, the body �xed frame.

selectmotion characteristic for the vibration systemdriven by
two ERs with same rotational direction [12, 13]. He also gave
the result that using three ERs instead of two on a single base
cannot improve the e
ective power in the far-resonant vibra-
tion system [14].	ere are also scholars who applied numeri-
cal analysis to study the synchronization problems. Balthazar
analyzed the nonlinear phenomenon of synchronization of
two nonideal sources by means of numerical simulations
[15, 16]. Bonkobara et al. applied shooting method to solve
the displacement response curves of the vibration system to
judge whether the vibration system achieves synchronization
[17]. Rumyantsev and Tarasov addressed some comments on
the nonlinear dynamics of vibration transport machines by
the numerical simulation [18].

	e above proposed result all selected twoERs ormultiple
ERs in a vibration system of plane motion as the object.
However, there are few researches for spatial motion. Zhao
et al. investigated the coupling dynamic characteristic for a
vertical conveyer [19]. Miklós presented a dual-rotors exciter
to produce vibrations by independently adjusting frequency
and amplitude [20–22].

Hence, the research of synchronization of two ERs rotat-
ing with the common rotational axis is of great signi�cance.

In this paper, synchronization of two ERs with the
common rotational axis in the vibrating system of the far-
resonant spatial motion is investigated with applying the
average method of small parameters. We addressed that this
type of vibration system has the choosing motion feature,
and the theory approach is veri�ed to be useful and feasible
by experiments. 	is paper is summarized as follows: �rst,
the motion equations of the vibrating system are derived.
Second, the synchronization condition and the synchroniza-
tion stability are deduced. 	ird, the quantitative numeric
discussions are provided. Fourth, experiments are shown.
Finally, conclusions are given.

2. Dynamic Model and Motion Equation of
the Vibration System

As shown in Figure 1(a), the dynamic model of the vibra-
tion system consists of a rigid body and two ERs. Four

symmetrical isolation springs support the rigid body. Two
induction motors drive two ERs with the same rotational
direction, respectively, and their rotational axes of two ERs
are common. 
1 and 
2 are the rotational centers of ER 1 and
ER 2, respectively.

In Figure 1(b), let �� = {� �� �� ��} denote the earth
�xed inertial frame and let �� = {� �� �� ��} denote the
body �xed frame rigidly attached to the vibration systemwith
origin � in the center of mass.

Generally, because of the elastic foundation, the rigid
body has six degrees of freedom. In engineering, the motion
of this type of machine is designed for the spatial circle
motion. According to the design, rubber spring is chosen.
	e spring of ROSTA only has the plane motion because of
the bigger rigidity in the axis direction. In order to simplify
analysis, the �-directionmotion is considered to be �xed.Due
to the symmetrical structure of the rigid body, the ��-axis is
assumed to coincide with the principle axis of the rigid body.
Since points�, 
1, and 
2 are on ��-axis, so the resultant force
of the exciting forces passes the center of mass, and thus the
rotation around ��-axis is not existing.

To sum up, the vibration system has six degrees of
freedom as follows: the rotational directions of ER 1 and ER
2 are denoted, respectively, by �1 and �2. 	e center of mass
translations is � and �, and two angular rotations are and �.

	e coordinates of ER 1 and ER 2 are x�1 and x�2 in ��,
respectively, and their expressions are described as

x
�
1 = {{{{{

� cos�1� sin�1�0
}}}}}
,

x
�
2 = {{{{{

� cos�2� sin�2−�0
}}}}}
.

(1)

By applying the method of the rotation matrix RT

1 , the
coordinates of ER 1 and ER 2 are gained in �� (see (A.1)).
Assuming that coordinates of the center of mass � are
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x� = {�, �, 0}T in ��, the coordinates of ER 1 and ER 2 in�� can be expressed as follows:

x1 = x� + R
T

1 x
�
1,

x2 = x� + R
T

1 x
�
2. (2)

	e kinetic energy � of system is

� = 12� (�̇2 + �̇2) + 12 (�1̇2 + �2�̇2) + 12�1ẋT1 ẋ1
+ 12�2ẋT2 ẋ2 + 12!01�̇21 + 12!02�̇22,

(3)

where � is the mass of the rigid body; �� are the masses
of ER ", respectively; �� are moments of inertia of the rigid
body with rotating about �-axis and �-axis, respectively; !0�
are moment of inertia of two motors’ rotors, respectively; ( ̇∙)
denotes d ∙ /d$, " = 1, 2.

