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Abstract. We prove the Tate conjecture for divisor classes and the Mumford-Tate conjecture
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Introduction

0.1 In this paper we study the Tate conjecture for divisor classes on varieties over a finitely
generated field of characteristic zero, henceforth simply referred to as “the Tate conjecture”.
Whereas, from a modern perspective, the Hodge-theoretic analogue—the Lefschetz theorem on
divisor classes—is quite easy to prove, it is an uncomfortable fact that the Tate conjecture is
known only for some rather special classes of varieties. For abelian varieties, Faltings proved it in
1983, alongside with the Mordell conjecture and the Shafarevich conjecture. For K3 surfaces, the
Tate conjecture was proven independently by André [2] and Tankeev [38], [39]. André’s results
also settle the Tate conjecture for divisor classes on hyperkähler varieties of higher dimension.
For Hilbert modular surfaces the Tate conjecture is known by work of Harder, Langlands and
Rapoport [20], completed by results of, independently, Klingenberg [21] and Kumar Murty and
Ramakrishnan [23]. In general, however, the Tate conjecture remains widely open.

In view of the Lefschetz theorem on divisor classes, the Tate conjecture is implied by the
Mumford-Tate conjecture for cohomology in degree 2. This conjecture is not even known for
abelian varieties, though it is known for hyperkähler varieties, again by André and (for K3
surfaces) Tankeev.

Our main contribution in this paper is a proof of the Mumford-Tate conjecture for the
cohomology in degree 2, and hence the Tate conjecture for divisor classes, for varieties with
h2,0 = 1, under a mild assumption on their moduli:

Main Theorem. Let X be a non-singular complete variety over C with h2,0(X) = 1. Assume
there exists a smooth projective family f : X → S over a non-singular irreducible base variety S
such that X ∼= Xξ for some ξ ∈ S(C), and such that the variation of Hodge structure R2f∗QX is
not isotrivial. Then the Tate Conjecture for divisor classes on X is true and the Mumford-Tate
conjecture for the cohomology in degree 2 is true.

We refer to Section 1.6 for an explanation of why the Tate and Mumford-Tate conjectures can
be stated for varieties over C. Also we note that we in fact prove a more general result, that
applies to submotives of an H2; for this we refer to Theorem 6.2.
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0.2 In the last section we apply our main theorem to algebraic surfaces with pg = 1. Given
some irreducible component of the moduli space of such surfaces, the challenge is to show that
the Hodge structure on the H2 is not constant over it. If this holds, the Mumford-Tate conjecture
is true for all surfaces in this moduli component. In some cases, the fact that the H2 is non-
constant is contained in the literature, but we also treat some cases where additional geometric
arguments are needed. Theorem 9.4 gives the list of cases we have worked out thus far; with
minor exceptions this includes all moduli components for which a good description is available
in the literature. We hope that the experts in this area can supply such a description in many
more cases, and we expect that our main theorem can serve as a standard tool to then deduce
the Mumford-Tate conjecture.

0.3 Let us now sketch some of the main ideas involved in the proof of the Main Theorem.
Assume a situation as in the statement of the theorem. Possibly after replacing S with

a finite cover we have a decomposition R2f∗QX (1) = Qρ
S ⊕ V, where ρ is the generic Picard

number in the family and V is a variation of Hodge structure over S such that on a very general
fibre Vs there are no non-zero Hodge classes. On V we have a symmetric polarization form φ.

A central role in the paper is taken by the endomorphism algebra E = EndQVHSS (V). By
results of Zarhin, E is a field that is either totally real or a CM-field. Even for a concretely given
family, it is usually very hard to determine E. Rather than attempting to do so, we leave E as
an unknown, and we see how far we can get. The proof of the main theorem then splits up in
three cases that each require a different approach:
(1) E totally real, rkE(V) 6= 4;
(2) E a CM-field;
(3) E totally real, rkE(V) = 4.

0.4 The proof in case (1) may be viewed as an extension of the arguments due to Deligne [15],
later refined by André in [2], who used this to prove the Tate conjecture for hyperkähler varieties.
Our main new contributions in this case are twofold:
(a) We develop a variant of the Kuga-Satake construction so as to take into account a non-trivial

totally real field of endomorphisms.
(b) We introduce the systematic use of norm functors (or: corestrictions); this is a technique of

independent interest.
In order to explain this in more detail, let us briefly go back to the arguments of André in the

case of K3 surfaces. We take for X → S a universal family of (polarized) K3’s over the moduli
space. Consider the even Clifford algebra C+(V, φ), which is an algebra in the category QVHSS
of variations of Hodge structure over S. The Kuga-Satake construction produces an abelian
scheme π : A → S equipped with an action by (an order in) a semisimple algebra D such that
we have an isomorphism of algebras in QVHSS ,

u : C+(V, φ)
∼−→ EndD(R1π∗QA) .

In particular, if we write V = Vξ and H = H1(Aξ,Q), we have an isomorphism uξ : C+(V, φ)
∼−→

EndD(H). However, the whole point of doing the Kuga-Satake construction in a family is that
on the source and target of uξ we now have an action of π1(S, ξ).

In the case of K3 surfaces, it is known that the monodromy action on H2(X,Q)
(
1
)
is

“big”, which means that the algebraic monodromy group is the full group SO(V, φ). (For X /S
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a universal family of polarized K3’s we have ρ = 1 and V is a subspace of H2(X,Q)
(
1
)
of

codimension 1.) A rather spectacular consequence of this is that the above isomorphism uξ is
the Hodge realization of an isomorphism of motives (in the sense of André [3]) uξ : C+(Vξ, φ)

∼−→
EndD

(
H1(Aξ)

)
. In a somewhat implicit form this idea is already present in Deligne’s paper [15];

it relies on the characterization of uξ as the unique π1-equivariant algebra isomorphism. It is
made explicit by André in [2], Section 6.2, and is essentially a consequence of the Theorem of
the fixed part.

Once we have the motivic isomorphism uξ, we can take `-adic realizations and apply Falt-
ings’s result for abelian varieties. To conclude the Tate conjecture for X = Xξ we still have
to “extract” Vξ from the even Clifford algebra C+(Vξ, φ). If the dimension of Vξ is odd, this is
relatively easy; if dim(Vξ) is even, a further trick is needed. André’s proof of the Mumford-Tate
conjecture then still requires further ideas, which we shall not review here.

0.5 Once we leave the realm of hyperkähler varieties, we no longer dispose of a “big monodromy”
result of the sort used in the above argument. This is where the field E comes in.

Consider a situation as in the Main Theorem, and assume we are in case (1). The generic
Mumford-Tate group of the variation V is then the group SOE(V, φ) of E-linear isometries with
determinant 1. We prove that the monodromy of V is “maximal”, in the sense that the algebraic
monodromy group Gmon(V) equals the generic Mumford-Tate group. A natural idea, then, is to
imitate the above argument, using a Kuga-Satake construction “relative to the field E”.

In order to make this work, we need some new techniques. The point is that the Kuga-Satake
construction is highly non-linear. (Step one: form the even Clifford algebra.) To overcome
this, we make systematic use of norm functors. In brief: whenever we are in a Tannakian
category C (Hodge structures, Galois representations, motives,...) there is a norm functor from
the category C(E) of E-modules in C to C itself. This is an extremely natural and useful
construction that appears to be not so widely known. In Section 3 we explain this, building
upon the work of Ferrand [19].

Once we have norms at our disposal, the correct replacement for the even Clifford algebra
C+(Vξ, φ) is not (still with E totally real) simply the even Clifford algebra of Vξ over E (which
is an E-algebra in the category of motives) but rather its norm NmE/QC

+
E (Vξ, φ). Once we have

this working, we are back on the trail paved for us by André. The new, “relative”, version of the
Kuga-Satake construction produces an abelian scheme π : A→ S with an action by a semisimple
algebra D and an isomorphism of algebras in QVHSS ,

u : NmE/QC
+
E (V, φ)

∼−→ EndD
(
H1(A)

)
,

where we write H1(A) = R1π∗QA. The maximality of the monodromy allows us to lift this to a
motivic level, pass to `-adic realizations, and use Faltings’s result. Though some technical details
get more involved than in the case E = Q, from this point on everything works as expected.

0.6 In case (2), when E is a CM-field, we use a different approach. This should not come as a
surprise: the Kuga-Satake construction is based on the idea that we can lift a Hodge structure
from a special orthogonal group to a spin group, whereas in the CM case we are dealing with
unitary groups. Instead, we establish a direct relation between the motive H2(X)

(
1
)
and a

motive of the form HomE

(
H1(A),H1(B)

)
, where A and B are abelian varieties with E-action.

In fact, A is a fixed abelian variety of CM-type, depending only on E and the choice of a CM-type,
and if we vary X, only B varies.
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On the level of Hodge realizations, we show that we can find A and B such that H2(X)
(
1
) ∼=

HomE

(
H1(A), H1(B)

)
. This gives a new interpretation of what van Geemen [42] calls a “half-

twist”. The construction can be done in families, and using a monodromy argument we prove that
H2(X)

(
1
)
is isomorphic to HomE

(
H1(A),H1(B)

)
, up to twisting by a 1-dimensional motive U .

We expect U to be trivial, but we are unable to prove this. (This is one of the main reasons why,
in our main theorem, we are not yet able to prove the “motivic Mumford-Tate conjecture”, which
is the additional statement that the Mumford-Tate group equals the motivic Galois group.) We
can, however, show that U has trivial Hodge and `-adic realizations; this allows to apply the
results of Faltings and to deduce the main theorem.

0.7 What remains is case (3), when E is totally real and the local system V has rank 4 over E.
In this case, the algebraic monodromy group Gmon may be strictly smaller than the generic
Mumford-Tate group SOE(V, φ). As the proof in case (1) crucially relies on the maximality of
the monodromy, this argument breaks down in an essential way. (If Gmon = SOE(V, φ), the
argument of case (1) works, so case (3) is really about the situation where the monodromy is
non-maximal.)

We are able to deal with the case of non-maximal monodromy by combining ideas from the
proofs of cases (1) and (2). The algebraic monodromy group is the group of norm 1 elements
in a quaternion algebra ∆ over E. With D = NmE/Q(∆), we construct a complex abelian
variety A and an abelian scheme B → S, both with an action of Dop, such that we have an
isomorphism u : HomD

(
H1(AS),H1(B)

) ∼−→ NmE/Q(V). After a rather minute analysis of all
groups involved, and using the information that we still have about the monodromy, we are able
to show that the fibre uξ of u at the point ξ is the Hodge realization of a motivic isomorphism
uξ : HomD

(
H1(A),H1(Bξ)

) ∼−→ NmE/Q(Vξ). This is of course the crucial step, as now we may
again invoke the results of Faltings. We reduce the proof of the Mumford-Tate conjecture for
X = Xξ to the MTC for the abelian variety A×Bξ, and while this is not a case already contained
in the literature, there is enough information available to prove this by fairly direct arguments.

0.8 Let us now give a brief overview of the individual sections. In Section 1 we review the Tate
and Mumford-Tate conjectures. Working systematically over finitely generated fields (rather
than only number fields) has the advantage that these conjectures can be stated for any variety
over C, but apart from choices in the presentation we do not claim any originality here.

In Section 2 we review the results of Zarhin on Mumford-Tate groups of Hodge structures of
K3 type, which are crucial for everything that follows, and we prove an `-adic analogue of this,
using a result of Pink. This fills what seems to be a gap in André’s paper [2]; see Remark 2.9.

As already mentioned, in Section 3 we discuss norm functors. This can be read independently
of the rest of the paper and is of interest in a much more general setting.

Sections 4 and 5 contain the constructions needed to deal with case (1). These two sections
are closest to the work of Deligne and André, the main point being that we develop a variant of
the Kuga-Satake construction relative to a totally real endomorphism field. In Section 6 we then
state the main result in its general form, and we prove some preliminary results. At the end of
this section we complete the proof in case (1). In Section 7 and the somewhat long Section 8 we
deal with cases (2) and (3), respectively.

In Section 9, finally, we prove the MTC for several classes of algebraic surfaces with pg = 1.
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0.10 Notation and conventions. (a) By a Hodge structure of K3 type we mean a polarizable
Q-Hodge structure of type (−1, 1) + (0, 0) + (1,−1) with Hodge numbers 1, n, 1 for some n. By
a VHS of K3 type over some base variety S we mean a polarizable variation of Hodge structure
whose fibres are of K3 type.

(b) In the first eight sections, we always view abelian schemes over a base scheme S as
objects of the category QAVS of abelian schemes up to isogeny.

(c) Let k be a field of characteristic 0 and E a finite étale k-algebra. If V is an E-module of
finite rank equipped with a nondegenerate E-bilinear form φ̃ : V ×V → E then φ = traceE/k◦φ̃ is
a nondegenerate k-bilinear form on V with the property that φ(ev, w) = φ(v, ew) for all v, w ∈ V
and e ∈ E. (Terminology: φ is the transfer of φ̃.) Conversely, given a nondegenerate k-bilinear
form φ : V × V → k with φ(ev, w) = φ(v, ew), there is a unique E-bilinear form φ̃ on V with
φ = traceE/k ◦ φ̃, and φ̃ is again nondegenerate. We refer to φ̃ as the E-bilinear lift of φ. The
uniqueness implies that if φ is symmetric or alternating, so is φ̃.

More generally, if E comes equipped with a k-linear involution e 7→ ē and φ satisfies
φ(ev, w) = φ(v, ēw) for all v, w ∈ V and e ∈ E then there is a unique hermitian form φ̃ : V ×V →
E such that φ = traceE/k ◦ φ̃. In this setting we refer to φ̃ as the E-valued hermitian lift of φ.

(d) We shall often consider algebraic groups that are obtained via a restriction of scalars,
and it will be convenient to simplify the notation for such groups. As a typical example, in
the situation described in (c) we have an orthogonal group O(V, φ̃) over E and we denote by
OE/k(V, φ) the algebraic group over k obtained from it by restriction of scalars. Similarly, if E
comes equipped with an involution and ψ is a hermitian form with respect to this involution,
we denote by UE/k(V, ψ) the corresponding unitary group, viewed as an algebraic group over k
through restriction of scalars. (Note that in this case the restriction of scalars goes from the
fixed algebra E0 ⊂ E of the involution to k.)

(e) Let k be a field and E a finite étale k-algebra. We denote the torus ResE/kGm,E by TE .
In particular, Tk = Gm,k. The norm map defines a homomorphism TE → Tk, whose kernel we
denote by T 1

E .

1. Review of some cycle conjectures

1.1 Let K ⊂ C be a subfield that is finitely generated over Q. We denote by MotK the category
of motives over K as defined by Y. André in [3]. (As “base pieces” we take all projective smooth
K-schemes.) This is a semisimple Tannakian category whose identity object is denoted by 1.

We use bold letters (V , W , ...) for motives. Their Hodge realizations and `-adic realizations
are denoted by the corresponding characters of regular weight (in the sense of typography!) with
a subscript “B” or “`” (VB, WB, ..., respectively V`, W`, ...). If W is a motive with Hodge
realization WB, we usually simply write W for the underlying Q-vector space, and we write

GB(W ) ⊂ Gmot(W ) ⊂ GL(W )
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for the Mumford-Tate group and the motivic Galois group. We identify the Q`-vector space un-
derlying the `-adic realization withW` = W ⊗Q` via the comparison isomorphism between Betti
and étale cohomology. The `-adic realization is then a Galois representation ρW ,` : Gal(K̄/K)→
GL(W`), and we denote by G`(W ) the Zariski closure of the image of ρW ,`. We have

G0
` (W ) ⊂ Gmot(W )⊗Q` ⊂ GL(W )⊗Q` = GL(W`) .

1.2 Let V be a motive over K. The Mumford-Tate conjecture for V is the assertion

MTC(V ) : We have G0
` (V ) = GB(VC)⊗Q` as subgroups of GL(V`).

Note that, a priori, this conjecture depends on the chosen embedding K ↪→ C. It also
depends on the choice of the prime number `. In the rest of the paper, we fix ` and whenever
we refer to the Mumford-Tate conjecture it is with reference to this prime number. Our results
are valid for all `.

1.3 Proposition. Let K ⊂ L be subfields of C that are finitely generated over Q. Let V be a
motive over K, let VL be the motive over L obtained by extension of scalars, and write VL,` for
its `-adic realization.

(i) The isomorphism GL(V`
) ∼−→ GL(VL,`) induced by the canonical isomorphism V`

∼−→ VL,`

restricts to an isomorphism G0
` (V )

∼−→ G0
` (VL).

(ii) With respect to the chosen embeddings K ↪→ L ↪→ C we have MTC(VL)⇔ MTC(V ).

Proof. Let K ′ be the algebraic closure of K in L. Then K ⊂ K ′ is a finite extension and the
natural homomorphism r : Gal(L̄/L)→ Gal(K̄/K) has as its image the subgroup Gal(K̄/K ′) ⊂
Gal(K̄/K). Further, the diagram

Gal(L̄/L)
ρ`,VL−−−−→ GL(VL,`)

r

y yo
Gal(K̄/K)

ρ`,V−−−−→ GL(V`)

is commutative. This gives (i), and (ii) is an immediate consequence.

1.4 Let X be a complete non-singular variety over K. For some integer i ≥ 0, consider the
motive H = H2i(X)

(
i
)

= (X,π2i, i), with π2i the Künneth projector in degree 2i.
An element ξ ∈ H` = H2i

(
XK̄ ,Q`(i)

)
is called a Tate class if it is invariant under some open

subgroup of Gal(K̄/K); this is equivalent to the requirement that ξ is invariant under G0
` (H).

Let T i(X) ⊂ H` be the subspace of Tate classes. We have a cycle class map

(1.4.1) cl : CHi(XK̄)⊗Q` → T i(X) .

The Tate conjecture for cycles of codimension i on X is the assertion

TCi(X) : The group G0
` (H) is reductive and the map (1.4.1) is surjective.

The reductivity of G0
` (H) is equivalent to the condition that the representation ρH,` is completely

reducible.
Similarly, an element ξ ∈ HB = H2i

(
XC,Q(i)

)
is called a Hodge class if ξ is purely of

type (0, 0) in the Hodge decomposition, which is equivalent to the condition that ξ is invariant
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under GB(H). Writing Bi(X) ⊂ HB for the subspace of Hodge classes we have a cycle class
map cl : CHi(XC)→ Bi(X) and the Hodge conjecture asserts that this map is surjective. (It is
known that GB(H) is reductive.)

In view of the importance of these results for the present paper, let us recall that Faltings
has proven TC1 for abelian varieties. As is well-known, this result follows from the result about
endomorphisms of abelian varieties stated as [18], Theorem 1. When working withQ`-coefficients,
the two versions are in fact equivalent. Faltings’s result is mostly used in this paper in the version
dealing with endomorphisms.

1.5 Proposition. Let K ⊂ L be a finitely generated field extension. Let X be a complete
non-singular variety over K. Then TCi(XL)⇔ TCi(X).

