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1 Introduction

DNA microarray technology takes advantage of hybridization properties of nucleic acid and
uses complementary molecules attached to a solid surface, referred to as probes, to measure
the quantity of specific nucleic acid transcripts of interest that are present in a sample,
referred to as the target. Microarrays provide a rich source of data on the molecular working
of cells. Each microarray reports on the abundance of tens of thousands of mRNAs. Virtually
every human disease is being studied using microarrays with the hope of finding the molecular
mechanisms of disease. There are a number of different platforms available, some from
commercial vendors and others essentially home made. The efficacy of the assay, as well as
the effects of non-specific signal and crosstalk, differ across experiments and technologies. In
practice the raw intensity data are heavily manipulated before one obtains the expression
values that most statisticians, biologists and clinicians use in their research.
With many different investigators studying the same disease and with a strong commitment
to publish supporting data in the scientific community, there are often many different datasets
available for any given disease. Hence there is substantial interest in finding methods for
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combining these datasets to provide better and more detailed analysis of all available data.
In this paper we review some of the methods that have been proposed, and explore these
and other alternative methods for combining the data with a view to obtaining more precise
information about changes in gene expression that relate to different disease phenotypes.
Choi et al. (2003) proposed the use of meta-analytic tools and argued in favor of the synthesis
of experiments on the basis of estimated effects. While we agree in principle with that
approach, we note that there is, in fact, a more general approach that should be considered.
A succinct discussion is given in Cox and Solomon (2003), in particular in Chapter 4. We
note that standard, and general statistical models can be employed to address many of the
questions that arise, and we provide some translations between these two references in the
remainder of this paper. In addition we present outputs from both approaches and compare
them on two examples.
The usual application of meta-analysis is to analyze a single outcome, or finding, using
published data where typically only summary statistics are available. With microarray ex-
periments, we are often in the more fortuitous situation of having the complete set of primary
data available, not just the summary statistics. There are usually thousands of genes that
were measured in each experiment and it is unlikely that all will be implicated in the dis-
ease process, so some reduction is needed. By phrasing the synthesis in terms of standard
statistical models many of the recently developed p-value adjustment methods for multiple
comparisons can be applied directly. Finally, we emphasize that even when synthesizing
studies, it will be important to ask specific direct questions; undirected searches are unlikely
to be enlightening.
We first consider exploratory methods with the intention of ascertaining whether, in broad
terms, the experiments are similar enough to warrant combining. Once that question has
been answered we next turn our attention to the development of a suitable model. One of
the fundamental requirements for combining data is that all of the studies have been carried
out in such a way that the treatment effects of interest were measured in all studies. One of
the major accomplishments of meta-analysis was the realization that the scale need not be
the same in all studies, but rather that some transformation of all effects to a similar scale
was sufficient. We consider such an analysis both in the classical meta-analytic framework
and in the form of linear mixed effects models (Pinheiro and Bates, 2000). We follow some
of the development of Cox and Solomon (2003), who discuss this application in a similar
context.
When combining experiments there are generally two problems that must be dealt with. One
is the matching problem, and the second is the problem of how to combine the estimated
effects in each experiment into a reasonable overall estimate. The matching problem comes
in two parts, first the matching of probes and second the matching of samples and experi-
ments. The first matching problem exists whenever a different set of probes is used in the
experiments. The intention to assay the same mRNA in all experiments does not always
eventuate, due to mismatching sequences, complex gene structure, or other problems. Fur-
ther, the measured intensity at any probe on an array is a function not just of the target
abundance, but also of the sequence that was used for the probe and the technology used for

2



the assays. Hence, two arrays that use different probe sequences may not be directly compa-
rable. Parmigiani et al. (2004) have proposed methodology to deal with the gene matching
problem and have provided software in the form of an R package MergeMaid. In this paper
we do not address this question and simply resort to matching genes on the basis of their
GenBank and Unigene identifiers. A more complete analysis would consider these and other
issues and would almost surely focus more directly on ensuring that the probes used in the
different experiments were measuring in fact the same thing. However, that is a separate
and substantial area of research, and in a sense is orthogonal to the problem of synthesizing
experiments – which is our goal here.
The second matching problem must be addressed when selecting samples or experimental
conditions to be used in the analysis. Some of the issues relate to whether similar quan-
tities can be estimated from the experiments and we discuss that problem in more detail
subsequently. In one of our examples we consider the synthesis of two experiments with the
goal of assessing whether we can detect a gene expression signature that is associated with
the presence of lymph nodes that carry metastases, for two quite different primary tumor
tissues. However, we cannot easily tell if the definitions of lymph node positivity used in
the two experiments were sufficiently similar to warrant integration of the analyses. This is
not an isolated problem: different investigators use the same term for different conditions or
different terms for the same condition. Again, we confine ourselves to a cursory discussion
of the issues since our main focus is on the statistical models that may be used to combine
the estimated effects.
It is also important that some assessment of the additional information that has been gained
by combining the data be made. One measure is the number of features that have a significant
treatment effect in the combined analysis that did not have a significant effect in either
experiment alone. These are the new discoveries, or as Choi et al. (2003) called them, “the
integration-driven discoveries”.
We have provided all data sets and software used to carry out the analyses reported here
in the form of an R package (or compendium) called GeneMetaEx that is available from the
Bioconductor project. Readers are able to ascertain the exact details of every computation
reported and of every figure produced in this paper. Further, they can extend and explore
our analysis according to their own interests.

