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ABSTRACT

The successful results of the relativistic form of a quantum field theory that is derived from a
Lagrangian density justify its general usage. The significance of the Euler-Lagrange equations of a
quantum particle is analysed. Many advantages of this approach, like abiding by the conservation
laws of energy, momentum, angular momentum, and charge are well known. The merits of this
approach also include other properties that are still not well known. For example, it is shown that
a quantum function of the form ψ(t, rrr) describes a pointlike particle. Furthermore, the Lagrangian
density and the Hamiltonian density take a different relativistic form – the Lagrangian density is a
Lorentz scalar, whereas the Hamiltonian density is the T 00 component of the energy-momentum
tensor. It is proved that inconsistencies in the electroweak theory stem from negligence of the
latter point.
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1 INTRODUCTION

This work examines the inherent relationships
between special relativity and quantum physics.
The mathematical structure of these theories
plays a fundamental role in the analysis. It
is explained how these theories fit each other,
and that this issue enhances their credibility.
It is further shown that these theories alter
several concepts about the structure of the
physical world and put restrictions on acceptable
quantum theories. An observation of the present
literature indicates that some of the results are
still not well known. The analysis begins with
a brief description of key elements of the 19th
century physical theories and concepts. These
elements are reexamined in the main part of
this work. Mathematical expressions take the
standard notation.

Differential equations whose solutions determine
the time evolution of the state of a given
particle are an important property of the relevant
theory. These equations are called the particle’s
equations of motion. Solutions of the equations
of motion of an acceptable physical theory of a
given system of particles should be compatible
with the particle’s experimental data. Below, the
existence of differential equations and the fit of
their solutions to experimental data are called
the primary properties of a particle’s theory. In
particular, it is shown below that a Lagrangian
density is the cornerstone of present quantum
theories. Hence, the theory’s equations of
motion are the Euler-Lagrange equations of its
Lagrangian density.

Newtonian mechanics successfully describes the
motion of macroscopic bodies whose velocity is
much smaller than the speed of light. Here a
second-order differential equation describes the
motion of a particle (see e.g. [1], p. 2)

m
d2rrr

dt2
= FFF (rrr, t, vvv), (1)

where FFF denotes the force. It can be shown that
in certain cases Newtonian mechanics can be
derived from a function called Lagrangian

L(q, q̇, t) = T − V, (2)

where q, q̇ denote a set of n generalized
coordinates and their time-derivatives,

respectively. T is the kinetic energy, and V is
the potential energy (see e.g. [1], p. 21). Here
the equations of motion are

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (3)

This is a set of n second-order differential
equations which are the Lagrange equation of the
system.

The variational principle pertains to this matter.
The action accumulated during the transition of a
given system from an initial state at an initial time
to a final state at a final time is

I =

∫ tf

ti

L(q, q̇, t)dt. (4)

An application of the variational principle to the
action of (4) proves that the corresponding Euler-
Lagrange equations are the Lagrange equations
(3) (see e.g. [1], pp. 44, 45; [2], pp. 2, 3).

An alternative description of the laws of motion
relies on the corresponding Hamiltonian. The
generalized momentum that is conjugate to the
generalized coordinate qi is (see [1], p. 335; [2],
p. 16)

pi =
∂L

∂q̇i
. (5)

The Hamiltonian is a function of the generalized
coordinates, their conjugate momenta, and the
time. One can apply the Legendre transformation
of a given Lagrangian and obtain the required
Hamiltonian

H(q, p, t) =
∑
i

piq̇i − L (6)

(see [1], p. 337; [2], p. 131). In the case
of n independent coordinates, one derives from
the Hamiltonian a set of 2n first-order differential
equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
(7)

(see [1], p. 337; [2], p. 132). These equations,
which are called the canonical equations, are
equivalent to the n second-order Lagrange
equations (3).

