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Abstract – We consider a team selection problem that requires to hire ateam of individuals that
maximizes a profit function defined as difference of the utility of production and the cost of hiring. We
show that for any monotone submodular utility of productionand any increasing cost function of the
team size with increasing marginal costs, a natural greedy algorithm guarantees a1− log(a)/(a− 1)–
approximation whena ≤ e and a1 − a/e(a − 1)–approximation whena ≥ e, wherea is the ratio of
the utility of production and the hiring cost of a profit-maximizing team selection. We also consider the
class of test-score algorithms for maximizing a utility of production subject to a cardinality constraint,
where the goal is to hire a team of given size based on greedy choices using individual test scores. We
show that the existence of test scores that guarantee a constant-factor approximation is equivalent to
the existence of special type of test scores – so called replication test scores. A set of sufficient con-
ditions is identified that implies the existence of replication test scores that guarantee a constant-factor
approximation. These sufficient conditions are shown to hold for a large number of classic models of
team production, including a monotone concave function of total production, best-shot, and constant
elasticity of substitution production function. We also present some results on the performance of dif-
ferent kinds of test scores for different models of team production, and report empirical results using
data from a popular online labour platform for software development.

Keywords: Online Services, Online Marketplaces, Social Sciences, Industrial Organization, Team
Performance, Submodular Functions

1 Introduction

The performance of teams has been one the most central topicsof study in areas such as organization
science, industrial organization, theory of firms, management sciences, social psychology, and has
recently received much attention in the context of online labour platforms; for example, in the context of
competition-based crowdsourcing platforms where solutions to tasks are derived by aggregating inputs
from multiple online workers, or in the context of paid-labour online marketplaces for matchmaking
between tasks and independent contractors.

A standard model of team performance defines actual productivity of a team of individuals as differ-
ence of apotential productivityand aprocess loss[Ste72]. Here, the potential productivity is the highest
level of performance attainable by a team and the process losses arise due to various factors including
motivational lossandcoordination loss. Motivational losses can arise if individual objectives are not
aligned with that of the team objective. Coordination lossesoccur when individuals fail to organize
their efforts optimally as a team. The decrease in individual effort that occurs when an individual works
within a group is often referred to associal loafingin psychology, e.g., [KM86], [LWH79], [Mue12]
and [SMF12]. One key question studied in literature is aboutoptimal team size [LN81]. A review
of the literature on team performance in organizations is provided in [GS92]. Several books provide
valuable insights on the team performance, e.g., [Pag07] and [KM15].

A key issue is the problem of team selection for solving a given task. In this paper, we study a
formulation of ateam selection problemdefined as follows. Suppose that given a set of individuals
N = {1, 2, . . . , n}, the actual productivity of a team of individualsS ⊆ N is given by a function
p(S) = u(S) − c(S), whereu(S) denotes the utility of production andc(S) denotes a cost function.
We may interpretp(S) as a profit to a principal realized by hiring a teamS, defined as difference
of the utility of production and the team hiring cost. The team selection problem asks to select a
set of individualsS∗ that maximizes the profit function, i.e. finding a set of individualsS∗ such that

1



p(S∗) ≥ p(S), for everyS ⊆ N . We will sometimes also refer to this problem as aprofit maximization
problem. We shall consider instances where the cost function is an increasing function of the team size;
this accommodates many interesting cases, e.g., the case ofa linear costwhere a constant marginal
cost is incurred per each team member, or the case of acardinality constraintwhere the cost of hiring
any given team is equal to zero as long as the team size is smaller than or equal to given cardinality
constraint, and is infinite otherwise.

