ON THE TANGENT SPHERE BUNDLE OF A 2-SPHERE

WILHELM KLINGENBERG AND SHIGEO SASAKI1)

(Received October 19, 1973)

Introduction. Let S^2 be the unit sphere in a Euclidean space E^3 with the induced metric g. Then, the set of all unit tangent vectors $T_1(S^2)$ with the natural topology is the total space of the tangent sphere bundle $p: T_1(S^2) \to S^2$. $T_1(S^2)$ has a natural Riemannian metric. In this paper, we prove first that $T_1(S^2)$ with this metric is isometric with the elliptic space of constant curvature 1/4 (Theorem 1). Then, we give two proofs of a theorem which characterizes each geodesic on $T_1(S^2)$ as a vector field along a circle in S^2 (Theorem 2 and § 4). Finally, we give a theorem on the set of tangent vectors of a one parameter family of circles, the set corresponds to a Clifford surface in $T_1(S^2)$ regarded as an elliptic space (Theorem 4).

1. $T_1(S^2)$ as a Riemannian manifold. First we shall show

LEMMA 1. $T_1(S^2)$ is diffeomorphic with the real projective space P^3 .

PROOF. For $y \in T_1(S^2)$, we consider the unit vector $e_1(y)$ which issues from the center O of S^2 and ends at the point p(y). Then, the map $\psi \colon T_1(S^2) \to SO(3)$ defined by $y \to (e_1(y), e_2(y), e_1(y) \times e_2(y))$, where $e_2(y) \equiv y$ and \times means vector product in E^3 , is a diffeomorphism. On the other hand, it is well known that SO(3) is diffeomorphic with P^3 (cf. for example [3] p. 115). Hence, $T_1(S^2)$ is diffeomorphic with P^3 .

Now, let U be an arbitrary coordinate neighborhood with local coordinates $x^a(a, b, c = 1, 2)$ and y^a be components of a tangent vector y in U with respect to the natural frame $\partial/\partial x^a$. Then, $p^{-1}(U)$ gives a coordinate neighborhood of $T_1(S^2)$ with local coordinates (x^a, y^a) . By virtue of the induced metric g on S^2 in E^3 , the natural Riemannian metric \hat{g} on $T_1(S^2)$ is given by the following line element:

$$(1.1) d\sigma^2 = g_{bc}(x)dx^bdx^c + g_{bc}(x)\delta y^b\delta y^c,$$

([2]) where we have put

$$(1.2) \hspace{1cm} g_{bc}(x)y^by^c=1 \; , \hspace{0.5cm} \delta y^b=dy^b+{b \brace ef}y^cdx^f \; .$$

¹⁾ This research was done when the first author visited Japan in 1973 by the support of the Japan Society for the Promotion of Science.

First, let us prove the following

Lemma 2. $(T_1(S^2), \hat{g})$ is a Riemannian manifold of constant positive curvature 1/4.

PROOF. Let $e_i(r, \theta)$ be the point on S^2 with coordinates (r, θ) in geodesic polar coordinates with the north pole N as its center. Then, the unit tangent vectors for the r-curve and the θ -curve at the point $e_1(r, \theta)$ are given by

(1.3)
$$f_2 = \frac{\partial}{\partial r}, \qquad f_3 = \frac{1}{\sin r} \frac{\partial}{\partial \theta}.$$

Now, let e_2 be an element of $T_1(S^2)$ at the point $e_1(r, \theta)$ of S^2 . If we denote the angle between f_2 and e_2 by ω , then (r, θ, ω) can be considered as local coordinates for e_2 in $p^{-1}(S^2 - \{N, S\})$, S being the south pole. $\mathbf{A}\mathbf{s}$

$$\left\{egin{aligned} e_2 &= \cos \omega \!\cdot\! f_2 + \sin \omega \!\cdot\! f_3 \ , \ e_3 &= -\sin \omega \!\cdot\! f_2 + \cos \omega \!\cdot\! f_3 \end{aligned}
ight.$$

and

$$egin{align} \left(de_{_1} = dr\!\cdot\!f_{_2} + \sin r\,d heta\!\cdot\!f_{_3} \;, \ df_{_2} = -dr\!\cdot\!e_{_1} + \cos r\,d heta\!\cdot\!f_{_3} \;, \ df_{_3} = -\sin heta d heta\!\cdot\!e_{_1} - \cos r\,d heta\!\cdot\!f_{_3} \;, \end{gathered}$$

