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Abstract: It is shown that the tail behavior of the function of nonnegative random variables

can be characterized using deterministic functions satisfying certain properties. Also, the

upper and lower bounds for the tail of product of random variables are given. Applications of

these results are given to some of the well-known models in economics and risk theory.
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1. Introduction

The tail behavior of functions of random variables (rvs) is an important area of
research. For theoretical development on this topic, see [11, 8, 2] and references
therein. In applied probability, some of the branches that rely on the analysis
of the stochastic model, described by given function(s) of rvs, it is important
to estimate the behavior for the given function(s) of rvs. For example, in
reliability theory, the tail behavior of failure distribution plays an important
role (see [1, 7]). In risk modelling, the behavior of the distribution of ruin, for
risk model is important (see [9]). In this paper, we focus on some aspects of
the tail behavior and generalize the existing results for various functions of rvs,
such as sum, maximum and product under dependent and independent setup.
Also, the result for moment and exponential indices follows as a special case of
our results, provided they exist.
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We next define the necessary terminology required for the discussion. Let
X be the rv with cumulative distribution function (cdf) FX(x). Then F̄X(x) =
1−FX (x) known as the tail function of X. The moment and exponential index,
(see [4] and [5]), for a rv X are defined as

I(X) = lim inf
x→∞

RX(x)

ln(x)
= sup

{
s ≥ 0 : E

[(
X+
)s]

<∞
}
,

E(X) = lim inf
x→∞

RX(x)

x
= sup

{
s ≥ 0 : E

(
esX
)
<∞

}
,

respectively, where x+ = max(0, x) and RX(x) = − ln
(
F̄X(x)

)
, the hazard

function of X. A function h : [0,∞) → [0,∞) such that h is increasing and
h(x) → ∞ as x→ ∞ known as a scale function. If h is continuous then we can
generalize the definitions of moment and exponential index (see Theorem 2.1
of [6]) as follows.

Ih(X) = lim inf
x→∞

RX(x)

h(x)
= sup

{

s ≥ 0 : E
(

esh(X)
)

<∞
}

, (1)

is called the h-order of X and h is said to be natural scale function if Ih(X) = 1.
Using this definition, the tail of the rv X can be compared as, for ǫ > 0,

F̄X(x) ≤ e−(1−ǫ)h(x), (2)

and for the rvs X and Y , if lim infx→∞RX(x)/RY (x) = c and c > 0. Then the
tail comparison (for details, see [6]) is given by, for any small ǫ > 0, there exists
xN such that for all x > xN ,

F̄X(x) ≤
[
F̄Y (x)

]c−ǫ
. (3)

Next, we introduce a result of the existence of h satisfying the required
properties for discussing the tail behavior of a nonnegative rv.

Lemma 1.1. Let X be nonnegative rv. Then there exists a monotone

concave function h : [0,∞) → [0,∞) satisfying h(x) = o(x) as x→ ∞ and

E
(
eh(X)

)
<∞.

Proof. It is clear that X is either heavy-tailed or light-tailed rv. For heavy-
tailed rv X, Theorem 2.9 of [11] gives the required result. For light-tailed rvs,
we can take h(x) = xα for any 0 < α < 1 is a monotone concave function
satisfying h(x) = o(x) and Eeh(X) <∞.

In this paper, we consider nonnegative continuous rvs with right unbounded
support, that is, for a rv X, P(X > c) > 0 for all c > 0. The structure of the
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paper is as follows. In Section 2, we first prove the theorem to characterize
the tail behavior of functions of (dependent or independent) rvs, such as sum,
maximum and product. Next, we derive a method to find the natural scale
function for differentiable functions of rvs and use this method to prove the
theorem which gives the bounds for the tail of rv XY . Finally, in Section 3, we
apply the results of Section 2 to Cobb-Douglas production model and discrete
time risk model.

2. The Moment Index for Sum, Maximum and
Product of Random Variables

In this section, we obtain some of the results about the tail behavior of functions
of rvs based on the h-order defined in (1). We exemplify the approach of
Lemma 1.1 to various functions of rvs such as sum, maximum and product in
the following results.