Two important laws of Newtonian mechanics are:
N.1 The Galilean relativity principle says that

the above-mentioned laws of mechanics
hold for any frame that moves inertially
(see [1], p. 2; [2], pp. 4-6).
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N.2 Let Σ, Σ′ be two inertial frames and −vvv
denotes the velocity of Σ′ with respect
to Σ. The coordinates and the time
measured in these frames obey these
relations

rrr′ = rrr + vvvt; t′ = t (8)

(see [1], p. 276; [2], p. 6). It means that
time is independent of the relative velocity
of inertial frames.

It turns out that standard textbooks on Newtonian
mechanics do not discuss wave motion (see e.g.
[1, 2]). In classical physics, the wave amplitude
ϕ(x, y, z, t) denotes a disturbance in the state of
a medium. It satisfies the wave equation (see [3],
p. 5)

∇2ϕ =
1

v2
∂2ϕ

∂t2
, (9)

where v denotes the wave velocity. Two elements
of the 19th century wave theory are:

W.1 A wave theory regards the existence of a
medium as an indispensable element of
the wave phenomenon.

W.2 A wave phenomenon is spread over a not
very small spatial region.

At the beginning of the 19th century, physicists
recognized the wave properties of light. In order
to abide by the medium concept W.1, people
have postulated the existence of the ether as the
medium that carries light waves.

This work shows how special relativity and
quantum theories affect these theories and alter
human concepts about the structure of the
physical world. As a matter of fact, not all results
are well known.

Units where ~ = c = 1 are used. Greek
indices run from 0 to 3. Most formulas take
the standard form of a relativistic covariant
expression. The metric is diagonal and its entries
are (1,-1,-1,-1). An upper dot denotes the time-
derivative. In the above-mentioned units there is
one kind of dimension and an appropriate power
of the length [Ln] denotes the dimension of a
physical quantity. The second section discusses
relativistic classical physics. The third section
discusses relativistic quantum theories. Results
derived from these theories are pointed out in the
fourth section. The last section summarizes this
work.

2 RELATIVISTIC CLASSICAL
PHYSICS

Formulas and equations that describe
electromagnetic phenomena were already known
in the first half of the 19th century. Maxwell has
analyzed these expressions and concluded that
they should be modified in order to abide by
the charge conservation law. His results are
known as Maxwell equations. In the vacuum
these equations take the compact tensorial form
(see [4], pp. 71, 79; [5], p. 551)

Fµν,ν = −4πjµ, F †µν
,ν = 0, (10)

where F †µν is the dual tensor of the
electromagnetic field tensor Fµν , and jµ is the
4-current of the electric charge.

Solutions of Maxwell equations in the vacuum
show the existence of transverse electromagnetic
waves where the potentials and the fields satisfy
the wave equation (9) (see [4], p. 117; (20.8),
(20.10) and (20.11) in [6]). An important property
of these waves is:

P.1 Electromagnetic waves travel at the speed
of light in every inertial frame.

About 2 decades later, Hertz carried out an
experiment that has shown the existence of
electromagnetic waves [7]. Nearly at the
same time, Michelson and Morley carried out
an experiment aiming to measure the relative
velocity of the earth with respect to the inertial
frame of the postulated ether. In spite
of the earth’s motion around the sun, they
found a null velocity. This outcome agrees
with the Maxwellian result P.1. Hence, this
experiment can be regarded as another support
of Maxwellian electrodynamics.

The formulation of special relativity puts these
issues in a consistent mathematical structure.
Here the concept N.1 of Galilean relativity
holds but the concept N.2 of absolute time
and the space-time transformation between
inertial frames (8) are replaced by the Lorentz
transformation. If frame Σ′ moves in the x-
direction with velocity −v with respect to frame
Σ then the Lorentz transformation is (see [4], p.
11; [5], p. 516)

x
′
=

x + vt√
1 − v2/c2

, y
′
= y, z

′
= z, t

′
=

t + vx/c2√
1 − v2/c2

,

(11)

where the speed of light c is written explicitly.
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An application of the Minkowski space casts
relativistic expressions into a neat tensorial form.
Thus, (10) are the Maxwell equations in the
vacuum and the force exerted on a charge e is
the Lorentz force (see [5], p. 551)

dpµ

dτ
= eFµνvν , (12)

where pµ, vν are the 4-momentum and the 4-
velocity of the charged particle, respectively, and
τ is the invariant time. The continuity equation
represents charge conservation

jµ,µ = 0 (13)

(see [4], p. 77; [5], p. 549).