we see that

$$\langle de_{\scriptscriptstyle 1},\, de_{\scriptscriptstyle 2}\rangle = dr^{\scriptscriptstyle 2} + \sin^{\scriptscriptstyle 2}r\, d\theta^{\scriptscriptstyle 2}$$

and

where (*) means the term which we do not need to know and

$$\Phi = d\omega + \cos r \, d\theta .$$

On the other hand, we see easily that

$$(1.9) d\sigma^2 = \langle de_1, de_1 \rangle + \langle de_2, e_3 \rangle^2.$$

So, we get by (1.6) and (1.7)

$$(1.10) d\sigma^2 = dr^2 + d\theta^2 + 2\cos r \, d\theta d\omega + d\omega^2.$$

As the right hand side of (1.10) is of very simple form we can calculate its curvature tensor by a routine method. A little long but simple calculation shows us that the Riemannian metric (1.10) is of constant curvature 1/4.

From Lemmas 1 and 2, we get the following

THEOREM 1. The Riemannian manifold $(T_1(S^2), \hat{g})$ is isometric with the elliptic space $\mathcal{E}^3 = (P^3, k)$, where k is the Riemannian metric of constant curvature 1/4.

2. Geodesics on $T_1(S^2)$. Now, we shall prove the following theorem.

THEOREM 2. Any geodesic on $T_1(S^2)$ is interpreted as a unit vector field along a circle C on S^2 which makes constant angle with C.

REMARK 1. C may reduce to a point. Thus, each fibre of the bundle $p: T_1(S^2) \to S^2$ is a geodesic of $T_1(S^2)$.

REMARK 2. Both of Theorems 1 and 2 tell us that all geodesics are closed. Moreover, Theorem 1 tells us that every geodesic has of length 2π . This can be also proved directly by virtue of Theorem 2.

PROOF. If we denote a geodesic Γ in $T_1(S^2)$ parametrically by $(x^a(\sigma), y^a(\sigma))$, where σ is the arc length of Γ , then $x^a(\sigma)$ and $y^a(\sigma)$ satisfy the following set of differential equations (cf. [2]* II, p. 152):

$$\begin{cases} x'' = -by + ay', \\ y'' = \rho y, \end{cases}$$

where x' means the tangent vector $dx^a/d\sigma$, and dashes on the shoulders of y's mean covariant derivatives along the curve $C = p(\Gamma)$ and

$$(2.2) a = \langle x', y \rangle, b = \langle x', y' \rangle$$

are inner products on S^2 . Of course, we have

$$\langle y, y \rangle = 1 , \qquad \langle y, y' \rangle = 0 .$$

If we put

$$(2.4) c^2 = \langle y', y' \rangle \equiv |y'|^2, c \geq 0$$

then, we see easily that a, b, c are constants. For example, we shall prove the constancy of b. We get first

$$b' = \langle x', y' \rangle' = \langle -by + ay', y' \rangle + \rho \langle x', y \rangle = a(c^2 + \rho)$$
.

However, by $(2.3)_2$ we have $\rho = -c^2$. So, we see that b is a constant.

Now, the horizontal component and the vertical component of the tangent vector T of Γ are given by x'^h and y'' respectively, where x'^h

^{*)} K in [2] I p. 353 \uparrow 1 and p. 354 \downarrow 1 should be replaced by -K.

is the horizontal lift of x' and y'' is the vertical lift of y'. So, if we denote the norm of a tangent vector of $T_1(S^2)$ by $|| \ ||$, then we have

$$||x'^{h}||^{2} = ||T||^{2} - ||y'^{v}||^{2} = 1 - |y'|^{2}$$
, $||x'^{h}||^{2} = |x'|^{2}$.

So, we get

$$|x'|^2 = 1 - c^2.$$

The last equation shows that $0 \le c \le 1$ and (i) C reduces to a point if c = 1 and Γ is a fibre over the point, (ii) C reduces to a geodesic on S^2 if c = 0 and Γ is a trajectory of the geodesic flow.

