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Abstract This paper proposes some new estimators for the tail index of a heavy
tailed distribution when only a few largest values are observed within blocks. These
estimators are proved to be asymptotically normal under suitable conditions, and their
Edgeworth expansions are obtained. Empirical likelihood method is also employed to
construct confidence intervals for the tail index. The comparison for the confidence
intervals based on the normal approximation and the empirical likelihood method is
made in terms of coverage probability and length of the confidence intervals. The
simulation study shows that the empirical likelihood method outperforms the normal
approximation method.

Keywords Confidence interval · Coverage probability · Empirical likelihood ·
Tail index estimation · Edgeworth expansion

1 Introduction

In many fields such as meteorology, hydrology, climatology, environmental science,
telecommunications, insurance and finance, heavy tailed distributions are recom-
mended to model the data (see e.g. Embrechts et al. 1997), and hence the problem of
estimation of the tail index of a heavy tailed distribution has been paid much attention
in recent years. Various estimates for the tail index have been proposed in the literature,
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278 Y. Qi

see, e.g., Hill (1975), Pickands (1975), and Dekkers et al. (1989). These estimators
are based on a few of upper order statistics.

Recently, Davydov et al. (2000) and Paulauskas (2003) proposed a new estimator
for the tail index. In their approach, observations are divided into several blocks and
the estimator of the tail index is constructed from the ratios of the first largest and sec-
ond largest terms within blocks. A similar idea was also used by Segers and Teugels
(2000) who studied the limiting distribution of Galton’s ratio computed from each
of the blocks in the entire sample and developed a parallel procedure to test whether
the underlying distribution is from the extremal domain of attraction of the Gumbel
distribution.

Since Davydov–Paulauskas–Rackauska’s (DPR) approach doesn’t use all the upper
order statistics, it may not be as efficient as Hill estimator when it is used to estimate
the tail index. Even so, the simulation study in Paulauskas (2003) shows that the
large sample performance of the estimator is good. A recent work by Gadeikis and
Paulauskas (2005) used a similar method to test and estimate the change-point in the
tail index. When the data can be divided into several blocks but only a few of largest
observations within blocks are available for analysis, DPR’s approach is feasible for
estimation of the tail index. In fact, sometimes only several largest observations within
blocks are available for analysis. For example, for financial data, it is very common that
only the information on a few yearly largest claims or losses is reported to the public.
In many Olympic games, only a few best players are allowed to participate, and thus
only scores for these people are observed and these observations can be considered
as the largest observations within each block (or game). In these situations, DPR’s
approach has its advantages over others, since none of the aforementioned methods is
applicable.

One of the main purposes of the paper is to propose a new class of estimators for
the tail index under a setup similar to DPR’s. By using the same information as in
DPR’s approach, our new estimators are more efficient than DPR’s in the sense that
our new estimators have a smaller asymptotic variance. Hence, the confidence inter-
vals based on our new estimators are shorter than the ones based on DPR’s. This paper
also applies empirical likelihood method to construct the confidence intervals for the
tail index.

The empirical likelihood was introduced by Owen (1988, 1990) for the mean vec-
tor of independent and identically distributed observations, and it has been extended
to a wide range of applications including, among others, linear models (Owen 1991),
generalized linear models (Kolaczyk 1994), quantile estimation (Chen and Hall 1993),
generalized estimating equations (Qin and Lawless 1994), partial linear models (Wang
and Jing 2003), errors-in-covariables models (Wang and Rao 2002), censored linear
regression models (Qin and Jing 2001a), censored partial linear models (Qin and Jing
2001b; Wang and Li 2002), Cox regression models (Qin and Jing 2001c), additive risk
models (Lu and Qi 2004), nonparametric density estimation (Chen 1996) and non-
parametric regression models (Chen and Qin 2000). The empirical likelihood method
possesses some advantages over other methods like the normal approximation method.
It allows the use of likelihood methods without having to pick a parametric family for
the data. It produces confidence regions whose shape and orientation are determined
entirely by the data.
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On the tail index of a heavy tailed distribution 279

Lu and Peng (2002) applied both the empirical likelihood method and the parametric
method to obtain confidence intervals for the tail index of a heavy-tailed distribution,
and compared their performance with the normal approximation method based on
Hill estimator (Hill 1975). The simulation study in Lu and Peng (2002) indicates
that the empirical likelihood method and the parametric method are comparable, and
both result in better coverage accuracy than the normal approximation method. Peng
and Qi (2006b) studied the confidence intervals for high quantiles of a heavy-tailed
distribution. They applied three methods, including normal approximation method,
likelihood ratio method and data tilting method (similar to the empirical likelihood
method). From their simulation study, the data tilting method is favorable.

The paper is organized as follows. In Sect. 2 we first introduce our new estima-
tors for the tail index and obtain their limiting distribution, then we derive Edgeworth
expansion for the new estimators in order to assess the accuracy of the coverage prob-
ability for confidence intervals based on the asymptotic normality of our estimators.
We also employ the empirical likelihood method to construct the confidence intervals
for the tail index. In Sect. 3, we conduct a simulation study to compare the confidence
intervals based on the normal approximation of our new estimators and the empirical
likelihood method. Finally, we give all the proofs in the Appendix.

2 Estimator of the tail index and its Edgeworth expansion

Throughout let X1, . . . , Xn be independent and identically distributed (iid) random
variables with a distribution function F satisfying

1 − F(x) = x−1/γ L(x) for x > 0, (1)

where γ > 0 is an unknown parameter and 1/γ is called the tail index of the distribu-
tion function F , and L is slowly varying function satisfying

lim
t→∞

L(t x)

L(t)
= 1.