Proof. For the complete reducibility of the Galois representation this is immediate from Propo-
sition 1.3(i), as this assertion only depends on G0

` (H) and G0
` (HL). For the surjectivity of the

cycle class map, the implication “⇐” is clear. For the converse we may assume the extension
K ⊂ L is generated by one element. If the extension is algebraic (and hence finite), it is clear
that TCi(XL) implies TCi(X). It therefore suffices to prove the assertion in the situation that
L is the function field of a curve C over K with a K-rational point t ∈ C(K). In that case the
assertion follows from the compatibility of the cycle class map with specialization. (Use [16],
Cycle, Théorème 2.3.8.)

1.6 The above results allow us to formulate the Mumford-Tate conjecture and the Tate con-
jecture for motives over C.

If V is a motive over C, choose a subfield K ⊂ C that is finitely generated over Q and a
motive W over K with WC ∼= V . Define G0

` (V ) to be G0
` (W ), viewed as an algebraic subgroup

of GL(V`) via the comparison isomorphism W`
∼−→ V`. By Proposition 1.3, this is independent

of the choice of K and W . The Mumford-Tate conjecture for V is then the assertion that
GB(V ) ⊗ Q` = G0

` (V ) as subgroups of GL(V`). For any choice of K and W as above this is
equivalent to the Mumford-Tate conjecture for W .

Next let X be a complete non-singular variety over C. For i ≥ 0, let H = H2i(X)
(
i
)
,

and let T i(X) ⊂ H` be the subspace of G0
` (H)-invariants. Then TCi(X) is the assertion that

G0
` (H) is reductive and that cl : CHi(X) ⊗ Q` → T i(X) is surjective. For any form XK of X

over a finitely generated field K, this is again equivalent to the Tate conjecture on cycles of
codimension i for XK .

1.7 As long as we do not know that motivated cycles are algebraic, it does not make sense to
formulate the Tate conjecture for arbitrary motives. In this paper we shall make one exception to
this. Namely, suppose we are given a submotive V ⊂H2(X)

(
1
)
for some complete non-singular

complex variety X. As before, we define the space of Tate classes T (V ) ⊂ V` to be the space
of G0

` (V )-invariants in V`. Let pr: T 1(X)→→ T (V ) be the projection defined by the projector
that cuts out the submotive V ⊂ H2(X)

(
1
)
. Then by the Tate conjecture for V we mean the

assertion that G0
` (V ) is reductive and that the composition

pr ◦ cl : CH1(X)⊗Q` → T 1(X)→→ T (V )

is surjective. By the Lefschetz theorem on divisor classes, surjectivity of this map is equivalent
to the assertion that B(V ) ⊗ Q` = T (V ) as subspaces of V`, where B(V ) = V GB(V ) is the
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space of Hodge classes.
If V is given as a submotive of H2(X) then by the Tate conjecture for V we mean the Tate

conjecture for V (1).

1.8 Remarks. (i) If the Mumford-Tate conjecture is true for some motive V , it is also true
for any submotive V ′ ⊂ V . Indeed, we can decompose V = V ′⊕V ′′; then GB(V ) ⊂ GB(V ′)×
GB(V ′′) and G0

` (V ) ⊂ G0
` (V

′)×G0
` (V

′′), and in both cases the projection to the first factor is
surjective.

(ii) If the Mumford-Tate conjecture is true for V , it is also true for any Tate twist V (n). To
see this, we first note that the Mumford-Tate conjecture can also be phrased as the conjectural
equality gB(V )⊗Q` = g`(V ) of Lie subalgebras of End(V`).

View GB

(
V ⊕ 1(1)

)
as an algebraic subgroup of GB(V ) × Gm. If V has weight zero then

GB

(
V ⊕ 1(1)

)
= GB(V ) × Gm; if the weight is not zero, the first projection GB

(
V ⊕ 1(1)

)
→

GB(V ) is an isogeny and hence it gives an isomorphism on Lie algebras. For the groups G0
` the

analogous assertions are true. Further,

GB

(
V ⊕ 1(1)

) ∼−→ GB

(
V (1)⊕ 1(1)

)
and G0

`

(
V ⊕ 1(1)

) ∼−→ G0
`

(
V (1)⊕ 1(1)

)
where in both cases the isomorphism is the one induced from the isomorphism GL(V )×Gm

∼−→
GL
(
V (1)

)
× Gm given by (A, c) 7→ (cA, c). Combining these remarks we see that MTC(V ) is

equivalent to MTC
(
V (n)

)
.

1.9 Let X be a non-singular projective variety of dimension d over a field K of characteristic 0.
Let πj denote the Künneth projector that cuts out the motive Hj(X). For i ≥ 0 and n ∈ Z we
have maps CHd(X × X) ⊗ Q → EndMotL

(
H2i(X)(n)

)
given by γ 7→ π2i ◦ cl(γ) ◦ π2i. We say

that a submotive V ⊂H2i(X)
(
n
)
is cut out by an an algebraic cycle if it is given by a projector

in EndMotL

(
H2i(X)(n)

)
that lies in the image of this map.

The property of being cut out by an algebraic cycle is invariant under extension of scalars:
if K ⊂ L is a field extension then V ⊂ H2i(X)

(
n
)
is cut out by an algebraic cycle if and only

if the same is true for VL ⊂ H2i(XL)
(
n
)
. If K ⊂ L is algebraic, this follows from an easy

Galois argument; the general case then follows from the fact that for an extension K ⊂ L of
algebraically closed fields, the map CH(X)Q/∼hom → CH(XL)Q/∼hom is bijective.

1.10 Let V be a motive over a field K ⊂ C. As MotK is a semisimple category, V canonically
decomposes as a direct sum of isotypic components. The motivic Galois group Gmot(V ) sits in a
short exact sequence 1 −→ Gmot(VC) −→ Gmot(V ) −→ Gal(L/K) −→ 1 for some finite Galois
extension L/K. (Cf. [3], the end of Section 4, and note that Gmot(VK̄) ∼= Gmot(VC), as follows
from the Scolie in ibid., 2.5.) Hence there is a unique isotypic component V alg of V (possibly
zero) such that (V alg)C ∼= 1⊕r for some r. We define V tra to be the direct sum of all other
isotypic components of V ; this gives us a canonical decomposition V = V alg ⊕ V tra.

If V ⊂ H2(X)
(
1
)
for some smooth projective variety X, it follows from the Lefschetz

theorem on divisor classes that there are no non-zero Hodge classes in the Betti realization
of V tra; hence on Hodge realizations, VB = V alg

B ⊕ V tra
B is just the decomposition of VB into its

algebraic and transcendental parts. Further, in this situation V ⊂ H2(X)
(
1
)
is cut out by an

algebraic cycle if and only if the same is true for V tra.
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2. An `-adic analogue of a result of Zarhin

2.1 We start by reviewing some results of Zarhin in [44]. Let (H,φ) be a polarized Hodge
structure of K3-type. We assume H has trivial algebraic part, by which we mean that H∩H0,0

C =

(0). By [44], Theorem 1.5.1, the endomorphism algebra E = EndQHS(H) is a field which is either
totally real or a CM-field.

If E is totally real, let φ̃ : H×H → E be the E-bilinear lift of φ. (See 0.10(c).) In this case,
[44], Theorem 2.2.1 gives that the Mumford-Tate group of H is the group SOE/Q(H, φ̃), with
notation as in 0.10(d).

If E is a CM-field, let E0 ⊂ E be the totally real subfield and e 7→ ē the complex conjugation
on E. Let φ̃ : H ×H → E be the E-valued hermitian lift of φ. (Again see 0.10(c).) In this case,
Zarhin’s result, [44], Theorem 2.3.1, is that the Mumford-Tate group of H is the unitary group
UE/Q(H, φ̃).

2.2 The goal of this section is to prove an `-adic analogue of Zarhin’s results. This is based on
Pink’s results in [30]. For later purposes it will be convenient to first generalize these results to
the case of a finitely generated ground field.

Let K ⊂ C be as in 1.1 and consider a projective non-singular variety Y over K. Let H be a
submotive of H2i(Y )

(
i
)
for some i ≥ 0 that is cut out by an algebraic cycle (see 1.9). We denote

by Gred
` (H) the reductive quotient of G0

` (H) and let V` be the semi-simplification of H` as a
representation of G0

` (H). We have Gred
` (H) ⊂ GL(V`). A cocharacter µ : Gm,Q`

→ Gred
` (H)Q`

gives rise to a grading
V`,Q` =

⊕
j∈Z

V j

`,Q`

where, by convention, the summand V j

`,Q`
is the subspace of V`,Q` on which Gm,Q`

acts through

the character z 7→ z−j .
The following notion was introduced in [30], Def. 3.17.

2.3 Definition. We call a cocharacter µ of Gred
` (H) over Q` a weak Hodge cocharacter if

dim(V j

`,Q`
) = dimC(Hj,−j

B ) for all j ∈ Z.

The following result is a slight generalization of a theorem of Pink in [30]. The result is
stated in loc. cit. only over number fields, and only for motives of the form Hj(Y ); however,
the arguments also apply to submotives H ⊂H2i(Y )

(
i
)
that are cut out by an algebraic cycle.

(This condition is needed to ensure that H gives rise to a strictly compatible system of `-adic
Galois representations; cf. the comments following [30], Definition 3.1.) As we shall now explain,
the result also extends to finitely generated ground fields.

2.4 Theorem. With notation and assumptions as in 2.2, Gred
` (H)Q` is generated by the images

of the weak Hodge cocharacters.

Proof. This follows from Pink’s results by a specialization argument. If k is the algebraic closure
of Q in K, there exist a smooth proper morphism of k-varieties f : X → S, and an algebraic
cycle Z ⊂ X, flat over S, such that:

— k(S) ∼= K and the generic fibre Xη of f is isomorphic to Y ;

9



— for s ∈ S, the motivated cycle π2i ◦ [Zs] ◦ π2i on Xs × Xs cuts out a submotive Ms ⊂
H2i(Xs)

(
i
)
such that Mη = H.

Base change via k ↪→ C gives a smooth projective family fC : XC → SC, and the Hodge
realizations of the submotives Ms for s ∈ S(C) are the fibres of a sub-VHS of R2ifC,∗Q(i).
In particular, the Hodge numbers of the motives Ms equal the Hodge numbers of the Betti
realization of H. The `-adic realizations of the Ms are the fibres of a smooth Q`-subsheaf of
R2if∗Q`(i). If t is a point of S, write Gt,` = G`(Mt), and let Vt,` be the semi-simplification
of Mt,` as a representation of G0

t,`.
Choosing geometric points s̄ above s and η̄ above η, we get a specialization isomorphism

Mη,`
∼−→ Ms,`. Taking this as an identification, Gs,` ⊆ Gη,`. By a result of Serre (see [36],

Section 1 and [37], Section 10.6), there are infinitely many closed points s ∈ S such that Gs,` =

Gη,`. For such points s we then have an isomorphism Vs,`
∼−→ Vη,` and Gred

s,` = Gred
η,` . The theorem

now follows by applying [30], Theorem 3.18 (which is valid for submotives cut out by an algebraic
cycle) to Ms.

2.5 Let V be a finite dimensional vector space over a field k of characteristic 0, equipped with
a non-degenerate symmetric bilinear form φ : V × V → k.

If µ : Gm,k̄ → O(Vk̄, φ) is a cocharacter and Vk̄ = ⊕V j

k̄
is the corresponding grading of Vk̄

then V m
k̄

and V n
k̄

are orthogonal whenever m+n 6= 0, and φ gives rise to non-degenerate pairings
V −n
k̄
× V n

k̄
→ k̄. We shall say that µ is of K3 type if dim(V −1

k̄
) = dim(V 1

k̄
) = 1 and V n

k̄
= (0)

whenever |n| > 1.

2.6 Theorem. (i) Let G ⊂ SO(V, φ) be a connected reductive subgroup such that Gk̄ is generated
by the images of cocharacters of K3 type. Then V , as a representation of G, has a decomposition

V = V0 ⊕ V1 ⊕ · · · ⊕ Vt ⊕ Vt+1 ⊕ · · · ⊕ Vt+u

such that
(1) V0 = V G,
(2) Vi and Vj are non-isomorphic if i 6= j,
(3) the form φi : Vi × Vi → k obtained by restriction of φ is non-degenerate,
(4) for i ∈ {1, . . . , t} the endomorphism algebra Ei = EndG(Vi) is a field, and φi(ev, w) =

φ(v, ew) for all e ∈ Ei and v, w ∈ Vi,
(5) for i ∈ {t + 1, . . . , t + u} the endomorphism algebra Ei = EndG(Vi) is an étale quadratic

extension of a field Ei,0, and if e 7→ ē is the unique non-trivial automorphism of Ei over Ei,0,
we have φi(ev, w) = φ(v, ēw) for all e ∈ Ei and v, w ∈ Vi.

Up to permutation of the summands V1 . . . , Vt and Vt+1, . . . , Vt+u, the decomposition is unique.
(ii) For i > 0, let Gi be the image of G in O(Vi, φi). Then each Gi,k̄ is again generated by

cocharacters of K3 type and G =
∏t+u
i=1 Gi as subgroups of

∏t+u
i=1 O(Vi, φi).

(iii) For i ∈ {1, . . . , t} we have Gi = SOEi/k(Vi, φ̃i), where φ̃i : Vi×Vi → Ei is the Ei-bilinear
lift of φi. For i ∈ {t + 1, . . . , t + u} we have Gi = UEi/k(Vi, φ̃i), where φ̃i : Vi × Vi → Ei is the
Ei-valued hermitian lift of φi.

Proof. (i) LetW ⊂ V be an isotypic component on which G acts non-trivially, so that EndG(W )

is a simple k-algebra. If U is an isotypic component of Wk̄ as a representation of Gk̄, there is a
cocharacter µ : Gm,k̄ → Gk̄ of K3 type that gives a non-trivial grading of U . But dim(V −1

k̄
) =
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dim(V 1
k̄

) = 1 for the grading of Vk̄ given by µ; so U is necessarily an irreducible representation
of Gk̄. Hence EndG(W ) is a field, and we conclude that the non-trivial isotypic components of V
are all irreducible.

If φ|W is degenerate, it is the zero form. In this case there is a unique irreducible summand
W ′ such that φ restricts to a non-degenerate form on W ⊕W ′. With E = EndG(W ) we have
EndG(W ⊕W ′) ∼= E × E, such that the involution induced by φ is given by (e1, e2) 7→ (e2, e1),
which is of the second kind. If φ|W is non-degenerate, let e 7→ ē be the involution of E =

EndG(W ) induced by φ.
Let V1, . . . , Vt be the irreducible summands of V on which φ is non-zero and such that the

involution on EndG(Vi) is trivial (i.e., of the first kind). Let Vt+1, . . . , Vt+u be the remaining
irreducible summands on which φ is non-zero (with involution of the second kind on EndG(Vi)),
together with all W ⊕W ′ as above for which φ|W = φ|W ′ = 0. Together with V0 = V G this gives
the stated decomposition.

(ii) Choose a decomposition as in (i). We view G as an algebraic subgroup of
∏t+u
i=1 O(Vi, φi);

in particular this gives us homomorphisms ri : G→ O(Vi, φi).
Let S be the set of cocharacters of Gk̄ that are of K3 type. If µ ∈ S , there is a unique

index i ∈ {1, . . . , t + u} such that the induced action of Gm,k̄ on Vi,k̄ is non-trivial. This gives
a decomposition S =

∐t+u
i=1 Si. Clearly the subsets Si are stable under the action of G(k̄)

on S by conjugation. Also they are stable under the natural action of Gal(k̄/k). Hence we have
normal subgroups Hi of G (over k) such that Hi,k̄ is generated by the cocharacters in Si.

If µ ∈ Si then the induced action of Gm,k̄ on Vj,k̄ is trivial for all j 6= i. It follows that
Hi ⊂ O(Vi, φi) (viewed as algebraic subgroup of O(V, φ)), and because G is generated by all
images of cocharacters of K3 type, G =

∏t+u
i=1 Hi. A fortiori, Hi is the image of G in O(Vi, φi),

i.e., Hi = Gi.
(iii) As in Zarhin’s paper [44], the argument is based on Kostant’s results in [22]. Kostant

states the Corollary to his main theorem (loc. cit., p. 107) over C; this implies the same result
over an arbitrary algebraically closed field of characteristic 0, as all objects involved are defined
over a subfield that admits an embedding into C.

For i ∈ {1, . . . , t} we have Gi,k̄ ⊂
∏
σ : Ei→k̄ SO(Vi,σ, φ̃i,σ), where Vi,σ = Vi ⊗Ei,σ k̄ and φ̃i,σ

denotes the bilinear extension of φ̃i to a form on Vi,σ. By the same arguments as in the proof
of (ii) we have connected subgroups Hσ ⊂ SO(Vi,σ, φ̃i,σ) such that Gi,k̄ =

∏
σ Hσ. Each Hσ is

generated by the images of cocharacters of K3 type, and its representation on Vi,σ is irreducible.
By Kostant’s result, Hσ = SO(Vi,σ, φ̃i,σ); hence Gi = SOEi/k(Vi, φ̃i).

For i ∈ {t + 1, . . . , t + u}, let Σ0 be the set of embeddings Ei,0 → k̄. For τ ∈ Σ0 we have
a unique Gk̄-stable decomposition of Vi,τ = Vi ⊗(Ei,0),τ k̄ as Vi,τ = W ⊕ W ′ and the bilinear
extension of the hermitian form φ̃i to Vi,τ induces a duality W ′ ∼= W∨. Then U(Vi,τ , φ̃i,τ ) ∼=
GL(W ), with GL(W ) acting on W and W ′ through the tautological representation and its
contragredient, respectively. As before we have connected subgroups Hτ ⊂ U(Vi,τ , φ̃i,τ ) such that
Gi,k̄ =

∏
τ∈Σ0

Hτ and each Hτ is generated by cocharacters of K3 type. If µ is a cocharacter of
K3 type of Gi,τ that has a non-trivial projection to Hτ , this induces a non-trivial grading of W
with W j = (0) if |j| > 1 and either dim(W−1) = 1 and dim(W 1) = 0 or dim(W−1) = 0 and
dim(W 1) = 1. By Kostant’s result it follows that Hτ = GL(W ); hence Gi = UEi/k(Vi, φ̃i).

2.7 Corollary. Let G ⊂ G′ ⊂ SO(V, φ) be connected reductive subgroups such that Gk̄ and G′
k̄

are both generated by images of cocharacters of K3 type. If EndG′(V )
∼−→ EndG(V ) then G = G′.
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Proof. The proposition implies that G is the identity component of the commutant of EndG(V )

inside SO(V, φ); likewise for G′.

2.8 Remark. Let k ⊂ L be an extension of fields of characteristic 0. If G ⊂ SO(V, φ) is a
connected reductive subgroup such that Gk̄ is generated by images of cocharacters of K3 type
then the same is true for GL̄ ⊂ SO(VL̄, φ): use that Gk̄ is Zariski dense in GL̄.

2.9 Remark. Theorem 2.6 and its Corollary 2.7 fill what appears to be a gap in André’s
paper [2]. Specifically, the last sentence of loc. cit., Section 7.4, is correct but only refers to the
setting of Hodge-Tate modules, i.e., local Galois representations. The above results provide the
needed analogue for global Galois representations.

3. Norm functors (a.k.a. corestrictions)

3.1 We shall need some basic results about the norm, or “corestriction”, of algebraic structures.
A basic reference for this is Ferrand’s paper [19]; see also [35]. We only need these notions for
an extension k → E where k is a field of characteristic 0 and E is a finite étale k-algebra, i.e.,
a finite product of finite field extensions of k, and for our purposes in this paper it suffices to
consider only neutral Tannakian categories.