2 Materials and Methods

2.1 The experimental data

In our first example we combine two data sets that both report on the estrogen receptor
(ER) status of women with breast cancer. The goal of that analysis is to find those genes
which show differential expression between ER positive and ER negative tumors. As we shall
see the signal is quite strong, and rather remarkably ER status effects the expression of a
very large number of mRNA species. However, some thought should be paid to the fact that
the two samples could be quite different, could represent different populations and hence
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observed differences may simply reflect the sampling heterogeneity.
In the second example we compare patients for which positive lymph nodes were detected to
patients where no lymph node involvement was detected. One data set is the same as was
used for the breast cancer example described above, but we use a different covariate. The
second experiment has patients with head and neck cancer. In this case we are interested in
finding common signatures of lymph node metastasis, across tissues. The differences in the
patient populations are quite large. Further, since different tissues are involved in the lymph
node comparison it is unlikely that the same set of genes is expressed, let alone differentially
expressed. Even though thousands of genes were measured we anticipate that relatively few
will be involved in a –at this point hypothetical– common molecular basis for lymph node
metastasis. Hence some form of reduction in the genes analyzed should be considered.
We now introduce the three data sets that we will use for our examples. One is a study
of breast cancer reported by West et al. (2001) in which 46 patients were assayed and two
phenotypic conditions were made public, the estrogen receptor (ER) status and the lymph
node (LN) status. We will refer to this as the Nevins data in the remainder of the text.
The samples were arrayed on Affymetrix HuGeneFL GeneChips. ER status was determined
by immunohistochemistry and later by a protein immunoblotting assay. We have used 46
samples, of which 4 gave conflicting evidence of ER status depending on the test used.
Lymph node status was determined at the time of diagnosis. Tumors were reported as
negative when no positive lymph nodes were discovered and as positive when there were at
least three identifiably positive lymph nodes detected.
A second breast cancer data set was made public by van’t Veer et al. (2002) in which tumors
from 116 patients were assayed on Hu25K long oligomer arrays. Among other covariates the
authors published the ER status of the tumors. Their criterion was a negative immunohis-
tochemistry staining, a sample was deemed negative if fewer than 10% of the nuclei showed
staining and positive otherwise. We refer to this as the van’t Veer data in the remainder of
the paper. Our primary example involves combining these two data sets to obtain a better
view of the relationship between genes and ER status.
The third experiment we consider is one published by Roepman et al. (2005), which assayed
patients with primary head and neck squamous cell carcinoma using long oligomer arrays.
Lymph node status of the individuals involved was determined by clinical examination fol-
lowed by computed tomography and/or magnetic resonance imaging. Any nodes that were
suspected of having metastatic involvement were aspirated and a patient was classified as
lymph node positive if the aspirate yielded any metastatic tumor cells. For our second com-
parison, we combine these data, which we call the Holstege data, with the Nevins data on
the basis of LN status.
Some of the issues that arise in combining experiments can already be seen. For the com-
parison on the basis of ER status we see that the two used similar, but different methods
for assessing ER status. One might want to revert the Nevins data to the classifications
based only on immunohistochemistry staining to increase comparability across the two ex-
periments. This is likely to come at a loss of sensitivity since one presumes that the ultimate
(and in four cases different) classification of samples was the correct one.
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For the synthesis of experiments on the basis of lymph node status the situation is even
more problematic. One might wonder whether approximately the same effort was expended
in determining lymph node status in the two experiments. We emphasize that value of any
synthesis of experiments will have a substantial dependency on the comparability of the
patient classifications. If the classifications of samples across experiments are quite different
then it is unlikely that the outputs will be scientifically relevant.
As noted previously probes were matched on the basis of GenBank or UniGene identifiers.
For the Nevins – van’t Veer synthesis we have 3988 mRNA targets in common, while for the
Nevins – Holstege synthesis there are 3786 common mRNA targets.