We are interested in estimating γ and constructing confidence interval for γ .
Let Xn,1 ≥ · · · ≥ Xn,n denote the order statistics based on X1, . . . , Xn . The well-

known Hill estimator for γ is defined as

γ̂H (kn) = 1

kn

kn
∑

i=1

log Xn,i − log Xn,kn+1,

where kn satisfies

kn → ∞ and
kn

n
→ 0 as n → ∞. (2)

See Hill (1975). Like most of the estimators for the tail index in the literature, the Hill
estimator uses only a few upper order statistics.
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An alternative estimator was recently proposed by Davydov et al. (2000) and
Paulauskas (2003). The procedure is as follows. First, divide the sample X1, . . . , Xn

into kn blocks (or groups), V1, . . . , Vkn , and each block contains m = mn = [n/kn]
observations, where [x] denotes the integer part of x > 0. To be more specific,
Vi = {X(i−1)m+1, . . . , Xim} for 1 ≤ i ≤ kn . Let X (i)

m,1 ≥ · · · ≥ X (i)
m,m denote the

order statistics of the m observations in the i-th block. Set

Skn =
kn

∑

i=1

X (i)
m,2

X (i)
m,1

and define

γ̂DPR(kn) = S−1
kn

(kn − Skn )

an estimator of γ . Under the condition

1 − F(x) = cx−1/γ + dx−β + o(x−β) as x → ∞, (3)

where 0 < γ −1 < β ≤ ∞, it is proved that

k1/2
n (γ̂DPR(kn) − γ )

d→N

(

0,
γ 2(1 + γ )2

(1 + 2γ )

)

(4)

if kn = o(n2(βγ−1)/(2βγ−1)), where
d→ denotes convergence in distribution.

Let r ≥ 1 be an integer. In this paper we assume that the r + 1 largest random
variables within the kn blocks are observed, that is, only the observations {X (i)

m, j : j =
1, . . . , r + 1, i = 1, . . . , kn} are available for inference. We propose to estimate γ by

γ̂N (kn) = 1

knr

kn
∑

i=1

r
∑

j=1

(log X (i)
m, j − log X (i)

m,r+1), (5)

where kn satisfies condition (2).
For convenience we assume that all random variables are bounded below by 1.

Otherwise we can use truncation technique and substitute X (i)
m, j by max(1, X (i)

m, j ). This
is very natural since the tail index is only related to the upper tail of the distribution
F and should be estimated from those large observations.

To make an inference about γ , a condition stronger than (1) is required. Throughout
this paper, we assume that there exists a function A(t) → 0 as t → ∞ such that

lim
t→∞

U (t x)/U (t) − xγ

A(t)
= xγ xρ − 1

ρ
(6)
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On the tail index of a heavy tailed distribution 281

for all x > 0, where U (x) is the inverse function of 1
1−F(x)

and ρ < 0. This condition
is more general than (3). In fact, if (3) holds, then one can verify that (6) holds with
A(t) = − γ (βγ − 1)dc−βγ t1−βγ and ρ = 1 − βγ .

We first present the asymptotic normality of our estimator.

Theorem 1 Assume (6) holds. If

kn → ∞,
kn

n
→ 0 and k1/2

n A(n/kn) → δ ∈ (−∞,∞) as n → ∞, (7)

then

k1/2
n (γ̂N (kn) − γ )

d→N

(

δbr ,
γ 2

r

)

, (8)

where br = 1
rρ

(

∑r
j=1

�( j−ρ)
( j−1)! − �(r+1−ρ)

(r−1)!
)

and �(x) = ∫ ∞
0 t x−1e−t dt is the Gamma

function.

Corollary 1 In Theorem 1, if (7) holds with δ = 0, then we have

k1/2
n (γ̂N (kn) − γ )

d→N

(

0,
γ 2

r

)

.

When r = 1, that is, only the two largest observations are available within each
block, we have the following corollary.

Corollary 2 Assume that r = 1. Under the conditions of Theorem 1, we have

k1/2
n (γ̂N (kn) − γ )

d→N (δ�(1 − ρ), γ 2). (9)

Remark 1 By using arguments similar to those in the proof of Theorem 1 we can show
that

k1/2
n

(

Skn

kn
− 1

1 + γ

)

d→N

( −δ�(2 − ρ)

(1 + γ )(1 + γ − ρ)
,

γ 2

(1 + γ )2(1 + 2γ )

)

under the conditions of Theorem 1. Hence we have

k1/2
n (γ̂DRP(kn) − γ )

d→N

(

δ(1 + γ )2�(2 − ρ)

(1 + γ − ρ)
,
γ 2(1 + γ )2

(1 + 2γ )

)

. (10)

This yields (4) when δ = 0. Comparison of Eqs. (10) and (9) indicates that the asymp-
totic variance of our estimator is smaller than that of DPR’s estimator for all γ > 0
and the bias term for our new estimator is smaller than that of DPR’s estimator as well
when δ �= 0.

123



282 Y. Qi

Remark 2 It is well-known that for the Hill estimator it is held under the conditions
of Theorem 1 that

k1/2
n (γ̂H (kn) − γ )

d→N (δ(1 − ρ)−1, γ 2).

See, e.g., de Haan and Peng (1998). In general, it is difficult to compare our estima-
tor and the Hill estimator since the Hill estimator may not be applicable in case of
incomplete data. When all observations are available, by assuming the same kn in the
Hill estimator γ̂H (kn) and our estimator γ̂N (kn), we see that the two estimators have
the same asymptotic variances when r = 1. Hence, theoretically, the two estimators
have similar large sample properties when the bias terms are asymptotically negligible
when r = 1. To compare the small sample properties for the Hill estimator, the DPR
estimator and our new estimator (when r = 1), we conducted a simulation study. Based
on 10,000 random samples of size n = 50 from Fréchet(1) distribution (to be defined
in Sect. 4) with kn = 10 and mn = 5, the mean squared errors for the Hill estimator,
our new estimator and the DPR estimator are 0.114, 0.121 and 0.317, respectively.
One can conclude that our new estimator and the Hill estimator are comparable and
both are better than the DPR estimator in terms of mean squared error.