Special relativity and Maxwellian electrodynamics
have amazing experimental success. For
example, the electron’s kinetic energy of the
LEP collider was about 200,000 times greater
than its rest mass, namely Ek ≃ 200000mc2 [8].
Here the machine was designed according to
the laws of special relativity and the electron’s
speed has not exceeded the speed of light.
Results of Maxwell theory say that the photon
is massless and chargeless. The experimental
bound of the photon’s mass is smaller by a factor
of about 10−24 times the electronic mass, and
the experimental bound of the absolute value
of the photon’s charge is smaller by a factor
of about 10−46 times the absolute value of the
electronic charge [9]. Furthermore, let ϵ denote
the experimental deviation from the Coulomb law
(which is embedded in Maxwell equations). Here
the electric field of a charge takes the form

E = Q/r(2+ϵ), (14)

and the experimental bound of ϵ is extremely
negligible: |ϵ| < 10−16 (see table 2 in [10]).

The extraordinary experimental success of
special relativity and Maxwellian electrodynamics
is well known. This evidence justifies their
application as a basis for the analysis that is
presented below.

Two results of special relativity deserve particular
attention.

SR.1 Landau and Lifshitz prove that in the
classical domain, the theory of special
relativity means that an elementary

classical particle is a pointlike object (see
[2], pp. 46, 47).

SR.2 An observation of the low-velocity limit
v ≪ c of the space-time Lorentz
transformation (11) shows that it agrees
with the Newtonian transformation (8).
This is an example of an important
principle concerning the correspondence
between physical theories. This principle
refers to two coherent theories A, B. If the
domain of validity of theory A is included
inside the domain of validity of theory B
then an expression of theory A should
agree with the limit of an appropriate
expression of theory B.

The present literature recognizes the
correspondence principle SR.2 in several cases.
Besides the above-mentioned correspondence
between relativistic mechanics and Newtonian
mechanics, one can find in the literature
correspondence relationships between other
theories. Two examples are relevant to the
analysis presented below. The success of
classical mechanics means that ”classical
mechanics must therefore be a limiting case
of quantum mechanics.” (see [11], p. 84;
[12], pp. 25-27, 137, 138). Furthermore,
quantum field theory (QFT) corresponds to
quantum mechanics. For example, a well-known
textbook states explicitly: ”First, some good
news: quantum field theory is based on the
same quantum mechanics that was invented
by Schroedinger, Heisenberg, Pauli, Born, and
others in 1925-26, and has been used ever since
in atomic, molecular, nuclear and condensed
matter physics” (see [13], p. 49). This statement
means that there are certain relationships
between QFT and quantum mechanics. The
combined meaning of these quotations is that
QFT corresponds to classical physics. One can
find on pp. 3-6 of [14] a general discussion of the
correspondence between physical theories.

A special topic of the foregoing issues is that the
correspondence between quantum theories and
classical physics says that the classical physics
pointlike attribute of an elementary particle of
item SR.1 should also apply to quantum theories.
It is interesting to see how the standard structure
of quantum theories coherently combines the
apparently inconsistent pointlike attribute of an
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elementary particle with its spatially distributed
wave properties.

The foregoing arguments yield another
requirement that a quantum theory must satisfy.
Solutions of the equations of classical physics (1)
or (7) determine the position of a classical particle
as a function of the time. Hence, a quantum
theory must provide an expression whose limit
agrees with the particle’s position.

3 RELATIVISTIC QUANTUM
THEORIES

Two principles belong to the basis of a quantum
theory.