When C does not reduce to a point, let us denote its arc length by s. Then, (2.5) shows us that

$$\frac{ds}{d\sigma} = \sqrt{1 - c^2} = \text{const.}.$$

Then, the relation

$$|x''|^2 = b^2 + a^2c^2$$

and (2.6) tell us that the geodesic curvature κ of C is given by

(2.7)
$$\kappa^2(1-c^2)^2=b^2+a^2c^2.$$

Thus, κ is constant along C and so C is a circle on S^2 .

The angle $\alpha(\sigma)$ between the tangent vector $x'(\sigma)$ and $y(\sigma)$ along C is given by

$$\cos \alpha(\sigma) = a/|x'|^2$$
.

So, by (2.5) $\alpha(\sigma)$ is constant along C. This completes the proof.

3. The isometry $\psi \colon T_1(S^2) \to SO(3)$. In § 1, we showed that the map $\psi \colon T_1(S^2) \to SO(3)$ is a diffeomorphism. Now, as SO(3) is a compact connected Lie group, it admits a natural symmetric Riemannian structure. Although it is a well-known fact, we shall explain a little which seems necessary for our purpose.

For simplicity, we put G = SO(3) and denote its Lie algebra by g. g is identified with the tangent space of G at the unit element e. Denoting the rectangular coordinates in E^3 by (x, y, z), the basis of g is given by

$$B_{\scriptscriptstyle 1} = yrac{\partial}{\partial z} - zrac{\partial}{\partial y}$$
 , $B_{\scriptscriptstyle 2} = zrac{\partial}{\partial x} - xrac{\partial}{\partial z}$, $B_{\scriptscriptstyle 3} = xrac{\partial}{\partial y} - yrac{\partial}{\partial x}$

and the structural equations are given by

$$[B_2, B_3] = -B_1, [B_3, B_1] = -B_2, [B_1, B_2] = -B_3.$$

So, if we express the components of elements X_e and Y_e of g with respect to the above basis by $(\lambda_1, \lambda_2, \lambda_3)$ and (μ_1, μ_2, μ_3) , then we see that the Killing form B of G is given by

(3.2)
$$B(X_e, Y_e) = -2(\lambda_1 \mu_1 + \lambda_2 \mu_2 + \lambda_3 \mu_3).$$

If we define a Riemannian metric h on G by

(3.3)
$$h(X, Y) = -\frac{1}{2}B(L'_{a-1}X, L'_{a-1}Y)$$

for X, $Y \in G_a$, where $L'_{a^{-1}}$ is the differential of the left translation $L_{a^{-1}}$ and G_a is the tangent space at $a \in G$, then h is biinvariant and (G, h) is a globally symmetric Riemannian space. Moreover, as G = SO(3) is semisimple, G is an Einstein space (cf. [1] p. 206). So, the vanishing of Weyl's conformal curvature tensor of every Riemannian 3-space tells us that (G, h) is a globally symmetric Riemannian space of constant curvature.

Now, we shall prove the following

THEOREM 3. The map $\psi: T_1(S^2) \to SO(3)$ is an isometry of $(T_1(S^2), \hat{g})$ with (SO(3), h).

PROOF. G=SO(3) acts on G from the left as a simply transitive group of isometries. It acts also on $T_1(S^2)$ as a simply transitive group of isometries considered to act from the left. So, to show the isometry of the map ψ of $(T_1(S^2), \hat{g})$ with (G, h), it is sufficient to show the isometry of the differential of the map ψ of the tangent space $(T_1(S^2))_{y_0}$ at the point $y_0 = \psi^{-1}(e)$ with the one G_e at the unit element e of G. We see that y_0 is the tangent vector $e_0^0 = (0, 1, 0)$ at the point $e_0^0 = (1, 0, 0)$.

Now, take an element $X_e=\lambda_1B_1+\lambda_2B_2+\lambda_3B_3$. Then, it corresponds by ψ^{-1} to

(3.4)
$$\begin{cases} e_1' = \lambda_3 e_2^0 - \lambda_2 e_3^0 \text{ , } & e_2' = -\lambda_3 e_1^0 + \lambda_1 e_3^0 \text{ ,} \\ e_3' = e_1' \times e_2^0 + e_1^0 \times e_2' \text{ .} \end{cases}$$

So, by (1.9), we have

$$\widehat{g}((\psi^{-1})'X_{\epsilon}, (\psi^{-1})'X_{\epsilon}) = \langle e_1', e_1' \rangle + \langle e_2', e_3^0 \rangle^2 = \lambda_1^2 + \lambda_2^2 + \lambda_3^2 = h(X_{\epsilon}, X_{\epsilon})$$
.