2.2 Issues and rationale for combining experiments

We remind the reader that one of the most important principles of meta-analysis is that the
different data sets should be chosen in such a way that the quantity of interest is comparable
across studies. It is not reasonable to assume that all genes on the microarray will be
affected in the same way, or even that most will be affected at all. Hence, many of the
per gene models are not going to reveal any new information. The hope is that there are a
number of important genes whose effects are not obvious from any individual experiment,
but when the experiments are analyzed as a whole the effect becomes obvious and can be
extracted from the analysis.
Many of the issues were first raised in Glass (1976) who noted that in situations where
potentially different scales of measurement have been used it will be necessary to estimate
an index of effect magnitude that does not depend on the scaling or units of the variable
used. For two-sample problems the scale-free index that is commonly used is the so-called
effect size, which is the difference in means divided by the pooled estimate of standard
deviation (note that this is not the t-statistic, which would use the standard error of the
mean difference). Other measures include the correlation coefficient and the log odds ratio,
but we do not consider them here.
Hence, a determination of whether the quantities being measured in all experiments are
sufficiently similar is needed. We will demonstrate that under fairly general conditions this
seems to be true. In fact, methods based on effect size only require that the scales of
measurement be linearly related in some manner, while we will show that often it is the
same quantity that is being measured; which is a somewhat stronger property.
In two sample experiments it will often be sensible to compare fold-change, or its logarithm,
between phenotypes of interest. In this case both two-color arrays (such as spotted cDNA
arrays) and single channel arrays (such as those from Affymetrix) may provide estimates on
the same scale.
We describe one model for changes in gene expression due to a treatment effect and demon-
strate that, under this model, estimated treatment effects between one-color and two-color
experiments can be combined. This observation does not preclude the existence of other
models which may or may not validate the synthesis of experiments, but rather it simply
provides a scenario under which such an analysis is reasonable.
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We consider the comparison of two experiments. One experiment is carried out using a one
color technology, such as Affymetrix GeneChips and the other experiment was carried out
using a two-color technology such as cDNA arrays. For the two-color experiment we presume
that a common reference was used for all hybridizations. If this is not the case, then another
reasonable scenario is for each chip to represent a pair of matched samples, one treated and
one not; or a dye-swap can be accommodated. In our example, we presume that the same
set of samples have been hybridized to each of the two types of arrays.
Let Xm,i represent the per cell level of abundance for mRNA target m in a sample of interest
labeled i. Further we presume a common control C with levels of mRNA abundance given
by Cm. We typically drop the m subscript when only one target is being considered. We let
X∗

i = log
2
(Xi), C∗ = log

2
(C), and also use Xc

i = log
2
(Xi/C). Then let

X
∗

I =
1

|I|

∑

i∈I

X∗

i

X
c

I =
1

|I|

∑

i∈I

Xc
i

be the average logarithmic abundances and average log-ratios in a group of samples I, and
we see that for the comparison between two different sets of samples I and J ,

X
c

I − X
c

J = X
∗

I − Y
∗

J , (1)

since the terms involving log
2
(C) cancel out. So, the logarithm of the geometric means

between the two groups is the same quantity for one-color arrays as for two-color arrays that
use a common reference.
Unfortunately, the simple picture of Equation (1) becomes more complicated when we con-
sider the estimates of the log-ratios and the logarithmic abundances, rather than these
quantities themselves. This is called the problem of attenuation, and in particular, differen-
tial attenuation between different experiments complicates the comparison of the estimates
between the experiments. The problem may be understood as follows. Using notation analo-
gous to above, let Ym,i be the expected value of the observed intensity of the probe for mRNA
target m in sample i, and Dm that for the control. Ideally, Ym,i are proportional to Xm,i,
with a proportionality factor that might not be known, but is constant, so it would cancel
out in within-probe comparisons, and an equality analogous to Equation (1) would still hold
for the estimates. Unfortunately, current microarray technologies provide intensities that
are not strictly proportional to the target abundance, but can be biased by an unspecific
background:

Ym,i = Xm,i + am,i and Dm = Cm + am,C , (2)

where am,i and am,C are numbers that depend in a complicated way on the details of the
technology and the experiment. Now for simplicity again dropping the target index m, we
get for the logarithmic intensities and the log-ratios

Y ∗

i = log
2
(Xi + ai) and Y c

i = log
2

Xi + ai

C + aC

. (3)
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The values a are called the background and often they are positive. Thus, the estimates of
logarithmic fold-changes are typically attenuated towards zero, and the size of the attenuation
depends on the abundance of the target. If the abundance is large, Xi is much larger than
ai and the attenuation is negligible. However, there are many genes that are present at low
abundance. For these, the attenuation can be strong, and depends on the details of the
experiment.
We note that background correction methods can alleviate the problem, but as they are not
perfect, and because of finite sample effects, they do not completely remove it. In some
cases, it may be possible to model the differential attenuation explicitly. We return to this
idea below when considering general random effects models.