When r > 1, our new estimator has a smaller asymptotic variance than the Hill
estimator. This phenomenon is due to the fact that different information is used for
the two estimators. The conclusion can be different if we consider the bias terms and
use the optimal asymptotic mean squared errors as a criterion. In order to calculate
the optimal asymptotic mean squared errors for the estimators, let introduce a new
function s which is positive, decreasing and regularly varying with index 2ρ − 1 and
satisfying

A2(t) ∼
∫ ∞

t
s(u)du as t → ∞.

For the existence of such a function s see Proposition 1.7.12 of Geluk and de Haan
(1987). Let s− denote the inverse function of s. Let k(H)

n and k(N )
n denote the two

values of kn when the Hill estimator γ̂H (kn) and our estimator γ̂N (kn) achieve their
optimal mean squared errors respectively. For convenience, we let r = 1 in our new
estimator. From de Haan and Peng (1998) we have

k(H)
n ∼ n

s−
(

γ 2(1−ρ)2

n

) .

Following the proof of Theorem 2 in de Haan and Peng (1998) we have

k(N )
n ∼ n

s−
(

γ 2

n(�(1−ρ))2

) .
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On the tail index of a heavy tailed distribution 283

We can verify that under (3)

k(H)
n ∼

[

(2d2)−1c2βγ β2γ 2(βγ − 1)−3
] 1

2βγ−1
n

2βγ−2
2βγ−1

and

k(N )
n ∼

[

(2d2)−1c2βγ (βγ − 1)−3�−2(βγ )
] 1

2βγ−1
n

2βγ−2
2βγ−1 . (11)

It is easy to see that k(H)
n and k(N )

n are of the same order but k(H)
n > k(N )

n , and the opti-
mal mean squared error for the Hill estimator is smaller. In this sense, the Hill estimator
has a better performance than our new estimator when r = 1. On the other hand, for
our new estimator, increasing the value of r decreases the asymptotic variance of the
estimator, and we expect the optimal asymptotic mean squared error decreases with r .
Meanwhile, increasing the value of r costs an increase of the asymptotic bias for the
estimator if the bias is not negligible. Therefore, one has to be cautious in selecting the
value of r in practice since increasing r doesn’t implies a decrease in the asymptotic
mean squared error when mn is too small and r is too large.

Remark 3 It is possible to consider the situation when the numbers of random variables
within the blocks are different and the numbers of the observations available for infer-
ence are also different. Assume there are kn blocks of observations, Vi , 1 ≤ i ≤ kn ,
and the i-th block Vi contains mi observations and only the ri + 1 largest order statis-
tics X (i)

mi , j , j = 1, . . . , ri + 1 are observed. Also assume that all random variables are
independent and identically distributed with a heavy-tailed distribution (1). We define
the estimator of γ as

γ̂ ∗
N (kn) = 1

∑kn
i=1 ri

kn
∑

i=1

ri
∑

j=1

(

log X (i)
mi , j − log X (i)

mi ,ri +1

)

Then we can prove the asymptotic normality of γ̂ ∗
N (kn). We present the result as the

following Theorem 2 whose proof is similar to that of Theorem 1 and will be omitted.

Theorem 2 Under the setup in Remark 3, if (6) holds and

kn → ∞,
kn

n
→ 0 and

( kn
∑

i=1

ri

)1/2

A(qn) → 0 as n → ∞,

where qn = min1≤i≤kn (mi/ri ) → ∞ as n → ∞, then

( kn
∑

i=1

ri

)1/2

(γ̂ ∗
N (kn) − γ )

d→N (0, γ 2).
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In order to demonstrate how the selection of kn impacts the convergence rate of the
normal approximation for our estimator γ̂N (kn), we derive its Edgeworth expansion.
Denote the standard normal density function and its cumulative distribution function
by φ and Φ, respectively; that is

φ(x) = 1√
2π

e−x2/2 and Φ(x) =
∫ x

−∞
φ(t)dt for x ∈ R.

Theorem 3 Assume (6) holds. If (2) holds and δn := k1/2
n A(n/kn) → 0 as n → ∞,

then

P

(

k1/2
n (γ̂N (kn) − γ )

r−1/2γ
≤ x

)

= Φ(x) + 1

3(rkn)1/2 (1 − x2)φ(x) + a(γ, ρ)A(n/kn)xφ(x)

+cnφ(x) − b2
r δ2

n

rγ 2 xφ(x) + o

(

1

k1/2
n

+ A(n/kn) + δ2
n

)

uniformly in x, where

a(γ, ρ) = − 1

rγρ

⎛

⎝

r
∑

j=1

�( j − ρ)

( j − 1)!

⎛

⎝ j − 1 − r +
r

∑

t= j

t

t − ρ

⎞

⎠

+ (r − 1)�(r + 1 − ρ)

(r − 1)!
)

and

cn :=
k1/2

n

(

rγ − E(
∑r

j=1(log X (1)
m, j − log X (1)

m,r+1))
)

r1/2γ
∼ −r1/2brδn

γ

as n → ∞.

Remark 4 A 100(1 − α)% confidence interval for γ based on the normal approxima-
tion of γ̂N (kn) is defined by

IN (1 − α) =
{

γ > 0 :
∣

∣

∣

∣

∣

k1/2
n (γ̂N (kn) − γ )

r−1/2γ

∣

∣

∣

∣

∣

< zα/2

}

,

that is,

IN (1 − α) =
(

γ̂N (kn)

1 + zα/2(rkn)−1/2 ,
γ̂N (kn)

1 − zα/2(rkn)−1/2

)

, (12)
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On the tail index of a heavy tailed distribution 285

where zα/2 is the critical value of the standard normal distribution at level α/2; that
is, 1 − Φ(zα/2) = α/2. According to Corollary 1, this confidence interval has an
asymptotically correct coverage probability, that is, P(γ0 ∈ IN (1 − α)) → 1 − α as
n → ∞, where γ0 is the true value of the parameter γ .