In fact, the translational and rotational displacement of
the rigid body are very small in the vibration condition. So

the rotation matrix RT

1 (see (A.2)) can be simpli�ed into RT

2 ,
and the kinetic energy of the vibration system � can also be
simpli�ed.

As illustrated in Figure 1(a), four springs have the same
physical characteristics. If the vibration system does not run,
the coordinates of the connection points between the springs
and the rigid body overlap for �� and ��:

x�10 = x
��
�1 = {{{{{

��0�	
}}}}}
,

x�20 = x
��
�2 = {{{{{

−��0�	
}}}}}
,

x�30 = x
��
�3 = {{{{{

��0−�	
}}}}}
,

x�40 = x
��
�4 = {{{{{

−��0−�	
}}}}}
.

(4)

So the coordinates of the connected points (" = 1, 2, 3, 4)
in �� can be expressed in the form

x�� = x� + R
T

2 x
��
��. (5)

	en the potential energy % of the vibration system is

% = 12
4∑
�=1

(x�� − x��0)T K� (x�� − x��0) , (6)

where K� = diag(-�/4, -
/4, 0) are sti
ness matrix of spring".

	e viscous dissipation function 5 of the vibration
system is

5 = 12
4∑
�=1

ẋ
T

��F�ẋ��, (7)

where F� = diag(6�/4, 6
/4, 0) are damping matrix of spring".
By using Lagrange equation, the motion equations are

d

d$ 7 (� − %)78̇� − 7 (� − %)78� + 7578̇� = 9�, (8)

where 8� are the generalized coordinates and 9� are the
generalized forces of the vibration system.

	e generalized coordinates are q = [�, �, , �, �1, �2]T,
and the generalized forces are 9� = 9
 = 9� = 9� = 0,91 = ��1, and 92 = ��2, in which ��1 and ��2 are the
electromagnetic torques of motor 1 and motor 2, respectively.

Use (3), (6), and (7) and apply Lagrange equation (8) to
obtain the equations of motion of the vibration system as
follows [9–14]:

:�̈ + 6��̇ + -�� = 2∑
�=1

��� (�̈� sin�� + �̇2� cos��) ,
:�̈ + 6
�̇ + -
� = 2∑

�=1
��� (�̇2� sin�� − �̈ cos��) ,

��̈ + 6�̇ + -�
= 2∑
�=1

(−1)�����0 (�̇2� sin�� − �̈� cos��) ,
���̈ + 6��̇ + -��

= 2∑
�=1

(−1)�+1����0 (�̇2� cos�� + �̈� sin��) ,
�01�̈1 + 61�̇1

= ��1 − �1� [cos�1 (�̈ − �0̈) − sin�1 (�̈ + �0�̈)] ,
�02�̈2 + 62�̇2

= ��2 − �2� [cos�2 (�̈ + �0̈) − sin�2 (�̈ − �0�̈)] ,

(9)

where �� = �1 + ∑2�=1���20 and �� = �2 + ∑2�=1���20 , -� = -
�2	
and -� = -��2	, 6� = 6
�2	 and 6� = 6��2	, : = � + �1 + �2,
and �0� = !0� + ���2 are moment of inertia of ERs, 61 and 62
are damping coe�cient of the axis of motor, and ( ̈∙) denotes
d2(∙)/d$2.
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3. Synchronization of Two ERs

Assuming that the average phase of two ERs is �, the phase
di
erence between two ERs is 2@:�1 = � + @,

�2 = � − @. (10)

Since the response of the vibration system is periodic, the
changes of angular velocities �̇ of two motors are periodic
as well. Assuming the lowest common multiple of period
between two ERs is �0, the average value of �̇ over �0 must
be constant; that is,

A0 = 1�0 ∫
�0

0
A ($) d$ = constant. (11)

We assume that the synchronization velocity between two
motors is A�0, and the instantaneous change coe�cients of �̇
and @ are C1 and C2, respectively; then we obtain

�̇1 = (1 + C1 + C2) A�0,
�̇2 = (1 + C1 − C2) A�0. (12)

Substituting (10) into the �rst four formulas of (9), we
obtain the responses of the steady state of the vibration system
as follows [9–11]:

� = −���D� [cos (� + @ + F�) + G cos (� − @ + F�)] ,
� = −���D
 [sin (� + @ + F
) + G sin (� − @ + F
)] ,

= −�����D��� [− sin (� + @ + F�) + G sin (� − @ + F�)] ,
� = −�����D��� [cos (� + @ + F�) + G cos (� − @ + F�)] ,

(13)

where

A� = √ -�:,
A
 = √ -
:,
A� = √ -��� ,
A� = √-��� ,
K
 = 6
2√:-
 ,
K� = 6�2√:-� ,

K� = 6�2√��-� ,
K� = 6�2√��-� ,
�� = �0: ,
�1 = �0,�2 = G�0,
�� = √ ��:,
�� = √ ��:,
�� = �0�� ,
�� = �0�� ,
D� = 1 − ( A�A�0)

2 ,
F� = arctan

2K� (A�/A�0)1 − (A�/A�0)2 ,
" = �, �, , �.