2.3 Exploratory Data Analysis

We propose some simple plots and diagnostics that will help to ascertain whether the same
information has been measured and whether there seem to be grounds for combining the data
from the different experiments. First, summary statistics can be computed separately for
each experiment and compared on a gene by gene basis. Perhaps the most obvious statistic
to compute is a t-statistic for each gene, but this is problematic. The t-statistic confounds
the effect size and the sample size, in the sense that the same real difference in means will
result in a larger t-statistic for larger samples. We propose using the effect size, described in
Section 2.2, a quantity that is often considered in meta-analysis. In the example below we
used the zScores function from the GeneMeta package to compute various per experiment
and combined summaries.
Once the estimates have been computed they can be plotted against each other. If there
are more than two groups then we suggest using a scatterplot matrix to show all pairwise
relationships. Boxplots and parallel coordinates plots can also be valuable tools for assessing
overall behavior. We anticipate general similarity of the estimated test statistics for all
experiments, and gross deviations from this should be cause for concern.
We also suggest looking at the distribution of differences between the estimated effects.
Under the belief that the experiments are measuring the same thing then these differences
should be centered around zero. If this is not true then there are likely to be fundamental
differences between the experiments that cannot be resolved by statistical means, but rather
reflect real differences in the populations sampled or the technologies that were used.
We can see in Figure 1 that there are substantial qualitative differences between the two
different comparisons. The correlation in estimated effects between the two ER experiments,
0.66, is remarkable. Typically you would not expect to see such a substantial correlation,
and it potentially reflects the importance of ER as controller of transcriptional activity.
On the other hand, just because the plot for the lymph node comparisons shows almost no
correlation does not mean that a synthesis or meta-analysis is inappropriate. In fact this is
likely to be the more common case and it reflects the fact that there are relatively few genes
whose expression levels correlate with lymph node status in both experiments. This is to be
expected, the two data sets use samples from completely different tissues and we anticipate
differences in the mechanisms that control expression as well as in which genes are expressed
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Figure 1: Pairwise plots and boxplots of per gene effect size statistics.
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and at what level. But that does not preclude there being a relatively small set of genes that
do show similar effects in the two experiments.
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Figure 2: Comparison of the estimated per gene standard deviations from the random effects
model for two datasets. Left panel: scatterplot, vertical and horizontal lines indicate the
99%-quantiles. There is a clear enrichment of genes in the upper right sector, that is, of
genes that have a high standard deviation in both experiments simultaneously (odds-ratio
80, p < 2.22e-16). Right panel: qq-plot, indicating that the shape of the distributions is
about the same, but the standard deviations for the Nevins data are about one and a half
times as high as those for the van’t Veer data.

We compare per gene estimated standard deviations in Figure 2. If there are probes that
have a high variance in one experiment, but not in the other, one might wonder about the
validity of combining those genes. Large differences in variance between the experiments
suggests that either there are large differences in the underlying populations or that the
measurement device is failing for those particular probes.

3 The Model

3.1 A formalization of the statistical methodology

We now discuss a formal random effects model for each gene comparison. We note that in
general the different genes are not independent and hence a gene at a time approach will
not be optimal. However, in the absence of any knowledge about which genes are correlated
with which other genes it is not clear how to approach a genuinely multivariate analysis.
Here we describe the gene-at-a-time approach.
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Following Cox and Solomon (2003) we write the model for each gene as:

Ytjs = β0 + βt + bj + ξtj + ǫtjs, (4)

where Ytjs represents the expression value for the sth sample in the jth experiment, which is
on treatment t. Note that we use the term treatment interchangeably with what would be
called the disease condition or phenotype in the current application. β0 is the overall mean
expression, βt is the effect for the tth treatment, bj is a random effect characterizing the jth

experiment, ξjt is a random effect characterizing the treatment by experiment interaction.
We assume that the bj have mean zero and variance τb, that the ξjt have mean zero and
variance τξ, and that ǫtjs are random variables with mean zero and variance τǫ that represent
the internal variability.
We can contrast the model in Equation (4) with the model proposed in Choi et al. (2003).
Note that the Choi model is based on summary statistics, rather than individual observations.
They let µ denote the parameter of interest, for instance, the effect size, possibly on a log
scale, between control and treatment. They then let yj denote the measured effect size for
experiment j, with j = 1, . . . , k and propose the hierarchical model:

yj = θj + ǫj, ǫj ∼ N(0, σ2

j )