This completes the proof.

4. Another proof of Theorem 2. By virtue of Theorem 3, $(T_1(S^2), \hat{g})$ can be identified with the globally symmetric space (SO(3), h). Geodesics of the latter through the unit element e are 1-parameter subgroups of SO(3) and other geodesics are cosets of these 1-parameter subgroups.

Now, let H be a 1-parameter subgroup of SO(3). Then, H is a group of rotations around a fixed axis l through the origin O.

We identify e with $(e_1^0, e_2^0, e_1^0 \times e_2^0)$ and denote elements of H by f_{σ} $\sigma \in R \mod 2\pi$. If we put $e_1(\sigma) = f_{\sigma}(e_1^0)$, $e_2(\sigma) = f_{\sigma}(e_2^0)$, then $(e_1(\sigma), e_2(\sigma), e_1(\sigma) \times e_2(\sigma))$ draws a geodesic on (SO(3), h) as σ varies. This shows that $e_2(\sigma)$ draws a geodesic Γ on $(T_1(S^2), \hat{g})$. When l does not have the direction e_1^0 , the initial point of $e_2(\sigma)$, i.e. the end point of $e_1(\sigma)$, draws a circle C on S^2 and $e_2(\sigma)$ makes a constant angle with C as σ varies. When l has the direction e_1^0 , $e_1(\sigma)$ coincides with the fixed vector e_1^0 . We denote the end point of e_1^0 by x_0 . Then, $e_2(\sigma)$ draws a fibre $p^{-1}(x_0)$. Thus the assertion of Theorem 2 is true for geodesics of $T_1(S^2)$ which correspond to 1-parameter subgroups of SO(3) by the map ψ^{-1} .

Any geodesic of (SO(3), h) which does not pass through e is given as a left coset of a 1-parameter subgroup H, i.e. as a family of frames $f(e_1(\sigma), e_2(\sigma), e_1(\sigma) \times e_2(\sigma))$ where $f \in SO(3)$ and $e_1(\sigma) = f_{\sigma}(e_1^0)$, $e_2(\sigma) = f_{\sigma}(e_2^0)$, $f_{\sigma} \in H$ $(\sigma \in R)$. By ψ^{-1} this corresponds to a vector field $f(e_2(\sigma))$ on $T_1(S^2)$. Thus the geodesic on $T_1(S^2)$ which corresponds to a left coset of a 1-parameter subgroup H of SO(3) is either a unit vector field along a circle f(C) which makes a constant angle with f(C) or a fibre $p^{-1}(f(x_0))$. This completes the proof.

5. A family of tori in $T_1(S^2)$. Let us consider two parallel small circles C_{ϕ_0} and $C_{-\phi_0}$ on S^2 which are defined by $\phi = \phi_0$ and $\phi = -\phi_0$ ($\phi = \pi/2 - r$) and lie equidistant from the equator. We consider a point (ϕ_0, θ) on C_{ϕ_0} and denote it by the unit vector $f_1(\theta)$ and the unit tangent vector at the point to the circle C_{ϕ_0} with the orientation coherent with its parameter θ by $f_2(\theta)$. Then, the great circle K_{θ} which passes through the point $f_1(\theta)$ and has the direction $f_2(\theta)$ is expressed by the field of unit vectors

(5.1)
$$e_1(\theta, t) = \cos t \cdot f_1(\theta) + \sin t \cdot f_2(\theta)$$

with the origin O as its initial point. The unit tangent vector to K_{θ} at the point $e_i(\theta, t)$ is given by

$$(5.2) e_2(\theta, t) = -\sin t \cdot f_1(\theta) + \cos t \cdot f_2(\theta).$$

We may change the value of θ arbitrarily in the interval $[0, 2\pi]$ too. It is clear that the locus of the point $e_2(\theta, t)$ in $T_1(S^2)$ is a surface F homeomorphic with a torus. t-curves on F are geodesics of $T_1(S^2)$ and any two of them do not intersect. They are trajectories of the geodesic flow of S^2 . Thus, F is covered by a family of geodesics. In the same way θ -curves are also geodesics of $T_1(S^2)$, because any of them is a vector

field along a circle $\phi = \text{const.}$ which makes a constant angle with the tangent vector to the circle. So, F is covered also by another family of geodesics, any two of them do not have common point. As $(T_i(S^2), \hat{g})$ is isometric with the elliptic space \mathcal{E}^3 by Theorem 1, F must be a surface which corresponds to a quadric with two families of real generators. This suggests us that F may be a surface which corresponds to a Clifford torus in \mathcal{E}^3 . In fact, we get the following

THEOREM 4. The Riemannian metric on the surface F induced from the one in $T_1(S^2)$ is flat. Thus F is a surface in $(T_1(S^2), \hat{g})$ corresponding to a Clifford torus in \mathcal{E}^3 .