(14)

A�, A
, A�, and A� are the natural frequency of the vibration
system in �-, �-, -, and �-directions; 6�, 6
, 6�, and 6� are
the corresponding damping ratios of the springs in �-,�-, -,
and �-directions; � − F�, � − F
, � − F�, and � − F� are phase
angle in �-, �-, -, and �-directions, respectively; �� is mass
ratio between the mass of ER 1 and the mass of the vibration
system; G ismass ratio between themass of ER 1 and that of ER
2; �� (��) is de�ned as the ratio between �0 and �� (��); �� and�� are the equivalent rotating radius of the vibration system
about the �-axis and �-axis of the rigid body.

3.1. �e Dimensionless Coupling Equation. Inserting �̈, �̈, ̈,
and �̈ (with respect to time $) into the last two formulas of (9)
and integrating them over � = 0 ∼ 2�, respectively, we have

�01A�0 ( ̇C1 + ̇C2) + 61A�0 (1 + C1 + C2) = ��1 − ��1,
�02A�0 ( ̇C1 − ̇C2) + 62A�0 (1 + C1 − C2) = ��2 − ��2 (15)

with

��1 = R�11 ̇C1 + R�12 ̇C2 + R11C1 + R12C2 + R� + R�1,
��2 = R�21 ̇C1 + R�21 ̇C2 + R21C1 + R22C2 − R� + R�2. (16)
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	e coe�cients of C1, C2, ̇C1, and ̇C2 in (16) are listed
in Appendix B. Based on the direct motions separation [9–
11], C1, C2, ̇C1, ̇C2, and @ are considered to be their integral

midvalves C1, C2, ̇C1, ̇C2, and @, respectively.
According to the electromagnetic torques formula of

induction motor, we have [23]

��1 = ��01 − -�01 (C1 + C2) ,
��2 = ��02 − -�02 (C1 − C2) , (17)

where

��0� = - (A�� − A0)S2A20 + S1A0 + S0 ,
-�0� = - [−S2A30 + 2S2A��A20 + (S1A�� + S0) A0](S2A20 + S1A0 + S0)2 ,
- = 3T�U2�V2W2�W� ,
�� = U �W� ,
�� = U�W� ,
X = 1 − U2�U �U� ,A0 = T�A�0,
S0 = (1 − A2������X)2 + A2�� (�� + ��)2 ,
S1 = 2 (1 − A2�������X)A������X − 2A�� (�� + ���) ��,
S2 = �2� + A2���2���2� X2, " = 1, 2.

(18)

T� is the number of pole pairs; U � is the stator inductance, U�
is the rotor inductance, and U� is the mutual inductance; W�
is the stator resistance and W� is the rotor resistance; A�� is the
synchronization electric angular velocity and A is the rotor
electric angular velocity; V is the phase voltage.

Substituting (16) and (17) into (15), we obtain the dimen-
sionless coupling equations of two ERs as follows:

A�̇ = B� + u, (19)

where � = {C1 C2}T,A and B are 2 × 2matrices,A = [ �11 �12�21 �22 ],
B = −A�0 [ �11 �12�21 �22 ], u = [ �1�2 ],

Y1 = ��01�0�2A�0 + ��02�0�2A�0 − 61 + 62�0�2
− A�02 Z�0 (1 + G2) − A�0Z� cos 2@,

Y2 = ��01�0�2A�0 − ��02�0�2A�0 − 61 − 62�0�2
− A�02 Z�0 (1 − G2) − A�0Z� sin 2@,

\1 = 1 − Z�02 ,
\2 = G − G2Z�02 ,
^1 = -�01�0�2A2�0 + 61�0�2A�0 +Z�0,
^2 = -�02�0�2A2�0 + 62�0�2A�0 + GZ�0,
S11 = \1 + \2 +Z� cos 2@,S22 = \1 + \2 −Z� cos 2@,S12 = \1 − \2 +Z� sin 2@,S21 = \1 − \2 −Z� sin 2@,_11 = ^1 + ^2 − 2Z� cos 2@,_22 = ^1 + ^2 + 2Z� cos 2@,_12 = ^1 − ^2 − 2Z� sin 2@,_21 = ^1 − ^2 + 2Z� sin 2@.