θj = µ + δj, δj ∼ N(0, τ 2) (5)

where τ 2 represents the between study variability and σ2

j denotes the within study variability.
This is a random effects model, and the special case where τ 2 = 0 is a fixed effects model,
since then θj = µ, almost surely.
This is very similar to the model from Cox and Solomon (2003), albeit with additional
distributional assumptions, which we shall ignore. The parameter µ from Equation (5) is
related to βt in Equation (4) if we are considering estimates of the difference in expression
on the scale that the Y ’s are measured on. Since one typically fits the model in Equation (4)
to the normalized data then βt will correspond to a difference in means and not to the effect
size. If the latter is wanted then dividing the observed data by the estimated per experiment
standard deviations will make βt and µ correspond to the same quantity.
The parameters δj in the Choi model roughly correspond to the ξtj in Equation (4). They rep-
resent terms which account for heterogeneity between the per experiment treatment effects.
In Equation (4) they are interactions indicating that βt is not the same in all experiments.
The parameters bj from Equation (4) do not appear in the Choi model. They are not relevant,
since one wants only to compare the estimated treatment effects, and whether or not there
are between experiment differences in the per gene intensities is not relevant. The estimated
bj do have some potential uses.
One simplistic interpretation of the situation is as follows. Each experiment provides us
with an independent estimate of the treatment effect and of the variance of that effect. If,
across all experiments, the estimated treatment effects are in sufficient agreement (e.g. their
confidence intervals are reasonably coincident) then there is no need for a more complex
explanation. We can assess that question by testing whether τ 2 in Equation (5) is zero, and
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hence that θj = µ. The equivalent test, in terms of the model in Equation (4), is to test
whether τξ = 0.
If however, the evidence is somewhat disparate then we must presume a more complex model
to explain it. The dichotomy proposed by Choi et al. (2003) between fixed and random effect
models is essentially that. This same situation is considered by Cox and Solomon (2003)
where they indicate that in the first case, one should essentially estimate the overall treatment
effect as a weighted average of the per-experiment effects, with weights determined by the per
experiment variances, and in the second case as a simple weighted average of the estimates,
discarding the per experiment variances. Cox and Solomon (2003) further argue that one can
view most estimators used in practice as being some compromise between the two positions.

3.2 Interpretation of parameters

One of the real challenges in such an analysis is to find appropriate methods for making use
of all of the data and to move beyond treating such an analysis as being several thousand
unrelated analyses. In this section, we consider some of the issues involved and offer some
preliminary advice. In Choi et al. (2003) the authors recommend computing Cochran’s Q
statistic for each gene and then use a qq-plot to compare the estimates to the distribution
of Q, which is known under the null hypothesis that a fixed effects model is sufficient. They
recommended that if there is significant departure from the presumed χ2 distribution one
should fit a random effects model and if not, then a fixed effects model should be used. Such
a procedure presumes that the same model, fixed effects or random effects, is appropriate
for all genes. However, that does not always seem to be a reasonable presumption. It seems
likely that for any set of experiments there will be many genes for which there is no effect,
others for which a fixed effects model is appropriate, and still others for which a random
effects model is appropriate. However, the top left panel in our Figure 3 and in Figure 1 b)
of Choi et al. (2003) there does seem to be evidence that the quantity being measured by Q
is different for all genes.
In most analyses the parameter of interest is βt, the treatment effect. In the hierarchical
model this effect is represented by the parameter µ. As we noted previously the per gene
estimates of βt can be thought of as weighted averages of the per experiment estimates and
should be interpreted in that light. Fitting a fixed effects model when a random effects model
is appropriate is likely to elevate evidence against the null hypothesis since the quantity used
to estimate the variability in the estimates of βt tends to be too small, as it does not include
the between experiment variance.
We next consider the per experiment random effects, namely the bj. Now, one might antici-
pate that for each gene they estimate the same quantity, but this, it turns out, is in general
not true. There are a number of different effects that are completely aliased with experiment.
First there is the usual sampling variability. The samples used in one experiment represent a
different sampling of the population than those used for a different experiment and different
genes may show quite different levels of within and between sample heterogeneity.
The experiment effect is due to the technician, reagents used, as well as other factors. There
is a separate technology effect that arises when different types of microarrays are used such
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as: short oligomer arrays, long oligomer arrays or cDNA arrays. For an examination of the
likely sizes of these effects, in a study using technical replicates, see Irizarry et al. (2005).
On a per gene basis the bj may reflect differences in labeling efficiencies and background
between the two experiments. They may also reflect differences in absolute abundance,
the experiments may have been carried out with more or less RNA. The bj also capture
differences in control of expression in cases where different tissues or different organisms are
being compared. In this case, the expression of an mRNA may be up-regulated overall in
one tissue, but the treatment effect could remain essentially the same. Unless the same
type and version of microarrays were used in all experiments, the microarray probes will be
different in different experiments, and that effect is also confounded with the experiment
random effect. Any misassociation or mismatching of probes is likely to be manifested by
an increased experiment effect. We also anticipate that in some circumstances the effect of
mismatching could be manifested in the interaction between treatment and experiment.
We expect that some effects will be common to all genes, while others, such as that due
to the probe sequence used, will be different for each gene. Hence, we propose examining
the estimated per gene experiment random effects and suggest that those with particularly
large estimated variances be examined to determine whether the large estimated effect can
be explained. However we will report on that analysis elsewhere.
We next consider effects that are confounded with the σj. These are within experiment
estimates of variability and they will be affected by any real differences in variability between
the experiments. The estimates of σj will also capture inherent differences in the quality of
the arrays and system used. They will also reflect sampling variability. It may be helpful to
regress the σj on each other, large residuals suggest mRNAs which have different sources of
variation in the two experiments; which may indicate genes controlled by different cellular
mechanisms, or it may merely reflect a bad set of probes in one of the experiments.
Now we turn our attention to the interaction terms. As is often the case these are the most
difficult to interpret, but also often the most valuable as they can indicate failures in the
model - and potentially ways in which this failure can be remedied. There are two different
sorts of interactions, and to some extent they should be considered separately. First, there is
the sort of interaction where the effect in one study is in the same direction (either increased
expression or decreased expression) but the size of the effect is substantially different. A
cause for this could be differential attenuation as described in Section 2.2. The second
type of interaction is the one where the direction of the effect is different. In this case the
studies are presenting contradictory evidence for some genes. There can be many reasons
for this and the predominant cause is likely to be that the mRNAs are not differentially
expressed under the conditions being studied, and hence are not of interest. Other causes
include misidentification of probe with target gene for some experiments, different regulation
of expression in different tissues, as well as spurious results in one or more experiments.