Theorem 2.1. Let X1, . . . ,Xn be nonnegative rvs. Then there exists a

monotone concave function h and 0 < c1 ≤ c2 ≤ 1 such that

Ih

(
n∑

i=1

Xi

)

= c1 min
1≤i≤n

{Ih(Xi)} ≤ Ih

(

max
1≤i≤n

{Xi}

)

= c2 min
1≤i≤n

{Ih(Xi)}.

Theorem 2.2. Let X1, . . . ,Xn be nonnegative rvs. Then there exist

functions h and ĥ such that

(a) min
1≤i≤n

{
Iĥ(Xi)

}
≤ Ih

(
n∏

i=1

Xi

)

≤ min
1≤i≤n

{Ih(Xi)} .

(b) Ih

(
n∏

i=1

Xi

)

= m min
1≤i≤n

{Ih(Xi)}, for some m ∈ (0, 1].

(c) Ih

(
n∏

i=1

Xi

)

= r min
1≤i≤n

{
Iĥ(Xi)

}
for some r ∈ [1,∞).

Corollaries 2.1. Let X1, . . . ,Xn be independent nonnegative rvs. Then

there exists a monotone concave function h such that

(a) Ih

(
n∑

i=1

Xi

)

= min
1≤i≤n

{Ih(Xi)}.
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(b) Ih

(

max
1≤i≤n

Xi

)

= min
1≤i≤n

{Ih(Xi)}.

Remarks 2.1. 1. Observe that, if h satisfies h (
∑n

i=1 xi) ≤
∑n

i=1 h(xi),
the condition of concavity can also be relaxed (see Theorem 4 of [6]).

2. If h satisfies h (
∏n

i=1 xi) ≤
∑n

i=1 h(xi), then we have Ih (
∏n

i=1Xi) =
min1≤i≤n {Ih(Xi)} .

3. Observe that, for X = 0 and h(0) = 0, applying (1), we get Ih(0) =
sup{s ≥ 0 : E

(
esh(0)

)
< ∞} = sup{s ≥ 0 : E(1) < ∞} = ∞. Also,

if for s > 0, either E
(
esh(X1)

)
= ∞

(

i.e., Ih(X1) = 0
)

or E
(
esh(X2)

)
=

∞
(

i.e., Ih(X2) = 0
)

. Then Ih(X1 +X2) = 0.

4. Observe also that, if h(x) = x or h(x) = ln(x) (although ln(x) is not
a scale function, as h : [0,∞) → (−∞,∞)), our results for the case of
exponential and moment indices follows immediately provided they exist.
However, our results give flexibility for the choice of hi’s.

2.1. Natural Scale Function

Recall from (1) that, a scale function h is called natural scale function for a rv
X if Ih(X) = 1. Next, we describe a method to find the natural scale function
for functions of rvs via transformation technique.

Method. Let X1, . . . ,Xn be continuous rvs with support S. In particular,
assume Y1 = g(X1, . . . ,Xn) is a differentiable function of n rvs. Then, the
problem is to find the natural scale function for Y1. Consider an integral

∫

· · ·

∫

R
fX1,...,Xn

(x1, . . . , xn)dx1 · · · dxn,

where R ⊂ R
n. Now, take the transformation of the form y1 = g(x1, . . . , xn)

and yi = xi for i = 2, 3, . . . , n with support T , together with inverse functions
x1 = w(y1, . . . , yn) and xi = yi for i = 2, 3, . . . , n. Then, using transformation
technique (see [10], pp-124), it is well-known that the joint pdf of rvs Y1 =
g(X1, . . . ,Xn), Y2 = X2, . . . , Yn = Xn is given by

fY1,...,Yn
(y1, . . . , yn) = |J |fX1,...,Xn

(w(y1, . . . , yn), y2, . . . , yn),
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where |J | is the determinant of the Jacobian matrix J . Also, the marginal
distribution of Y1 is

fY1
(y1) =

∫

· · ·

∫

︸ ︷︷ ︸

(n−1) with supp∈T

|J |fX1,...,Xn
(w(y1, . . . , yn), y2, . . . , yn) dy2 . . . dyn

and the tail function is given by F̄Y1
(y1) =

∫∞

y1
fY1

(t)dt. Hence, the natural

scale function is h(y1) = − ln
(
F̄Y1

(y1)
)
.