(20)

3.2. �e Synchronization Condition. Substituting C1 = 0 andC2 = 0 into (19), we obtain Y1 = 0 and Y2 = 0. According toY2 = 0, we have
2@ = arcsin

���� , (21)

where �� is called the synchronization torque, �� =�0�2A2�0Z�; �� is called the di
erence of the residual
electromagnetic torques between the twomotors, �� = ��1 −��2; ��1 = ��01 − 61A�0 − �0�2A2�0Z�0/2 and ��2 = ��02 −62A�0 − �0�2A2�0G2Z�0/2.

Since |sin 2@| ≤ 1, the synchronization condition that the
vibration system carries out the synchronized motion of two
ERs is

�� ≥ bbbb��bbbb . (22)

Hence, the synchronization condition of two ERs achiev-
ing the synchronized motion is that the synchronization
torque �� is greater than or equal to the absolute value of
the di
erence between the residual electromagnetic torques
of two motors ��.

We de�ne ratio value between the synchronization torque�� and the load torque �� as the coe�cient of synchroniza-
tion ability, c, as follows:

c = bbbbbbbb����
bbbbbbbb = 2 bbbbZ�bbbbbbbb(1 + G2)Z�0 + 2Z� cos 2@bbbb , (23)
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where �� is the load torque that the vibration system acts on

two motors, �� = �0�2A2�0Z�0[(1 + G2)Z�0 + 2Z� cos 2@]/2.
	e greater the coe�cient of synchronization ability, the
stronger the synchronization ability of the vibration system
and the easier to carry out synchronized motion of two
motors.

3.3. Stability of the Synchronized Motion. If the vibration
system satis�es the synchronization condition, we solve Y1 =0 and Y2 = 0 for A�0 and @, which are denoted by A∗�0
and @0, respectively. Linearize (19) around @ = @0, considerΔ@̇ = @−@0 = A∗�0C2, use the notation z = {C1 C2 Δ@}T, and
write the dimensionless coupling equation as follows:

ż = Cz, (24)

where

C = A
�−1

B
�,

A
� = [[[

S11 S12 0S21 S22 00 0 1
]]]
,

B
� = −A�0 [[[

_11 _12 −2Z� sin 2@0_21 _22 2Z� cos 2@00 −1 0
]]]
.

(25)

Assuming z = k exp(k$) in the form of exponential time-
dependent, we deduce the characteristic equation for the
eigenvalue k by solving the determinant equation det(C −kI) = 0, as follows:

k3 + l1k2 + l2k + l3 = 0, (26)

where l1 = 4A�0m1/m0, l2 = 2A2�0m2/m0, l3 = 2A3�0m3/m0,
and

m0 = 4\1\2 −Z2� cos22@0 +Z2� sin22@0,m1 = \1^2 + \2^1 −Z�Z�,
m2 = 2^1^2 + (\1 + \2)Z� cos 2@0

+ (\1 − \2)Z� sin 2@0 +Z2� (1 + sin22@0)
−Z2� (1 + cos22@0) ,

m3 = (^1 + ^2)Z� cos 2@0 + (^1 − ^2)Z� sin 2@0+ 2Z�Z�.

(27)

In engineering, because the maximum of damping con-
stant of the vibration systems is very small [9–11], Z� can
be neglected with comparing Z� in l1, l2, and l3. 	en, we
simplifym� (" = 0, 1, 2, 3) as follows:

m�0 = 4\1\2 −Z2� cos22@0,
m�1 = \1^2 + \2^1,

m�2 = 2^1^2 + (\1 + \2)Z� cos 2@0
+Z2� (1 + sin22@0) ,

m�3 = (^1 + ^2)Z� cos 2@0.
(28)

Applying Routh-Hurwitz criterion [9–11], we deduce the
stability condition of the synchronized motion of two ERs
when the trivial solution �� = 0 is stable, as follows:

l1 > 0,
l3 > 0,

l1l2 > l3.
(29)

Based on the sign of m�0, we rewrite inequality (29) as
inequalities (30) and (31) as follows:

m�0 > 0,
m�1 > 0,
m�3 > 0,

4m�1m�2 − m�0m�3 > 0,
(30)

m�0 < 0,
m�1 < 0,
m�3 < 0,

4m�1m�2 − m�0m�3 > 0.
(31)

Since ^1 > 0 and ^2 > 0, we can obtain fromm�0 > 0 andm�1 > 0,
\1 > 0,
\2 > 0,

4\1\2 −Z2� cos22@0 > 0.
(32)

According tom�3 > 0, we obtain
Z� cos 2@0 > 0. (33)

Substituting the expressions ofm�� (" = 0, 1, 2, 3) into 4m�1m�2−m�0m�3 > 0,
4Z� (^2\21 + ^1\22) cos 2@0 + (^1 + ^2)Z3� cos32@0

+ 4 (^2\1 + ^1\2) (Z2� + 2^1^2 +Z2� sin22@0)
> 0.