Remark 5 According to Theorem 3, the convergence rate of the coverage probability
to the nominal level 1 − α depends on the choice of kn . It is easy to see that

P(γ0 ∈ IN (1 − α)) − (1 − α) = 2a(γ, ρ)zα/2φ(zα/2)A

(

n

kn

)

−2b2
r zα/2φ(zα/2)

rγ 2 δ2
n + o

(

1

k1/2
n

+ A

(

n

kn

)

+ δ2
n

)

.

From Corollary 1, in order to achieve a faster convergence rate to γ (in terms of
the asymptotic variance) for the estimator γ̂N (kn), one should try to select a larger
kn . However, with the increase of kn within certain range, the convergence rate of
δn = k1/2

n A(n/kn) to zero is getting slower. From the above equation, we see that the
leading error term for the convergence rate of the coverage probability for large kn is
δ2

n , up to a constant scale. This rate can be arbitrarily slow.

3 Empirical likelihood method

Set Z (i)
j = j (log X (i)

m, j − log X (i)
m, j+1) for j = 1, . . . , r and i = 1, . . . , kn . As we will

see from the proofs in the appendix, the limiting distribution for Z (i)
j ’s as n tends to

infinity is exponential with mean γ . Thus, the mean of Z (i)
j is approximately equal

to γ . We notice that the random variables Z (i)
j ’s are independent between blocks and

the r random variables within each block are asymptotically independent. Therefore,
the rkn random variables Z (i)

j ’s are approximately iid with mean γ . We apply Owen’s
empirical likelihood method (Owen 1990) to construct the confidence interval or to
test the hypothesis for the tail index γ .

Let p = (p(1)
1 , . . . , p(1)

r , . . . , p(kn)
1 , . . . , p(kn)

r ) be a probability vector satisfying
∑kn

i=1

∑r
j=1 p(i)

j = 1 and all p(i)
j ≥ 0. Then the empirical likelihood, evaluated at

true value γ0 for the tail index γ , is defined by

E L(γ0) = sup

⎧

⎨

⎩

kn
∏

i=1

r
∏

j=1

p(i)
j :

kn
∑

i=1

r
∑

j=1

p(i)
j Z (i)

j = γ0

⎫

⎬

⎭

.

Then, by the method of Lagrange multipliers, we can easily get

p(i)
j = 1

rkn
{1 + λ(Z (i)

j − γ0)}−1, j = 1, . . . , r, i = 1, . . . , kn,
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where λ is the solution to the equation

1

rkn

kn
∑

i=1

r
∑

j=1

Z (i)
j − γ0

1 + λ(Z (i)
j − γ0)

= 0. (13)

On the other hand,
∏kn

i=1

∏r
j=1 p(i)

j , subject to
∑kn

i=1

∑r
j=1 p(i)

j = 1, attains its

maximum (rkn)
−rkn at p(i)

j = (rkn)
−1. So we define the empirical likelihood ratio at

γ0 by

l(γ0) =
kn
∏

i=1

r
∏

j=1

(rkn p(i)
j ) =

kn
∏

i=1

r
∏

j=1

{1 + λ(Z (i)
j − γ0)}−1,

and the corresponding empirical log-likelihood ratio statistic is defined as

L(γ0) = − 2 log l(γ0) = 2
kn

∑

i=1

r
∑

j=1

log{1 + λ(Z (i)
j − γ0)},

where λ is the solution of (13).
The following theorem gives the asymptotic distribution of L(γ0).

Theorem 4 Under the conditions of Corollary 1 we have

L(γ0)
d→χ2

1 ,

where χ2
1 denotes a chi-squared random variable with one degree of freedom, and γ0

is the true value of the tail index γ .

According to the theorem, a 100(1 − α)% confidence interval for γ based on the
empirical likelihood ratio statistic is determined by

IE (1 − α) = {γ > 0 : L(γ ) < c(α)},

where c(α) is the α level critical value of a chi-squared distribution with one degree
of freedom.

The asymptotic χ2 calibrated empirical likelihood-based confidence intervals (or
regions) have an undercoverage problem when the sample size is small; that is, these
confidence intervals have a lower coverage probability than the nominal level. See, e.g.,
Owen (1988), Hall and La Scala (1990), Qin and Lawless (1994) and Tsao (2004). As
pointed out by Tsao (2004), the distribution of the empirical likelihood ratio statistic
has an atom at infinity, and the atom can be substantial if the sample size is not large.
This causes the undercoverage. Tsao (2004) proposed a new method of calibration
for the empirical likelihood-based confidence region for means. This new confidence
region is computed by approximating the quantiles of the empirical likelihood ratio
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On the tail index of a heavy tailed distribution 287

statistic by an E-distribution. The E-distribution is defined as the distribution of the
empirical likelihood ratio statistic for a normal mean. This method is easy to implement
and significantly improves the coverage probabilities for small samples.

The undercoverage problem exists as well for the empirical likelihood-based con-
fidence interval for the tail index since the number (rkn) of observations employed in
the inference of the tail index is very limited. Set r = 1. Consider a Fréchet distri-
bution, Fréchet(α0) (to be defined in Sect. 4), where αo > 0. This is a heavy tailed
distribution satisfying (3) with γ = 1/α0, β = 2α0, c = 1 and d = −1/2. From (11)
we have k(N )

n ∼ 72−1/3n2/3. Note that the normal approximation based confidence
interval (12) is valid only if kn = o(k(N )

n ). However, even for a sample size as large
as n = 1,000, since 72−1/31,0002/3 .= 24, the theoretic range of kn is very small.
Therefore, the undercoverage is not unusual when the empirical likelihood method is
used in the inference of the tail index. This stimulates us to pursue some new method
of calibration that makes the empirical likelihood method more accurate.