We can compare the tail of the random variable Y1 = g(X1, . . . ,Xn) with
the help of natural scale function h. That is, F̄Y1

(y1) = F̄ (g(x1, . . . , xn)) ≤
e−(1−ǫ)h(y1). In particular, we have shown that for any differentiable function of
g(X1, . . . ,Xn), we can find a natural scale function h, such that, for any ǫ > 0,
F̄Y1

(y1) (the tail function of g) is dominated by e−(1−ǫ)h(y1).
Next, we present the upper and lower bounds for the product of two iid rvs.

Theorem 2.3. Let X and Y be nonnegative iid rvs. Then, for small

ǫ > 0, we have the following inequalities, for x > 1,

(a) If h(·) = 2RX(·), then F̄XY (x), F̄X(x) ≤ e−( 1
2
−ǫ)h(x).

(b) If h(·) = RXY (·), then F̄XY (x), F̄X (x) ≤ e−(1−ǫ)h(x).

(c)
[
F̄X(x)

]1/(1−ǫ)
≤ F̄XY (x) ≤

[
F̄X(x)

]1−ǫ
.

Remark 2.1. In the proof of Theorem 2.3, the natural scale function h
defined in Case 1 and Case 2 are different. In Case 1, it is twice the natural
scale function of X and in Case 2, it is the natural scale function of XY .

3. Applications

In this section, we give applications of our results to some well-known models
in economics and risk theory.

3.1. Cobb-Douglas Production Model

In economics, the Cobb-Douglas production model describes the relationship
between the output and input variables. This has been widely used since its
introduction by Knut Wicksell (1851-1926).

The first significant application of this model is given in [3], where they
studied the growth of American economy during the period 1899-1922 using
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this model, and they were able to present a simplified view of the economy in
which the production output is determined by the amount of labor involved
and capital invested.

It is also of importance in economics, to study the long-term behavior of
production function in order to formulate certain policies. We next describe
the mathematical formulation of the Cobb-Douglas model.

Let T (X,Y ) = bXαY β, where T =total production (the monetary value of
all goods produced in a year):
X =labor involved (the total number of person-hours worked in a year),
Y =capital invested (the monetary worth of all machinery, equipment, and
buildings),
b =total factor productivity,
α > 0, β > 0 are the output elasticities of labor and capital, respectively. These
values are constants determined by available technology.

We next give the implications of our results to Cobb-Douglas model. Now,
consider the following conditions on α and β, for a detailed analysis.

Case (i). α + β < 1, there are decreasing return to scale (i.e., output
decreases proportional to change in inputs).

Case (ii). α + β = 1, there are constant return to scale (i.e., output is
proportional to change in inputs).

Case (iii). α + β > 1, there are increasing return to scale (i.e., output
increases proportional to change in inputs).

Remark 3.1. Suppose, for any value of b, α and β positive, T (X,Y ) =
bXαY β, where X and Y are any nonnegative rvs. Then using the method given
in 2.1, we can find the dominated function for T .

We demonstrate this phenomenon through following examples, for various
conditions of α and β. First, consider for Pareto distribution with parameters
a and k, and the condition α 6= β in Cobb-Douglas production model.

Example 3.1. Let X and Y are iid Pareto distributed rvs with common
pdf

fX(x) =
aka

xa+1

where k ≤ x < ∞ and a, k > 0. Now using technique given in 2.1 with y1 =

g(x, y) = xαyβ and w(u, v) =
(

u1/α
/

vα/β
)

. Therefore, |J | =
(

u(1/α)−1
/

αvβ/α
)

.

Hence, it can be easily seen that f(u, v) =
(

a2k2a
/

αu(a/α)+1v1+a−(βa/α)
)

.
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Since k ≤ x, y < ∞ implies that kα+β ≤ kαvβ ≤ u < ∞. Therefore, the

marginal distribution of g(X,Y ) is fg(X,Y )(u) =
aka

(β−α)

{(

1
/

k−aα/βu(a/β)+1
)

−
(

1
/

u(a/α)+1k−aβ/α
)}

, where kα+β ≤ u < ∞. The tail function of g(X,Y )

is F̄g(X,Y )(u) =
ka

(β−α)

{(

β
/

k−aα/βua/β
)

−
(

α
/

ua/αk−aβ/α
)}

.