(34)

When \1^2 + \2^1 > 0, inequality (34) is true. Hence,
inequalities (32) and (33) satisfy inequality (34).

Ifm�0 < 0,m�1 < 0 needs \1^2+\2^1 < 0 andm�3 < 0 needsZ� cos 2@0 < 0. However, the le� side of inequality (34) is
false. Hence, m�0 < 0, m�1 < 0, and m�3 < 0 cannot satisfy the
condition of 4m�1m�2 − m�0m�3 > 0.
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In a word, inequality (30) satis�es Routh-Hurwitz crite-
rion. Sowe obtain the stability condition of twoERs achieving
the synchronized motion, which isZ� cos 2@0 > 0. IfZ� > 0,2@0 ∈ (−90∘, 90∘) satis�es the stability condition, and ifZ� <0, 2@0 ∈ (90∘, 270∘) satis�es the stability condition. So the
vibration systemhas two kinds of stable synchronizedmotion
state when the synchronization condition is satis�ed.

4. Numerical Results and Discussions

Some simpli�ed forms of theoretical analysis for the syn-
chronization problem have been given in previous section.
	is section will present numerical results to compare with
theoretical analysis for the synchronization condition and the
stability condition.

	e dimensionless parameters of the vibration system,Z�, Z�0, Z�, and Z�0, have an e
ect on the synchronization
condition and the stability condition and are also functions
of ��, G, ��, ��, D�, D
, D�, and D�. Since the motion trajectory
of this type of vibration machine is assumed as circle in ��-
plane, such as the vibration mill that achieves the spatial
circular motion, we assume -� = -
, 6� = 6
, and �� = ��.
However, D�, D
, D�, and D� change little (24/25∼99/100) that
can be treated as constant [12]. Herein, we will study the func-
tion of dimensionless parameters ��, G, and �� = �� on the
synchronization ability and the stability of synchronization.

	e actual parameter values of the vibration system are: = 230 kg, �0 = 7.6 kg, �� = �� = 67 kg⋅m2, -� = -
 =160 kN/m, -� = -� = 47 kN/rad, 6� = 6
 = 270 kNs/m, and6� = 6� = 79 kNms/rad. 	e parameters of the two motors
are the same: W� = 22.89Ω, W� = 13.34Ω, U � = 873mH,U� = 875mH, and U� = 830mH.

We give the expression of �� versus �� and G to re�ect ��
e
ects on the synchronization ability. Based on the expression
of ��, its maximum can be simpli�ed in the form

�2�max
= lim
�0→∞

�2� = 1 + �� (1 + G)�� (1 + G) . (35)

	e synchronizedmotion of the vibration system is stable
when it satis�es (33) and (34). Figure 2 shows that ��max ≈ 7
for G = 1; we will arrange the value of �� from 0 to 7 in next
discussions.

According to the theoretical analysis in previous section,�� ≥ |��|, to satisfy the synchronization condition. When
two identical motors drive the two di
erent masses of ERs,
we can obtain the simpli�ed form of (22):

Z� ≥
bbbbbbbbbbb
Z�0 (1 − G2)2

bbbbbbbbbbb . (36)

Figure 3 shows the regions of implementing the synchro-
nized motion in G��-plane. We divide the G��-plane into
three regions. 	e phase di
erence that the vibration system
carries out during synchronizedmotion is 2@ ∈ (−90∘, 90∘) in
Region I, and it is 2@ ∈ (90∘, 270∘) in Region II. 	e vibration
system cannot carry out the synchronized motion in Regions
I and II. Regions I, II, and III converge into a point (G = 1
and �� ≈ 1), and �� = 0 at this point. We know that this
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Figure 3: Regions of implementing synchronization.

point is the optimal parameters of two ERs to enhance the
synchronization ability.

