CROATICA CHEMICA ACTA CCACAA 69 (3) 845-856 (1996)

ISSN-0011-1643
CCA-2346 Original Scientific Paper

On the Szeged Index of Unbranched Catacondensed
Benzenoid Molecules

Andrey A. Dobrynin® and Ivan Gutman®

AInstitute of Mathematics, Russian Academy of Sciences, Siberian Branch,
Novosibirsk 630090, Russia

bInstitute of Physical Chemistry, Attila Jozsef University, P.O.B. 105,
H-6701 Szeged, Hungary

Received May 15, 1995; revised October 10, 1995; accepted October 20, 1995

The Szeged index (Sz) of unbranched catacondensed benzenoid
(UBCB) hydrocarbons is examined. An efficient method for the cal-
culations of their Sz is put forward. Among the UBCB molecules
with a fixed number of hexagons, the linear polyacene has a maxi-
mal and the helicene a minimal Sz.

INTRODUCTION

In this paper, we are concerned with the Szeged index of unbranched
catacondensed benzenoid (UBCB) hydrocarbons.! The Szeged index is a re-
cently proposed? structural descriptor, based on the distances between the
vertices of the molecular graph.?#

The molecular graphs of UBCB hydrocarbons (which we will call »un-
branched catacondensed benzenoid graphs«, UBCB graphs) are composed of
hexagons. Two hexagons have either one common edge (and are then said
to be adjacent) or have no common vertices at all (in which case they are
not adjacent). No three hexagons share a common vertex. Each hexagon is
adjacent to two other hexagons, with the exception of the »terminal hexa-
gons« to which a single hexagon is adjacent. A UBCB system has exactly two
terminal hexagons. '

The above defined UBCB graphs correspond not only to geometrically pla-
nar, but also to non-planar, helicenic benzenoid hydrocarbons. (We mention in
passing that not only the helicenes,” but a significant number of other known
benzenoid hydrocarbons exist in highly nonplanar, even chiral conformations®).
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The set of all UBCB graphs with A rings is denoted by C,. It is easy to
see that every graph U from C; has p(U) = 4h + 2 vertices and ¢(U) = 5h
+ 1 edges.

In order to introduce the concept of the novel Szeged index, and to see
its conceptual relation to the long-known Wiener index, consider an arbi-
trary connected graph G. If © and v are vertices of G, then the number of
edges in the shortest path connecting them is said to be their distance and
is denoted by d(u,v).

Let e = (,v) be an edge of graph G. Denote by n, = n,(e) and n, = n(e)
the number of elements of the vertex sets B, (e) = {w | d(w,u) < d(w,v)} and
B, (e) = {w | d(w,v) < d(w,u)}, respectively. Recall that n,(e) is the number of
the vertices of G which lie closer to one endpoint of the edge e (namely to
vertex u) than to its other endpoint (namely to vertex v). Analogously, n,(e)
counts the vertices that lie closer to v than to «.

The sum W(G) of distances between all pairs of vertices of graph G is
the Wiener index (Wiener number), one of the oldest and best studied topo-
logical descriptors of molecular structure.?47® A classical result in the the-
ory of the Wiener index*" states that

WG = D, nn, (1)

where the summation goes over all edges e = (i,v) of G. Formula (1) holds
only for trees ( = connected acyclic graphs) and is, in a general case, violated
when G is cyclic. (The cyclic graphs for which Eq. (1) is obeyved have been
recently characterized.'’ These graphs are of little relevance for the chemi-
cal graph theory).

The obvious advantage of formula (1) is that it provides a decomposition
of the Wiener index into bond-contributions. Indeed, the natural interpreta-
tion of the quantity ,n, is that it is the increment associated with the chemi-
cal bond, represented by edge e.