Let
c =

(

ka
/

(β − α)
)

,

then
F̄g(X,Y )(u) = c

{(

β
/

k−aα/βua/β
)

−
(

α
/

ua/αk−aβ/α
)}

and the natural scale function of g(X,Y ) is h(u) = − ln
[

c
{(

β
/

k−aα/βua/β
)

−
(

α
/

ua/αk−aβ/α
)}]

. From (2), for ǫ > 0

F̄g(X,Y )(u) ≤ e−(1−ǫ)h(u) = c1−ǫ

(
β

k−aα/βua/β
−

α

ua/αk−aβ/α

)1−ǫ

.

Hence the tail of the production function dominated by the above function
for α, β > 0 and α 6= β. That is, all three cases (Increasing return to scale,
constant return to scale, decreasing return to scale) whenever α 6= β tail of the
production function dominated by the above function.

Now, consider the case when α = β = 1 and Theorem 2.3 for the Pareto
distribution.

Example 3.2. Suppose X and Y are iid Pareto distributed rv with pdf
given by

f(x) =
aka

xa+1

where a > 0 and k ≤ x < ∞. Now using technique given in 2.1 with y1 =
g(x, y) = xy and w(u, v) = u/v. Therefore, |J | = 1/v.

Hence, it is easy to see that f(u, v) =
(
a2k2a/ua+1v

)
. Since k ≤ x < ∞

implies that k2 ≤ kv ≤ u < ∞. Also, the marginal pdf of XY is fXY (u) =
(

a2k2a ln(u/k2)
/

ua+1
)

, where k2 ≤ u <∞. The tail function XY is F̄XY (u) =
(

k2a
(
1 + a ln(u/k2)

)/

ua
)

. Hence, the natural scale function ofXY is hXY (u) =

a ln(u)− ln
(
1 + a ln

(
u/k2

))
− 2a ln(k).

It is clear that

IhXY
(X) = lim inf

x→∞

RX(x)

hXY (x)
= lim inf

x→∞

a ln(x)− a ln(k)

a ln(x)− ln(1 + a ln( x
k2 ))− 2a ln(k)

= 1.
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Similarly, IhXY
(Y ) = 1, hence for c = 1, it is satisfied Theorem 2.1.

Compare with production function of Cobb-Douglas model, we have α =
β = b = 1. That is, T (X,Y ) = XY , i.e., for x > 1, we have the case in which
increasing return to scale, From Theorem 2.3, the tail function of XY and X
are dominated by the function,

exp {−(1− ǫ)hXY (x)} =

(
k2a(1 + a ln(x/k2))

xa

)1−ǫ

and
[
F̄X(x)

]1/(1−ǫ)
≤ F̄XY (x) ≤

[
F̄X(x)

]1−ǫ
.

3.2. Discrete Time Risk Model

Let Xi be the net payout of the insurer at year i, and Yi be the discount factor
(from year i to i−1) related to the return on the investment, i = 1, 2, . . . . Then
the discounted value of the total risk amount accumulated till the end of year
n can be modeled by a discrete time stochastic process

Wn =

n∑

i=1

Xi

i∏

j=1

Yj.

The basic assumptions for this model (see [9]) are as follows.

A1. Let An be the net income within year n. Assume {An : n = 1, 2, . . . }
constitute a sequence of iid rvs with support (−∞,∞).

A2. Let rn be the rate of interest on the reserve invested is risky assets. As-
sume {rn : n = 1, 2, . . . } is a sequence of iid rvs with support (−1,∞).

A3. Also, assume {An : n = 1, 2, . . . } and {rn : n = 1, 2, . . . } are mutually
independent.

Define Bn = 1 + rn, also known as the inflation coefficient from year n − 1
to year n and let Yn = B−1

n be the discount factor from year n to year n − 1,
n = 1, 2, . . . . The rvs X = −A and Y as the insurance risk and financial risk,
respectively. Clearly, P(0 < Y <∞) = 1.