4.1. Implementing the SynchronizedMotion. Since the dimen-
sionless parameterZ� is the function of ��, its value changes
with changing �� and has zero point. 	e synchronization
torque �� is the function of Z�, so it has similar changes
withZ�. As mentioned in theoretical analysis, the greater the
values of the synchronization torque, the easier the two ERs
to implement synchronization. Figure 4 shows the changes
of �� with di
erent mass ratio G between ERs. �� has zero
point in every case, and the point at about �� = 1 depends
on structure parameters of the vibration system. According
to the regions divided in Figure 3, the vibration system
cannot implement the synchronized motion when �� = 1.�� obtains the maximal values at G = 1, and the vibration
system operates at its best synchronization state. In addition,
the greater ��, the greater ��. Comparing with �� < 1,
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Figure 4: Synchronization torque: (a) �� = 0.03; (b) �� = 0.09.
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Figure 5: Coe�cients of synchronization ability.

the vibration system can easier carry out the synchronized
motion for �� > 1. When �� > 1, �� increases with
increasing ��. By comparing the synchronization torque with
the di
erent mass ratio, the better the symmetry of the
structural parameter, the greater the synchronization torque.

Figure 5 shows the changes of c with di
erent mass ratioG between ERs. Since c is the function ofZ�,Z�0, andZ� and
they are the function of ��, �� has no e
ect on c. In addition,c has zero point for every G. From Figure 5, it can be seen
that all c �rst decrease with increasing �� and then decrease.
To sum up, �� plays a decisive role in the adjustment of the
synchronization ability.
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Figure 6: Approximate values of 2@ versus ��.

4.2. Stability of the Synchronized Motion. 	e stability con-
dition of two ERs achieving the synchronized motion isZ� cos 2@0 > 0. When the stability condition is satis�ed, Z�
determines the change of the phase di
erence 2@. In addition,
the phase di
erence determines the motion type of the
vibration system. In other words, if the structural parameters
of the vibration system satisfy the synchronization condition,
the motion type is determined by ��. 	is is the choosing
motion characteristic that the motion type of the vibration
system depends on its structural parameters.

Figure 6 shows the regions where the phase di
erence2@ changes with the di
erent mass ratio G between ERs.
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Figure 7: Coe�cients of stability: (a) �� = 0.03; (b) �� = 0.09.

From (21), ��-2@ plane is divided into two regions of 180∘
and 0∘. 2@ changes at �� = 1 with every G. If the structure
parameters of the vibration system are completely symmetri-
cal, such as the mass-radius product of two ERs, 2@ achieves
the change of 180∘ to 0∘ with increasing ��. By comparing 2@
with G, the better the symmetry of the structural parameter
of the vibration system is, the easier 2@ approach 180∘ and 0∘.

For further study of the e
ect of the structural parameters
of the vibration system on the synchronization stability, we
apply bisection method to obtain the stability domains of
the synchronized motion. Figure 7 shows the changes of the
coe�cients of the synchronization stability m�0, m�1, and m�3
with the di
erentmass ratio G betweenERs. From the stability
condition, we know that the vibration system runs in the
steady state when m�0 > 0, m�1 > 0, and m�3 > 0. Since m�3 is
the function ofZ�, it has zero value at �� = 1. By comparing

the changes ofm�0,m�1, andm�3, it can be seen thatm�3 is always
greater than zero. In the region of the phase di
erence tending
to 0∘,m�3 increaseswith increasing ��, andm�0 andm�1 decrease
with increasing ��. It is noteworthy that m�0 goes earlier

through zero than m�1. According to the stability condition,
the vibration system is unstable at the moment. Comparing
comprehensivelym�0,m�1, andm�3, we know that the vibration

system can operate in steady state when m�0 > 0. 	erefore,
the stability condition of two ERs achieving the synchronized
motion ism�0 > 0. In addition, the smaller ��, the bigger the
synchronization stability of the vibration system.

5. Experiments

In this section, we will verify the validity of the dynamic
model, theoretical analysis, and numerical results of the
above sections, by comparing to experimental results for
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5

7

Figure 8: Experiment equipment (�� ≈ 0.6).

a laboratory model. Figure 8 shows the mechanical compo-
sition of the laboratory model, which consists of two AC
vibration motors, the rigid vibration base, the springs, and
the support base. Number 1 represents AC motor, number
2 represents ER, number 3 represents the rigid vibration
base, number 4 represents the rubber spring, number 5
and number 6 represent the positions measured by the
acceleration sensors, and number 7 represents the angular
velocity measured by Hall sensors. 	e angular velocities of
two motors and the signals of the vibrations in the vertical
and horizontal directions are collected by NI data acquisition
card, while two motors operate in 45Hz power frequency by
Siemens inverters.