Motivated by the work of Tsao (2004), Peng and Qi (2006a) proposed a similar
calibration method for constructing confidence intervals for the tail index of a heavy-
tailed distribution. Assume that v ≥ 2 be an integer. Let E1, . . . , Ev be v i.i.d. random
variables with unit exponential distribution. Peng and Qi (2006a) defined the following
empirical likelihood ratio statistic

ELR(v) = 2
v

∑

i=1

log(1 + λ′(Ei − 1)),

where λ′ is the solution to the equation

v
∑

i=1

Ei − 1

1 + λ′(Ei − 1)
= 0.

Let c(v, α) be the upper α-level critical value of the distribution of ELR(v). After using
this new critical value, the coverage probability for the confidence interval based on
the empirical likelihood method has been greatly improved; see Peng and Qi (2006a).
By using these new critical values, we can construct a 100(1−α)% confidence interval
for γ based on the empirical likelihood ratio statistic as follows:

I ∗
E (1 − α) = {γ > 0 : L(γ ) < c(rkn, α)}.

Through simulation Peng and Qi (2006a) estimated the c(v, α) for 10 ≤ v ≤ 200.
The results for 10 ≤ v ≤ 29 are published in Table 1 in Peng and Qi (2006a) when
α = 0.01, 0.05 and 0.10. For 30 ≤ v ≤ 200, these critical values are fitted by
regression lines

c(v, 0.01) = 6.6349 − 4.56941√
v

+ 98.98899

v
,
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Table 1 Coverage probabilities of the two confidence intervals

kn Fréchet (1) Fréchet (1) Burr (0.5,1) Burr (0.5,1) Burr (1,0.5) Burr (1,0.5)
I∗
E (0.95) IN (0.95) I∗

E (0.95) IN (0.95) I∗
E (0.95) IN (0.95)

10 0.9531 0.9550 0.9508 0.9540 0.9486 0.9555

15 0.9530 0.9509 0.9525 0.9500 0.9505 0.9513

20 0.9525 0.9501 0.9558 0.9478 0.9507 0.9527

25 0.9528 0.9507 0.9543 0.9461 0.9518 0.9533

30 0.9510 0.9484 0.9497 0.9434 0.9497 0.9512

35 0.9539 0.9488 0.9520 0.9412 0.9515 0.9528

40 0.9540 0.9474 0.9513 0.9373 0.9511 0.9516

45 0.9522 0.9437 0.9458 0.9305 0.9520 0.9525

50 0.9490 0.9405 0.9412 0.9271 0.9490 0.9483

55 0.9457 0.9377 0.9347 0.9170 0.9485 0.9471

60 0.9456 0.9368 0.9248 0.9043 0.9499 0.9488

65 0.9428 0.9339 0.9201 0.8999 0.9462 0.9460

70 0.9397 0.9316 0.9056 0.8858 0.9469 0.9456

75 0.9389 0.9286 0.8943 0.8736 0.9506 0.9505

80 0.9354 0.9239 0.8808 0.8617 0.9501 0.9475

85 0.9296 0.9191 0.8551 0.8350 0.9494 0.9472

90 0.9280 0.9183 0.8472 0.8291 0.9475 0.9468

95 0.9238 0.9108 0.8152 0.7964 0.9477 0.9466

100 0.9211 0.9075 0.8080 0.7886 0.9500 0.9458

c(v, 0.05) = 3.8415 − 1.12486√
v

+ 32.90613

v

and

c(v, 0.10) = 2.7055 − 0.51269√
v

+ 18.14242

v
,

where all three intercepts are the 1%, 5% and 10% critical values from a chi-squared
distribution with one degree of freedom.

4 Simulation study

In this section we compare the performance of the confidence intervals based on the
empirical likelihood (I ∗

E (1−α)) and on the normal approximation (IN (1−α)) in terms
of both coverage probability and interval length with the following two types of cumu-
lative distribution functions (cdfs): (i) the Fréchet cdf given by F(x) = exp(−x−α0)

(x > 0), where α0 > 0 (notation: Fréchet(α0)); (ii) the Burr cdf given by F(x) =
1− (1+ xα0)−β0 (x > 0), where α0 > 0, β0 > 0 (notation: Burr(α0, β0)). We choose
r = 1, that is, we consider the case when only two largest observations within blocks
are used for the inference.
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First we drew 10,000 random samples of sample size n = 1,000 from the Fréchet
(1), Burr(0.5,1) and Burr(1,0.5) distributions, and then computed the coverage prob-
abilities for I ∗

E (0.95) and IN (0.95) for kn = 10, 15, . . . , 100. These coverage proba-
bilities are reported in Table 1.

Second, we drew 10,000 random samples of size n = 1,000 from the Fréchet(1),
Burr(0.5,1) and Burr(1,0.5) distributions, and then computed the average lengths of
the intervals I ∗

E (0.95) and IN (0.95) for kn = 10, 15, . . . , 100; see Table 2 for the
simulation results.

From Tables 1 and 2 we can conclude that the empirical likelihood method gi-
ves a better coverage accuracy than the normal approximation method, and it also
generates shorter confidence intervals in general. In particular, for small values of
kn , the two methods have comparable coverage probabilities, but the empirical like-
lihood method yields significantly shorter confidence intervals. With the increase of
kn , both the methods produce confidence intervals whose coverage probabilities are
lower than the nominal levels, but we have noticed that the coverage probabilities
for the empirical likelihood method are about 2% higher. This is extremely impor-
tant in practice since it is very difficult to determine the optimal value for kn in
general, and the method with certain robust properties is preferable against the choice
of kn .