3.3 Hypothesis Testing

The most common, and in some sense most important hypothesis test is determining whether,
in the parlance of meta-analysis, to fit a fixed effects model or a random effects model.
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Depending on the approach the test is whether τ 2 = 0, for the meta-analysis formulation, or
whether τξ = 0 for the random effects model. We note that there are, in general, problems
when testing hypotheses of the form H0 : τξ = 0, since the hypothesized value is on the
boundary of the parameter space; variances must be positive. Such tests are problematic
since the usual distribution theory does not apply. An examination of the p-values in Figure 4
clearly shows what can happen. There are a number of results in this general area (Self and
Liang, 1987; Stram and Lee, 1994; Crainiceanu and Ruppert, 2004), but their application is
not straight forward. The results of Self and Liang (1987) are only valid under a presumption
of independent identically distributed data, and this presumption is not generally valid for
random effects models and hence the results of Crainiceanu and Ruppert (2004) should be
consulted.

4 Two Examples

We now return to the two examples we described previously and will demonstrate some
simple analyses of these data using different software tools. We first use the GeneMeta

package, which contains functions for carrying out most of the analyses described in Choi
et al. (2003). Then we use the nlme package to fit the more general random effects models
proposed in Cox and Solomon (2003) and examine some of the output of those analyses. We
cannot directly compare the estimates obtained for two reasons. First, the meta-analysis
approach is based on effect sizes while the random effects model is based on a difference
in means. Second, even if we adjusted the data so that the parameters were the same the
software used to fit the random effects model does not allow for fitting the same model as
was used by Choi et al. (2003). Basically the way that the random effects are estimated
using lme results in different weights being used to combine the per experiment effects than
would be used for the classical meta-analysis.

4.1 Classical Meta-analysis

Most of the summary statistics mentioned by Choi et al. (2003) have been programmed as
part of the zScores function in the GeneMeta package. In this section we use it to carry
out a standard meta-analysis of the two different comparisons. The usual procedure is to
first assess which of the two models, random effects or fixed effects, is appropriate and to
then subsequently fit that model. The determination of which model is appropriate is often
based on Cochran’s Q statistic, if the value of this statistic is large then the hypothesis
that the per-study measured effects are homogeneous is rejected and a random effects model
is needed. In that case the most common approach to estimating the overall effect is to
estimate τ 2 using the DerSimonian–Laird (DerSimonian and Laird, 1986) estimate. Both
Brockwell and Gordon (2001) and Böning et al. (2002) raise concerns with respect to the
use of the DerSimonian–Laird estimate. In particular if there are many small studies, then
the DerSimonian–Laird estimate of τ 2 can be quite biased and this will be reflected in the
estimate of the overall effect.
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The value returned by the zScores function is a matrix that contains many of the statistics
described in the Choi et al. (2003) paper, in particular per experiment estimates of effect
and of variance, the DerSimonian–Laird estimate of τ 2, and Q. To determine whether to fit
a fixed effect model or a random effects model Choi et al. (2003) propose using Cochran’s
Q statistic. Under the null hypothesis that the variance of the random effect is zero, this
statistic have a χ2