QT.1 De Broglie postulated in 1924 that a
quantum particle has wave properties
that are described by a function whose
undulating factor is

Φ = ei(k·x
k·xk·x−ωt). (15)

Here kkk takes the value of the particle’s
momentum ppp, and ω is its energy (see
[11], pp. 119, 120; [12], p. 3). A few
years later, experiments with the electron
confirmed this principle. At present
experiments have already confirmed wave
properties of elementary particles and of
some composite particles as well (see
[15]).
This principle abides by relativistic
requirements. Indeed, the power series
expansion of the exponent of (15) is

ei(k·x
k·xk·x−ωt) = 1 + i(k · xk · xk · x− ωt) + ... (16)

Here the pure number 1 is a
dimensionless Lorentz scalar. Therefore,
(k · xk · xk · x−ωt) should also be a dimensionless
Lorentz scalar. (The Lorentz scalar of the
phase ensures the obvious requirement
saying that the same interference pattern
is seen in every inertial frame.) The
relativistic scalar product of the space-
time coordinates 4-vector (t,xxx) and
the particle’s energy-momentum 4-
vector (E,ppp) provides the required
expression. Hence, the de Broglie
principle determines the identification

of the wave properties (ω,kkk) with the
particle’s energy and momentum (E,ppp).

QT.2 A few years later Heisenberg published
the uncertainty principle which says
that inherent quantum properties prevent
a simultaneous accurate measurement
of conjugate quantum quantities. for
example, let ∆ denote the uncertainty of
a quantum variable, then

∆x ·∆px ≥ ~, ∆t ·∆E ≥ ~ (17)

(see [12], p. 7).
A very short-lived particle has a quite
small time-uncertainty. The uncertainty
relations (17) say that this particle should
have a quite large energy uncertainty.
And indeed, one finds that the uncertainty
of the experimental energy of such a
particle provides a clear demonstration
of this principle. For example, the quite
large energy uncertainty of the ∆++(1232)
baryon that is seen in the π+p cross
section data is a convincing example of
this issue (see [16], p. 131). This is an
example of a physical law, and the data of
every short-lived particle show the width of
its mass/energy cross section [9].

The uncertainty relations (17) provide a
convincing reason that explains why a quantum
theory cannot take the mathematical structure
of classical physics. Thus, in classical physics,
the equations of motion (3) are derived from a
Lagrangian. The Legendre transformation yields
the Hamiltonian and its canonical equations
(7), which are equivalent to (3). The canonical
equations use the Hamiltonian (6) where the
coordinates and their conjugate momenta play
the role of independent variables. As such,
these variables and their derivatives should be
known accurately. This requirement cannot be
reconciled with the uncertainty relations (17).

At present, the generally accepted structure of
quantum theories uses the quantum function
ψ(x) and its derivatives as independent variables.
Here x denotes the four space-time coordinates
and the action takes the form

I(ψ) =

∫
d4xL(ψ,ψ,µ), (18)

where L(ψ,ψ,µ) is a Lagrangian density. This
Lagrangian density L(ψ,ψ,µ) and the action
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I(ψ) are mathematically real Lorentz scalars.
Mainstream textbooks use this approach. For
example, a well-known textbook supports this
approach and states: ”all field theories used
in current theories of elementary particles have
Lagrangians of this form” (see [13], p. 300).
An application of the variational principle to (18)
yields the Euler-Lagrange equations

∂L
∂ψ

− ∂

∂xµ
∂L

∂(∂ψ/∂xµ)
= 0 (19)

(see [13], p. 300). For every given quantum
theory, these equations are the particle’s
equations of motion. This approach is also
adopted by the present work.

It is explained below why the Noether theorem
is an important element of this structure of
quantum theories. This theorem connects
between symmetries of the Lagrangian density
and conservation laws that the theory abides
with. Let us see how this theoretical structure
satisfies self-evident quantum requirements and
imposes constraints on acceptable quantum
theories.

REQ.1 The Euler-Lagrange equations of the
action principle (18) are the differential
equations of the system. Hence,
the required equations of motion take
an explicit form. If solutions of
these equations adequately describe
experimental data then the primary
requirement of a particle’s theory are
satisfied.