Table 2 Average lengths of the two confidence intervals

kn Fréchet (1) Fréchet (1) Burr (.5,1) Burr (0.5,1) Burr (1,0.5) Burr (1,0.5)
I∗
E (0.95) IN (0.95) I∗

E (0.95) IN (0.95) I∗
E (0.95) IN (0.95)

10 1.548 2.026 3.106 4.072 3.088 4.032

15 1.196 1.368 2.401 2.756 2.382 2.716

20 1.004 1.094 2.019 2.210 1.988 2.168

25 0.879 0.935 1.769 1.894 1.747 1.849

30 0.790 0.832 1.592 1.689 1.568 1.641

35 0.725 0.755 1.464 1.543 1.438 1.491

40 0.673 0.699 1.360 1.427 1.333 1.374

45 0.630 0.653 1.276 1.336 1.248 1.280

50 0.596 0.616 1.209 1.265 1.180 1.206

55 0.567 0.584 1.150 1.203 1.119 1.142

60 0.543 0.559 1.104 1.155 1.071 1.090

65 0.518 0.535 1.056 1.108 1.022 1.042

70 0.498 0.514 1.016 1.067 0.981 0.999

75 0.482 0.497 0.984 1.034 0.948 0.964

80 0.465 0.480 0.953 1.004 0.915 0.931

85 0.453 0.467 0.929 0.979 0.888 0.902

90 0.438 0.452 0.898 0.949 0.860 0.875

95 0.427 0.442 0.878 0.932 0.837 0.852

100 0.415 0.430 0.854 0.906 0.813 0.829
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Appendix

Proof of Theorem 1. Condition (6) implies that A(t) is a regularly varying function
with index ρ. For detail see de Haan and Stadtmüller (1996). Then A(t) = tρη(t),
where η(t) is a slowly varying function. Without loss of generality, assume |η(t)| is
bounded away from 0 and ∞ on every compact subset of [0,∞). Then by applying
Potter’s bounds to η(t) we have for every δ > 0 there exists a constant c(δ) > 0 such
that

∣

∣

∣

∣

A(x)

A(y)

∣

∣

∣

∣

≤ c(δ) max

(

(

x

y

)ρ+δ
)

,

(

x

y

)ρ−δ )

for all x, y > 0. (14)

See, e.g., Theorem 1.5.6 in Bingham et al. (1987).
Note that (6) is equivalent to

lim
t→∞

log U (t x) − log U (t) − γ log x

A(t)
= xρ − 1

ρ
. (15)

Applying Potter’s bounds to A we have

∣

∣

∣

∣

log U (t x) − log U (t) − γ log x

A(t)

∣

∣

∣

∣

≤ 2

|ρ|

holds for all x ≥ 1 and t ≥ t0, where t0 > 0 is a constant. See also Lemma 1 in Drees
(1998). Let h(x) = log U (x) − γ log x . Then (15) implies that for each x > 0,

lim
t→∞

h(t x) − h(t)

A(t)
= xρ − 1

ρ
,

from which we conclude that A(t) ∼ ρh(t) as t → ∞. Therefore, h(x) is a regularly
varying function with index ρ. This implies h(x) → 0 as x → ∞ and

∣

∣

∣

∣

log U (t x) − log U (t) − γ log x

A(t)

∣

∣

∣

∣

=
∣

∣

∣

∣

h(t x) − h(t)

A(t)

∣

∣

∣

∣

is bounded for x ≥ 1,

1 ≤ t ≤ t0.

Since ρ < 0 we conclude that

ε(t, x) := log U (t x) − log U (t) − γ log x

A(t)
− xρ − 1

ρ

is bounded for x ≥ 1, t ≥ 1. (16)
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Assume {E j , j ≥ 1} are iid random variables with a unit exponential distribution.
It is easy to see that U (eE1) and X1 have the same distribution function. Hence,
{U (eE j ), j ≥ 1} are iid random variables with the distribution F . Without loss of
generality, we assume that X j = U (eE j ) for j ≥ 1. Let E (i)

m,1 ≥ · · · ≥ E (i)
m,m be the

order statistics of E(i−1)m+1, . . . , Eim . Then X (i)
m, j = U (eE (i)

m, j ) for j = 1, . . . , m and
i = 1, . . . , kn .

Set J (i)
m = E (i)

m,r+1, K (i)
j = E (i)

m, j − E (i)
m,r+1 and I (i)

j = j (E (i)
m, j − E (i)

m, j+1) for

j = 1, . . . , r and i = 1, . . . , kn . In particular, set K (i)
r+1 = 0. Then we have K (i)

j =
∑r

t= j I (i)
t /t . Furthermore, {I (i)

j , 1 ≤ j ≤ r, i ≥ 1} are iid with a unit exponential
distribution.

From (16) we have

log
(

X (1)
m, j

)

− log
(

X (1)
m,r+1

)

= log U

(

eJ (1)
m eK (1)

j

)

− log U
(

eJ (1)
m

)

= γ K (1)
j + A(eJ (1)

m )

×eρK (1)
j − 1

ρ
+ A

(

eJ (1)
m

)

ε

(

J (1)
m , eK (1)

j

)

. (17)

We also need the following properties:

Fact 1. J (1)
m and {K (1)

j , j = 1, . . . , r} are independent;

Fact 2. P(eJ (1)
m ≤ y) = m!

(m − r − 1)!r !
∫ 1−y−1

0
tm−r−1(1 − t)r dt for y ≥ 1;

Fact 3. {(eJ (1)
m /m)t , m ≥ r + 1} are uniformly integrable for each t < 0, and

eJ (1)
m

m
d→ G(y) = 1

r !
∫ ∞

1/y
e−t tr dt for y > 0, as n → ∞,

where G(y) has a density function g(y) = y−r−2 exp{−y−1}/r ! for y > 0.

Fact 1 is well-known in the literature. Fact 2 can be derived from equation (2.4.16)
in Balakrishnan and Cohen (1991), and Fact 3 can be concluded from Fact 2. The
details are omitted here.