Finding the bond-contributions to the Wiener index of cyclic molecules
is a much more difficult task which was approached only recently.'"'? The
expressions obtained for the respective increments are, however, quite cum-
bersome and not easy to be used in practice.'®

A different and somewhat unorthodox way out of this difficulty was pro-
posed by one of the authors.? Namely, Wiener's formula (1) served as a mo-
tivation for introduction of a new distance-based graph invariant, called
»Szeged index«,'* defined as

Sz(G) = z S (2)
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where G is now any connected graph. Evidently, Sz and W coincide in the
case of trees. It was eventually established®!%15-18 that Sz possesses a num-
ber of interesting properties. For example, the equality Sz(G) = W(G) holds
if and only if every block of G is a complete graph.!’ In cyclic bipartite
graphs, Sz(G) is always greater than W(G).2 In the general case (of cyclic
molecular graphs), the behaviour of Sz and W seem to be quite dissimilar.

However, for certain classes of benzenoid molecules, remarkable analo-
gies between the properties for Sz and W were discovered.'®!” In this paper,
we make one more step in this direction by showing that, in the class of
UBCB hydrocarbons, the Szeged index achieves its maximal and minimal
value for linear polyacenes and helicenes, respectively. These are precisely
the same UBCB species for which the Wiener index is maximal and mini-
mal.??

In order to find the UBCB systems that are extreme with respect to the
Szeged index, some preparations are needed.

SOME MORE DEFINITIONS

Let e = (x,y) be an arbitrary, but fixed, edge of a graph U from the class
C;. We define for every edge e = (x,y) the set Ei(e) = Eile) | U) = {(w,v) |
€ B,(e) and v € B/(e)}. It is clear that if (x,v) € Ey(e), then d(v,y) = d(u,x).
Note that x,y) belongs to E,(e). With every edge e = (x,y) of U in C},, we as-
sociate three subgraphs: R,, R, and R,,, also consisting of hexagons. R, is
spanned by the vertices be]ongmg to those hexagons of U whose some (two)
edges are from E,(e). Consequently, R, belongs to the class C;, , where A,
= |E,(e)| — 1. The subgraph R, is spanned by those vertices of U which he
closer to x than to y. Slmllarly, R, is spanned by the vertices of U whose
distance to y is smaller than the distance to x. Note that the vertex sets of
R,, and R,, as well as of R, and R, have non-empty intersections, i.e., some
vertices of U belong simultaneously to R, and R, ortoR and R,, 'I‘he ver-
tex sets of R, and R, are, of course, d.ISJOIIlt Besides, R, and R, may be dis-
connected. Let A4, and h, be the number of hexagons of R, and R,, respec-
tively. Then, %, + A, + h = h. In Figure 1, examples are given for graphs

Figure 1. Two unbranched catacondensed benzenoid systems used to illustrate the
concept of subgraphs Ry, Ry and Ryy; for details see text.
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from C, (two possible configurations). Here, A and B stand for arbitrary
fragments; in particular, they may be absent. In both cases, the subgraph
R,, consists of the hexagons numbered 1 to k. In case (a), R, = A and R, =
B. In case (b), R, consists of fragments A and B (and is disconnected)
whereas R, is empty (i.e., R, is without vertices).

A subgraph R, is said to be a segment of U if &, > 2. Then, &, is called
the length of the segment. Therefore, a segment of U is isomorphic to the
linear polyacene having at least two hexagons. Every segment shares a
hexagon with its neighbouring segment. The terminal segment has only one
neighbouring segment.

CALCULATION OF THE SZEGED INDEX
FROM VERTEX DISTANCES

The distance of a vertex v in a (connected) graph G, d(v) = d(v|G), is the
sum of distances between vertex v and all other vertices of G. We need the
following simple lemma.

LEMMA 1. Let G be a connected bipartite graph and « and v be its ad-
jacent vertices. Then, d(u|G) — d(v|G) = n, — n,, and n, + n, = p(G). Further,
if G is a UBCB graph, then d(u|G) — d(v|G) = 4(h, — h,).