REQ.2 A Lagrangian density that takes the form
L(ψ,ψ,µ) does not depend explicitly on
the space-time coordinates (t,xxx). Hence,
the Noether theorem assures that the
theory conserves energy-momentum and
angular momentum (see [17], pp. 17-19).

REQ.3 The Lagrangian density L(ψ,ψ,µ) is a
Lorentz scalar. Hence, the Noether
theorem assures that the theory takes a
relativistic covariant form (see [17], pp. 17-
19).

REQ.4 If the Lagrangian density L(ψ,ψ,µ) is a
homogeneous quadratic function of ψ(x)
then the Euler-Lagrange equation (19)
takes a linear homegeneous form with
respect to the quantum function ψ(x).

This is the form of the wave equation
(see [3], p. 5; [12], chapter II). It is
well known that the literature contains
examples of quantum theories of specific
particles whose function ψ(x) satisfies the
wave equation.

REQ.5 The function ψ(x) (x ≡ (x, y, z, t))
describes a point-like elementary particle.
Indeed, the independent variable x can
describe the probability of finding the
particle at x but it cannot describe how
a composite particle is distributed at the
vicinity of x. For this reason, a quantum
theory that is based on (18) satisfies the
required correspondence to the classical
theory, where item SR.1 shows that an
elementary classical particle is pointlike.

REQ.6 The Noether theorem provides a
prescription for constructing a conserved
4-current for a quantum theory of the form
(18). The invariance of a quantum field
Lagrangian density under a global phase
transformation

ψ → exp(iα)ψ, (20)

where α is a mathematically real variable,
yields

0 = iα

[
∂L
∂ψ

− ∂µ

(
∂L

∂(∂µψ)

)]
ψ + iα∂µ

(
∂L

∂(∂µψ)
ψ

)
(21)

(see [18], p. 314). The Euler-Lagrange
equation (19) proves that the quantity
enclosed inside the square brackets
vanishes. Since α does not vanish
identically, one finds that the expression
that is written inside the last bracket of (21)
is a conserved 4-current

jµ =
∂L

∂(∂µψ)
ψ. (22)

The action (18) is a mathematically real
quantity. Therefore, the invariance of the
Lagrangian density L(ψ,ψ,µ) of (18) under
a global phase transformation is obtained
if each of its terms takes the form ψ†Ôψ,
where Ô is a Hermitian operator.

The 0-component of a conserved 4-
current j0 is the density ρ(t,xxx) of the
quantum particle (see [2], p. 75). Let V
denote a spatial volume. It means that
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at time t, the probability P of finding the
quantum particle at V is

P =

∫
V

ρ(t,xxx)d3x. (23)

Therefore, the classical limit of (23)
describes the particle’s position, which is
required by the correspondence principle.
Hence, an acceptable quantum theory
should provide a coherent expression for
density.

This quite long list of favorable properties of a
quantum theory that are derived from the action
of (18) explains why QFT textbooks use it as a
basis for the analysis. Further properties of this
theoretical structure, where some of which are
still not very well known, are discussed in the next
section.

4 DISCUSSION

Humans can see how a wave propagates in a
pond. They can also ”feel” how an acoustic wave
travels through a gas, a liquid or a solid. These
are examples of a wave that is a disturbance
of the state of a medium. However, this kind
of experiments cannot rule out the existence of
a wave phenomenon that is independent of a
medium. Indeed, in physics, a wave is a physical
object that satisfies the wave equation (9). Here
the medium is not an explicit part of the equation.
Referring to electromagnetic waves, the ether
concept as a medium that carries these waves
has been abandoned after the rise of special
relativity. The confirmation of the de Broglie
hypothesis of the wave nature of a quantum
particle adds another blow to the ether concept.
This issue means that the photon’s ether concept
requires the addition of a different kind of ether for
every kind of a quantum object, like the electron,
the muon, and even the neutron. This is a quite
weird combination of several kinds of ether which
has no support in the scientific literature.