From Fact 2 we get

A
(

eJ (1)
m

)

A(m)

d→ Jρ,

where J is a random variable with the distribution G. By applying (14) with δ = −ρ/2
we have

∣

∣

∣

∣

∣

A(eJ (1)
m )

A(m)

∣

∣

∣

∣

∣

≤ c

( |ρ|
2

)

⎛

⎝

(

eJ (1)
m

m

)−1.5ρ

+
(

eJ (1)
m

mn

)−0.5ρ
⎞

⎠ .
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Then by using the dominated convergence theorem we have

E
(

A
(

eJ (1)
m

))

A(m)
= E

⎛

⎝

A
(

eJ (1)
m

)

A(m)

⎞

⎠ → E(Jρ) = 1

r !
∫ ∞

0
yρg(y)dy

= 1

r !
∫ ∞

0
yr−ρe−ydy = �(r + 1 − ρ)

r ! . (18)

Similarly we have

E
(

A2
(

eJ (1)
m

))

A2(m)
→ �(r + 1 − 2ρ)

r ! . (19)

Since eJ (1)
m

p→ ∞ as n → ∞, from (15) we conclude that ε

(

eJ (1)
m , eK (1)

j

)

p→ 0,

where
p→ denotes the convergence in probability. By using Schwartz inequality, (16)

and the dominated convergence theorem we get

k1/2
n E

∣

∣

∣

∣

ε

(

eJ (1)
m , eK (1)

j

)

A(eJ (1)
m )

∣

∣

∣

∣

≤ k1/2
n E1/2(ε(eJ (1)

m , eK (1)
j )2 E1/2(A(eJ (1)

m )2)

= o
(

k1/2
n A(m)

)

= o(1).

Recall that Z (i)
j = j

(

log X (i)
m, j − log X (i)

m, j+1

)

as defined in the beginning of

Sect. 3. From (17) we have

Z (i)
j = γ I (i)

j + A(m)C (i)
j + A(m)D(i)

j , (20)

where

C (i)
j =

A
(

eJ (i)
m

)

A(m)

j

(

eρK (i)
j − eρK (i)

j+1

)

ρ

and

D(i)
j =

A
(

eJ (i)
m

)

A(m)
j

(

ε(eJ (i)
m , eK (i)

j ) − ε

(

eJ (i)
m , eK (i)

j+1

))

.

We have shown that E |D(1)
j | → 0 as n → ∞ for j = 1, . . . , r . Since each C (i)

j is
a product of two independent random variables, we conclude from the above proofs
that E(C (1)

j )2 converges to a finite constant for j = 1, . . . , r .

123



On the tail index of a heavy tailed distribution 293

By using K (1)
j = ∑r

t= j I (1)
t /t , a straightforward calculation shows that

τ j := E

(

eρK (1)
j

)

=
r

∏

t= j

t

t − ρ
= r !

�(r + 1 − ρ)

�( j − ρ)

( j − 1)!

if 1 ≤ j ≤ r , and τ j = 1 if j = r + 1. Hence, from (18) we have

βm : =
r

∑

j=1

E(C (1)
j )

=
E

(

A
(

eJ (1)
m

))

A(m)

r
∑

j=1

j (τ j − τ j+1)/ρ

= E(A(eJ (1)
m ))

A(m)

⎛

⎝

r
∑

j=1

τ j − r

⎞

⎠

/

ρ

∼ 1

ρ

⎛

⎝

r
∑

j=1

�( j − ρ)

( j − 1)! − �(r + 1 − ρ)

(r − 1)!

⎞

⎠

= rbr .

Since {I (i)
j , j = 1, . . . , r, i = 1, . . . , kn} are iid random variables with a unit expo-

nential distribution, and {∑r
j=1 C (i)

j −βm, 1 ≤ i ≤ kn} are iid random variables with
mean zero and bounded variances, we have

∑kn
i=1

∑r
j=1 I (i)

j − knr

(knr)1/2
d→N (0, 1),

and

kn
∑

i=1

r
∑

j=1

C (i)
j − knβm = Op(k

1/2
n ).

Furthermore, we have

kn
∑

i=1

r
∑

j=1

D(i)
j = op(kn).

since E
∑kn

i=1

∑r
j=1

∣

∣

∣D(i)
j

∣

∣

∣ = kn
∑r

j=1 E
∣

∣

∣D(i)
j

∣

∣

∣ = o(kn) as n → ∞. Therefore, we

obtain
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k1/2
n (γ̂N (kn) − γ ) = 1

k1/2
n r

kn
∑

i=1

r
∑

j=1

(

Z (i)
j − γ

)

= γ
∑kn

i=1

∑r
j=1 I (i)

j − knr

r1/2(knr)1/2 + A(m)

r

∑kn
i=1

∑r
j=1 C (i)

j − knβm

k1/2
n

+ k1/2
n A(m)βm

r
+ k1/2

n A(m)

∑kn
i=1

∑r
j=1 D(i)

j

knr

= γ
∑kn

i=1

∑r
j=1 I (i)

j − knr

r1/2(knr)1/2 + k1/2
n A(m)βm

r
+ op(1)

d→ N

(

δbr ,
γ 2

r

)

as n → ∞, proving (9). We complete the proof of the theorem. ��
Proof of Theorem 3. From (20) we have

r
∑

j=1

Z (1)
j = γ

r
∑

j=1

I (1)
j + A(m)

r
∑

j=1

C (1)
j + A(m)

r
∑

j=1

D(1)
j

= γ

r
∑

j=1

I (1)
j + A(eJ (1)

m )

∑r
j=1 eρK (1)

j − r

ρ
+ A(m)

r
∑

j=1

D(1)
j . (21)

One can see that for any 1 ≤ j ≤ r and d > 0, E
∣

∣

∣D(1)
j

∣

∣

∣

d → 0 as n → ∞. One can

also check that

E

⎛

⎝

r
∑

j=1

I (1)
j

⎞

⎠

⎛

⎝

r
∑

j=1

eρK (1)
j

⎞

⎠ =
r

∑

j=1

τ j

⎛

⎝ j − 1 +
r

∑

t= j

t

t − ρ

⎞

⎠

= r !
�(r + 1 − ρ)

r
∑

j=1

�( j − ρ)

( j − 1)!

⎛

⎝ j − 1 +
r

∑

t= j

t

t − ρ

⎞

⎠ .