Let

(3.1.1) NmE/k : ModE → Modk

be the norm functor defined in [19]. IfM is an E-module, NmE/k(M) is a k-form of ⊗σMσ, where
the tensor product is taken over the set of k-homomorphisms σ : E → k̄ and Mσ = M ⊗E,σ k̄.
By definition of the norm functor we have a polynomial map νM : M → NmE/k(M) such that
νM (em) = NormE/k(e) · νM (m) for all e ∈ E and m ∈M .

The norm functor is a ⊗-functor (non-additive, unless E = k). It has the property that
NmE/k

(
HomE(M1,M2)

)
= Homk

(
NmE/k(M1),NmE/k(M2)

)
.

As shown in [19], if A is an E-algebra, NmE/k(A) has a natural structure of a k-algebra;
this gives a functor

NmE/k : AlgE → Algk

that on the underlying modules is the norm functor (3.1.1). The polynomial map νA : A →
NmE/k(A) is multiplicative; see [19], Prop. 3.2.5. If A is a central simple E-algebra, NmE/k(A)

is what is classically called the corestriction of A to k, which is a central simple k-algebra.
Let G be an affine E-group scheme with affine algebra A = Γ(G,OG). Then NmE/k(A) has

a natural structure of a commutative Hopf algebra over k and this is the affine algebra of the
k-group scheme ResE/kG. (See [19], Prop. 6.2.2.)

Let V be an E-module of finite type, and write N(V ) = NmE/k(V ). We have a natural
homomorphism η : ResE/kGL(V ) → GL

(
N(V )

)
. On k-valued points it is the homomorphism

that sends an E-linear automorphism f ∈ GL(V ) to NmE/k(f). If V is a faithful E-module,
Ker(η) = T 1

E ⊂ ResE/kGL(V ), with notation as in 0.10(e). If V is not a faithful E-module,
N(V ) = 0 and η is trivial.
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3.2 Let G be an affine group scheme over k and consider the neutral Tannakian category
C = Repk(G ). Let C(E) be the category of E-modules in C . Then C(E) is RepE(GE).

Let V be an E-module of finite type. Denote the underlying k-vector space by V(k). We
assume given a representation ρ̃ : GE → GL(V ), making V into an object of C(E). Note that to
give ρ̃ is equivalent to giving a homomorphism G → ResE/kGL(V ). This, in turn, is equivalent
to giving ρ : G → GL(V(k)) such that the E-action on V commutes with the G -action. The
homomorphism ρ makes V(k) into an object of C , and V 7→ V(k) (or better: ρ̃ 7→ ρ) is the
forgetful functor C(E) → C .

3.3 Keeping the notation of 3.2, the Tannakian subcategory 〈V(k)〉⊗ ⊂ C generated by V(k)

is equivalent to Repk(G), where G := Im(ρ) ⊂ ResE/kGL(V ) ⊂ GL(V(k)). The Tannakian
subcategory 〈V 〉⊗ ⊂ C(E) generated by V is equivalent to Repk(GE), where GE is the image
of the natural homomorphism GE → GL(V ). Note that the quotient map GE →→ GE is not
injective, in general; this corresponds to the fact that not every E-module in 〈V(k)〉⊗ comes
from an object of 〈V 〉⊗. As an example, suppose G = ResE/kH for some algebraic subgroup
H ⊂ GL(V ). In this case GE = H and GE →→ GE is the canonical quotient map GE → H.

3.4 With V as in 3.2 we can also form the k-vector space N(V ) = NmE/k(V ) and consider the
representation

G ↪→ ResE/kGL(V )
η−→ GL

(
N(V )

)
,

where η is the homomorphism defined in 3.1. This makes N(V ) into an object of 〈V(k)〉⊗ ⊂ C .
If V is a faithful E-module, the Tannakian subcategory 〈N(V )〉⊗ ⊂ C is equivalent to Rep(G1),
where G1

∼= G/(G ∩ T 1
E) is the image of G in GL

(
N(V )

)
.

Associating N(V ) = NmE/k(V ) to V defines a ⊗-functor N : C(E) → C , which is non-
additive, unless k = E. We again call this N a norm functor.

For V as above we have a natural map EndC(E)
(V )→ EndC

(
N(V )

)
. This is a “normic law”

in the sense of [19]; by definition of the norm functor it therefore factors as

(3.4.1) EndC(E)
(V )

ν−→ NmE/k

(
EndC(E)

(V )
) α−→ EndC

(
N(V )

)
with α a homomorphism of k-algebras.

3.5 Lemma. With notation as above, suppose G = ResE/kH for an algebraic subgroup H ⊂
GL(V ).

(i) The homomorphism α in (3.4.1) is an isomorphism.
(ii) The natural map N(V H)→ N(V )G is an isomorphism.

Proof. It suffices to prove the assertions after extension of scalars to k̄. Let Σ(E) be the set of
k-homomorphisms E → k̄, and for σ ∈ Σ(E) let a subscript “σ” denote the extension of scalars
from E to k̄ via σ. Then the assertions just say that⊗

σ∈Σ(E)

End(Vσ)Hσ
∼−→ End

( ⊗
σ∈Σ(E)

Vσ

)∏
σ Hσ

and
⊗

σ∈Σ(E)

(Vσ)Hσ
∼−→
( ⊗
σ∈Σ(E)

Vσ

)∏
σ Hσ

,

which are clear.
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3.6 From the description of the norm functor given in 3.4, it is not clear whether this functor
depends on the choice of a fibre functor on C . An alternative description, from which it is
clear that it does not depend on such a choice, and that at the same time allows to extend
the construction to more general tensor categories (including non-neutral Tannakian categories),
is the following. It is important here that char(k) = 0, so that the symmetric algebra of a
k-module W is the same as the divided power algebra Γk(W ). We have not yet attempted to
extend the construction to coefficient fields of positive characteristic.

Let d = [E : K]. As explained in [19], Section 2.4, Symd
k(E) has the structure of a k-algebra.

The norm map NormE/kE → k, which is a homogeneous polynomial map of degree d, induces
an augmentation Symd

k(E) → k (i.e., a homomorphism of k-algebras that is a section of the
structural homomorphism k → Symd

k(E)). The norm functor N : C(E) → C associates to an
object M of C(E) the object

Symd
k

(
M(k)

)
⊗Symd

k(E) k .

(Cf. [19], the construction in the proof of Théorème 3.2.3.) For f : M →M ′ a morphism in C(E),
the induced N(f) : N(M)→ N(M ′) is given by Symd(f)⊗ id.

3.7 Example. For E a number field, consider the norm functor N : QHS(E) → QHS. Let
Σ(E) be the set of complex embeddings of E. If V is a Q-Hodge structure of weight n
on which E acts, we have a decomposition VC = ⊕σ∈Σ(E) VC(σ) and for each σ a decom-
position VC(σ) = ⊕p+q=n VC(σ)p,q, such that complex conjugation on VC restricts to bijec-
tions VC(σ)p,q

∼−→ VC(σ̄)q,p. If Ẽ is the normal closure of E in C we have a decomposition
VẼ = ⊕σ∈Σ(E) VẼ(σ), and the Q-vector space N(V ) = NmE/Q(V ) is the space of Gal(Ẽ/Q)-
invariants in ⊗σ∈Σ(E) VẼ(σ). It has Q-dimension dimE(V )[E:Q]. The Hodge decomposition of
N(V )C = ⊗σ∈Σ(E) VC(σ) is given by

N(V )i,jC =
∑
(p,q)

⊗
σ∈Σ(E)

VC(σ)p(σ),q(σ)

where the sum is taken over all functions (p, q) : Σ(E)→ Z2 with
∑

σ p(σ) = i and
∑

σ q(σ) = j.
In particular, N(V ) is a pure Hodge structure of weight n · [E : Q].

3.8 Remarks. (i) To avoid confusion, let us note that the norm functor N : C(E) → C is not
additive, in general; in particular, it is not adjoint to the extension of scalars functor C → C(E).
Also note that in the previous example V and N(V ) in general have different weight (and can
even have weights of different parity); this shows that in general there are no non-zero morphisms
between V(k) and N(V ).

(ii) If F : C → C ′ is a k-linear exact faithful ⊗-functor between neutral Tannakian categories
over k, we have an induced functor F(E) : C(E) → C ′(E), and F is compatible with norms in the
sense that NmE/k ◦ F(E) = F ◦NmE/k.

3.9 Let E be a finite étale Q-algebra, i.e., a finite product of number fields. For the present
paper, the main application of the theory of norms is that we have functors NmE/Q : Mot(E) →
Mot. By (ii) of the preceding remarks, this norm functor is compatible with the analogous
functors on realizations.

Let V be a motive over C with a faithful action of E by endomorphisms, and write N(V ) =

NmE/Q(V ). The following result gives some relations between the Tate and Mumford-Tate
conjectures for V and those for N(V ). As always, ` is some fixed prime number.
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3.10 Proposition. (i) The group G0
` (V ) is reductive if and only if G0

`

(
N(V )

)
is reductive.

(ii) If the Mumford-Tate conjecture for V is true then also the Mumford-Tate conjecture
for N(V ) is true.

(iii) Suppose there exists a non-degenerate symmetric E-bilinear form φ̃ : V × V → E such
that Gmot(V ) ⊆ OE/Q(V, φ̃). Then the Mumford-Tate conjecture for N(V ) implies the Mumford-
Tate conjecture for V .

(iv) If W1 and W2 are motives, the Mumford-Tate conjecture for W1 ⊕W2 implies the
Mumford-Tate conjecture for W1 ⊗W2.

Proof. As a special case of what was discussed in 3.4, we have isomorphisms

(3.10.1) GB(V )/Z
∼−→ GB

(
N(V )

)
and G0

` (V )/Z`
∼−→ G0

`

(
N(V )

)
,

where Z = GB(V ) ∩ T 1
E and Z` = G0

` (V ) ∩ (T 1
E ⊗ Q`). Part (ii) follows, and (iv) is the special

case of (ii) where E = Q×Q.
By [5], Corollary 14.11, if we abbreviate G0

` (V ) to G` and if π : G` → G` = G`/Z` is the
quotient map, π

(
Ru(G`)

)
= Ru(G`). On the other hand, as T 1

E is a torus, Ru(G`)∩ (T 1
E ⊗Q`) =

{1}. Hence Ru(G`)
∼−→ Ru(G`), which proves (i).

(iii) Because Gmot(V ) ⊆ OE/Q(V, φ̃), the above group schemes Z and Z` are finite. As all
groups in question are connected, it follows from (3.10.1) that MTC

(
N(V )

)
implies MTC(V ).

4. The Kuga-Satake construction in the presence of nontrivial
endomorphisms

4.1 Notation and conventions. Throughout this section, k is a field of characteristic 0 and
k ⊂ E is a finite étale extension. Choose an algebraic closure k ⊂ k̄. We denote by Σ(E) the
Gal(k̄/k)-set of k-algebra homomorphisms E → k̄.

It will be convenient to denote restrictions of scalars and norms (=corestrictions) by a
subscript “E/k”. (Cf. 0.10.) For instance, if V is an E-module equipped with a symmetric bilinear
form φ̃ and C+(V, φ̃) is the even Clifford algebra, we write SOE/k(V, φ̃) for ResE/kSO(V, φ̃) and
C+
E/k(V, φ̃) for the k-algebra NmE/kC

+(V, φ̃).
A subscript “(k)” indicates that we forget the E-structure on an object. For instance, with

V as above, V(k) denotes the underlying k-vector space.
For σ ∈ Σ(E), a subscript “σ” denotes an extension of scalars via σ. Thus, for instance,

Vσ = V ⊗E,σ k̄ and φ̃σ denotes the extension of φ̃ to a k̄-bilinear form on Vσ.

4.2 Let V be a nonzero free E-module of finite rank, equipped with a non-degenerate symmetric
E-bilinear form φ̃ : V ×V → E. We denote by φ = traceE/k ◦ φ̃ : V(k)×V(k) → k its transfer. We
then have an isomorphism of Clifford algebras CE/k(V, φ̃)

∼−→ C(V(k), φ), inducing an injective
homomorphism

(4.2.1) C+
E/k(V, φ̃) ↪→ C+(V(k), φ) .

Left multiplication in the even Clifford algebra gives rise to a representation

ρspin : CSpinE/k(V, φ̃)→ GL
(
C+
E/k(V, φ̃)

)
.
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The kernel of this representation is the subtorus T 1
E ⊂ CSpinE/k(V, φ̃), with notation as in 0.10(e).

We denote the quotient group CSpinE/k(V, φ̃)/T 1
E by CSpinE/k(V, φ̃).

We also have a representation

ρad : CSpinE/k(V, φ̃)→→ SOE/k(V, φ̃)→ GL
(
C+
E/k(V, φ̃)

)
,

obtained from the action of SO(V, φ̃) on C+(V, φ̃) by transport of structure.
Let

D = C+
E/k(V, φ̃) ,

which is a semisimple k-algebra. We shall use the notation D when it appears in its role as
algebra, and write C+

E/k(V, φ̃) for the underlying k-vector space, which enters the discussion
in a different role. The right multiplication of D on C+

E/k(V, φ̃) commutes with the action of
CSpinE/k(V, φ̃) via ρspin. We have an isomorphism of CSpinE/k(V, φ̃)-representations

(4.2.2) C+
E/k(V, φ̃)ad

∼= EndD
(
C+
E/k(V, φ̃)spin

)
,

where the subscripts “ad” and “spin” indicate through which representation CSpinE/k(V, φ̃) acts.

4.3 Through the homomorphism (4.2.1), we have a homomorphism

CSpinE/k(V, φ̃)→→ CSpinE/k(V, φ̃) ↪→ CSpin(V(k), φ) .

The algebraic subgroup CSpinE/k(V, φ̃) ⊂ CSpin(V(k), φ) is the inverse image of SOE/k(V, φ̃) ⊂
SO(V(k), φ) under the natural homomorphism CSpin(V(k), φ)→ SO(V(k), φ); so we have a diagram

CSpinE/k(V, φ̃)y
CSpinE/k(V, φ̃) ⊂ CSpin(V(k), φ)y y

SOE/k(V, φ̃) ⊂ SO(V(k), φ)

in which the square is cartesian.
Consider the representation

Rspin : CSpinE/k(V, φ̃)→ CSpin(V(k), φ)
rspin−−−→ GL

(
C+(V(k), φ)

)
,

where rspin is the spin representation of CSpin(V(k), φ). By construction, ρspin is a direct sum-
mand of Rspin.

4.4 Lemma. Let α be an algebra automorphism of D = C+
E/k(V, φ̃) that commutes with the

action of SpinE/k(V, φ̃) via ρad. Then α = idD.

Proof. We have
C+
E/k(V, φ̃)⊗k Q =

⊗
σ∈Σ(E)

C+(Vσ, φ̃σ)

and
SpinE/k(V, φ̃)⊗k Q =

∏
σ∈Σ(E)

Spin(Vσ, φ̃σ) .
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In this description the representation ρad is the exterior tensor product of the representations ρad

of the factors.
Consider a k̄-linear automorphism of ⊗C+(Vσ, φ̃σ) that commute with the adjoint action

of the group
∏

Spin(Vσ, φ̃σ). Any such automorphism is of the form α = ⊗ασ, where ασ is a
linear automorphism of C+(Vσ, φ̃σ) that commutes with the adjoint action of Spin(Vσ, φ̃σ). If
additionally α is an algebra automorphism, α(1) = 1 implies that we may rescale the ασ such
that ασ(1) = 1 for all σ. Then all ασ are algebra automorphisms and the assertion now follows
from [15], Proposition 3.5.

4.5 In the rest of this section we specialize the above to the case that k = Q and E is a totally
real number field.

Let (V, φ) be a polarized Hodge structure of K3-type. (See 0.10.) Suppose E acts on V

such that φ(ev, w) = φ(v, ew), and let φ̃ : V × V → E be the E-bilinear lift of φ. The Hodge
structure is then described by a homomorphism h : S → SOE/Q(V, φ̃)R ⊂ SO(V(Q), φ)R. As in
[15], 4.2, there is a unique lifting of h to a homomorphism h̃ : S → CSpin(V(Q), φ)R of weight 1,
and by what was discussed in 4.3, h̃ factors through CSpinE/Q(V, φ̃)R.

View ρspin and Rspin as representations of CSpinE/Q(V, φ̃). The representation ρspin ◦ h̃
defines a Q-Hodge structure on C+

E/Q(V, φ̃). Similarly, Rspin ◦ h̃ defines a Q-Hodge structure
on C+(V(Q), φ), which by [15], Section 4, is polarizable and of type (1, 0) + (0, 1). As ρspin is
a direct summand of Rspin, it follows that the Hodge structure C+

E/Q(V, φ̃) is polarizable and
of type (1, 0) + (0, 1), too. Moreover, as the algebra D = C+

E/Q(V, φ̃) acts on C+
E/Q(V, φ̃) (from

the right) by Hodge-endomorphisms, this defines a complex abelian variety A (up to isogeny;
see our conventions in 0.10) with multiplication by D. We refer to A with its D-action as the
Kuga-Satake variety associated with (V, φ̃). It follows from the construction together with (4.2.2)
that we have an isomorphism of Q-Hodge structures

u(V,φ̃) : C+
E/Q(V, φ̃) ∼= EndD

(
H1(A,Q)

)
.

4.6 Remark. The representation Rspin ◦ h̃ is the one that defines the “classical” Kuga-Satake
abelian variety associated with V ; let us call it B. The fact that ρspin is a direct summand
of Rspin implies that A, the new Kuga-Satake abelian variety “relative to the given E-action” is
an isogeny factor of B.

4.7 The construction of the Kuga-Satake abelian variety also works in families. Let S be
a non-singular complex algebraic variety and (V, φ) a polarized VHS of K3 type over S with
multiplication by a totally real field E. (This means we are given a homomorphism E →
EndQVHSS (V) and that φ(ev, w) = φ(v, ew) for e ∈ E and local sections v and w of V.) Fix a
base point t ∈ S and write V = V(t) for the fibre at t. We assume that the VHS comes from a
Z-VHS over S; this just means that there exists a lattice in V that is stable under the action of
π1(S, t). In this situation, there exist a finite étale cover π : S′ → S, an abelian scheme g : A→ S′

(up to isogeny) with multiplication by the algebra D = C+
E/k(V, φ̃), and an isomorphism

u(V,φ̃) : π∗C+
E/Q(V, φ̃)

∼−→ EndD(R1g∗QA)

of algebras in the category QVHSS′ . It is of course understood here that the fibre of A→ S′ over
a point s′ ∈ S′ is the Kuga-Satake abelian variety associated with the fibre of V over π(s′) ∈ S.
The construction of A/S′ is an easy variation on what is explained in [15], § 5 and in [2], § 5.
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5. Motives with real multiplication

5.1 Let X be a non-singular complex projective variety. Let M ⊂ H2(X) be a submotive
that is cut out by an algebraic cycle (see 1.9), with dimC(M2,0

B,C) = 1. Suppose we have a
decomposition of the motive M(1) as M(1) = V ⊕ U , where U is spanned by divisor classes
on X. (So U ∼= 1⊕r for some r ≥ 0.) Suppose further that the motive V has multiplication by
a totally real field E. In what follows, V is viewed as a motive with E-action, i.e., an object of
MotC,(E), and V(Q) denotes the motive underlying V , forgetting the E-action.