Proof. Let e = (x,v) € E(G. Then, d(u|G) = I,_g ,, dw,u) + Z,5 (, dw,u)
= Zyep (¢ (dw,0) = 1) + Z,.p ) (dw,v) + 1) = d|G) - n, + n,. Since G has
no cycles of odd length, n, + n, = p(G). If G belongs to C), then d(u|G) —
dw|G) = n, - n, = (p(R,)2 + 4h,) — (p(R, )2 + 4h,) = 4(h, — h,).

It was shown!® that, in a bipartite graph, the Szeged index can be ex-
pressed through distances of the vertices. This allows us to present Sz of a

UBCB graph by a polynomial depending only on the number of hexagons of
some of its subgraphs.

LEMMA 2. Let U be a UBCB graph with p vertices and q edges. Then

Sa(U) = %[p?(wq(m - Y @uuy- d(vmﬂ =

(up)eE(L)
(3)

=@h+12Bh+1)—-4 Y. (h,—h)?.
(u,v)eE(U)

Proof. From Lemma 1, we have n, = (p(U) + d(v|U) — d(u|U))/2 and n, = (p(U)
— d(w|U) + d(u|U))/2. Formula (3) is obtained by combining the above rela-
tions with definition (2) of the Szeged index.
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Eq. (3) implies that, in order to obtain the extreme values of Sz(U) for
UBCB graphs with a given number of hexagons, we need to get the maximal
and the minimal values of the auxiliary function:

Z f(H,U) = Z (h'u - hu_)g .

(up)eE(LD (u,v)eE(L)

In the subsequent section, we describe in detail the possible values of flu,v).

UBCB SYSTEMS EXTREMAL WITH RESPECT
TO THE SZEGED INDEX

The edge set E(U) of a UBCB graphs can be divided into two disjoint
subsets,

EW) = E(U) U E,(U),

where E,(U) = {e = (u,v) : |E (e|U)] = 2} and E,(U) = {e = (x,v) : |[E;(e|U)| >
2}, |[E(U)| = [E(U)| + |[E, (U)|. Note that |E,(e|U)| > 2 if and only if a subgraph
R,, forms a segment. The case |E,(e|U)| = 2 corresponds to R,, with only one
hexagonal ring.

We first calculate flu,v) for the edges belonging to E,(U). Suppose that
the hexagons of U are numbered consecutively from 1 to A.

PROPOSITION 1. Let U € C). If e = (w,v) € E,(U) and e belongs to the
i-th hexagon of U, then

fluv)=(h-i)—-i-1P=(h-2+1)?2.

Proof. Let e = (u,v) € E,(U). It is clear that E,(elU) is an edge cut of U, i.e.
after deleting all edges of E,(e|U) from U, we obtain two disconnected com-
ponents. One of these components has i — 1 hexagons and the other has &
— 1 hexagons.

Below we establish the extreme values of flu,v) when (u,v) is any edge
of a UBCB graph. In order to do this, we simply substitute i = 1, 2, ..., h
into the formula of Propostion 1.

COROLLARY 1. If e = (u,v) € E/(U), then

(a) max flu,v) = (h — 1)?, if and only if e belongs to a terminal hexagons
of U;

(b) max flu,v) = (h — 3)%, otherwise.

(¢) min flu,v) = 0, if and only if i; is odd and e belongs only to the cen-
tral hexagon of U;

(d) min flu,v) = 1, otherwise.
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Every UBCB graph has exactly two terminal hexagons, i.e., it has 8
edges pertaining to case (a). Every such graph with odd A was exactly one
central ring, i.e., it has 2 or 4 edges for which flu,v) has the value given un-
der (c).

Consider now the edges of E,,(U). Let e € E, (U). Recall that for every
edge e' € E,(e), E,(e) = E,(e'). Then, we can associate E,(e) with the corre-
sponding segment S . Denote this set by E,,(S). Hence, the set E, (U) is pre-
sented as the union of mutually disjoint subsets.