We shall consider the class of utility functions that are non-negative, monotone submodular set
functions, and the class of cost functions that are functions of the team size with increasing marginal
costs. The class of non-negative, monotone submodular utility functions accommodates diminishing-
returns production systems, where the marginal gain of increasing a team size diminishes with the team
size. For some of our results, we shall consider a utility of production according to astochastic model of
team production, defined as the expected value of a given mapping of individual performances to a team
performance output, where the individual performances areindependent random variables with given
cumulative distribution functions; this model of team production was originally introduced by [KR15]
and is in the spirit of team performance according to a generalized Thurstone model [Thu27], e.g.,
used by popular rating systems such as TrueSkill [GMH07]. Under the given assumptions, the team
selection problem asks to maximize a submodular function that, in general, is an NP-hard problem.

In this paper, we consider two types of approximation algorithms for the team selection problem.
We consider a natural greedy algorithm that sequentially hires individuals based on greedy choices with
largest marginal profit as long as this is beneficial. For the team selection problem with a cardinality
constraint, we consider test-score algorithms that selecta team of a given size that consist of individuals
with largest individual test scores. The individual test scores are computed for each individual by
performing a test of some kind, e.g., this could be an interview for a job applicant, a screening survey
in an online labour platform such as Upwork or TopCoder, or an admission test such as SAT or GRE
used for college or graduate school admissions.

Summary of Main Contributions We characterize the approximation ratio of the greedy algorithm
for the team selection problem for arbitrary cost function of the team size with increasing marginal
costs. This approximation ratio is parametrized with the parametera > 1, which is equal to the ratio of
the utility of production and the cost of a profit-maximizingsolution, and is as given here

1−
log(a)

a− 1
when a ≤ e and 1−

a

e(a− 1)
when a ≥ e.

The special case of the team selection problem with a cardinality constraint is a limit case as the
value of parametera goes to infinity: in this limit case, our approximation ratiocoincides with known
approximation ratio of value1−1/e for the problem of maximizing a non-negative monotone submod-
ular set function. Our result extends the previously best-known approximation guarantee of the greedy
algorithm by [FIMN13], which is restricted to the special case of linear cost functions. The result is
obtained using a novel proof, which allows to study the case of arbitrary increasing cost functions with
increasing marginal costs.

For the team selection problem with a cardinality constraint, we show several new results on the
approximation guarantees of team-score algorithms. We show that the existence of test scores that
guarantee a constant-factor approximation is equivalent to the existence of special type of test scores –
we refer to asreplication test scores. For a given team production function, the replication testscore
of an individual is defined as the expected team production output of a team consisting of independent
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replicas of the given individual. The result implies that when searching for good test scores that guar-
antee a constant-factor approximation for the team selection problem, it suffices to restrict attention to
replication test scores. We identify a set of sufficient conditions for replication test scores to guarantee
a constant-factor approximation for a given team selectionproblem; specifically, we show that these
sufficient conditions guarantee a1/9 approximation. These sufficient conditions are shown to be veri-
fied for a large set of special instances of stochastic modelsof team production, including best-shot and
constant elasticity of substitution production functions; defined in Section 3. We evaluate performance
of team-score algorithms using data about individual performances as observed in a popular platform
for software development.

The paper is structured as follows. Section 2 provides a discussion of related work. Section 3
introduces notation, problem definition, and a catalogue ofexamples of production functions used as
running examples throughout the paper. Section 4 presents the approximation guarantee of the greedy
algorithm. Section 5 introduces test-score algorithms andpresents results on their approximation guar-
antees. Section 6 contains our experimental results. Finally, we conclude in Section 7.

2 Related Work

The celebrated result by [NWF78] established that for maximizing a non-negative monotone sub-
modular set function subject to a cardinality constraint, the greedy algorithm guarantees a1 − 1/e-
approximation of the optimal solution. This factor has beenshown to be optimal for the value oracle
model where an algorithm only has access to the value of the function for each given subset of the
ground set and if only a polynomial number of queries is allowed [NW78], [Fei98] and [KLMM08].