The choice of an ample bundle on X gives us a pairing φ : V(Q) ⊗ V(Q) → 1. We assume
that the ample bundle can be chosen such that φ(ev, w) = φ(v, ew) for all e ∈ E. In this
case we have an E-bilinear lift φ̃ : V ⊗E V → 1E as in 0.10(c). (The lift φ̃ is an E-bilinear
pairing on the underlying vector space V ; writing it as a pairing on the motive just means that
Gmot(V ) ⊆ OE/Q(V, φ̃) = GLE(V ) ∩O(V(Q), φ).)

The goal of this section is to prove the following result. Let us note that this is not an end
result; rather, it is a piece of the puzzle that at some later moment (the end of the next section)
shall be put into place in order to prove some cases of our main theorem. The main point of the
argument is that we need to extract information about a motive V from the associated motive
C+
E/Q(V , φ̃). The essential ideas for the proof are all due to André [2]. The main novelty is that

we are now dealing with a norm of an even Clifford algebra, not the even Clifford algebra itself.
Unlike what happens in [2], it will not be the motive V but only its norm NmE/Q(V ) that, up
to a twist, can be recovered as a submotive of C+

E/Q(V , φ̃).

5.2 Proposition. Notation and assumptions as in 5.1. Assume that dimE(V ) = 2m + 1 is
odd. Further assume there exists a complex abelian variety A with multiplication by the (norm
of the) even Clifford algebra D = C+

E/Q(V, φ̃) and an isomorphism

(5.2.1) u : C+
E/Q(V , φ̃)

∼−→ EndD
(
H1(A)

)
of algebras in the category MotC. Then the Tate Conjecture and the Mumford-Tate conjecture
for the submotive M ⊂H2(X) are true.

To prove the Tate and Mumford-Tate conjectures forM , it suffices to prove these conjectures
for V .

5.3 With notation and assumptions as above, there exist
— a variety Y over a finitely generated field K ⊂ C and an isomorphism α : YC

∼−→ X;
— a submotive W ⊂ H2(Y )

(
1
)
that is cut out by an algebraic cycle, an action of E on W ,

and a form ψ̃ : W ⊗E W → 1E in MotK,(E) such that the isomorphism α∗ : H2(X)
(
1
) ∼−→

H2(YC)
(
1
)
restricts to an E-equivariant isomorphism V

∼−→ WC via which φ̃ corresponds
with ψ̃C;

— an abelian variety B/K with multiplication by D, and a D-equivariant isogeny BC
∼−→ A;

— an isomorphism C+
E/Q(W , ψ̃) ∼= EndD

(
H1(B)

)
of algebras in the category MotK that after

extension of scalars to C gives back the isomorphism (5.2.1).
In what follows we fix these data. The assertion we want to prove is that the Tate conjecture
and Mumford-Tate conjecture for W are true. As explained in Section 1, we may replace the
ground field K by a finite extension. In particular, we may, and will, further assume that
— the group G`(W ) is connected;
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— the 3-torsion of B is K-rational;
— the algebraic part W alg of W (see 1.10) is isomorphic to 1⊕m for some m.

5.4 We retain the notation and the conventions introduced in 4.1, taking k = Q. Let S =

S
(
Σ(E)

)
be the symmetric group on the set Σ(E). Let Q be the set of S-orbits in NΣ(E).

We give Q a poset structure by the rule that for orbits q and q′ we have q ≤ q′ if there exist
representatives ε, ε′ ∈ NΣ(E) such that ε(σ) ≤ ε′(σ) for all σ ∈ Σ(E). (Less canonically, the
elements of Q correspond to Young diagrams with [E : Q] rows, and q ≤ q′ if and only if the
Young diagram of q′ contains the diagram of q.)

Consider the motive C+
E/Q(W , ψ̃), which is an object of the category MotK . We have an

ascending filtration F• indexed by Q on this motive that can be described as follows. We think
of Gmot(W ) as an algebraic subgroup of OE/Q(W, ψ̃). The motive C+

E/Q(W , ψ̃) then corresponds
to the Gmot(W )-representation C+

E/Q(W, ψ̃).
Recall that dimE(W ) = 2m+ 1. We have

C+
E/Q(W, ψ̃)⊗Q Q =

⊗
σ∈Σ(E)

C+(Wσ, ψ̃σ) .

For i ∈ N and σ ∈ Σ(E), let Fσ,i ⊂ C+(Wσ, ψ̃σ) be the image of ⊕j≤2iW
⊗j
σ in C+(Wσ, ψ̃σ).

Note that Fσ,m = C+(Wσ, ψ̃σ) and that Fσ,m/Fσ,m−1
∼= ∧2mWσ

∼= W∨σ ⊗ det(Wσ).
For ε ∈ NΣ(E), let F̃ε = ⊗σ Fσ,ε(σ). For q ∈ Q we then define F̃q ⊂ ⊗σ C+(Wσ, ψ̃σ) to

be the linear span of all F̃ε for ε ∈ q. The Gal(Q/Q)-action on ⊗σ C+(Wσ, ψ̃σ) preserves the
subspaces F̃q. The space Fq = (F̃q)

Gal(Q/Q) ⊂ C+
E/Q(W, ψ̃) of Galois-invariants in F̃q is stable

under the action of OE/Q(W, ψ̃), and we define Fq ⊂ C+
E/Q(W , ψ̃) to be the corresponding

submotive.
Let q2 ∈ Q be the orbit of (m− 1,m, . . . ,m) and let q1 =

{
(m, . . . ,m)

}
∈ Q. Then q2 ≤ q1

and

Fq1/Fq2
∼= NmE/Q

(
∧2m
E W

)
∼= NmE/Q

(
W ∨ ⊗E detE(W )

)
∼= NmE/Q

(
W ⊗E detE(W )

)
∼= NmE/Q(W )⊗Q det(W(Q)) ,

where we use the isomorphism W ∨ ∼= W given by the form ψ̃. Because the category MotK

is semisimple, it follows that NmE/Q(W ) ⊗Q det(W(Q)) is (non-canonically) isomorphic to a
submotive of EndD

(
H1(B)

)
.

5.5 Let E` = E ⊗ Q`. By our assumptions, G`(W ) ⊂ OE`/Q`(W`, ψ̃`) is connected; hence
G`(W ) is in fact a subgroup of SOE`/Q`(W`, ψ̃`). By what was discussed in 3.4, the image of the
`-adic representation associated with the motive NmE/Q(W ) is isomorphic to G`(W )/Z`, where
Z` = G`(W )∩T 1

E`
, which is a finite central subgroup scheme of G`(W ). As the `-adic realization

of det(W(Q)) is trivial, the conclusion of 5.4 together with Faltings’s results in [18] imply that
G`(W )/Z`, and hence also G`(W ), is reductive. This implies that the `-adic representation ρW ,`

is completely reducible.
For the Mumford-Tate groups we have a similar situation. Let Z = GB(W ) ∩ T 1

E , which is
a finite central subgroup scheme of GB(W ); then

GB(W )/Z
∼−→ GB

(
NmE/Q(W )

)
= GB

(
NmE/Q(W )⊗ det(W(Q))

)
.
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As NmE/Q(W ) ⊗ det(W(Q)) lies in the category of abelian motives, it follows from Deligne’s
results in [17] that

G`(W )/Z ⊆
(
GB(W )/Z`

)
⊗Q`

as algebraic subgroups of GL
(
NmE/Q(W ) ⊗ det(W(Q)

)
⊗ Q`. As G`(W ) and GB(W ) are con-

nected groups, this implies that

(5.5.1) G`(W ) ⊆ GB(W )⊗Q`

as algebraic subgroups of GL(W(Q))⊗Q`.

5.6 By Zarhin’s result [44], Theorem 2.2.1, and its `-adic analogue Theorem 2.6, there exist
algebraic subgroups HB ⊂ GL(W ) (over E) and H` ⊂ GL(W`) (over E`) such that GB(W ) =

ResE/Q(HB) and G`(W ) = ResE`/Q`(H`).
Because NmE/Q(W )⊗Qdet(W(Q)) is isomorphic to a submotive of EndD

(
H1(B)

)
, Faltings’s

results imply that[
NmE/Q(WB)⊗Q det(WB,(Q))

]GB(W ) ⊗Q`
∼−→
[
NmE`/Q`(W`)⊗Q` det(W`,(Q`))

]G`(W )

under the comparison isomorphism between Betti and `-adic realizations. Because det(WB,(Q))

and det(W`,(Q`)) are trivial as representations of GB(W ) and G`(W ), respectively, Lemma 3.5(ii)
gives that

NmE`/Q`
(
WHB

B ⊗E E`
)

= NmE/Q
(
WHB

B

)
⊗Q Q`

∼−→ NmE`/Q`
(
WH`
`

)
.

On the other hand, WHB
B = W

GB(W )
B,(Q) and WH`

` = W
G`(W )
`,(Q`)

, so it follows from (5.5.1) that

WHB
B ⊗E E` ↪→ WH`

` under the comparison isomorphism WB ⊗E E`
∼−→ W`. Combining these

remarks we find that (
WB,(Q)

)GB(W ) ⊗Q Q`
∼−→
(
W`,(Q`)

)G`(W )
.

Because W is a submotive of H2(Y )
(
1
)
, all classes in (WB,(Q))

GB(W ) are algebraic by the
Lefschetz theorem on divisor classes. Hence all classes in (W`,(Q`))

G`(W ) are algebraic as well,
and together with the conclusions obtained in 5.5 this proves the Tate conjecture for divisor
classes on W (and hence on M ⊂H2(X)).

5.7 Notation. We fix an algebraic closure Q` ⊂ Q` containing Q. This gives an identification
of Σ(E) with the set of Q`-algebra homomorphisms E` → Q`. We shall use the notation Σ(E)

in both meanings. A subscript “σ” will denote an extension of scalars from E to Q or from E`

to Q`, as will be clear from the context. Let

E` = E` ⊗Q` Q` =
∏

σ∈Σ(E)

Q` .

Similarly, we let

W ` = W` ⊗Q` Q` =
⊕

σ∈Σ(E)

W`,σ and H
1
` (B) = H1

` (B)⊗Q` Q`

and, with D` = D ⊗Q Q`,

D` = D` ⊗Q` Q`
∼=

⊗
σ∈Σ(E)

C+(W`,σ, ψ̃σ) .
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For the proof of the Mumford-Tate conjecture, we shall need to compare the endomorphisms
of WB as a Hodge structure and of W` as a Galois representation. A key step is the following
result.

5.8 Proposition. Let β be a Gal(K̄/K)-equivariant E`-linear isometry of W `. Then β is in
the image of the map

EndQHS(E)
(WB)⊗E E` ↪−→ EndE`(W `) .

Proof. Write ΓK = Gal(K̄/K). For σ ∈ Σ(E), let βσ be the restriction of β to the summandW`,σ.
Write C+(βσ) for the induced automorphism of C+(W`,σ, ψ̃σ), which is ΓK-equivariant. The
tensor product ⊗σ∈Σ(E)C

+(βσ) is a Galois-equivariant automorphism of the algebra⊗
σ∈Σ(E)

C+(W`,σ, ψ̃σ) = C+
E`/Q`

(W`, ψ̃)⊗Q` Q`
∼= EndD`

(
H

1
` (B)

)
.

As dimE(W ) is odd this algebra is a matrix algebra over Q`, so by Skolem-Noether there ex-
ists an automorphism δ ∈ AutD`

(
H

1
` (B)

)
such that ⊗C+(βσ) = Inn(δ) as automorphisms of

EndD`

(
H

1
` (B)

)
. Because ⊗C+(βσ) is Galois-equivariant and the centre of EndD`

(
H

1
` (B)

)
is

Q` · id, we find a character χ : ΓK → Q∗` such that

(5.8.1) γδ = χ(γ) · δ

for all γ ∈ ΓK . (To avoid confusion, note that γδ is the conjugate of δ by the automorphism of
H

1
` (B) given by the action of γ.)

Taking determinants over Q` we find that χ(γ) ∈ µ2g(Q`), where g = dim(B). On the other
hand, the relation (5.8.1) means that δ defines an isomorphism of Galois representations H1

` (B)⊗
χ
∼−→ H

1
` (B). It follows that χ lies in the Tannakian subcategory of Rep(ΓK ,Q`) generated by

H
1
` (B). By the connectedness of G`

(
H1(B)

)
, which is a consequence of the assumption (see

the beginning of 5.4) that the 3-torsion of B is K-rational, it follows that χ = 1; so δ is a
ΓK-equivariant D`-linear automorphism of H1

` (B).
By the results of Faltings (see [18], Thm. 1), δ and δ−1 are in the image of the map

EndQHS,D

(
H1

B(B)
)
⊗Q Q` −→ EndD`

(
H

1
` (B)

)
induced by the comparison isomorphism H1

B(B)⊗Q`
∼−→ H1

` (B). Next we consider the diagram

C+
E/Q(WB, ψ̃)⊗Q Q`

∼−−−−→
uB⊗id

EndD
(
H1

B(B)
)
⊗Q Q`

o
y yo

C+
E`/Q`

(W`, ψ̃)⊗Q` Q`
∼−−−−→

u`⊗id
EndD`

(
H1
` (B)

)
⊗Q` Q`

where uB and u` are the realizations of the isomorphism u in Proposition 5.2, and the vertical
maps are given by the comparison isomorphisms. Because this diagram is commutative, we find
that there exists θ1, . . . , θn ∈ EndQHS

(
C+
E/Q(WB, ψ̃)

)
and c1, . . . , cn ∈ Q` such that c1θ1 + · · ·+

cnθn = ⊗C+(βσ) as endomorphisms (in fact, automorphisms) of C+
E`/Q`

(W`, ψ̃)⊗Q` Q`.
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Next we note that ⊗C+(βσ) preserves the filtration F• introduced in 5.4. If we denote by
EndF ⊂ End the subspaces of endomorphisms that preserve F•, the squares in the diagram

EndFQHS

(
C+
E/Q(WB, ψ̃)

)
⊗Q` ⊂ EndQHS

(
C+
E/Q(WB, ψ̃)

)
⊗Q`⋂ ⋂

EndFQ
(
C+
E/Q(WB, ψ̃)

)
⊗Q` ⊂ EndQ

(
C+
E/Q(WB, ψ̃)

)
⊗Q`

o
y yo

EndFQ`

(
C+
E`/Q`

(W `, ψ̃)
)

⊂ EndQ`

(
C+
E`/Q`

(W `, ψ̃)
)

are cartesian. Hence we may additionally assume that the endomorphisms θi preserve F•. Taking
the induced actions on Fq1/Fq2 as in 5.4, we find that

⊗βσ ∈ End
(
⊗σ W`,σ

)
= End

(
NmE`/Q`(W`)

)
⊗Q` Q` = EndQ

(
NmE/Q(W )

)
⊗Q Q`

lies in the subalgebra EndQHS

(
NmE/Q(WB)

)
⊗Q Q`.

Let H ⊂ GL(W ) be the algebraic subgroup such that GB(W ) = ResE/Q(H); see 5.7. Then
the information we get is that ⊗βσ commutes with the action of

∏
σ Hσ on ⊗σW`,σ. This implies

that each βσ individually commutes with the action of Hσ. Finally,

EndQHS(E)
(WB)⊗E E` EndE`(W `)∥∥∥ ∥∥∥∏

σ EndQ`[Hσ ](W`,σ) ↪−→
∏
σ EndQ`

(W`,σ)

and the proposition is proven.

5.9 Lemma. Let (D, ∗) be a semisimple algebra with involution over an algebraically closed
field F of characteristic 0. Then D is generated, as an F -algebra, by the elements d ∈ D with
dd∗ = 1.

Proof. There is an immediate reduction to the case that (D, ∗) is simple as an algebra with
involution. Then (D, ∗) is isomorphic to one of the following three (for some n):
(1) Mn(F ) with involution A 7→ At;
(2) Mn(F ) with involution A 7→ A∗ (adjoint matrix);
(3) Mn(F )×Mn(F ) with involution (A,B) 7→ (Bt, At).
In the first two cases the result follows by the double centralizer theorem and the remark that
the standard n-dimensional representations of On(F ) and SLn(F ) are (absolutely) irreducible.
Similarly, in the third case we are looking at the representation St ⊕ St∨ of GLn(F ), with
St the standard representation. In this case the subalgebra D′ generated by the d ∈ D with
dd∗ = 1 is semisimple with centralizer F × F , and by the double centralizer theorem we get
D′ = Mn(F )×Mn(F ).

5.10 Corollary. Writing ΓK = Gal(K̄/K), we have

EndE`[ΓK ](W`) = EndQHS(E)
(WB)⊗E E` ,

viewing both sides as subalgebras of EndE`(W`).

Proof. Because G`(W ) ⊆ GB(W )⊗Q` (see 5.5) we have the inclusion “⊇”. It suffices to prove
the other inclusion after extension of scalars to E`. The pairing ψ̃` (the `-adic realization of
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the form ψ̃ on the motive) induces an involution ∗ on the semisimple algebra EndE`[ΓK ](W `),
and the elements with dd∗ = 1 are precisely the ΓK-equivariant isometries of W `. Now use
Proposition 5.8 and Lemma 5.9.

5.11 We now derive the Mumford-Tate conjecture for W , thereby completing the proof of
Proposition 5.2.

By the assumptions made in 5.3, we have a decomposition W = W tra ⊕ 1⊕νE in MotK,(E)

such that the underlying motive W tra
(Q) (forgetting the E-module structure) is the transcendental

part of W(Q). By the Tate conjecture (see 5.6), there are no non-zero Tate classes in W tra
`,(Q`). By

Pink’s theorem 2.4, G`(W )⊗Q` is generated by the images of weak Hodge cocharacters.
By the results of Zarhin that we have reviewed in 2.1, EndQHS(W tra

B,(Q)) is a field F that
contains E; hence EndQHS(E)

(W tra
B ) ∼= EndQHS(W tra

B,(Q)). Similarly, because there are no non-zero
Tate classes in W tra

`,(Q`), Theorem 2.6 gives us that EndQ`[ΓK ](W
tra
`,(Q`)) is a commutative semisim-

ple Q`-algebra containing E`; hence EndE`[ΓK ](W
tra
` ) = EndQ`[ΓK ](W

tra
`,(Q`)). By Corollary 5.10

it follows that EndQHS(WB,(Q)) ⊗ Q` = EndQ`[ΓK ](W`,(Q`)), and the Mumford-Tate conjecture
GB(W )⊗Q` = G`(W ) then follows from Corollary 2.7.

6. The main theorem: statement, and first part of the proof

6.1 Let S be a connected non-singular complex algebraic variety and f : X → S a smooth
projective morphism such that the fibres Xs are connected algebraic varieties.