Let the initial capital of the insurer be x ≥ 0. The surplus of the insurer
accumulated till the end of year n can be characterized by Sn which satisfies
the following recurrence equation

S0 = x, Sn = BnSn−1 +An,
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where Bn = 1 + rn , n = 1, 2, . . . . The recurrence relation can be written as

S0 = x, Sn = x
n∏

j=1

Bj +
n∑

i=1

Ai

n∏

j=i+1

Bj, n = 1, 2, . . . , (4)

where
∏n

j=n+1 = 1.
Next, the time of ruin for the risk model (4) is defined as τ(x) = inf{n =

1, 2, . . . : Sn < 0|S0 = x}. Hence, the finite time ruin probability, ψ(x, n), and
of ultimate ruin probability, ψ(x), can be defined as ψ(x, n) = P(τ(x) ≤ n),
respectively, ψ(x) = ψ(x,∞) = P(τ(x) < ∞). Clearly, the probability that
the ruin occurs exactly at year n, can be defined as P(τ(x) = n) = ψ(x, n) −
ψ(x, n − 1), n = 1, 2, . . . .

A more significant calculation might be P(τy(x) ≤ n) or P(τy(x) < ∞) for
x > 0 and n = 1, 2, . . . , where τy(x) is a stopping time, defined by τy(x) =
inf{n = 1, 2, . . . : Sn ≤ y|S0 = x} for any regulatory or trigger boundary y ≥ 0.
This stopping time τy(x) may be interpreted as the first time at which there is
a need to raise the capital in order to maintain solvency. We can rewrite the
discounted value of the surplus Sn in as

S̃0 = x, S̃n = Sn

n∏

j=1

Yj = x−
n∑

i=1

Xi

i∏

j=1

Yj = x−Wn.

Hence, for each n = 0, 1, 2, . . . , ψ(x, n) = P(Un > x), where

Un = max{0, max
1≤k≤n

Wk} with U0 = 0.

Now, define V0 = 0, Vn = Ynmax{0,Xn+Vn−1}, n = 1, 2, . . . . Then Theorem

2.1 of [9], it is clear that Un
L
= Vn.

Hence, the following result shows that the relation ψ(x, n) = P(Vn > x)
holds for each n = 1, 2, . . . under the assumptions A1, A2 and A3.

We next apply our results to discuss the tail behavior of Un. Using Theorem
2.1, Theorem 2.2 and Corollary 2.1, there exists a monotone concave function
h such that

Ih(Un) = Ih

(

max{0, max
1≤k≤n

Wk}

)

= Ih

(

max
1≤k≤n

Wk

)

= cn min
1≤k≤n

{Ih(Wk)} (5)

for some constant cn ∈ [ 1n , 1].

Suppose constant corresponding to
(
∑i

k=1Xk

∏k
j=1 Yj

)

+
(

Xi+1
∏i+1

j=1 Yj

)

is ci, where ci ∈ [12 , 1] for i = 1, 2, . . . , n − 1. Now use Theorem 2.1 in
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W2,W2, . . . ,Wn, we get

Ih(Wj) = min
0≤k≤j−1

{
j−1
∏

i=k

ciIh

(

Xk+1

k+1∏

l=1

Yl

)}

(6)

with assumption that c0 = 1, combining (5) and (6), we get

Ih(Un) = cn min
0≤k≤n−1

{
n−1∏

i=k

ciIh

(

Xk+1

k+1∏

l=1

Yl

)}

, (7)

where 0 < ci ≤ 1, for i = 1, 2, . . . , n− 1. Now, suppose constant corresponding
to Xi(

∏i
j=1 Yj) is ki, i = 1, 2, . . . , n. Then, we can write

Ih



Xj

i∏

j=1

Yj



 = min

{

kjIh(Xj), kjIh

(
j
∏

i=1

Yj

)}

(8)

Combining (7) and (8), we get

Ih(Un) = cn min
0≤m≤n−1

km+1

n−1∏

i=m

ci

{

Ih(Xm+1), Ih

(
m+1∏

l=1

Yl

)}

. (9)

Now, again take constants corresponding to (
∏i

j=1 Yj)Yi+1 is di, i = 1, 2, . . . , n−
1, where di ∈ (0, 1] are some constants.