EJ’?E(U) =y EFTI(S)?

where the union goes over all segments of the UBCB graph U.
PROPOSITION 2. If e = (u,v) € E{(U), then

J (hy—hp)®,  if S belongs to U, (see Figure 1);

flu) = | (hy+hg)?, if S belongs to U, (see Figure 1).

This immediately implies
COROLLARY 2. Let e = (u,v) € E,,(S). Then

(a) max flu,v) = h — 2)%. This value is achieved on every segment with
k = 2 hexagons, provided U is of type Ub (see Figure 1).

(b) min flu,v) = 0. This value is only achieved on a segment with & — A

We are now ready to find the UBCB graph with the maximal (minimal)
value of Sz. Let e = (x,v) € E,(U), e’ = (u',v’) € E(U), and let e’ not belong
to a terminal hexagon of U. By Propositions 1 and 2, we have

max flu',v’) = (h — 3)% < max flu,v) = (h — 2)%.
If Ay is odd, we require that e’ does not belong to the central ring. Then,
min flx,v) — 0 < min Au'v) =1
Hence, we are interested in a UBCB graph for which
IE,(U)| - |E,(U)] > max (min) (4)

Every nonterminal segment with & hexagons has 4k — 4 edges from E, and
k + 1 edges from E,,. Every terminal segment with & hexagons has 4k — 2
edges from E, and %2 + 1 edges from E,,. We thus arrive at:
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PROPOSITION 3. Among UBCB graphs with a fixed number of hexa-
gons the helicene graph has the minimal value of (4). The linear polyacene
graph has the maximal value of (4).

THEOREM. Among the UBCB hydrocarbons with a fixed number of
hexagons, helicene has the minimal value of the Szeged index and the linear
polyacene has the maximal value of the Szeged index. These benzenoid sys-
tems are unique.

EXTREMAL VALUES FOR THE SZEGED INDEX

From the results obtained in the preceding section, it is easy to calculate
Sz for the extremal UBCB graphs.

By direct counting, we establish that the linear polyacene Lpa;, with A
hexagons has & + 1 edges from E, (Lpa;, and 44 edges from E,(Lpa,). Therefore,

h

Sz(Lpa,) = (2h + 125k + 1) =4 ). (h—2i + 1)2.
i=1

Simplifying this expression, we obtain the maximal value of Sz as a cubie

polynomial in /:

Sz(Lpa,) = (44h® + T2h% + 43h +3)/3.

The helicene Hel;, with h hexagons has 2(h — 2) edges from E, for hexagons
i=2,3,..h—-1and 8 edges from E, for the terminal hexagons. Hence, all
other 34 — 3 edges belong to E,,. Then,

Sz(Hely) = (2h + 1)X(5h + 1) — 4(3h — 3)(h — 2)* -
h-1
—4.2) (h-2+1)2—4-8¢h-1)72.
=2
Then, the minimal value of Sz is

Sz(Hel,) = (16h® + 204h> — 157h + 99)/3.

CALCULATING THE SZEGED INDEX FOR
AN ARBITRARY UBCB GRAPH

The previous analysis provides us with a simple way to calculate the
Szeged index of an arbitrary graph from C;. We derive a formula depending
on the number and type of segments.
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Let U € Cj, have n segments. Define the vector of segments' lengths L(U)
= (ly, I, ..., [,), where [; > 2 is the number of hexagons in the i-th segment
S;, i =1, 2, ... n. The second vector M(U) = (m, ms, ..., m,) describes the
mutual relation of the segments. A label m; = (S,), either 0 or 1, is assigned
to every segment S;. We first choose m, = my = 0. Consider the segment S;
and draw a line through the centres of the hexagons of S; ;. Then, m; = m;
if S; and S, , lie on the same side of the line, and m; # m,;_, otherwise. For
example, the segments marked A and B in Figure 1 have distinct labels in
U, and the same lables in U,,.