Let ξ ∈ S(C), and let Mξ ⊂H2(Xξ) be a submotive that is cut out by a π1(S, ξ)-invariant
projector pξ. Then pξ is the value at ξ of an idempotent section p ∈ H0

(
S,End(R2f∗QX )

)
, and

by [3], Théorème 0.5, ps is a motivated cycle for every s ∈ S(C). Denoting by Ms ⊂ H2(Xs)

the submotive cut out by ps we obtain a family of motives {Ms}s∈S(C) parametrized by S. The
Hodge realizations of these motives form a direct factor M ⊂ R2f∗QX in QVHSS . In what
follows we assume that dimC(M2,0

s ) = 1 for all (equivalently: some) s ∈ S(C).

The main result of this paper is the following.

6.2 Theorem. Let X be a non-singular complex projective variety of dimension d. Let M ⊂
H2(X) be a submotive whose Hodge realization MB satisfies dimC(M2,0

B ) = 1. Suppose there
exists a smooth projective family f : X → S as in 6.1, a point ξ ∈ S(C) and an isomorphism
X
∼−→Xξ, via which we identify M with a submotive Mξ ⊂H2(Xξ), such that:

(a) Mξ is cut out by a π1(S, ξ)-invariant projector pξ ∈ EndMotC

(
H2(Xξ)

)
that is of the form

pξ = π2 ◦ cl(γ) ◦ π2 for some γ ∈ CHd(X ×X)⊗Q,
(b) the associated variation of Hodge structure M ⊂ R2f∗QX , as in 6.1, is not isotrivial.
Then the Tate conjecture and the Mumford-Tate conjecture for M are true.

The Main Theorem stated in the Introduction is the special case where M = H2(X), so
that pξ = id, in which case condition (a) is automatically satisfied. At first reading of the proof,
it is advisable to keep this case in mind.

We start with some preparations for the proof. Some remarks to help the reader to navigate
through the proof will be made in 6.8.
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6.3 We retain the notation of the theorem, and we assume that condition (a) is satisfied. The
notation of 6.1 then applies. Let Sgen ⊂ S be the Hodge-generic locus for the Q-variation of
Hodge structure M. The choice of a relatively ample bundle on X gives us a polarization form φ

on this VHS.
Let M = Mξ be the Q-vector space underlying the Hodge realization of Mξ, and let

Gmon(M) ⊂ GL(M) denote the algebraic monodromy group of the VHS M. We assume that
Gmon(M) is connected; this can always be achieved by passing to a connected finite étale cover
of S. We then have an orthogonal decomposition M(1) = V ⊕ Q⊕ρS in QVHSS such that for
s ∈ Sgen the fibre Vs has no non-zero Hodge classes. We again write φ for the restriction of φ
to V.

Let V = Vξ. Let GB(V) ⊂ SL(V ) be the generic Mumford-Tate group of the VHS V.
The subspace V ⊂ M is stable under the action of Gmon(M). The homomorphism Gmon(M)→
GL(V ) is injective and identifies Gmon(M) with the algebraic monodromy group Gmon(V) of
the variation V. By the result of Y. André in [1], Section 5, Gmon(V) is a normal subgroup of
Gder

B (V).
The variation V is of type (−1, 1) + (0, 0) + (1,−1) with Hodge numbers 1, n, 1 for some

n ≥ 0. Let E = EndQVHSS (V) be the endomorphism algebra. As discussed in 2.1, E is a
field that is either totally real or a CM-field. For s ∈ S we have an injective homomorphism
E ↪→ EndQHS

(
Vs
)
and for s ∈ Sgen this is an isomorphism. It follows that for all s ∈ S the

form φ on the fibre Vs satisfies φ(ev, w) = φ(v, ēw) for all e ∈ E and v, w ∈ Vs. As before, we
denote by φ̃ the E-bilinear lift of φ, either on the local system V or on any fibre of it. By [44]
(see also Section 2.1), GB(V) = SOE/Q(V, φ̃) if E is totally real and GB(V) = UE/Q(V, φ̃) if E is
a CM-field.

Let υ : S̃ → S be the universal cover of S for the complex topology, and fix a trivialization
υ∗V ∼−→ V × S̃. The variation V then gives rise to a period map S̃ → D , where D is a domain of
type IV if E is totally real and is a complex ball if E is a CM field. In what follows the following
condition will play an important role:

(P) The VHS V is not isotrivial, i.e., the period map of V is not constant.

This condition is equivalent to the condition that the VHS M is not isotrivial, which is condi-
tion (b) in Theorem 6.2.

For s ∈ S(C), let m(s) be the Q-dimension of the space Vs ∩ V0,0
s,C of Hodge classes in Vs.

By construction, m(s) = 0 for s ∈ Sgen.

6.4 Proposition. (i) The following three conditions are equivalent.
(a) Condition (P).
(b) The connected algebraic monodromy group Gmon(V) is not the trivial group.
(c) The function m : S(C)→ N is not constant.

(ii) Assume (P) holds. If E is a totally real field then rkE(V) ≥ 3, if E is a CM-field then
rkE(V) ≥ 2.

(iii) Assume (P) holds. Then the variation V has maximal monodromy, by which we mean
that Gmon(X /S) = Gder

B (X /S), except possibly when E is totally real and dimE(V ) = 4.

Proof. That (P) implies (b) follows from the Theorem of the Fixed Part. Conversely, sup-
pose the period map of the variation V is constant. The image of the monodromy repre-
sentation r : π1(S, ξ) → GL(VR) is a discrete group, as it is contained in GL(VZ) with VZ =
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V ∩H2(Xξ,Z)(1). On the other hand, the assumption that the period map is constant implies
that the Weil operator C on VR is invariant under the action of π1(S, ξ); hence Im(r) is contained
in SO(HR,Φ), where Φ: VR × VR → R is the form given by Φ(x, y) = φR(x,Cy). By definition
of a polarization, Φ is definite; hence Im(r) is finite.

That (P) implies (c) readily follows from Theorem 3.5 in [43], taking into account the
assumption that dimC(M2,0

s ) = 1 for all s ∈ S. Conversely it is obvious that (c) implies (P).
For (ii) we just have to remark that the generic Mumford-Tate group cannot be abelian, as

otherwise the period domain is a point.
For (iii) we use that Gmon(V) is a normal subgroup of Gder

B (V), which by (i) is not trivial.
Further, if E is a CM-field then dimE(V ) ≥ 2 and Gder

B (V) = SUE/Q(V, φ̃) is a simple algebraic
group. (Indeed, if n = dimE(V ) then the group SU(V, φ̃) is an E0-form of SLn; hence it is simple.
The Weil restriction of a simple algebraic group is again simple.) Similarly, if E is totally real
then dimE(V ) ≥ 3, and Gder

B (V) = SOE/Q(V, φ̃) can be non-simple only if dimE(V ) = 4.

6.5 Let s ∈ S(C). Then Ms is a direct factor of H2(Xs); so by the Lefschetz theorem on
divisor classes, Vs ⊂ Ms(1) is the Hodge realization of a submotive Vs ⊂ Ms(1). We have
Ms(1) = Vs ⊕ 1⊕ρ, where, as in 6.3, ρ is the dimension of the space of Hodge classes in Ms(1)

for a Hodge-generic point s. As in 1.10, Vs = V alg
s ⊕ V tra

s , and with m(s) as defined in 6.3 we
have V alg

s
∼= 1⊕m(s). By construction, Vs = V tra

s for s ∈ Sgen.

6.6 Proposition. Assume (P) holds. Then for every s ∈ S the endomorphisms in E, viewed
as endomorphisms of Vs, are motivated cycles in End(Vs), i.e., they are the Hodge realizations
of endomorphisms of Vs.

At one step in the proof we shall refer forward to a calculation in Section 8.1. The reader
will have no trouble checking that there is no circularity in the argument.

Proof. For s ∈ S and e ∈ E, write es for the image of e in End(Vs). By [3], Théorème 0.5, if es
is a motivated cycle for some s ∈ S, the same is true for every s ∈ S.

The motivic Galois group Gmot of the category MotC acts on End(Vs) by algebra auto-
morphisms. By [2], Lemma 6.1.1, the subalgebra End(Vs)π1(S,s) ⊂ End(Vs) of monodromy-
equivariant endomorphisms is stable under the action of Gmot.

First assume the monodromy of the variation V is maximal, which by Proposition 6.4 is
automatic unless E is totally real and V has rank 4 over E. In this case, Gmon(V) = SOE/Q(V, φ̃)

(totally real case) or Gmon(V) = SUE/Q(V, φ̃) (CM case). In both cases, it follows, taking into
account Proposition 6.4(ii), that End(Vs)π1(S,s) is precisely the image Es of E in End(Vs);
hence Gmot acts on Es through its group of field automorphisms. This defines an algebra Es

in the category MotC. If the monodromy is not maximal, Es is no longer the full subalgebra
End(Vs)π1(S,s) but it is the centre of this algebra. See 8.1 for more details. So in this case, too,
we get an action of Gmot on Es by field automorphisms and an algebra Es.

Next we show that the action of Gmot on E ∼= Es is independent of s. By definition of E
we have a constant sub-VHS E ⊂ End(V), purely of type (0, 0), with fibres the Es. Consider
the family of motives Hom(Eξ,Es) over S, which has as Hodge realization the constant VHS
Hom(Eξ,E). At s = ξ the identity idE : Eξ → Es is clearly a motivated cycle, and it extends to
a flat section of Hom(Eξ,E). By [3], Corollaire 5.1, it follows that idE : Eξ → Es is a motivated
cycle for all s, and this just means that the Gmot-action on Eξ is the same as the one on Es.
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Our goal is to show that Gmot-acts trivially on E. By Proposition 6.4(i), there exists a
point s ∈ S such that Vs has non-zero Hodge classes, or, equivalently, V alg

s 6= 0. We then have
Gmot-equivariant homomorphisms ialg : E ↪→ End(Valg

s ) and itra : E ↪→ End(Vtra
s ) such that the

endomorphism es of Vs is given by the diagonal element
(
ialg(e), itra(e)

)
. As V alg

s
∼= 1⊕m(s) and

the unit motive 1 corresponds to the trivial representation of Gmot, it follows that ialg(e), and
hence also es, is invariant under the action of Gmot.

6.7 From now on, we assume we are in the situation of Theorem 6.2, and we keep all notation
introduced earlier in this section. By Proposition 6.6, E acts on Vs = V alg

s ⊕ V tra
s and the

motivic Galois group Gmot(Vs) is an algebraic subgroup of O(Vs, φ) ∩GLE(Vs) = OE/Q(Vs, φ̃).
In what follows, we view Vs as an object of the category MotC,(E) of E-modules in MotC,

and we denote by Vs,(Q) ∈ MotC the object obtained by forgetting the E-module structure. (Cf.
Section 4.1.) The same applies to V alg

s and V tra
s and to realizations; e.g., we view Vs as an

object of QHS(E) and denote by Vs,(Q) ∈ QHS the underlying Q-Hodge structure, forgetting the
E-action.

Note that V alg
s
∼= 1

⊕ν(s)
E for some ν(s) ≥ 0, where 1E = E ⊗ 1 denotes the identity object

in MotC,(E). (The integer m(s) defined in 6.3 then equals ν(s) · [E : Q].) Further, Gmot(Vs) maps
isomorphically to its image in OE/Q(Vtra

s , φ̃).

6.8 In the proof of Theorem 6.2 we distinguish some cases. In the remainder of this section we
prove the theorem in the case where the field E is totally real, under the additional hypothesis
that the VHS V has maximal monodromy (which by Proposition 6.4 is automatic if dimE(V ) 6=
4). In this case, the result will be deduced from Proposition 5.2 that we have proved in the
previous section.

In the next section we treat the case where E is a CM-field. In Section 8, finally, we deal
with the case where E is totally real and the monodromy is not maximal.

6.9 We now assume that E is totally real and that Gmon(V) = Gder
B (V). For s ∈ S(C) we have

Gmot(Vs) ⊂ OE/Q(Vs, φ̃). Therefore, we have a well-defined motive C+
E/Q(Vs, φ̃) ∈ MotC.

We retain the notation and conventions of 4.1, with k = Q. An extension of scalars from Q
to Q` is denoted by a subscript “`”. For instance, E` = E ⊗Q Q`. As in 0.10(c) we can lift the
polarization form φ to an E-bilinear symmetric bilinear form φ̃ : V × V → ES such that φ =

traceE/Q ◦ φ̃. The even Clifford algebra C+(V, φ̃) is then an algebra in the category QVHSS,(E).
Its norm C+

E/Q(V, φ̃) is an algebra in QVHSS .
We shall take the point ξ as in the formulation of Theorem 6.2 as base point. Write V = Vξ.

We again write φ̃ (rather than φ̃ξ) for the polarization form on V . Let

D = C+
E/Q(V, φ̃) ,

which is a semisimple Q-algebra. As in Section 4, we use the notation D when it appears in its
role as algebra, and write C+

E/Q(V, φ̃) for the underlying Q-vector space.

6.10 We now apply what was explained in 4.7. The conclusion of this is that, possibly af-
ter again passing to a finite étale cover of S, there exists an abelian scheme π : A → S with
multiplication by D and an isomorphism

u : C+
E/Q(V, φ̃)

∼−→ EndD(R1π∗QA)
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of algebras in the category QVHSS .
The fibre of the isomorphism u at a point s is a π1(S, s)-equivariant isomorphism

us : C+
E/Q(Vs, φ̃)

∼−→ EndD
(
H1(As)

)
of algebras in the category QHS. By Lemma 4.4 and the assumption that the monodromy of the
variation V is maximal, us is the only such algebra isomorphism that is π1(S, s)-equivariant. By
the same argument as in [2], Proposition 6.2.1, it follows that us is the Hodge realization of an
isomorphism

(6.10.1) us : C+
E/Q(Vs, φ̃)

∼−→ EndD
(
H1(As)

)
of algebras in the category MotC.

6.11 If the variation V introduced in 6.3 has odd rank (and hence dimE(V ) is odd), Theorem 6.2
follows from Proposition 5.2, taking s = ξ in 6.10.

Next assume that the variation V has even rank. In this case we use a trick due to Yves
André. We start by looking at the variation of Hodge structure V] = V ⊕ E, where E is the
constant variation whose fibres are E with trivial Hodge structure. Taking the orthogonal sum
of the form φ̃ on V and the obvious form on E, we obtain an E-bilinear polarization form
φ̃] : V]×V] → E. Possibly after passing to a finite étale cover of S, we have a Kuga-Satake abelian
scheme π : A] → S with multiplication by an even Clifford algebra D] and an isomorphism

u] : C+
E/Q(V], φ̃]) ∼−→ EndD](R

1π∗QA]) .

Note that the fibres of V] and C+
E/Q(V], φ̃]) at a point s are the Hodge realizations of motives

V ]
s = Vs ⊕ 1E and C+

E/Q(V ]
s , φ̃]).

We claim that there exists a point s ∈ S(C) such that the motive C+
E/Q(V ]

s , φ̃]) lies in the
subcategory Mot(Ab)C ⊂ MotC of abelian motives. Before proving this, let us explain how the
theorem follows.

Suppose that C+
E/Q(V ]

s , φ̃]) is an object of Mot(Ab)C. By [3], Théorème 0.6.2 (André’s
refinement of Deligne’s “Hodge is absolute Hodge” for abelian varieties), the fibre of the isomor-
phism u]s at the point s is then motivated, i.e., it is the Hodge realization of an isomorphism
of motives u]s : C+

E/Q(V ]
s , φ̃])

∼−→ EndD
(
H1(A]s)

)
. By [3], Théorème 0.5, the same conclusion

then holds for all fibres in the family. In particular, we can apply this to the fibre at the point
ξ ∈ S(C) as in the statement of the theorem, and we obtain that u]ξ is the Hodge realization
of an isomorphism u]ξ : C+

E/Q(V ]
ξ , φ̃

])
∼−→ EndD

(
H1(A]ξ)

)
. On the other hand, Xξ

∼= X, and by
construction Vξ,(Q) is a direct factor of H2(X)

(
1
)
. Hence if X] is the variety obtained from X

by blowing up [E : Q] distinct points, V ]
ξ,(Q) is a direct factor of H2(X])

(
1
)
. Because V] has

odd rank over E we can apply Proposition 5.2. This gives the Mumford-Tate conjecture and the
Tate conjecture for V ]

ξ,(Q), from which the same conjectures for Vξ,(Q) follow.

6.12 It remains to be shown that C+
E/Q(V ]

s , φ̃]) lies in Mot(Ab)C for some s ∈ S(C). By
Proposition 6.4(i) we can choose for s a point of S(C) such that the fibre Vs,B contains non-
trivial Hodge classes. By the Lefschetz theorem on divisor classes, the Hodge classes in Vs,B,
which form an E-submodule, are algebraic; hence there exists a decomposition Vs = V [

s ⊕ 1E in
MotC,(E). Write V [ ⊂ Vs for the E-subspace underlying the Hodge realization of V [

s , and let φ̃[
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be the restriction of the polarization form φ̃ (on the fibre at s) to V [. The motivic Galois group
of Vs is then an algebraic subgroup of OE/Q(V [, φ̃[).

We now use a simple fact from representation theory. If (U, q) is a quadratic space over E
then

∧even
(
U ⊥ 1⊕2

) ∼= (∧even(U ⊥ 1)
)⊕2

as representations of O(U, q). This can be restated as saying that C+(U ⊥ 1⊕2) ∼= C+(U ⊥ 1)⊕2

as O(U, q)-modules. Applying the norm functor, it follows that

(6.12.1) C+
E/Q(U ⊥ 1⊕2) ∼= C+

E/Q(U ⊥ 1)⊕2[E:Q]

as OE/Q(U, q)-modules.
We apply the preceding remark to U = V [, viewed as a representation of Gmot

(
V [
s

)
=

Gmot

(
Vs
)
. In this case the representation U ⊥ 1 corresponds to the motive Vs and U ⊥ 1⊕2

corresponds to V ]
s . We have already seen in (6.10.1) that C+

E/Q(Vs, φ̃) is an object of the category

of abelian motives. By (6.12.1) it follows that C+
E/Q(V ]

s , φ̃]) lies in the subcategory of abelian
motives, too, which is what we wanted to prove. This concludes the proof of Theorem 6.2 if the
field E is totally real and the variation V has maximal monodromy.

7. Monodromy and the Mumford-Tate conjecture: the CM case

7.1 In this section we prove Theorem 6.2 in the case where the endomorphism field E =

EndQVHSS (V) (see 6.3) is a CM-field. Let τ : E → C be the (unique) complex embedding of E
such that e ∈ E acts on (V ⊗Q C)1,−1 as multiplication by τ(e). Choose a CM-type Φ ⊂ Σ(E)

such that τ /∈ Φ. Let A be the complex abelian variety (up to isogeny, as always) of CM-
type (E,Φ). Concretely, H1(A,Q) = E as an E-module, and the Hodge decomposition of
H1(A,C) = ⊕σ∈Σ(E) C(σ) is given by

H1,0 =
⊕
σ∈Φ

C(σ) , H0,1 =
⊕
σ∈Φ

C(σ) .

Let ψA be a polarization of H1(A,Q), and denote its unique lifting to a skew-hermitian E-valued
form by ψ̃A. In what follows we will assume the CM-type Φ is chosen to be primitive (not induced
from a CM-subfield of E); this is always possible and implies that End0(A) = E.