As a matter of fact, physics does not rely on
concepts that depend on human senses, but on a
coherent mathematical structure that adequately
describes experimental data. For example,
item REQ.4 of the previous section shows that
the quantum function ψ(x) satisfies the wave
equation, and the ether concept is not a part of

the theory. This issue substantiates the concept
where the wave phenomenon is an inherent
property of a quantum particle.

Furthermore, item REQ.5 shows that an
elementary quantum particle has pointlike
attributes. Experiments support the pointlike
properties of an elementary particle. Indeed, the
electron is the best known elementary particle,
and the experimental upper bound of its radius
is re < 10−20 cm [19]. This figure is 7 orders of
magnitude smaller than the proton radius. Here
the coherent theoretical structure prevails, and
the apparently problematic aspects of the human
concept concerning the wave/particle dilemma
has no scientific merit.

It turns out that the pointlike attribute of an
elementary particle is still not very well-known.
For example, an article that has been cited
hundreds of times uses the π, ρ mesons as
carriers of the nuclear force [20]. However, it
is well known that these mesons are quark-
antiquark bound states (see [21], p. 222)
and their self-volume does not vanish. As
such, the meson wave function takes the form
ϕ(rrr1, rrr2, t), where rrri denotes the quark-antiquark
coordinates, respectively. On the other hand,
the quantum function of an interaction mediating
particle ϕ(x) pertains to a point-like particle.
Therefore, the π, ρ mesons cannot be regarded
as interaction mediating particles and the basis
of [20] collapses.

Let us examine another issue. The laws
of motion of a classical particle are derived
from a Lagrangian (2) or, alternatively, from a
Hamiltonian (6). It is shown above that the theory
of a quantum particle uses a Lagrangian density.
This issue means that an appropriate Legendre
transformation of the Lagrangian density yields
a Hamiltonian density. The energy-momentum
tensor is obtained from a given Lagrangian
density

Tµν =
∂L

∂(ψ,ν)
gαµψ,α − gµνL (24)

(see [22], p. 310). The component T 00 of this
tensor is the Hamiltonian density

H = T 00 =
∂L
∂ψ̇

ψ̇ − L (25)

(see [17], p. 16).
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These expressions uncover the different
relativistic structure of the Lagrangian density
of (18), which is a Lorentz scalar, and that
of the Hamiltonian density (25), which is the
T 00 component of a second rank tensor. This
distinction has far-reaching consequences. An
important example is the term of the tensor
interaction of a Dirac particle called the Pauli
term

Lint = dψ̄σµνFµνψ (26)

(see[23]; [13], p. 14). This term is sometimes
called tensor interaction because of its σµν factor
(see [24], p. 26). The Pauli term (26) is a Lorentz
scalar which belongs to a Lagrangian density.
An examination of the Hamiltonian density shows
that the corresponding term of (26) boils down to
the difference between two terms, a vector and
an axial vector [25]

Hint = 2dψ†(iγiEi − γ5γiBi)ψ (27)

This term agrees with the V-A (Vector-Axial
vector) attribute of weak interactions (see [16],
pp. 214-220).

The historical development of the electroweak
theory demonstrates the significance of this
issue. Thus, [26] is a key article in the
development of the electroweak theory. The
authors of [26] examine the Lagrangian density
of the problem and reject the tensor interaction
T as a possible candidate (see the text above
their (8)). Their work does not distinguish
between relativistic properties of a Lagrangian
density and those of a Hamiltonian density. In
order to account for the parity violation feature
of weak interactions, they introduced the parity
violation factor (1 ± γ5). This factor has only
two degrees of freedom. Hence, it implies a
two-component massless neutrino. As a matter
of fact, the concept of a massless neutrino has
become an element of the electroweak sector
of the standard model. Several references
substantiate this claim: The electroweak theory
relies on ”a neutrino which travels exactly with
the velocity of light” [27]. A review article
restates the neutrino masslessness attribute of
the electroweak theory: ”Two-component left-
handed massless neutrino fields play a crucial
role in the determination of the charged current
structure of the Standard Model” (see the
Abstract of [28]). Similarly, a textbook states:

”Neutrino masses are exactly zero in the
Standard Model” (see [29], p. 533).