k−1
distribution, where k is the number of experiments. Thus, comparing the

estimates to the quantiles from a χ2

k−1
distribution provides a visual assessment of whether

a fixed effects model may be tenable. The qq-plot is provide in Figure 3, and there seems to
be substantial deviation from a χ2

1
distribution. This indicates that a random effects model

is prefered.
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Figure 3: Plots evaluating and comparing a fixed effects model with a random effects model.
In the first plot the empirical quantiles of Q are compared to a χ2 distribution. In the second
and third plots the standardized effect estimates are compared to the Normal distribution. In
the fourth frame the two different estimates (fixed effects and random effects) are compared.

We interpret the plots in Figure 3 as follows. The first frame shows a qq-plot comparing
Cochran’s Q statistic to quantiles from the appropriate χ2 distribution and there is a sub-
stantial deviation - the observed values are too large. However the two qq-plots that compare
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standardized effect estimates to the Normal distribution show that those from the random
effects model deviate more from Normality. Finally in the fourth frame we demonstrate that
the differences in the estimates from the two models are not really that large.

4.2 Estimation via linear models

We fit the model in Equation (4) where the treatment effect is a fixed effect, the experiment
is considered to be a random effect and we include a treatment by experiment interaction. In
the example below we take two different approaches to estimating this effect. We use both
a fixed effects approach and a random effects approach. We note that the second of these
is more appropriate since the wrong estimate of variance is used for testing the fixed effects
estimate when a random effects model is appropriate.
We first test the hypothesis that no interaction term is needed. As noted above there are
essentially two ways in which the interaction could be important. In one situation the
treatment has an opposite effect in the two experiments, we can also detect this by simply
comparing the estimated effects for each experiment estimated separately. For such probes,
or genes, it would not be appropriate to combine estimates. In the other case, the interaction
suggests that the magnitude of the effect is different in one experiment, versus the other. For
these probes it may simply be the case that the model is incorrect. For example, we might
be looking for a change in mean abundance while the magnitude of the effect is a function
of the abundance, and hence in samples where the abundance of mRNA transcript is larger
a larger effect is observed.
In Figure 4 we present a comparison of the p-values for different models fit to the breast
cancer data sets. The first three frames compare p-values computed under two different
assumptions on the interaction between experiment and ER status. Software in the nlme

package was used to fit both models and the p-values are based on the likelihood ratio. In
one model we presume that the interaction is a fixed effect and in the other we presume
that it is a random effect. Perhaps the most striking feature in these histograms is the very
large number of p-values around 1 for those computed assuming a random effect. This is a
reflection of the fact that the hypothesis test here is being performed under non-standard
conditions. The test is that the variance of the random effect is zero, and hence is on the
boundary of the parameter space. In this case the asymptotics can be delicate (Crainiceanu
and Ruppert, 2004) and further study is needed to fully interpret the output.
For those genes which did not exhibit a significant interaction effect, under the assumption
that the interaction is a fixed effect, the lower right panel of Figure 4 compares the results
from the joint analysis (column labeled C) versus that from individual analyses of the van’t
Veer (column labeled V) and Nevins (column labeled N) data sets. The rows in this panel
correspond to the genes that have a significant treatment effect in at least one of the analyses,
and a red area indicates that the effect is positive, blue that it is negative, and white that it
is not significant. We can see that the overlap between the genes from the combined analysis
is much larger with the van’t Veer data than with the Nevins data.
In Figure 5 we repeat the computations with the lymph node status data. Some features in
this second set of plots are similar to the plots based on ER status. First, the large peak
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Figure 4: Histograms of p-values for the treatment–experiment interaction effect, estimated
under two different models: fixed effects (upper left) and random effects (upper right). The
bottom left panel shows the scatterplot of the two p-values for each gene, obtained by the
two methods. The bottom right panel compares p-values for the combined analysis with
those from the two separate analyses.