As shown in Figure 9, �� ≈ 0.6, motor 1 �rst runs in the
starting process, and motor 2 begins to run a�er 3 s. Because
of the identical motors and the same inertial moments of two
ERs (G = 1), the synchronization torque begins to adjust
the phase di
erence between two ERs to achieve the syn-
chronized motion, with approaching the rotational velocities
of two motors. Since the adjustment of the synchronization
torque, the synchronization velocity and the phase di
erence
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Figure 9: Experiment results with �� ≈ 0.6, G = 1, and �� ≈ 0.03: (a) rotational velocities; (b) the phase di
erence; (c) response in �-direction
for number 5; (d) response in �-direction for number 5; (e) response in �-direction for number 6; (f) response in �-direction for number 6;
(g) current of motor 1.
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are stabilizing fast, as shown in Figures 9(a) and 9(b), the syn-
chronization velocity is about T ≈ 896 r/min, and the phase
di
erence is about 2@ ≈ 180∘. Due to the fact that two ERs
operate in far-resonant, they excite the resonant responses
through the resonant region of the vibration system in �- and�-directions, as shown in Figures 9(c)–9(f). Figures 9(c) and
9(d) show the responses of the position for number 5, andFig-
ures 9(e) and 9(f) show the responses of the position for num-
ber 6. From comparison between the response of number 5
and that of number 6, it can be seen that the main motion
type of the vibration system is the spatial cone motion.

At about 30 s, the power of motor 2 is switched o
,
which breaks the original synchronization state between two
ERs. Under the function of the synchronization torque, the
vibration system can achieve another synchronization state
by adjusting the phase di
erence. 	is phenomenon is called
the vibration synchronization transmission [1]. Figure 9
shows that, a�er switching o
 the power of motor 2, the
synchronization velocity is about T ≈ 892 r/min, and the
phase di
erence is about 2@ ≈ 172∘.	e responses of number
5 are slightly larger, and those of number 6 are slightly smaller.

Figure 9(g) shows the root mean square of stator current
of motor 1. Since the load torque of motor 1 is the biggest at
rest, there is a peak value on the current curve at the begin-
ning of power supply, and the current begins to decrease a�er
motor 1 rotating.	ere is another peak value of current before
the moment when synchronized motion is carried out, and
the current curve is �uctuating because the phase of motor 2
lags behind that of motor 1. 	e synchronization torque acts
the load torque on motor 1, which increases the current of
motor 1. A�er the moment synchronized motion is achieved,
the current curve becomes smooth, which illustrates that the
vibration system operates in the steady synchronization state
because the load torque of motor 1 is close to constant. At
about 30 s, the power of motor 2 is switched o
. 	e current
value of motor 1 increases with increasing phase di
erence,
but the current value is still smooth under the synchronized
motion. According to the change of current, we know the
energy distribution of the vibration system. In other words,
we can see how the power consumption changes a�er cutting
o
 motor 2 by observing the change of current of motor 1.

As shown in Figure 10, �� ≈ 1.1, motor 1 �rst runs in
the starting process, and motor 2 begins to run a�er 3 s.
Figures 10(a) and 10(b) show that the synchronization velocity
is about T ≈ 896 r/min, and the phase di
erence is about2@ ≈ 0∘. In the starting process, the phase di
erence oscillates
between 0∘ and 180∘ because of the di
erence in rotational
velocities of two motors. Similar to scheme in Figures 9(c)–
9(f), Figure 10(c) and Figure 10(d) show the responses of the
position for number 5, and Figure 10(e) and Figure 10(f) show
the responses of the position for number 6. From comparison
of the response of number 5 and number 6, it can be seen
that the main motion type of the vibration system is the
spatial circlemotion.Due to the di
erent type of the vibration
system, the responses of number 6 in Figure 10 are greater
than that in Figure 9.

At about 27 s, the power of motor 2 is switched o
,
which breaks the original synchronization state between two

ERs. Since the condition of the vibration synchronization
transmission cannot be satis�ed, the rotational velocity of
motor 2 rapidly decreases, oscillation occurs in the phase
di
erence, and the responses of number 5 and number 6 also
show irregularity oscillation, as shown in Figure 9. A�er 3 s,
the power of motor 2 is switched on. 	e vibration system
again implements the synchronized motion. 	e new syn-
chronization state is same with the old synchronization state.