Let µn,i = E
(

∑r
j=1 Z (1)

j

)i
for i = 1, 2. Then from the proof of Theorem 1 we

have as n → ∞

µn,1 = E

⎛

⎝

r
∑

j=1

Z (1)
j

⎞

⎠

= rγ + A(m)

r
∑

j=1

�(r + 1 − ρ)

r !
j (τ j − τ j+1)

ρ
+ o(A(m))

123



On the tail index of a heavy tailed distribution 295

= rγ + A(m)

ρ

⎛

⎝

r
∑

j=1

�( j − ρ)

( j − 1)! − �(r + 1 − ρ)

(r − 1)!

⎞

⎠ + o(A(m))

= rγ + rbr A(m) + o(A(m)) (22)

and

µn,2 = 2γ A(m)

ρ

⎛

⎝

r
∑

j=1

�( j − ρ)

( j − 1)!

⎛

⎝ j − 1 +
r

∑

t= j

t

t − ρ

⎞

⎠ − �(r + 1 − ρ)

(r − 1)!

⎞

⎠

+ r(r + 1)γ 2 + o(A(m)).

Set

σ 2
n = E

⎛

⎝

r
∑

j=1

Z (1)
j − µn,1

⎞

⎠

2

and vn = E

⎛

⎝

r
∑

j=1

Z (1)
j − µn,1

⎞

⎠

3

.

Then

σ 2
n = rγ 2 + 2γ A(m)

ρ

⎛

⎝

r
∑

j=1

�( j − ρ)

( j − 1)!

⎛

⎝ j − 1 − r +
r

∑

t= j

t

t − ρ

⎞

⎠

+ (r − 1)�(r + 1 − ρ)

(r − 1)!

⎞

⎠ + o(A(m)) (23)

and

vn = 2rγ 3 + o(1).

Since
{

∑r
j=1 Z (i)

j , 1 ≤ i ≤ kn

}

are iid random variables with bounded moments. By

following the proof of Theorem 5.22 in Petrov (1995), we have

P

(

k1/2
n (r γ̂ N (kn) − µn,1)

σn
≤ x

)

= Φ(x) + 1

6k1/2
n

vn

σ 3
n

(1 − x2)φ(x) + o(k−1
n )

= Φ(x) + 1

3(rkn)1/2 (1 − x2)φ(x) + o(k−1/2
n )
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uniformly in x , which implies

P

(

k1/2
n (γ̂N (kn) − γ )

r−1/2γ
≤ x

)

− Φ(x) = P

(

k1/2
n (r γ̂ N (kn) − µn,1)

σn

≤ k1/2
n (rγ − µn,1)

σn
+ r1/2γ

σn
x

)

− Φ(x)

= Φ

(

k1/2
n (rγ − µn,1)

σn
+ r1/2γ

σn
x

)

− Φ(x)

+ 1

3(rkn)1/2 (1 − x2)φ(x) + o(k−1/2
n ).

By Taylor’s expansion, Theorem 3 follows from (22), (23) and the above equation.
The details are omitted. This completes the proof. ��
Proof of Theorem 4. From (20) we conclude that

max
1≤ j≤r

max
1≤i≤kn

∣

∣

∣Z (i)
j − γ0

∣

∣

∣ = op(k
1/2
n )

and

s2
n := 1

rkn

kn
∑

i=1

r
∑

j=1

(Z (i)
j − γ0)

2 p→ γ 2
0 .

The rest of the proof is very standard. Following the same lines in the proof in Sect. 11.2
in Owen (2001) we have

λ = Op(k
−1/2
n ),

where λ is the solution to (13). By setting W (i)
j = Z (i)

j − γ0 we get

∣

∣

∣

∣

∣

∣

∣

λ2

rkn

kn
∑

i=1

r
∑

j=1

(

W (i)
j

)3

1 + λW (i)
j

∣

∣

∣

∣

∣

∣

∣

= Op

(

λ2s2
n max

1≤ j≤r
max

1≤i≤kn

∣

∣

∣W
(i)
j

∣

∣

∣

)

= op(k
−1/2
n )

and then using (13) we obtain

0 = 1

rkn

kn
∑

i=1

r
∑

j=1

W (i)
j

1 + λW (i)
j

= 1

rkn

kn
∑

i=1

r
∑

j=1

W (i)
j

(

1 − λW (i)
j + λ2(W (i)

j )2

1 + λW (i)
j

)
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= 1

rkn

kn
∑

i=1

r
∑

j=1

W (i)
j − λ

rkn

kn
∑

i=1

r
∑

j=1

(

W (i)
j

)2 + λ2

rkn

kn
∑

i=1

r
∑

j=1

(

W (i)
j

)3

1 + λW (i)
j

= γ̂N (kn) − γ0 − λs2
n + op(k

−1/2
n ).

Therefore, we conclude that

λ = γ̂N (kn) − γ0

s2
n

+ op(k
−1/2).

Furthermore, since max1≤ j≤r max1≤i≤kn

∣

∣

∣λW (i)
j

∣

∣

∣

p→ 0 as n → ∞, we have

Rn : =
kn

∑

i=1

r
∑

j=1

(

log
(

1 + λW (i)
j

)

− λW (i)
j + 1

2

(

λW (i)
j

)2
)

= Op

⎛

⎝

kn
∑

i=1

r
∑

j=1

|λW (i)
j |3

⎞

⎠ = Op

(

|λ|3kns2
n max

1≤ j≤r
max

1≤i≤kn
|W (i)

j |
)

= op(1).

Hence, from Corollary 1

L(γ0) = 2
kn

∑

i=1

r
∑

j=1

λW (i)
j − λ2

kn
∑

i=1

r
∑

j=1

(

W (i)
j

)2 + Rn

= γ 2
0

s2
n

rkn (γ̂N (kn) − γ0)
2

γ 2
0

+ op(1)

d→ χ2
1 .

This completes the proof of Theorem 4. ��
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