As stated above, the arguments of [26] ignore
the distinction between relativistic attributes of a
Lagrangian density and those of a Hamiltonian
density. It means that this article and
the associated electroweak theory rely on an
erroneous basis. Here are several points that
support this claim.

EW.1 Contrary to the neutrino masslessness
feature of the electroweak theory,
experimental data show that the neutrino
is a massive particle [30].

EW.2 As stated above, the time-evolution of
a particle is described by differential
equations called the equations of motion
of the particle. The equations of motion
of a quantum particle are the Euler-
Lagrange equations of its Lagrangian
density. Section 3 shows arguments
that explain why presently accepted
theories use a Lagrangian density as
the basis of their mathematical structure.
Primary properties of a particle’s theory
say that consistent equations of motion
whose solutions adequately fit relevant
experimental data are vital for an
acceptable quantum theory. For example,
it is well known that every textbook on
the Dirac theory of a spin-1/2 massive
particle shows the explicit form of the Dirac
equation, which is a partial differential
equation. Some textbooks also show
specific solutions of this equation that
adequately fit experimental data. By
contrast, no textbook shows the explicit
form of the differential equations that are
the equations of motion of the electroweak
particles. A fortiori, no solution of the
omitted equations is tested with respect
to experimental data. It means that the
electroweak theory is inconsistent with the
primary properties of a particle’s theory.

EW.3 An analogous problem is the fact that
no QFT textbook shows an explicit
expression for the density of the
electroweak Z particle. As explained
above, item REQ.6 of the previous section
explains why this is a failure to show a vital
theoretical quantity.
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EW.4 In quantum mechanics, the eigenvalue of
a Hermitian operator is (see e.g. [12], p.
47)

<O>=

∫
ψ∗Ôψd3x, (28)

where < O > denotes the eigenvalue of
the variable that is represented by the
operator Ô. Evidently, the dimension
of an operator is the same as that
of its eigenvalue. Hence, in quantum
mechanics, the dimension of the wave
function ψ is [L−3/2]. Considering this
aspect, one finds that the first order-
Dirac theory abides by the Weinberg
correspondence principle. Second-order
quantum equations, like that of the
electroweak theory, do not share this
property because the dimension of the
product of their functions ϕ†ϕ is [L−2].

EW.5 Many other electroweak discrepancies are
discussed elsewhere (see e.g. [31] and
references therein).

It is quite strange to find that the mainstream
literature does not mention that the electroweak
theoretical structure lacks these vital elements.
For example, they are not mentioned in the List
of Unsolved Problems in Physics [32].

5 CONCLUSIONS

Merits of the relativistic covariant form of QFT
are discussed. Special relativity and quantum
theories have been constructed in the 20th
century, and they have introduced a profound
change of the scientific concept concerning the
structure of the physical world. In particular, the
concepts of universal time, the need for a medium
that carries a wave motion, the conflicting notions
of a (pointlike) particle and a wave, and the strict
determinism of a physical process have been
abandoned.

It is now recognized that the relativistic form of a
QFT and the variational principle are the basis of
quantum theories. Here section 3 explains how
an appropriate Lagrangian density of a quantum
theory (18) ensures that the theory abides by
several physical requirements. Quite a few of
these issues are well known, but there are still
some important quantum features that deserve a

further discussion. In particular, the paper proves
that the quantum function ψ(t, rrr) describes a
pointlike particle. Another important result is the
different covariant properties of the Lagrangian
density, which is a Lorentz scalar, and the
Hamiltonian density, which is the T 00 component
of the energy-momentum tensor. This distinction
has far-reaching consequences. In particular,
it shows that the Standard Model electroweak
theory is based on an erroneous concept. Here
the tensor term T of the Lagrangian density boils
down to V-A terms of the Hamiltonian density.
These terms are in accordance with well known
weak interaction data. Other drawbacks of the
electroweak theory support this conclusion (see
e.g. [31] and references therein).
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