From the above two groups of experiments, we know
that the initial state of two motors has no e
ect on the
synchronization state. When the synchronization torque is
large enough, the vibration synchronization transmission
can be achieved. As shown in Figure 4, the synchronization
torque of �� ≈ 0.6 is greater than that of �� ≈ 1.1. So the
vibration system with �� ≈ 0.6 can achieve the vibration
synchronization transmission and that with �� ≈ 1.1 cannot.
When �� ≈ 0.6, the motion type of the vibration system is
the spatial cone motion, while when �� ≈ 1.1, the motion
type of the vibration system is the spatial circlemotion, which
comply with Figure 6. From Figure 7, we know that when�� ≪ 4, the synchronized motion of the vibration system
is stable, which conforms to the responses of number 5 and
number 6. 	e comparison between numeric results and
experiments shows they are very good consistency. Based
on experiments, the validity of theoretical analysis is proved,
which helps the design of this type of vibration machine.

6. Conclusions

Based on the theoretical analysis and experiment result, the
following remarks should be explained.

With introducing the average method of small parame-
ters, synchronization of two ERs with the common rotational
axis in the vibration system of the far-resonant spatial
motion is investigated. Based on the dimensionless cou-
pling equation, the synchronization condition of two ERs is
obtained, and the stability condition of two ERs achieving
the synchronized motion is derived, which satis�es Routh-
Hurwitz criterion.	e two conditions can be used to evaluate
and discriminate whether the vibration system is able to carry
out the synchronized motion.

	e coupling dynamic characteristic, such as the choos-
ing motion feature of the vibration system, is discussed by
numerical method. Synchronization of two ERs depends on
the coupling dynamic characteristic.	e better the symmetry
for two ERs, the greater the synchronization torque, the
easier the achievement of the synchronized motion, and the
stronger the synchronization ability. In addition, �� should
be as small as possible for strengthening the stability of the
synchronized motion.

From experiments, it can be seen that if �� < 1, the
spatial cone motion of the vibration system forces the phase
di
erence to approach �, and if �� > 1, the spatial circle
motion of the vibration system forces the phase di
erence to
approach zero. In engineering, �0 should be selected as far as
possible. Only in this way we can obtain the circle motion of
spatial for this type of vibration machine.
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Figure 10: Experiment results with �� ≈ 1.1, G = 1, and �� ≈ 0.03: (a) rotational velocities; (b) the phase di
erence; (c) response in�-direction
for number 5; (d) response in �-direction for number 5; (e) response in �-direction for number 6; (f) response in �-direction for number 6.

Comparing theoretical analysis, numerical results, and
experiments, the feasibility of the theorymethod in this paper
is proved.

Appendix

A. Rotation Matrix

According to Cartesian coordinates, the rotation matrix is
[19]

R
T

1 = [[[
cos � 0 − sin �

sin � sin cos cos � sin
cos sin � − sin cos � cos

]]]
T

. (A.1)

Under the hypothesis of small angel  and �, the matrix
can be simpli�ed as

R
T

2 = [[[
1 0 −�0 1 � − 1

]]]
T

. (A.2)

B. Dimensionless Parameters

Consider the following:

R�1 = 12�0�2A2�0 (Z�0 +Z� cos 2@) ,
R�2 = 12�0�2A2�0 (GZ�0 +Z� cos 2@) ,
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R� = 12�0�2A2�0Z� sin 2@,
R�11 = 12�0�2A�0 (Z�0 −Z� sin 2@ +Z� cos 2@) ,
R�12 = 12�0�2A�0 (Z�0 +Z� sin 2@ −Z� cos 2@) ,
R�21 = 12�0�2A�0 (G2Z�0 +Z� sin 2@ +Z� cos 2@) ,
R�22 = 12�0�2A�0 (−G2Z�0 +Z� sin 2@ +Z� cos 2@) ,
R11 = �0�2A2�0 (Z�0 +Z� cos 2@ +Z� sin 2@) ,
R12 = �0�2A2�0 (Z�0 −Z� cos 2@ −Z� sin 2@) ,
R21 = �0�2A2�0 (G2Z�0 +Z� cos 2@ −Z� sin 2@) ,
R22 = �0�2A2�0 (−G2Z�0 +Z� cos 2@ −Z� sin 2@) ,
Z�0
= −�� (cos F�D� + cos F
D
 + �2� cos F�D� + �2� cos F�D� ) ,

Z�
= −��G(cos F�D� + cos F
D
 − �2� cos F�D� − �2� cos F�D� ) ,

Z�0 = �� ( sin F�D� + sin F
D
 + �2� sin F�D� + �2� sin F�D� ) ,
Z� = ��G( sin F�D� + sin F
D
 − �2� sin F�D� − �2� sin F�D� ) .

(B.1)
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