In order to make our notation compact, we further assume that m, = m,
and My = My -

Suppose now that L and M are arbitrary integer and binary n-dimen-
sional vectors, respectively, and [; > 2 for all i. It is clear that they uniquely
determine a graph from C,, for some i = 2. Then, of course, L and M com-
pletely determine also the Szeged index of the corresponding graph.

PROPOSITION 4. The Szeged index of a UBCB system U is computed
from the respective vectors L and M in the following manner:

n
Sz(U)=(2h + D2Bh + 1) -4 . (; + 1)A, + (-1)% B))? — (5)
=1
i -1
4 |42 (h-2r+1-24)%+2(h - 20, + 1 - 24, | - 24(h - 1)?

i=1 r=2

n i-1 n
whereh:Zli—n-i—l, hi=mg +my andAi=ZZj—i+1, B, =ZIJ-—E+1.

i=1 J=1 J=i+l

n
Proof. We first observe that U has Z l;—n + 1 hexagons. Denote by A; and
i=1
B; the number of hexagons in the graphs that are obtained after deleting
the edges of segment S; (the edges belong only to S,).

Based on our previous results we can write

Y fuw=Y. X fuw+ 2 fww).

(e, v)eE(L) i=1 (up)eE (S) (wp)eE U)

Let (u,v) € E, (S;). Applying Proposition 2, we have

Y Auw) =+ 1)A; + (-1t ™ B2,
(e eE(H
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Let (x,v) € E(U). Segment S; has the hexagons labeled by A; + 1, A; + 2,
..y A; + [;. Since |E(S;,,) n E,(S;)| = 2 (provided n > 1), we use for the cal-
culation the sets E',(S)) = E,(S)) and E'(S;,,) = E(S;,,)/ E,(S)) for 1 <i<n
— 1. Then,

Z f(H,U) = Z Z f(u,u) =

(u,vjeE(U) =1 (u,p)eE/(S)

o -1
=D 4D (h-2A; +r)+ 1)+ 2(h — 24, + L) + 1)2 | + 6(h — 1)2.

i=1 r=2

The latter term corresponds to the edges of E,(U) from the terminal hexagons.

As an illustration, we apply formula (5) to calculate the Szeged index of
the UBCB system U with two segments. Let the lengths of the segments be
h, and h, (see Figure 2).

hy
by

Figure 2. An unbranched catacondensed benzenoid system with two segments.

In this case, L(U) = (hy,hy) amd M(U) = (0,0). Hence, h = hy + hs — 1, A
=(A,Ay) = (0, hy — 1) and B = (B,By) = (hy — 1, 0). Substituting these values
back into (5), we have

Sz(U) = (2h + 125k + 1) — 4((hy + 1)(hy — 1)% + (kg + 1)(h; — 1)) —
k-1
— 44 Y (h-2r+1)2 + 2(h — 2hy + 1)?) —
=2
hl—].
—4(4 D (h—2r—-2h,+3)2 + 2(h — 2hy — 2Ry + 3)%) — 24(h — 12

r=2

from which it straightforwardly follows:

Sz(U) = (44(h3 + h3) + 120hhy)(hy + hy) — 48(h% + h3) -
— 120hhy + 43(h, + hy) — 36)/3 .



854 A. A DOBRYNIN AND I GUTMAN

UBCB GRAPHS WITH COINCIDING SZEGED
AND WIENER INDICES

In this section, we answer in the affirmative the following question: Are
there pairs of UBCB graphs such that the Szeged index of one coincides with
the Wiener index of the other?

It was shown? that for a (cyclic) graph G, Sz(G) > W(G). (For UBCB
graphs we could have established this strict inequality by direct comparison of
the extremal values of Sz and W). Because of this, if Sz(U,) = W(U,) then U,
and U, cannot be isomers, i.e. they must have different numbers of hexagons.