Ih

(
n∏

i=1

Yi

)

= min
0≤m≤n−1

{
n−1∏

i=m

diIh(Ym+1)

}

, (10)

with assumption d0 = 1. Combining (9) and (10)

Ih(Un) = cn min

{

min
0≤m≤n−1

{

km+1

n−1∏

i=m

ciIh(Xm+1)

}

,

min
0≤l≤n−1

{

min
l≤m≤n−1

{

km+1

n−1∏

i=m

ci

m∏

j=l

djIh(Yl+1)

}}}

. (11)

The expression given in (11) is a general representation for h-order of Un. Fur-
ther to simplify representation for (11), we consider the following cases.
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Case 1. If we can arrange ci and di such that d1 ≤ ci1 for i1 ∈ {1, 2, . . . , n−
1},d2 ≤ ci2 for i2 6= i1, . . . , dn−1 ≤ cin−1

for in−1 6= i1 6= i2 6= · · · 6= in−2 and
kn = min1≤p≤n{kp}. Then

Ih(Un) = cn min
0≤m≤n−1

{

km+1

n−1∏

i=m

ciIh(Xm+1), kncn−1

n−1∏

i=m

diIh(Ym+1)

}

.

Take

C = diag

{

k1

n−1∏

i=0

ci, k2

n−1∏

i=1

ci, k3

n−1∏

i=2

ci, . . . , kncn−1

}

.

D = diag

{

kncn−1

n−1∏

i=0

di, kncn−1

n−1∏

i=1

di, kncn−1

n−1∏

i=2

di, . . . , kncn−1dn−1

}

.

X = (X1,X2, . . . ,Xn) and Y = (Y1, Y2, . . . , Yn) .

Then

Ih(Un) = cnmin {Ih(X)C, Ih(Y)D} .

Case 2. If we can arrange ci and di such that c1 ≤ di1 for i1 ∈ {1, 2, . . . , n−
1}, c2 ≤ di2 for i2 6= i1, . . . , cn−1 ≤ din−1

for in−1 6= i1 6= i2 6= · · · 6= in−2. Then

Ih(Un) =

cn min
0≤m≤n−1

{

km+1

n−1∏

i=m

ciIh(Xm+1), k2d1

n−1∏

i=1

ciIh(Y1), km+1dm

n−1∏

i=m

ciIh(Ym+1)

}

.

Take

C = diag

{

k1

n−1∏

i=1

ci, k2

n−1∏

i=1

ci, k3

n−1∏

i=2

ci, . . . , kncn−1

}

.

D = diag

{

k2d1

n−1∏

i=1

ci, k2d1

n−1∏

i=1

ci, k3d2

n−1∏

i=2

ci, . . . , kncn−1dn−1

}

.

Then

Ih(Un) = cnmin {Ih(X)C, Ih(Y)D} .
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Remark 3.2. If X1,X2, . . . ,Xn are iid rvs and Y1, Y2, . . . , Yn are also iid
rvs. Then for Case 1, we have

Ih(Un) = cnmin

{

kncn−1

n−1∏

i=1

diIh(Y1),min {k1, k2}

n−1∏

i=1

ciIh(X1)

}

,

and for Case 2,

Ih(Un) = cn min

{

k2d1

n−1∏

i=1

ciIh(Y1),min {k1, k2}

n−1∏

i=1

ciIh(X1)

}

which are very easy to calculate.

Remark 3.3. Observe that, from Theorem 2.1, Theorem 2.2 and Corollary
2.1, if the natural scale function of Xi and Yi are hXi

and hYi
respectively, then

the scale function for Un is given by

h(x) =

n∑

i=1

(

hXi
(x) + (n− i+ 1)hYi

(x)
)

.

Next we consider the tail behavior of Vn, defined as

Vn = Ynmax {0,Xn + Vn−1} .

Now let the constants between (Yi)(max{0,Xi + Vi−1}) and (Xj) + (Vj−1) are
ci and di respectively, where ci ∈ (0, 1] and dj ∈ [12 , 1] for i = 1, 2, . . . , n and
j = 2, 3, . . . , n. Hence,

Ih(Vn) = min {cnIh(Yn), cnIh(0,Xn + Vn−1)}

= min {cnIh(Yn), cnIh(Xn + Vn−1)}

= min {cnIh(Yn), cndnIh(Xn), cndnIh(Vn−1)}

...

= min
1≤m≤n

{
n∏

i=m

cidiIh(Xm),

n∏

i=m

cidi+1Ih(Ym)

}

. (12)

We assume in above expression that dn+1 = 1 = d1.