16



of p-values near 1 is also observed for the likelihood ratio statistics based on the random
effects model. We also see that the fixed effects model is more likely to suggest a significant
interaction effect, again this seems to reflect the fact that the variance being used to assess
significance is too small. The bottom right panel suggests that there were relatively few
genes for which there was evidence of an effect in both experiments. However, there are
sizeable numbers for which neither experiment suggested an effect, but that the combined
analysis did. Further exploration of these genes and their potential involvement in lymph
node metastasis seems appropriate.
When comparing the bottom right panels in the two figures we note that the concordance
between the analyses in the ER case is larger than that for the LN case. And that for the ER
example relatively few genes were found to be significant in the combined analysis but not
significant in either. For the LN analysis there were sizable numbers of genes that were found
in the combined analysis but not in the separate analyses. Whether or not these observations
are important will rely on a further and more detailed exploration of the underlying biology.

4.3 Benefits of integration

So far we have concentrated on a descriptive approach but there does remain a substantive
question about what additional information is learned by synthesizing the data sets. A
sensible assessment of this question is not simple. We will make some simplifying assumptions
that will allow us to make a more specific comparison which can be assessed.
The question we want to address is whether or not the synthesis of two (or more) experiments
provides better information than any single experiment. Direct assessment of this question
requires data on which the truth is known; and we do not have that. So we will need to
examine indirect methods. To simplify matters we first excluded those genes for which the
interaction effect was deemed to be significant (here we used the fixed effect model since it
was more aggressive). Then, for those that remained we fit the joint model, as well as models
to both experiments individually.
A more substantive comparison would incorporate p-value correction methods (Dudoit et al.,
2003; Reiner et al., 2003) but in the interest of simplicity we do not address that important
question here. We remind the reader that precisely the same number of tests were per-
formed in all cases that we are comparing, so any effects of p-value correction are limited to
corrections for strength of evidence and not for different numbers of tests.
We use the unadjusted p-values and find those genes which have a p-value less than 0.01 in
the combined analysis but for which the p-value exceeded 0.01 in each separate analysis. For
the ER comparison we found 88 genes which had a p-value of less than 0.01 in the combined
analysis and values larger than that in each experiment. In Figure 6 we provide a scatterplot
matrix comparing those estimates for the different analyses. For comparison there were 235
genes that were significant at the 0.01 level in all three analyses.
For LN status we find that there are 30 genes with p-values less than 0.01 in the combined
analysis but with p-values that exceed 0.01 in both experiments. There was 1 gene that
was significant at the 0.01 level in all three analyses. There are many fewer genes that are
significant in all experiments and fewer that are significant in the combined analysis but not
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Figure 5: In analogy to Figure 4, p-values for treatment–experiment interaction effects and
comparison of the genes selected for treatment main effect for the lymph node data sets. In
the lower right panel, C refers to the combined analysis, H to the Holstege data, and N to
the Nevins data.
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Figure 6: Comparison of estimated coefficients for the effect due to ER status for a combined
model and two models fit to individual data sets.
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Figure 7: Comparison of estimated coefficients for the effect due to LN status for a combined
model and two models fit to individual data sets.
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in the individual analyses. We conjecture that this is likely due to the fact that different
tissues are involved in the LN comparison. The scatterplot matrix comparing these estimates
is provided in Figure 7.
Whether, in fact the combined analysis is beneficial of course rests on the identities and roles
of the genes that have been identified in the combined analysis. That of course relies on
further biological research and experimentation.

5 Discussion

We have re-examined the methodology proposed in Choi et al. (2003) and contrasted it with
an analysis based on mixed effects models (Cox and Solomon, 2003; Pinheiro and Bates,
2000). The two approaches are similar and both can be extended to deal with more complex
models and adjustments for other covariates can be included – the computations are of course
not the same.
We note that for any specific mRNA we are proposing that a simple random effects model be
fit and there are many well-known diagnostic plots that can be usefully applied to assess the
appropriateness of the model. Once a set of interesting genes has been identified it will be
prudent to explore the models for these genes in more detail. We also suggest that diagnostic
plots considering results across genes may be quite informative.
Here, as in other modeling situations with genomic data, simply fitting models for every gene
available is likely to lead to substantial inefficiencies due to the need for multiple testing
corrections. Even though we are increasing the sample size, there are still far too many
probes to test without regard to the penalty for multiple comparisons. Examining small sets
of genes that are of known interest will help to ensure that correct inferences are made.
What we have only begun to address is the challenge of comparing thousands of related
model fits. We proposed some simple exploratory tools and suggested a number of avenues
that may bear fruit, however much remains to be done. Our investigations here have revealed
more questions than they have provided answers and our treatment is more in the nature of
an introduction to what promises to be an interesting aspect of statistical research. Meta-
analysis has been widely use in medical applications where typically only summary statistics
are available. The challenges with genomic data are much larger since the available data
are much richer and more complex. Combining different forms of experimental data such as
microarray data, comparative genomic hybridization data, SNP data, etc., will raise many
other problems.
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