In class Cy, the graphs Lpa;, and Hel, have also extremal Wiener indices,
the W values of both Lpa and Hel are cubic polynomials in 4.

PROPOSITION 5.' The extremal values of the Wiener index for the
graphs from C, are equal to W,,,(h) = W(Hel) = (8h° + T2h* — 26h + 27)/3
and W, (k) = W(Lpa,) = (16h* + 36h> + 26k + 3)/3.

The following useful result determines the possible values of the Szeged
indices of UBCB graphs.'® The analogous property of W has been known for
some time.?

PROPOSITION 6.1%19 Let U,, U, € C,. Then, Sz(U,) = Sz(U,) (mod 8)
and W(U,) = W(U,) (mod 8).

In view of Proposition 6, we define the following two sets: g.(h) = {Sz;,(h)
+8k |k =0,1...., (Sz,..(h) — Sz, (R)V/8} and Eylh) = {W_,.(h) + 8k |k =0,1,...,
(Woaxh) — Wiin(h)/8). Tt is clear that the necessary conditions for coinciding
indices are Ey{h,) N Eg,(hy) # 0 and W ;,(h,) = Sz,,;.(hs) (mod 8).

We have to distinguish between three cases:

(a) Wmin(h'l} = Szmin(h2) = Wmax(h'lJ = Szmax(hg)
{b} Szmin(;l',z) = Wm.m(hl) < Szmax{h2) = Wmax(hl)
(©) Szoinlhs) < Winnlhy) < Woa(hy) < Szpanlhy).

Table I shows the first few admissible values of parameters 2, and A,
for each of the cases (a), (b) and (c).

TABLE 1

Number of hexagons of the UBCB systems with coinciding Szeged and Wiener in-
dicecs; for details see text.

@ MW 1319 2 21 26 27 28 29 33 34
hoSz) 10 14 16 18 20 22 24 26 26 28

(b)

(W) 12 18 23 24 29 30 31 35 36 37
hoSz) 8 12 14 16 18 20 22 22 24 %

@ MmO 25 32 38 44 45 50 51 56 57 58
¢ pySz) 18 24 28 32 34 36 38 40 42 44
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TABLE II

UBCB systems with given values of Sz and W.

value Ng. Nw value Ng. Nw

Sz=W h=8 h=12 | Sz=W h=8 h=12
7969 2 1 8537 2 1
8121 2 1 8553 2 2
8225 2 1 8585 1 4
8377 1 3 8633 1 5
7401 3 1 8697 2 4
8449 2 2 8721 1 5
8457 4 2 8897 1 14
8481 6 1 9161 1 32
8505 2 3 — - -

Table II contains a more detailed information on graphs with given values
of the indices and the minimal number of hexagons. Here, Ng, and Ny, de-
note the number of elements of degeneracy classes for Sz and W, respectively.

Figure 3. Two unbranched catacondensed benzenoid systems with 8 haxagons, ha-
ving equal Szeged indices (Sz = 7969); this is the same value as the Wiener index
of [12]helicene.

Two UBCB systems with & = 8 and Sz = 7969 are depicted in Figure 3.
This value of the Szeged index is equal to othe Wiener index of the helicene
with & = 12, i.e., W)Hel;5) = W,;,(12) = T969.
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SAZETAK

O Szegedskom indeksu nerazgrananih katakondenziranih
benzenoidnih molekula

Andrey A. Dobrynin i Ivan Gutman

Ispitivan je Szegedski indeks (Sz) nerazgrananih katakondenziranih benzenoid-
(UBCB) ugljikovodika. PredloZena je efikasna metoda za radunanje Sz za te su-

stave. Medu UBCB molekulama s fiksiranim brojem Sesterokuta, linearni poliacen
ima najveéu, a helicen najmanju vrijednost Sz.