Now take

C = diag

{
n∏

i=1

cidi+1, . . . , cndn

}
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and

D = diag

{
n∏

i=1

cidi+1, . . . , cn

}

.

Hence, we get
Ih(Vn) = min {Ih(X)C, Ih(Y)D} .

Remark 3.4. If X1,X2, . . . ,Xn are iid rvs and Y1, Y2, . . . , Yn are also iid
rvs. Then Ih(Vn) =

∏n
i=1 cidi+1 min {Ih(X1), Ih(Y1)} , which is easy to calculate.

We know that Vn = Ynmax {0,Xn + Vn−1} . If the scale function of Xi and
Yi are hXi

and hYi
respectively. Then, using Theorem 2.1, Theorem 2.2 and

Corollary 2.1, the scale function h for Vn is given by

h(x) =

n∑

i=1

(

hXi
+ hYi

)

.

Remark 3.5. As mentioned earlier, Un and Vn have same distribution
and it can be seen from (11) and (13), the representation of Vn is preferable
over the representation of Un due to the ease of computation and simplicity in
the construction of h.

4. Proofs

Proof of Theorem 2.1. Since X1, . . . ,Xn are nonnegative rvs. Using Lemma
1.1, there exist monotone concave functions h1, . . . , hn such that E

(
ehi(X)

)
<∞

and hi(x) = o(x) as x→ ∞, for i = 1, . . . , n. Define

h(x) =

n∑

i=1

hi(x)−

n∑

i=1

hi(0),

therefore, h is a monotone concave function and h(0) = 0. Hence, by Remark 2
of [6], h is continuous and increasing function with h(x1 + x2) ≤ h(x1) + h(x2)
for all x1, x2 > 0. We know that max1≤i≤n xi ≥ xi for i = 1, . . . , n, this implies
for s > 0, we have

E

(

esh(max1≤i≤n Xi)
)

≥ E

(

esh(Xi)
)

.

Therefore, Ih(max1≤i≤nXi) ≤ Ih(Xi). Hence,

Ih

(

max
1≤i≤n

Xi

)

≤ min
1≤i≤n

{Ih(Xi)} . (13)



136 A.N. Kumar, N.S. Upadhye

Similarly, it is easy to see that

Ih

(
n∑

i=1

Xi

)

≤ Ih

(

max
1≤i≤n

Xi

)

(14)

Hence combine (14) and (15), we get required result.

Proof of Theorem 2.2. Using Lemma 1.1, there exist monotone concave
functions h1, . . . , hn such that E

(
ehi(X)

)
< ∞ and hi(x) = o(x) as x → ∞,

for i = 1, . . . , n. Let h(x) =
∑n

i=1 hi(x) −
∑n

i=1 hi(0), therefore, h is monotone

concave with h(0) = 0. For i = 1, . . . , n, define ĥ(xi) = xn−1h(xi), where
x = max1≤i≤n{xi + 1}. It is clear that xix

n−1 ≥
∏n

i=1 xi, This implies

h(xi) ≥ h

(
n∏

i=1

xi/x
n−1

)

≥
1

xn−1
h

(
n∏

i=1

xi

)

.

That is,

h

(
n∏

i=1

xi

)

≤ xn−1h(xi) = ĥ(xi).

Therefore,

E

(

esh(
∏

n

i=1
Xi)
)

≤ E

(

esĥ(Xi)
)

.

Hence,

Ih

(
n∏

i=1

Xi

)

≥ min
1≤i≤n

{
Iĥ(Xi)

}
.

Now, consider

E

(

esh(
∏

n

i=1
Xi)
)

≥ E

(

esh(
∏

n

i=1
Xi)1 (X2 ≥ 1, . . . ,Xn ≥ 1)

)

≥ E

(

esh(X1)
) n∏

i=2

P(Xi ≥ 1),

we get Ih (
∏n

i=1Xi) ≤ Ih(X1), similarly, for i = 2, . . . , n, Ih (
∏n

i=1Xi) ≤ Ih(Xi).
Hence, Ih (

∏n
i=1Xi) ≤ min1≤i≤n {Ih(Xi)}. Hence,

min
1≤i≤n

{
Iĥ(Xi)

}
≤ Ih

(
n∏

i=1

Xi

)

≤ min
1≤i≤n

{Ih(Xi)} .
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This proves (a). It is easy to see that Iĥ(Xi) ≤ Ih(Xi), for i = 1, . . . , n. Choose
c ≥ 1 such that cIĥ(Xi) ≥ Ih(Xi), therefore,

1

c
min
1≤i≤n

{Ih(Xi)} ≤ min
1≤i≤n

{
Iĥ(Xi)

}
≤ Ih

(
n∏

i=1

Xi

)

≤ min
1≤i≤n

Ih(Xi) ≤ c min
1≤i≤n

{
Iĥ(Xi)

}
.