PROOF. We may easily verify that

$$egin{align} f_1'(heta) &= \cos\phi_0\!\cdot\!f_2(heta) \;, \ f_2'(heta) &= -\cos\phi_0\!\cdot\!f_1(heta) + \sin\phi_0\!\cdot\!f_3(heta) \;, \ f_3'(heta) &= -\sin\phi_0\!\cdot\!f_2(heta) \ \end{split}$$

hold good. So, we get

$$egin{aligned} e_{_1 heta} &\equiv rac{\partial e_{_1}}{\partial heta} = -\cos\phi_{_0}\sin t\cdot f_{_1}(heta) + \cos\phi_{_0}\cos t\cdot f_{_2}(heta) + \sin\phi_{_0}\sin t\cdot f_{_3}(heta) \;, \ e_{_1t} &\equiv rac{\partial e_{_1}}{\partial t} = -\sin t\cdot f_{_1}(heta) + \cos t\cdot f_{_2}(heta) \end{aligned}$$

and

$$egin{align} \langle e_{1 heta},\,e_{1 heta}
angle &=\cos^2\phi_0+\sin^2\phi_0\sin^2t\;,\ \langle e_{1 heta},\,e_{1t}
angle &=\cos\phi_0\;, & \langle e_{1t},\,e_{1t}
angle &=1\;. \end{aligned}$$

Therefore, we have

$$(5.3) \qquad \langle de_{\scriptscriptstyle 1}, \, de_{\scriptscriptstyle 1}
angle = (\cos^2\phi_{\scriptscriptstyle 0} + \sin^2\phi_{\scriptscriptstyle 0} \sin^2 t) d heta^2 + 2\cos\phi_{\scriptscriptstyle 0} \, d heta dt + dt^2$$
 .

On the other hand, we get

$$egin{aligned} de_2 &= e_{2 heta} d heta + e_{2t} dt \ &= (-\sin t \cdot f_1'(heta) + \cos t \cdot f_2'(heta)) d heta - (\cos t \cdot f_1(heta) + \sin t \cdot f_2(heta)) dt \ &= (*) \cdot f_1(heta) + (*) \cdot f_2(heta) + \sin \phi_0 \cos t \ d heta \cdot f_3(heta) \end{aligned}$$

where (*)'s mean factors which we do not need to know their exact forms. So, we have

$$\langle de_2, e_3 \rangle = \sin \phi_0 \cos t \ d\theta \ .$$

Hence, we get by (1.9), (5.3) and (5.4)

(5.5)
$$d\sigma^{\scriptscriptstyle 2}\,|\,F=d heta^{\scriptscriptstyle 2}+2\cos\phi_{\scriptscriptstyle 0}\,d heta dt\,+\,dt^{\scriptscriptstyle 2}$$
 ,

where the left hand side means the restriction of $d\sigma^2$ to F i.e. the induced metric on F. Clearly, it is flat.

As we have seen before, t-curves and θ -curves are geodesics of $T_1(S^2)$. (5.5) tells us that any pair of geodesics from different families intersects at a constant angle ϕ_0 . This completes the proof.

BIBLIOGRAPHY

- [1] L. P. EISENHART, Continuous groups of transformations, Princeton Univ. Press, 1933.
- [2] S. SASAKI, Differential geometry of tangent bundles I, Tôhoku Math. J. (2) 10 (1958), 338-354, II, ibid. (2) 14 (1962), 146-155.
- [3] N. E. STEENROD, The topology of fibre bundles, Princeton Univ. Press, 1951.

MATHEMATISCHES INSTITUT UNIVERSITÄT BONN BONN, WEST GERMANY AND MATHEMATICAL INSTITUTE TÔHOKU UNIVERSITY