Let a : AS → S denote the constant abelian scheme over S with fibres A, and write H1(AS)

for the VHS R1a∗Q, which is an E-module in the category QVHSS .
Next consider the variation H1(AS)⊗E V. (This is what van Geemen [42] calls a half-twist

of V.) Because of the way we have chosen Φ, this is a variation of Hodge structure of type
(0, 1) + (1, 0). Further, it is polarized by the form ψ̃A ⊗ φ̃, it admits an integral structure,
and it comes equipped with an action of E by endomorphisms. Hence we obtain a polarized
abelian scheme b : B → S with multiplication by E such that there exists an isomorphism
H1(B) = R1b∗QB

∼−→ H1(AS) ⊗E V in QVHSS,(E) that is compatible with polarizations. We
shall denote by ψB : H1(B)×QH1(B)→ QS the polarization form and by ψ̃B = ψ̃A⊗φ̃ its unique
lift to an ES-valued skew-hermitian form.

As EndE
(
H1(AS)

)
= E, we have an induced isometry

(7.1.1) u : HomE

(
H1(AS),H1(B)

) ∼−→ V

in QVHSS,(E), where we equip the left hand side with the E-hermitian form ψ̃ = ψ̃∨A ⊗ ψ̃B.
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7.2 For s ∈ S(C), let Vs ⊂H2(Xs)
(
1
)
be the submotive as in 6.5, and write Hs for the motive

HomE

(
H1(A),H1(Bs)

)
. Both Vs and Hs are objects of MotC,(E). We denote by Vs and Hs

the E-vector spaces underlying their Betti realizations. These come equipped with hermitian
polarization forms φ̃ : Vs × Vs → E and ψ̃ = (ψ∨A ⊗ ψB) : Hs ×Hs → E.

The fibre of the isomorphism (7.1.1) at s is an E-linear and π1(S, s)-equivariant isomorphism

us : Hs
∼−→ Vs .

The motivic Galois group Gmot acts on the vector space HomQ(Hs,(Q), Vs,(Q)).

7.3 Lemma. There is a unique (algebraic) character χ : Gmot → TE such that γ(us) = χ(γ) ·us
for all γ ∈ Gmot, and this character is independent of s.

Proof. With notation as explained in 0.10(c), the actions of Gmot on Hs and Vs are given by
homomorphisms Gmot → UE/Q(Hs, ψ̃) and Gmot → UE/Q(Vs, φ̃), respectively. Hence the induced
action of Gmot on the space HomQ(Hs,(Q), Vs,(Q)) preserves the subspace HomE(Hs, Vs) and Gmot

acts on this subspace by E-linear automorphisms. On the other hand, by Lemma 6.1.1 of [2], the
action of Gmot also preserves the subspace HomQ(Hs,(Q), Vs,(Q))

π1(S,s) of monodromy invariant
elements, which contains us. By Proposition 6.4, assumption (b) in Theorem 6.2 implies that
Gmon(V) = SUE/Q(Vs, φ̃), and therefore EndE(V )Gmon(V) = E · idV . Hence

HomE(Hs, Vs)
π1(S,s) = E · us ;

so there is a character χ : Gmot → TE such that γ(us) = χ(γ) · us for all γ ∈ Gmot.
To see that χ does not depend on s, we use Corollary 5.1 of [3], which implies that, for

t ∈ S(C) a second point, the isomorphism

HomE(Hs, Vs)
π1(S,s) ∼−→ HomE(Ht, Vt)

π1(S,t)

given by parallel transport is Gmot-equivariant. (See also Theorem 10.1.3.1 of [4].) This readily
gives the claim.

7.4 The action of Gmot on the vector space E through the character χ of Lemma 7.3 defines
a motive U with multiplication by E such that the Hodge realization of U is trivial, and such
that for s ∈ S(C), we have an isomorphism us : Hs

∼−→ Vs ⊗E U whose Hodge realization is us.
We shall next prove that the `-adic realization of U is trivial, too. (Of course, the motive U

itself should be trivial; this, however, we are unable to prove.) First we descend, similar to what
we did in 5.3, to a field of finite type over Q. This means that, given s ∈ S(C), there exists a
subfield K ⊂ C that is finitely generated over Q over which all objects that we are considering
are defined. As we do not want to introduce new notation, we shall use the same letters as before
for the objects over K, adorning them with a subscript “C” to indicate an extension of scalars
to C. Thus, we have:
— a smooth projective variety Xs over K and a submotive Vs ⊂ H2(Xs)

(
1
)
, cut out by an

algebraic cycle;
— an action of E on Vs;
— abelian varieties A and Bs over K, both with multiplication by E, and the associated motive

Hs = HomE

(
H1(A),H1(Bs)

)
;

— a motive U with multiplication by E and an isomorphism us : Hs
∼−→ Vs⊗EU in MotK,(E).
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These objects are chosen in such a way that after extension of scalars via K ↪→ C we recover the
objects considered above. Moreover, we may assume that for all motives involved the associated
`-adic groups G` are connected.

7.5 Lemma. The `-adic realization of the motive U is trivial, i.e., G0
` (U) = {1}.

For our later arguments, it is important to note that this assertion is independent of the
choice of a model of U over a finitely generated field; see Proposition 1.3.

Proof. By Proposition 6.4(i), there exists a point s ∈ S(C) such that V alg
s 6= 0, and such a point

we now choose. As the Hodge realization of U is trivial, the classes in V alg
s,B ⊗E UB, viewed as

subspace of HomE

(
H1(A), H1(Bs)

)
are algebraic. Hence also the `-adic realization V alg

s,` ⊗E` U`
is trivial. Because V alg

s,` is a trivial Galois representation, the assertion follows.

7.6 In the rest of the argument we take for s the point ξ ∈ S(C) such that X ∼= Xξ. (Note
that, even though we have worked with a different point s in the proof of Lemma 7.5, involving
different choices in 7.4, the conclusion of 7.5 applies to any form of the motive U over a finitely
generated field.) To simplify the notation, we write V for Vξ. As usual, VB denotes the Hodge
realization, V` the `-adic realization, and V is the E-vector space underlying VB.

As V ⊗E U is a submotive of Hom
(
H1(A),H1(Bξ)

)
we can apply the results of Faltings

to it. By Lemma 7.5 it follows that the Galois representation V` is completely reducible and(
V`
)G0

` (V ) ∼−→
(
V` ⊗E` U`

)G0
` (V ⊗EU)

=
(
VB ⊗E UB

)GB(V ⊗EU) ⊗Q`
∼−→
(
VB

)GB(V ) ⊗Q` .

The Tate conjecture for divisor classes on X then follows from the Lefschetz theorem on divisor
classes on XC.

7.7 The proof of the Mumford-Tate conjecture is now based on essentially the same argument
as in 5.11. We again consider the decomposition V = V tra ⊕ V alg in MotK,(E). By the Tate
conjecture there are no non-zero Tate classes in V tra

`,(Q`). By Pink’s theorem 2.4, G0
` (V ) ⊗ Q` is

generated by the images of weak Hodge cocharacters.
Write ΓK = Gal(K̄/K). The motive U has trivial Hodge and `-adic realizations, and for

the abelian variety A we have EndE
(
H1(A)

)
= 1E . Using this, we find that

EndQHS(E)
(VB) = EndQHS(E)

(
H1(Bξ,Q)

)
, EndE`[ΓK ](V`) = EndE`[ΓK ]

(
H1(Bξ,Q`)

)
.

Again by the results of Faltings it follows that

(7.7.1) EndE`[ΓK ](V`) = EndQHS(E)
(VB)⊗E E`

under the comparison isomorphism between Betti and `-adic cohomology.
We know that EndQHS(V tra

B,(Q)) is a field that contains E. It follows that EndQHS(E)
(V tra

B ) ∼=
EndQHS(V tra

B,(Q)). Similarly, because there are no non-zero Tate classes in V tra
`,(Q`), it follows

from Theorem 2.6 that EndQ`[ΓK ](V
tra
`,(Q`)) is a commutative semisimple Q`-algebra that con-

tains E`; hence EndE`[ΓK ](V
tra
` ) = EndQ`[ΓK ](V

tra
`,(Q`)). Then (7.7.1) gives EndQHS(VB,(Q))⊗Q` =

EndQ`[ΓK ](V`,(Q`)), and the Mumford-Tate conjecture GB(V )⊗Q` = G0
` (V ) follows from Corol-

lary 2.7. This completes the proof of Theorem 6.2 in the case that E is a CM-field.
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8. The case of non-maximal monodromy

8.1 In this section we complete the proof of Theorem 6.2 by considering the case where the
monodromy of the variation V (as in 6.3) is not maximal, which means that Gmon(V) is a proper
normal subgroup of Gder

B (V). As shown in Proposition 6.4, this implies that the endomorphism
field E is totally real and that rkE(V) = 4.

We choose a base point z ∈ S, and we let V = Vz, on which we have a symmetric E-bilinear
form φ̃. The generic Mumford-Tate group GB(V) equals SOE/Q(V, φ̃) = ResE/Q SO(V, φ̃).

Our assumption on the non-maximality of the monodromy implies that SO(V, φ̃) is the
almost-direct product of two connected normal subgroups L1 and L2. (By [6], Proposition 6.18,
if H is a semisimple group over E, any connected normal subgroup of ResE/QH is of the form
ResE/QN , for some connected normal subgroup N / H.) The Li are E-forms of SL2 and they
commute element-wise. We choose the numbering such that Gmon(V) = ResE/Q(L2).

Let ∆i ⊂ EndE(V ) be the E-subalgebra generated by the elements of Li(E). The ∆i are
central simple E-algebras of degree 2. Denote the canonical involution of ∆i by x 7→ x̄, and let
Trd: ∆i → E and Nrd: ∆i → E be the reduced trace and norm maps, given by x 7→ x+ x̄ and
x 7→ xx̄, respectively. We view ∆∗i as an algebraic group over E. It is an algebraic subgroup of the
group GO(V, φ̃) of orthogonal similitudes. The multiplier character is the character Nrd: ∆∗i →
Gm,E , and Li = Ker(Nrd) ⊂ ∆∗i . (Note that any character of ∆∗i is a power of Nrd, and that the
multiplier agrees with the reduced norm on the scalars E∗ ⊂ ∆∗i ; hence the two are equal.)

The space V is free of rank 1 as a module over ∆i (i = 1, 2). We have isomorphisms
∆2

∼−→ End∆1(V ) and ∆1
∼−→ End∆2(V ), and a non-canonical isomorphism ∆2

∼= ∆op
1 . (In

particular, we see that the subalgebra ofGmon(V)-invariants in End(V(Q)) equals ∆1 and therefore
has centre E, as claimed in the proof of Proposition 6.6.) There is a unique σ0 ∈ Σ(E) such that
SO(V, φ̃)⊗E,σ0 R is non-compact; at this real place the ∆i are split, at all other real places of E
they are non-split. (In particular, the ∆i can be split over E only if E = Q.)

There is an isomorphism

CSpin(V, φ̃)
∼−→
{

(x1, x2) ∈ ∆∗1 ×∆∗2
∣∣ Nrd(x1) ·Nrd(x2) = 1

}
such that the homomorphism CSpin(V, φ̃)→ SO(V, φ̃) sends (x1, x2) to the automorphism x1x2

of V . We can choose this isomorphism such that the scalar multiplication by z ∈ E∗ on the
Clifford algebra corresponds to the element (z · idV , z−1 · idV ) ∈ ∆∗1 ×∆∗2.

Let D = NmE/Q(∆1), which is a central simple Q-algebra of degree 2[E:Q], of index at most 2

in the Brauer group of Q. The Q-vector space N(V ) = NmE/Q(V ) has a natural structure of a
left D-module, for which it is free of rank 1.

8.2 Proposition. With assumptions and notation as above, there exists a complex abelian
variety A with End0(A) ∼= Dop and an abelian scheme b : B → S with multiplication by Dop such
that we have an isomorphism

(8.2.1) u : HomD

(
H1(AS),H1(B)

) ∼−→ NmE/Q(V)

in QVHSS.

The notation is the same as in Section 7: we write a : AS → S for the constant abelian
scheme with fibres equal to A, and we let H1(AS) = R1a∗Q and H1(B) = R1b∗Q.
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Proof. Let H1 = D and H2 = N(V ), both viewed as left D-modules. With CSpinE/Q(V, φ̃) =

CSpinE/Q(V, φ̃)/T 1
E as in 4.2, we start by defining representations

θi : CSpinE/Q(V, φ̃)→ GLD(Hi) ⊂ GL(Hi)

(i = 1, 2) such that the induced action on HomD(H1, H2) factors through SOE/Q(V, φ̃), and such
that the map

(8.2.2) ε : HomD(H1, H2)
∼−→ N(V )

given by f 7→ f(1) is an isomorphism of SOE/Q(V, φ̃)-representations. For this, define Ki =

ResE/Q(∆∗i ). The universal polynomial map ∆1 → D = NmE/Q(∆1) is multiplicative and
defines a homomorphism of algebraic groups K1 → D∗ that factors through K1/T

1
E . Through

the composition
γ : CSpinE/Q(V, φ̃) ↪→ K1 ×K2 →→ K1/T

1
E ↪→ D∗

we obtain an action of CSpinE/Q(V, φ̃) on H1, letting a group element x act on H1 = D as right
multiplication by γ(x−1). Clearly this representation factors through CSpinE/Q(V, φ̃), and we
let θ1 be the representation thus obtained. Next we note that K2 = ResE/Q(∆∗2) naturally acts
on N(V ) = NmE/Q(V ) by D-module automorphisms (cf. Section 3.1), and the corresponding
homomorphismK2 → GL

(
N(V )

)
factors throughK2/T

1
E . For θ2 we then take the representation

of CSpinE/Q(V, φ̃) induced by the composition

CSpinE/Q(V, φ̃) ↪→ K1 ×K2 →→ K2/T
1
E ↪→ GLD(H2) .

We claim that with these definitions the map ε in (8.2.2) is an isomorphism of representations
of SOE/Q(V, φ̃). To see this, note that ε is the map obtained by applying the functor NmE/Q to
the isomorphism Hom∆1

(∆1, V )
∼−→ V given by f 7→ f(1). The claim now readily follows from

the description of the homomorphism CSpin(V, φ̃)→ SO(V, φ̃) given in 8.1.
The next step is to equip H1 and H2 with actions of π1(S, b) in such a way that the

map ε is π1-equivariant. For this we simply take the trivial action on H1 and the given ac-
tion on H2 = N(V ). (Note that the latter action is obtained by composing the map π1(S, b)→
Gmon(V)

(
Q
)
⊂ K2(Q) with the above homomorphism K2 → GLD(H2).) In this way we obtain

Q-local systems H1 (constant) and H2 with actions of D from the left, such that ε is the fibre
at b of an isomorphism of local systems HomD(H1,H2)

∼−→ NmE/Q(V). For later use, note that
the Hi admit an integral structure.

We now equip H1 and H2 with the structure of a Q-VHS. Let υ : S̃ → S be the uni-
versal cover, and choose a point z̃ ∈ S̃ above z. This gives identifications υ∗Hi

∼= Hi × S̃

and υ∗NmE/Q(V) ∼= N(V ) × S̃. For t ∈ S̃, let ht : S → SOE/Q(V, φ̃)R be the homomorphism
that defines the Hodge structure on NmE/Q(V)t, which is of type (−1, 1) + (0, 0) + (1,−1).
By [15], 4.2, and the discussion in Section 4.3 above, ht naturally lifts to a homomorphism
h̃t : S → CSpinE/Q(V, φ̃)R such that h̃t ◦ w : Gm,R → CSpinE/Q(V, φ̃)R is given by z 7→ (z ·
idV , z

−1 · idV ) mod T 1
E . As Hodge structure on (υ∗Hi)t ∼= Hi we then take the one defined by

θi ◦ h̃t. By construction these Hodge structures have weight 1, and by [15], Lemme 2.8, they are
polarizable.

It is immediate from the definitions that the family of Hodge structures on υ∗Hi that we
obtain is compatible (in the obvious sense) with the action of π1(S, b); hence we obtain families of
polarizable Hodge structures of weight 1 over S with underlying local systems the Hi, equipped
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with a left action of D by endomorphisms, and such that the isomorphism HomD(H1,H2)
∼−→

NmE/Q(V) is fibrewise an isomorphism of Hodge structures.
We claim that for every t ∈ S̃ the Hodge structures on Hi (i = 1, 2) given by θi ◦ h̃t is of

type (0, 1)+(1, 0). To see this, work in the category of Z2-graded C-vector spaces. As D⊗QC ∼=
MN (C), with N = 2[E:Q], we have Hi ⊗Q C ∼= U⊕Ni for some Z2-graded spaces Ui (i = 1, 2), and
then HomD⊗QC(H1,C, H2,C) ∼= HomC(U1, U2). As we already know the Hi to be of weight 1, so
that Up,qi 6= 0 only if p+q = 1, we see that HomC(U1, U2) can be of type (−1, 1)+(0, 0)+(1,−1)

only if U1 and U2 (and hence also H1 and H2) are of type (0, 1) + (1, 0). In particular, the
families of Hodge structures we have obtained trivially satisfy Griffiths transversality and are
therefore honest polarizable Q-variations of Hodge structure over S. As they admit an integral
structure, there exist abelian schemes (up to isogeny, as always) a : A → S and b : B → S,
both with multiplication by Dop, such that H1

∼= R1a∗QA and H2
∼= R1b∗QB. (The relative

dimension of A/S and B/S equals 22[E:Q]−1.) Further, because H1 has trivial monodromy, A/S
is a constant abelian scheme; so A = AS for an abelian variety A with endomorphisms by Dop.
By construction, we have an isomorphism of D-modules H1(A,Q)

∼−→ D, and the fact that the
generic Mumford-Tate group of the VHS V equals SOE/Q(V, φ̃) implies that GB(A) = K1/T

1
E .

It follows from this that End0(A) = Dop.

8.3 We retain the notation and assumptions of 8.1, and we fix A, B and u as in Proposition 8.2.
Choose a base point z ∈ S, write V = Vz and N(V ) = NmE/Q(V ), and let V = Vz and
N(V ) = NmE/Q(V ) be their Hodge realizations. The E-bilinear polarization form φ̃ on V induces
a symmetric Q-bilinear form N(φ̃) on N(V ). Further we define H = HomD

(
H1(A),H1(Bz)

)
,

and we write H for its Hodge realization. Our goal at this point is to deduce some non-trivial
information about Gmot

(
N(V )

)
by using [2], Lemma 6.1.1.

Write SL2 for SL2,Q. Denote by St its standard 2-dimensional representation, on which the
determinant gives a symplectic form det : St× St→ Q.

As before, for σ ∈ Σ(E) we denote the extension of scalars via σ : E → Q by a subscript “σ”.
For each such σ, choose isomorphisms Li,σ

∼−→ SL2 (i = 1, 2) and Vσ ∼= St�St as representations
of L1,σ × L2,σ

∼= SL2 × SL2, such that φ̃σ corresponds with the orthogonal form det�det. Let
µ2 =

{
±(id, id)

}
⊂ SL2× SL2, and let r ∈ O

(
St�2, det�2

)
be given by r(x1� x2) = x2� x1. We

have an isomorphism(
(SL2 × SL2)/µ2

)
o {1, r} ∼−→ O

(
St�2, det�2

) ∼= O(Vσ, φ̃σ) ,

that restricts to an isomorphism (SL2 × SL2)/µ2
∼−→ SO

(
St�2, det�2

) ∼= SO(Vσ, φ̃σ). Note that
the reflection r acts on (SL2 × SL2)/µ2 by exchange of the factors: r[A1, A2] = [A2, A1].