Hence, there exist m ∈ (0, 1] and r ∈ [1,∞) such that

Ih

(
n∏

i=1

Xi

)

= m min
1≤i≤n

{Ih(Xi)} and Ih

(
n∏

i=1

Xi

)

= r min
1≤i≤n

{
Iĥ(Xi)

}
.

This proves (b) and (c).

Proof of Corollary 2.1. It follows from the proof of Theorem 2.1,

Ih

(
n∑

i=1

Xi

)

≤ min
1≤i≤n

{Ih(Xi)} .

To prove the equality, it is known that h (
∑n

i=1 xi) ≤
∑n

i=1 h(xi) and Xi

are independent rvs. Then E

(

esh(
∑

n

i=1
Xi)
)

≤
∏n

i=1 E
(
esh(Xi)

)
. Therefore,

Ih (
∑n

i=1Xi) ≥ min1≤i≤n {Ih(Xi)} . Hence,

Ih

(
n∑

i=1

Xi

)

= min
1≤i≤n

{Ih(Xi)} .

This proves (a).
Next, from (14), we know that

Ih

(

max
1≤i≤n

Xi

)

≤ min
1≤i≤n

{Ih(Xi)} .

Now, it is clear that

max
1≤i≤n

xi ≤

n∑

i=1

xi,

this implies

E

(

esh(max1≤i≤n Xi)
)

≤ E

(

esh(
∑

n

i=1
Xi)
)

≤
n∏

i=1

E

(

esh(Xi)
)

.
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Therefore,

Ih

(

max
1≤i≤n

Xi

)

≥ min
1≤i≤n

{Ih(Xi)} .

Hence,

Ih

(

max
1≤i≤n

Xi

)

= min
1≤i≤n

{Ih(Xi)} .

This proves (b).

Proof of Theorem 2.3. Recall from Theorem 2.2 and Remarks 2.1, we have
Ih(XY ) = min(Ih(X), Ih(Y )). For iid rvs Ih(X) = Ih(Y ). Hence, Ih(XY ) =
Ih(X). Then we can find the tail behavior of the rvs in the following ways.

Case 1. Suppose h1 is a natural scale function of X, therefore h = 2h1 and
Ih(X) = 1

2Ih1
(X) = 1/2. Then Ih(XY ) = Ih(X) = 1/2, for small ǫ > 0, using

the definition of lim inf,

F̄XY (x), F̄X(x) ≤ e−( 1
2
−ǫ)h(x).

This proves (a).
Since, h1 is the natural scale functionX, therefore, h(x) = 2h1(x) = 2RX(x)

and Ih(XY ) = 1/2, hence,

lim inf
x→∞

RXY (x)

2RX(x)
= 1/2,

that is,

lim inf
x→∞

RXY (x)

RX(x)
= 1.

From (3),

F̄XY (x) ≤
[
F̄X(x)

]1−ǫ
. (15)

Case 2. Using the method described in 2.1, we can find the natural scale
function h for XY then Ih(XY ) = Ih(X) = 1. Using the definition of lim inf,
for ǫ > 0,

F̄XY (x), F̄X (x) ≤ e−(1−ǫ)h(x).

This proves (b).
Next, note that h is the natural scale function XY , therefore, h(x) =

RXY (x) and Ih(XY ) = Ih(X) = 1, that is, Ih(X) = 1, hence,

lim inf
x→∞

RX(x)

RXY (x)
= 1.
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Therefore, from (3),

F̄X(x) ≤
[
F̄XY (x)

]1−ǫ
. (16)

Combining (16) and (17), it is clear that

[
F̄X(x)

]1/(1−ǫ)
≤ F̄XY (x) ≤

[
F̄X(x)

]1−ǫ
.

This proves (c).
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