We have GB(V ) ⊆ Gmot(V ) ⊆ OE/Q(V, φ̃) with GB(V ) ⊆ SOE/Q(V, φ̃). If H is an algebraic
subgroup of OE/Q(V, φ̃), denote H/(H ∩ T 1

E) by H. For the motive N(V ) we then have

GB

(
N(V )

)
= GB(V ) ⊆ SOE/Q(V, φ̃) ↪−→ SO

(
N(V ), N(φ̃)

)⋂
|

⋂
|

⋂ ⋂
Gmot

(
N(V )

)
= Gmot(V ) ⊆ OE/Q(V, φ̃) ↪−→ O

(
N(V ), N(φ̃)

)
Extending scalars to Q we find

GB

(
N(V )

)
Q ⊆ SOE/Q(V, φ̃)Q =

[∏
σ∈Σ(E) (SL2 × SL2)

]/
Θ⋂

|
⋂
|

⋂
Gmot

(
N(V )

)
Q ⊆ OE/Q(V, φ̃)Q =

[∏
σ∈Σ(E) (SL2 × SL2) o {1, r}

]/
Θ ,
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where
Θ =

{
(A

(σ)
1 , A

(σ)
2 )σ ∈

∏
σ∈Σ(E)

(
{±id} × {±id}

) ∣∣∣ ∏A
(σ)
1 A

(σ)
2 = id

}
.

In this description, the algebraic monodromy group of the variation N(V) = NmE/Q(V) is given
by

Gmon

(
N(V)

)
Q = image of

∏
σ∈Σ(E)

({id} × SL2) in
[ ∏
σ∈Σ(E)

(SL2 × SL2)
]/

Θ .

The fibre at z of the isomorphism u in (8.2.1) is an isomorphism of Hodge structures
uz : H

∼−→ N(V ) that we shall take as an identification. As H is an abelian motive, we have
Gmot(H) = GB(H) = GB

(
N(V )

)
.

The motivic Galois group of the motive M = Hom
(
H, N(V )

)
is an algebraic subgroup

Gmot(M) ⊂ Gmot(H)×Gmot

(
N(V )

)
that projects surjectively to the two factors. We shall denote elements of Gmot(M)Q in the form[
A

(σ)
1 , A

(σ)
2 ;B

(σ)
1 , B

(σ)
2 , y(σ)

]
σ∈Σ(E)

with A(σ)
i , B(σ)

i ∈ SL2 and y(σ) ∈ {1, r}, and where the square
brackets indicate that we calculate modulo Θ×Θ.

The Q-vector space underlying the Betti realization of the motive M is the space M =

Hom
(
H,N(V )

)
. Extending scalars to Q and identifying H with N(V ) via uz, we have

M ⊗Q ∼=
⊗

σ∈Σ(E)

End(Vσ) ∼=
⊗

σ∈Σ(E)

(
End(St)⊗ End(St)

)
.

For σ ∈ Σ(E) fixed, an element
(
A

(σ)
1 , A

(σ)
2 ;B

(σ)
1 , B

(σ)
2 , 1

)
acts on End(St)⊗ End(St) by

f1 ⊗ f2 7→
(
B

(σ)
1 f1

(
A

(σ)
1

)−1
)
⊗
(
B

(σ)
2 f2

(
A

(σ)
2

)−1
)
.

An element
[
A

(σ)
1 , A

(σ)
2 ;B

(σ)
1 , B

(σ)
2 , r

]
acts on End(St)⊗ End(St) by

f1 ⊗ f2 7→
(
B

(σ)
2 f2

(
A

(σ)
2

)−1
)
⊗
(
B

(σ)
1 f1

(
A

(σ)
1

)−1
)
.

Recall that D = NmE/Q(∆1) and that N(V ) is free of rank 1 as a module over D. The
subspace Mπ1(S,b) of monodromy-equivariant homomorphisms H → N(V ) is the D-submodule
D · uz ⊂M = Hom

(
H,N(V )

)
generated by uz. After extension of scalars this gives

M
π1(S,b)

Q =
⊗

σ∈Σ(E)

(
End(St)⊗ (Q · id)

)
.

By [2], Lemma 6.1.1, this subspace is stable under the action of Gmot(M)Q on MQ. This implies
that, in order for an element[

A
(σ)
1 , A

(σ)
2 ;B

(σ)
1 , B

(σ)
2 , y(σ)

]
σ∈Σ(E)

∈ SOE/Q(V, φ̃)
(
Q
)
×OE/Q(V, φ̃)

(
Q
)

to lie in Gmot(M)
(
Q
)
, we must have y(σ) = 1 and B

(σ)
2 = ±A(σ)

2 for every σ ∈ Σ(E). In
particular, it follows that Gmot(M) is an algebraic subgroup of SOE/Q(V, φ̃)×SOE/Q(V, φ̃), and,
by projection to the second factor, that Gmot

(
N(V )

)
⊆ SOE/Q(V, φ̃).

8.4 Lemma. Suppose the base point z ∈ S is a point for which V = Vz contains non-zero
Hodge classes. Then V alg ⊂ V is a 1-dimensional E-subspace, dimE(V tra) = 3, and GB(Vz) =

SOE/Q(V tra, φ̃).
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Proof. For any z ∈ S we have V alg
z
∼= 1⊕νE for some ν ≥ 0 (cf. 6.7), and then dimE(V tra) = 4−ν.

Further, GB(Vz) = GB(V tra
z ) is isomorphic to an algebraic subgroup of SOE/Q(V tra, φ̃). By

[1], Section 6, Proposition 2, our assumption that the variation V has non-maximal monodromy
implies that GB(Vz) is not abelian, and therefore 4−ν ≥ 3. So if z ∈ S is a point for which ν > 0

then necessarily ν = 1. We then must have EndQHS(Vtra
z ) = E, for if the endomorphism algebra

is bigger, GB(V tra
z ) is abelian. By Zarhin’s results (see 2.1), GB(Vz) = SOE/Q(V tra, φ̃).

8.5 Proposition. For any s ∈ S the fibre us : HomD

(
H1(A),H1(Bs)

) ∼−→ NmE/Q(Vs) of the
isomorphism (8.2.1) at s is a motivated cycle, i.e., it is the Hodge realization of an isomorphism

us : HomD

(
H1(A),H1(Bs)

) ∼−→ NmE/Q(Vs) .

Proof. By [3], Théorème 0.5, it suffices to prove that us is a motivated cycle for some s ∈ S.
We take s = z, where z ∈ S is a base point such that V = Vz contains non-zero Hodge classes.
(Such points z exists by Proposition 6.4(i).) We retain the notation introduced in 8.3.

If H is an algebraic group over Q, we denote by $0(H) = H/H0 the étale group scheme of
connected components. Note that(

OE/Q(V, φ̃) ∩ T 1
E

)
(Q) =

{
(aσ · idV )σ ∈

∏
σ∈Σ(E)

O(Vσ, φ̃σ)
∣∣∣ aσ = ±1 for all σ and

∏
aσ = 1

}
.

As dimE(V ) = 4 is even, it follows that OE/Q(V, φ̃) ∩ T 1
E = SOE/Q(V, φ̃) ∩ T 1

E ; hence,

(8.5.1) $0

(
OE/Q(V, φ̃)

) ∼−→ $0

(
OE/Q(V, φ̃)

)
.

On the other hand, it is clear that
(
OE/Q(V tra, φ̃) × {idV alg}

)
∩ T 1

E = {1}, so the inclusion
i : OE/Q(V tra, φ̃)× {idV alg} ↪−→ OE/Q(V, φ̃) induces an injective homomorphism

i : OE/Q(V tra, φ̃)× {idV alg} ↪−→ OE/Q(V, φ̃) .

As i induces an isomorphism on component group schemes, it follows from (8.5.1) that the
same is true for i. So the fact, deduced in 8.3, that Gmot

(
N(V )

)
is contained in SOE/Q(V, φ̃),

implies that Gmot

(
N(V )

)
⊆ SOE/Q(V tra, φ̃)× {idV alg}, which we view as algebraic subgroup of

SO
(
N(V ), N(φ̃)

)
. As we always have GB ⊆ Gmot, it follows from Lemma 8.4 that

GB

(
N(V )

)
= Gmot

(
N(V )

)
= SOE/Q(V tra, φ̃)× {idV alg} .

Next we consider the motive M = Hom
(
H, N(V )

)
. As before, we take the isomorphism

uz : H
∼−→ N(V ) as an identification. The Mumford-Tate group GB(M) is the diagonal subgroup

SOE/Q(V tra, φ̃)× {idV alg} of

GB(H)×GB

(
N(V )

)
=
(

SOE/Q(V tra, φ̃)× {idV alg}
)
×
(

SOE/Q(V tra, φ̃)× {idV alg}
)
.

The motivic Galois group Gmot(M) is an algebraic subgroup of

Gmot(H)×Gmot

(
N(V )

)
= GB(H)×GB

(
N(V )

)
that contains the diagonal subgroup GB(M). We are done if we can show that Gmot(M) =

GB(M).
First we show that the identity component G0

mot(M) of Gmot(M) equals GB(M). To see
this, we can argue on Lie algebras. We have gmot(M) ⊂ gmot(H)×gmot

(
N(V )

)
, the projections
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of gmot(M) to gmot(H) and to gmot

(
N(V )

)
are surjective, and gmot(M) contains the diagonal

Lie subalgebra.
After extension of scalars to Q, the inclusion gmot(M) ⊂ gmot(H)× gmot

(
N(V )

)
becomes

(8.5.2) gmot(M)⊗Q ⊂
( ∏
σ∈Σ(E)

so
(σ)
3

)
×
( ∏
τ∈Σ(E)

so
(τ)
3

)
where the superscripts “(σ)” and “(τ)” are included only to label the factors. Suppose that
gmot(M) is strictly bigger than the diagonal Lie subalgebra of gmot(H) × gmot

(
N(V )

)
. This

means that there exists an embedding σ ∈ Σ(E) such that the projection of gmot(M) ⊗ Q to
so

(σ)
3 × so

(σ)
3 (taking τ = σ in (8.5.2)) is surjective. (Note that so3

∼= sl2 and that the only
semisimple Lie subalgebras of sl2 × sl2 that contain the diagonal, are the diagonal itself and the
full sl2 × sl2.) Because gmot(M) is defined over Q and Gal(Q/Q) acts transitively on Σ(E), it
follows that gmot(M) ⊗ Q surjects to so

(σ)
3 × so

(σ)
3 for all σ ∈ Σ(E). As gmot(M) surjects to

gmot(H) and gmot

(
N(V )

)
and contains the diagonal, it follows that gmot(M) ⊗ Q surjects to

any product of two factors so3 × so3 in the right-hand side of (8.5.2). By [26], Lemma 2.14(i),
this implies that gmot(M) = gmot(H) × gmot

(
N(V )

)
but this contradicts what we have found

in 8.3. So indeed G0
mot(M) = GB(M) is the diagonal subgroup of GB(H) × GB

(
N(V )

) ∼=
SOE/Q(V tra, φ̃)× SOE/Q(V tra, φ̃).

Finally, Gmot(M) normalizes G0
mot(M). But dimE(V tra) = 3, so SOE/Q(V tra, φ̃) has triv-

ial centre. Hence the diagonal subgroup in SOE/Q(V tra, φ̃) × SOE/Q(V tra, φ̃) equals its own
normalizer, and we conclude that Gmot(M) = G0

mot(M) = GB(M), as we wanted to show.

8.6 The Tate conjecture for Vξ is now deduced in the same way as in 5.5 and 5.6. Taking
s = ξ in Proposition 8.5, we find that N(Vξ) = NmE/Q(Vξ) is an abelian motive, and by
Proposition 3.10(i) it follows that G0

` (Vξ) is reductive.
Further, by Deligne’s results in [17], G0

`

(
N(Vξ)

)
⊆ GB

(
N(Vξ)

)
⊗Q` as algebraic subgroups

of GL
(
N(Vξ)

)
⊗Q`; hence

(8.6.1) G0
` (Vξ) ⊆ GB(Vξ)⊗Q`

as algebraic subgroups of GL(Vξ)⊗Q`.
We have connected algebraic subgroups HB ⊆ SO(Vξ, φ̃) over E and H` ⊆ SO(Vξ,`, φ̃`)

over E` such that GB(Vξ) = ResE/QHB and G0
` (Vξ) = ResE`/Q` H`. By the results of Faltings,

NmE`/Q`
(
V HB
ξ,B ⊗E E`

)
= NmE/Q

(
V HB
ξ,B

)
⊗Q Q`

∼−→ NmE`/Q`
(
V H`
ξ,`

)
.

Now we can copy the last eight lines of 5.6 with Vξ instead of W , with as conclusion that all
Tate classes in H2(X,Q`)

(
1
)
are algebraic.

For the proof of the Mumford-Tate conjecture for Vξ, we start with a lemma.

8.7 Lemma. Let k be an algebraically closed field of characteristic zero, Σ a finite index set,
h a reductive Lie subalgebra of

∏
Σ sl2. Consider the representation of h on V = ⊗ΣM2(k)

obtained as the tensor product of the representations of sl2 on M2(k) given by left multiplicaton.
If End(V )h = ⊗ΣM2(k) (acting on V by right multiplication) then h =

∏
Σ sl2.

Proof. For σ ∈ Σ, the projection prσ : h→ sl2 is surjective, for otherwise the image is contained
in a Cartan subalgebra t ⊂ sl2, and since End(M2(k))t )M2(k) this contradicts the assumption
that End(V )h = ⊗ΣM2(k).
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By [34], the Lemma on pages 790–791, it now suffices to show that for σ 6= τ the projection
prσ,τ : h → sl2 × sl2 is surjective. Write h′ = prσ,τ (h) ⊂ sl2 × sl2. Let kσ = Ker(prτ : h′ → sl2)

and kτ = Ker(prσ : h′ → sl2); these are ideals of h′ with dim(kσ) = dim(kτ ). As h′ has rank
at most 2 and the projections h′ → sl2 are surjective, the ideal kσ × kτ is either the whole h′

or it is zero. In the first case we are done. In the second case, h′ ⊂ sl2 × sl2 is the graph of
an automorphism. As all automorphisms of sl2 are inner, this contradicts the assumption that
End(V )h = ⊗ΣM2(k).

8.8 We retain the notation introduced in 8.1. In the argument that follows we shall also use
the notation introduced in the proof of Proposition 8.2. If Y is a complex abelian variety, we
write Gmot(Y ) (resp. GB(Y ), etc.) for Gmot

(
H1(Y )

)
(resp. GB

(
H1(Y )

)
, etc.). Let

G′B(Y ) =
(
GB(Y ) ∩ SL

(
H1(Y,Q)

))0
, G′`(Y ) =

(
G`(Y ) ∩ SL

(
H1(Y,Q`)

))0
.

(The group G′B(Y ) is called the Hodge group of Y .) These are connected reductive groups, and
GB(Y ) = Gm ·G′B(Y ), resp. G0

` (Y ) = Gm ·G′`(Y ).
Suppose the Mumford-Tate conjecture is true for (the H1 of) the abelian variety A × Bξ.

By the remarks in 1.8 together with Proposition 3.10(iv), the Mumford-Tate conjecture is then
also true for the motive

Hom
(
H1(A),H1(Bξ)

) ∼= H1(A)∨ ⊗H1(Bξ) ∼= H1(A)⊗H1(Bξ)
(
1
)
,

and hence for the motive HomD

(
H1(A),H1(Bξ)

) ∼= NmE/Q(Vξ). By Proposition 3.10(iii), this
implies the Mumford-Tate conjecture for the motive Vξ.

For the abelian variety A we know (see the end of the proof of 8.2) that End0(A) = Dop and
that there is an isomorphism of D-modules H1(A,Q)

∼−→ H1 = D via which GB(A) = K1/T
1
E .

(Recall: K1 = ResE/Q(∆∗1).) The Mumford-Tate conjecture for A then follows from Lemma 8.7,
applied with k = Q` and h = g′`(A)⊗Q`.

Next we look at the abelian scheme B → S constructed in 8.2. By construction, for every
s ∈ S there is an isomorphism of D-modules H1(Bs,Q)

∼−→ H2 via which GB(Bs) ⊆ K2/T
1
E .

Moreover, for Hodge-generic points s the latter inclusion is an equality. The Shimura variety
defined by the algebraic group K2/T

1
E ⊂ GL(H2) is 1-dimensional. (As discussed in 8.1, there

is a unique real place of E at which the quaternion algebra ∆2 splits.) It follows that either
GB(Bξ) = K2/T

1
E or Bξ is an abelian variety of CM-type.

If Bξ is of CM-type, which means that GB(Bξ) is a torus, the Mumford-Tate conjecture
for Bξ is true. Using the fact that G′B(A) and G′`(A) are semisimple, it is easily shown that
G′B(A×Bξ) = G′B(A)×G′B(Bξ) and G′`(A×Bξ) = G′`(A)×G′`(Bξ). In particular, the Mumford-
Tate conjecture is true for A×Bξ.

From now on we assume that GB(Bξ) = K2/T
1
E , and hence End0(Bξ) = Dop. The Mumford-

Tate conjecture for Bξ is true, by the same argument as for A. Note that Dop ∼= Mr(Q) for some
r ≥ 1 and some division algebra Q; hence A and Bξ are both isogenous to the rth power of a
simple abelian variety. It follows that if Hom(A,Bξ) 6= 0 then A and Bξ are isogenous, in which
case the Mumford-Tate conjecture for A×Bξ follows from the Mumford-Tate conjecture for A.
In what follows we may therefore also assume that Hom(A,Bξ) = 0.

Under the assumptions we have made, the groups G′B(A), G′`(A), G′B(Bξ) and G′`(Bξ) are
all semisimple. As N(Vξ) ∼= HomD

(
H1(A),H1(Bξ)

)
this implies that also GB

(
N(Vξ)

)
and
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G0
`

(
N(Vξ)

)
are semisimple. In (3.10.1), applied with V = Vξ, the group schemes Z and Z` are

finite; hence also GB(Vξ) and G0
` (Vξ) are semisimple.

The assumption that Hom(A,Bξ) = 0 implies that there are no non-zero Hodge (resp. Tate)
classes in NmE/Q(Vξ,B) (resp. NmE`/Q`(Vξ,`)). Hence there are no non-zero Hodge (resp. Tate)
classes in Vξ,B (resp. Vξ,`).

On the Hodge-theoretic side, we now know that dimE(Vξ) = 4, that there are no non-zero
Hodge classes in Vξ,B, and that GB(Vξ) is semisimple. By Zarhin’s results (see 2.1) it follows
that EndQHS(Vξ,B) = E and GB(Vξ) = SOE/Q(Vξ, φ̃). On the `-adic side, E` =

∏
λ|` Eλ, and

(Vξ,`, φ̃`) decomposes as an orthogonal sum ⊕λ|` (Vξ,λ, φ̃λ) with dimEλ(Vξ,λ) = 4. Again we know
there are no non-zero G0

` (Vξ)-invariants, and that G0
` (Vξ) has no unitary or abelian factors. By

Theorem 2.6, it follows that G0
` (Vξ) =

∏
λ|` SOEλ/Q`(Vξ,λ, φ̃λ) = GB(Vξ)⊗Q`.

This proves the Mumford-Tate conjecture for Vξ, and together with the results in the pre-
vious sections, the proof of our Main Theorem 6.2 is now complete.

9. Applications to algebraic surfaces with pg = 1.

9.1 In this section we work over C, and all surfaces we consider are assumed to be complete.
We shall mainly be interested in non-singular minimal surfaces of general type with pg = 1. Let
M =

∐
MK2,1,q be the moduli stack of such surfaces. If M is an irreducible component of M ,

we say that M satisfies condition (P) if there exist complex surfaces X1, X2 with [Xi] ∈ M

such that H2(X1,Q) 6∼= H2(X2,Q) as Q-Hodge structures. We refer to Proposition 6.4 for some
alternative properties that are equivalent to this condition.

9.2 Proposition. Let M be an irreducible component of M that satisfies condition (P). If X
is a non-singular surface with [X] ∈M , the Tate Conjecture for divisor classes on X is true and
the Mumford-Tate conjecture for the cohomology in degree 2 is true.

Proof. By assumption, there exist complex surfaces X1, X2 with [Xi] ∈ M and H2(X1,Q) 6∼=
H2(X2,Q) as Q-Hodge structures. We may assume X = X1. There exist irreducible C-
schemes Ui (i = 1, 2) of finite type and smooth morphisms pi : Ui → M with [Xi] ∈ pi(Ui).
Let ri : Ũi → Ui,red be a resolution of singularities of the reduced scheme underlying Ui, and let
πi : Yi → Ũi denote the smooth family of surfaces given by Ũi → M . By construction, there
exist points ui ∈ Ũi(C) such that the fibre of πi over ui is the surface Xi.

Denote by Hi the variation of Hodge structure over Ũi given by R2πi,∗QYi . We claim that
H1 is not isotrivial. To see this, assume the opposite. By the irreducibility of M and the fact
that the morphisms pi are open, V = p1(U1)∩ p2(U2) is an open dense substack of Mred, and on
(p2 ◦ r2)−1(V ) ⊂ Ũ2 the variation H2 is isotrivial. This implies that H2 is isotrivial on all of Ũ2,
but this gives a contradiction with our assumption that H2(X1,Q) 6∼= H2(X2,Q). This proves
the claim.

The only thing that is left to do is the reduction to a projective family of surfaces. Choose
a point t ∈ Ũ1 such that H2(X1,Q) 6∼= H2(Y1,t,Q) as Hodge structures, and choose a morphism
S → Ũ1 from a non-singular irreducible curve S to Ũ1 such that u1 and t are in the image of S.
By pull-back this gives a smooth family f : X → S such that X ∼= Xξ for some ξ ∈ S(C) and
such that the period map associated with R2f∗QX is not constant. Choose an ample divisor D
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on X and let D ⊂X be its flat closure. Over a Zariski-open subset S◦ ⊂ S containing ξ this D

is relatively ample, and the proposition follows by applying Theorem 6.2 to the restriction of the
family X to S◦.

9.3 Corollary. Let M be an irreducible component of M , and suppose there is a complex
surface Y with [Y ] ∈M and Picard number ρ(Y ) = h1,1(Y ). Then for any non-singular surface X
with [X] ∈ M , the Tate Conjecture for divisor classes and the Mumford-Tate conjecture for the
cohomology in degree 2 are true.

Proof. If the Picard number ρ(X) satisfies ρ(X) < h1,1(X) then M satisfies condition (P) and
the result follows from the proposition. If ρ(X) = h1,1,(X) then the motive H = H2(X)

(
1
)

decomposes as H = 1ρ ⊕ Htra with 2-dimensional transcendental part, on which we have a
symmetric bilinear polarization form φ. If Htra denotes the vector space underlying the Betti re-
alization, GB(H) ∼= GB(Htra) = SO(Htra, φ), which is a form of SO2, and G0

` (H) ∼= G0
` (H

tra) is
a connected algebraic subgroup of the 1-dimensional algebraic group SO(Htra, φ)⊗Q`. So it suf-
fices to show that G0

` (H) is not trivial; this is clear by looking at the Hodge-Tate decomposition
at a prime above `.

9.4 Theorem. Let X be a complex algebraic surface of general type with geometric genus
pg(X) = 1 and irregularity q (:= h1,0(X)). The Tate Conjecture for divisor classes on X and
the Mumford-Tate conjecture for the cohomology in degree 2 are true if the minimal model of X
is of one of the following types.
(a) A surface with q = 0 and K2 ≤ 2.
(b) A surface with q = 0 and 3 ≤ K2 ≤ 8 that lies in the same moduli component as a Todorov

surface.
(c) A surface with q = 0 and K2 = 3 with torsion (of the Picard group) Z/3Z.
(d) A surface with q = 1 and K2 = 2.
(e) A surface with q = 1, K2 = 3 and general albanese fibre of genus 3.
(f) A surface with q = 1 and K2 = 4 in any of the eight moduli components described by

Pignatelli in [29].
(g) A surface with q = 1 and K2 = 8 whose bicanonical map is not birational.

9.5 In most cases, the verification that the relevant component of the moduli space satisfies
condition (P) is a matter of quoting some facts from the literature. We treat these cases first.
After this we shall turn to cases (f) and (g), which require more work.

For Todorov surfaces (which pertains to (b) and also to surfaces with q = 0, K2 = 2 and
torsion Z/2Z) the result follows from the Torelli theorem for K3’s; cf. [41], Section 4 (where the
meaning of the term “moduli space” is not the standard one), or [27], Theorem 7.3.

For case (a) the assertion follows from the results in [8], [9] and [40]. For case (c), see [28].
Next we turn to minimal surfaces with q = 1. In this case 2 ≤ K2 ≤ 9. First consider the

case K2 = 2. It was shown by Catanese in [10] that the moduli stack M2,1,1 is irreducible of
dimension 7 and that it satisfies condition (P). (This last fact can also be seen from the examples
given by Polizzi in [33], Section 7.3.)

Next assume K2 = 3. As shown by Catanese and Pignatelli in [14], Section 6, the moduli
stack M3,1,1 has four irreducible components, each of dimension 5. One of these components
parametrizes surfaces whose albanese fibres have genus 3; these have been studied in detail
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Figure 1: The geometry of S as a double cover of a conic bundle.

by Catanese and Ciliberto; see [11], [12]. By [31], Corollary 6.16 and Proposition 6.18, there
exist such surfaces X for which the Picard number equals h1,1(X), and the result follows by
Corollary 9.3. (For surfaces X in this component with ample canonical class, the Tate conjecture
was proven by Lyons [25]; when combined with the results in our Section 2, his methods also
give the Mumford-Tate conjecture.)

9.6 Let now S be a surface in one of the eight irreducible components of M4,1,1 that are de-
scribed in [29]. (We switch to the letter S for the surface we want to study, to facilitate references
to the literature.) In everything that follows we assume S to be general in its component of the
moduli space; this means that the properties we state are valid for S in a Zariski-open subset.
Let α : S → B be the albanese morphism, and define Vn = α∗(ω

n
S). (Note that ωS = ωS/B.)

The surfaces that we are considering are characterized by the fact that V2 is a sum of three line
bundles. The general albanese fibre has genus 2.

The work of Pignatelli (which builds upon the results of Catanese and Pignatelli in [14])
gives a beautiful geometric description of the surfaces S in question. The main ingredients for
our discussion are summarized in Figure 1. Here C ⊂ P(V2) is a conic bundle that has two A1-
singularities lying over two distinct points P1 and P2 of B. If σ : C̃ → C is the minimal resolution
then C̃ is a blow-up of P(V1) in four points, two above each Pi. We denote by Ei,1 and Ei,2 the
exceptional fibres of β : C̃ → P(V1) above Pi. Let Ei ⊂ C̃ be the strict transform of the fibre
of P(V1) above Pi; then E1 and E2, which are (−2)-curves, are the two exceptional fibres of σ.
The morphism C̃ → C ↪→ P(V2), seen as a rational map P(V1) 99K P(V2) is the relative Veronese
morphism, and we have a short exact sequence 0 −→ Sym2(V1) −→ V2 −→ O{P1,P2} −→ 0.

The surface S is a double cover of C with φ : S → C branched over the two singular points
of C and a divisor ∆ that (for S general) is a non-singular curve of genus 4 in C , not passing
through the singular points. This divisor ∆ is obtained as the intersection of C with a relative
cubic hypersurface G ⊂ P(V2). Let q1, q2 ∈ S denote the two points over the singular points
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of C . With S̃ = C̃ ×C S, the morphism ρ : S̃ → S is the blow-up of the points qi. We denote
by Fi the exceptional fibre above qi. The morphism φ̃ : S̃ → C̃ is a double cover branched over
∆̃ + E1 + E2, where ∆̃ ⊂ C̃ denotes the strict transform of ∆ under σ. (Of course ∆̃

∼−→ ∆, as
∆ does not pass through the singular points of C .)

The key geometric fact needed for the proof of Theorem 9.4(f) is the following.

9.7 Proposition. Let Γ be the unique effective canonical divisor of S, and let Σ ⊂ S be the
critical locus of the albanese morphism α : S → B. Then for S general in its moduli component,
Γ ∩ Σ = {q1, q2} (scheme-theoretically).

Proof. The first fact we shall use is that Σ consists of the two isolated points q1 and q2, together
with the points of S lying above the critical points of the morphism ∆→ B. See [29], Section 5.

The other thing we need is a concrete description of Γ. For this we start by noting that the
relative canonical map S 99K P(V1) is not defined precisely at q1 and q2, and that the morphism
β◦φ̃ : S̃ → P(V1) resolves these indeterminacies. This means that (β◦φ̃)∗OP(V1)(1) = ρ∗ωS(−F1−
F2) = ωS̃(−2F1− 2F1). Hence ωS̃ = φ̃∗

(
β∗OP(V1)(1)⊗O

C̃
(E1 + E2)

)
. As h0

(
C̃ , β∗OP(V1)(1)

)
=

h0(B, V1) = 1, there is a unique effective divisor Ξ on C̃ representing β∗OP(V1)(1). As we shall see,
for S general, Ξ intersects E1 and E2 transversally and does not meet the exceptional fibres Ei,j
of β : C̃ → P(V1). Let Γ̃ denote the pullback of Ξ to S̃, so that Γ̃ + 2F1 + 2F2 is an effective
canonical divisor of S̃. The image Γ = ρ(Γ̃) of Γ̃ in S passes through the points q1 and q2 and has
multiplicity 1 in these points; further, Γ̃ is the strict transform of Γ and ρ∗(Γ) = Γ̃ + F1 + F2,
so that indeed Γ is the unique effective canonical divisor of S.

To describe Ξ we have to distinguish two cases. In four of the eight families, V1 is a sum of
two line bundles: V1 = OB(p) ⊕ OB(O − p) for some p ∈ B. The projection V1 →→ OB(O − p)
defines a section of P(V1) → B, which for general S does not pass through the points that are
blown up in C̃ . Hence the section lifts to a section B → C̃ . If Θ ⊂ C̃ denotes its image,
β∗OP(V1)(1) is represented by the divisor Ξ = Θ +Fp, where Fp denotes the fibre above p. (Note
that Θ is the relative hyperplane defined by the “equation” OB(p) ↪→ V1. Generally, if L ↪→ V1 is
the inclusion of a line bundle with locally free quotient then the corresponding divisor of P(V1)

lies in the class OP(V1)(1)⊗ π∗1L−1.)
In the relative coordinates used by Pignatelli (see [29], Section 2), Θ is given (on P(V1)) by

the equation x0 = 0. Its image in C ⊂ P(V2) is given by the equations y2 = y3 = 0. Now it
is immediate from the equations for ∆ = C ∩ G given in loc. cit., Table 3, that for a general
choice of G , the image of Θ is disjoint from ∆. It then remains to consider ∆∩Fp, where now Fp

denotes the fibre above p of C . As shown by Pignatelli, the critical locus of ∆→ B is contained
in the relative hyperplane of P(V2) given by y3 = 0. This hyperplane intersects Fp in two points,
which for a general choice of G do not lie on G . This proves the proposition for the families with
V1 decomposable.

Next suppose S occurs in one of the other four families. In this case V1 is the unique
rank 2 bundle on B with determinant OB(O), which sits in a non-split short exact sequence
0 −→ OB −→ V1 −→ OB(O) −→ 0. The projection V1 →→ OB(O) defines a section of C̃ → B,
whose image is Ξ.

Let η1, η2, η3 be the points of order 2 on B. Choose rational functions Fi with div(Fi) = 2ηi−
2O and such that F1 +F2 +F3 = 0. We have Sym2(V1) ∼= OB(η1)⊕OB(η2)⊕OB(η3), which gives
relative homogeneous coordinates (u1 : u2 : u3) on P(Sym2(V1)), and the image of the relative
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Veronese map P(V1)→ P(Sym2(V1)) is given by the equation F−1
1 u2

1 +F−1
2 u2

2 +F−1
3 u2

3 = 0. The
image of Ξ in P(Sym2(V1)) is given by the section (F1 : F2 : F3). There are three divisors Di

of B such that V2 = OB(D1) ⊕ OB(D2) ⊕ OB(D3); these divisors and the multiplication map
Sym2(V1)→ V2 are given as in [29], Table 2. In what follows we shall simply write a, b, c, d for
the coefficients that appear in the matrix of the multiplication map and that in loc. cit. are called
aj , bj , cj , dj (j = 5, . . . , 8), with the understanding that b = c = 0 in the family called Mi,3.
The decomposition of V2 as a sum of line bundles gives us relative homogeneous coordinates
(y1 : y2 : y3) on P(V2), and we find that C ⊂ P(V2) is given by

F−1
1 (ay1 + cy2)2 + F−1

2 (by1 + dy2)2 + F−1
3 y2

3 = 0 .

(This corrects a mistake in [29]; the coordinates zi that Pignatelli uses are meaningful only étale
locally on B. This means that the equation for C in his Table 3 has to be changed, but otherwise
this does not affect his results.)

The singular points of C and the critical locus of ∆→ B are both contained in the relative
hyperplane of P(V2) given by y3 = 0. The image σ(Ξ) of Ξ is given by a section of P(V2). As σ(Ξ)

contains the singular points (because Ξ meets E1 and E2), we are done if we show that σ(Ξ) does
not meet the hyperplane y3 = 0 in other points. It is easiest to do the calculation on P(Sym2(V1))

and to show that the image of Ξ there does not intersect the relative hyperplane given by u3 = 0.
(Note that D3 = η3 and that the multiplication map Sym2(V1) → V2 is the identity on the
third summands.) Now, u3 = 0 corresponds to the inclusion OB(η3) ↪→ Sym2(V1), whereas the
image of Ξ in P(Sym2(V1)) is given by a surjection Sym2(V1) →→ OB(2O). The composition
OB(η3) → OB(2O) is given by the inclusion OB(η3) ⊂ OB(2η3), followed by the isomorphism
F−1

3 : OB(2η3)
∼−→ OB(2O); hence indeed the image of Ξ is disjoint from the hyperplane u3 = 0,

and we are done.

9.8 Remark. If V1 is decomposable, ∆ · Fp = 6, and it follows that for a general member of
the first four families, Γ̃ is the union of two curves of genus 2, intersection transversally in two
points. (Hence indeed pa(Γ̃) = pa(Γ) = 5.) One component of Γ̃ is the inverse image of the
genus 1 curve Θ, which meets the branch locus only in its intersection points with E1 and E2;
the other component is the inverse image of the rational curve Fp, which intersects the branch
locus in six points. The two components intersect in the points lying over the point Θ ∩ Fp.

If V1 is indecomposable, the genus 1 curve Ξ intersects the branch locus of S̃ → C̃ in its
intersection points with E1 and E2 (the points lying over the singular points of C ) and six other
points. In this case, Γ̃ ∼= Γ is irreducible of genus 5.

9.9 We now complete the proof of Theorem 9.4(e). Again we assume S is general in its com-
ponent of the moduli space. As TS

∼= Ω1
S(−Γ), we get an exact sequence

0 −→ H0(S,Ω1
S) −→ H0(Γ,Ω1

S |Γ) −→ H1(S,TS) −→ H1(S,Ω1
S) ,

in which the last map sends a class inH1(S,TS) to its cup-product with a non-zero 2-form (which
is unique up to scalars). Our goal is to show that this map is non-zero, as this implies that the
Hodge structure on the H2 is not constant over the moduli component containing S. Because all
families that we are considering have dimension 4 or bigger and h0(Ω1

S) = 1, it suffices to show
that h0(Γ,Ω1

S |Γ) ≤ 4.
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Next let µ be a non-zero global 1-form on B and consider the exact sequence

0 −→ OS
α∗(µ)−−−−→ Ω1

S
−∧α∗(µ)−−−−−−→ ωS −→ ωS |Σ −→ 0 ,

where, as before, Σ denotes the critical locus of the albanese map α. (As shown by Pignatelli, Σ is
finite; counting Euler characteristics, we find that it has length 8.) Breaking this up in two short
exact sequences and restricting the first to Γ we get 0 −→ OΓ −→ Ω1

S |Γ −→ IΣωS |Γ −→ 0, where
IΣ ⊂ OS is the ideal sheaf of Σ. As OS(−Γ) = ω−1

S , Kodaira vanishing gives h0(Γ,OΓ) = 1.
(This is also clear from the concrete description of Γ obtained in the proof of Proposition 9.7.)
It therefore suffices to show that h0(Γ,IΣωS |Γ) ≤ 3.

From the second short exact sequence we get a diagram

0 0y y
0 −→ IΣ −→ IΣωS −→ IΣωS |Γ −→ 0y y y
0 −→ OS −→ ωS −→ ωS |Γ −→ 0y y y

OΣ −→ ωS |Σ −→ ωS |Γ∩Σ −→ 0y y y
0 0 0

with exact rows and columns. The map OΣ → ωS |Σ is the restriction of the map OS → ωS given
by the global 2-form on S; hence its kernel is OΓ∩Σ. The middle row, together with q(S) = 1,
gives that h0(Γ, ωS |Γ) ≤ 1 (in fact, it is equal to 1). By the snake lemma and Proposition 9.7,
the desired estimate h0(Γ,IΣωS |Γ) ≤ 3 follows. This settles case (f) of Theorem 9.4.

9.10 For the surfaces in (g), which make up three irreducible components of M8,1,1, we use the
results in [32] and [7]. The surfaces in question are of the form S = (C × F )/G, where C and F
are curves with a faithful action of a finite group G such that the diagonal action on C × F is
free. Hence H2(S) ∼= H2(C)⊕H2(F )⊕ [H1(C)⊗H1(F )]G.

In all examples, it follows without difficulty from the description given in [32], Section 4, that
all simple factors of the Jacobians JC and JF have dimension at most 2. By [24], Corollary 4.5,
it follows that the Mumford-Tate conjecture for JC × JF is true. By Proposition 3.10(iv) and
Remark 1.8(i), this implies the Mumford-Tate conjecture for H2(S).

This completes the proof of Theorem 9.4.
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