The problem of maximizing a non-negative monotone submodular set function has been subse-
quently studied for different types of constraints. [Von08] showed that for a submodular welfare prob-
lem, defined as maximizing a sum of monotone submodular utility functions subject to a matroid con-
straint, a greedy algorithm guarantees a1− 1/e− o(1)-approximation of the optimal solution. [AG12]
showed that for linear packing constraintsAx(S) ≤ b, whereA ∈ [0, 1]m×n, b ∈ [1,∞)m, and
xi(S) = 1 if i ∈ S andxi(S) = 0 otherwise, there exists aΩ(1/m1/W )-approximation algorithm,
whereW = min{bi/Ai,j : Ai,j > 0} is the width of the packing constraints; this implies a constant-
factor approximation when the number of constraints is constant, or when the width of the constraints
is sufficiently large.

More recent work studied efficient algorithms for maximizing a non-negative monotone submodular
set function subject to different types of constraints. [BV14] found fast algorithms for maximizing a
non-negative monotone submodular set functionf : 2[n] → R+ subject to different types of constraints.
In particular, for the problem with a cardinality constraint, they found an1 − 1/e − ǫ-approximation
algorithm that usesO(n

ǫ
log n

ǫ
) queries; note that standard greedy algorithm requires insteadO(nk)

queries, for the cardinality of valuek. Further results in this direction were established by [BFS15].
[BMKK14] have found a one-pass streaming algorithm for maximizing a monotone submodular set
function subject to a cardinality constraint that guarantees a1/2− ǫ-approximation using a memory of
sizeO(k log(k)/ǫ) and a running time of valueO(n log(k)/ǫ), for an arbitrary constantǫ > 0.

The problem of maximizing a non-negativenon-monotonesubmodular set function subject to
a cardinality constraint has been studied by several authors. [FNS11] have found an1/e − o(1)-
approximation algorithm when the number of items in the solution is within given cardinality con-
straint. [Von09] have found a1/4 − o(1)-approximation algorithm for the case when the number of
items in the solution is required to be exactly equal to the given cardinality constraint. [BFNS14]
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Table 1: Approximation results for the profit maximization problem.
Utility function Cost function Algorithm Approximation ratio

monotone submodularcardinality constraint greedy 1− 1
e

[NW78]
monotone submodular linear greedy 1− log(a)

a−1
[FIMN13]

monotone submodular convex greedy 1− log(a)
a−1

if a ≤ e; 1− a
e(a−1)

if a ≥ e

linear convex greedy* 1
3

[BUCM12]
top-m cardinality constraint test score 1

30
[KR15]

a class of submodular cardinality constraint test score 1
9

derived several improved approximation guarantees. [FMV07] and [LMNS09] studied the problem
subject to matroid or knapsack constraints; in particular,they have found an1/5 − ǫ-approximation
algorithm for any number of knapsack constraints, whereǫ > 0 is any constant. These results do not
apply to our problem as our objective function is not necessarily non-negative.

The problem of maximizing a profit function defined as difference of a non-negative monotone
submodular set function and a non-negative monotone cost function have also been studied. [FIMN13]
studied the special case of a linear cost function, and showed that in a worst-case, the value of the solu-
tion of the greedy algorithm can be an arbitrarily small fraction of the optimum solution. As a way to
circumvent the negative results of the worst-case analysis, they introduced a framework for designing
and analysing algorithms that is suited to problems that areinapproximable according to the standard
worst-case analysis. This amounts to designing guaranteesfor classes of instances, parametrized ac-
cording to the properties of the optimal solution. In particular, for the problem of maximizing a profit
function with a non-negative monotone submodular set function and a linear cost function, they showed
that the greedy algorithm guarantees a1− log(a)/(a−1)-approximation of the optimal solution, where
a is the ratio of the utility and the cost of the optimal solution, and they showed that this is optimal. We
extend this result for a more general class of convex cost function, which includes linear cost functions
as a special case.

Constant-factor approximation algorithms are known for special classes of utility and cost func-
tions; for example, for the problem with the utility function defined as a sum of the values of items and
a cost function that is a convex function of the sum of weightsof items, taking the best of the following
two outputs yields a1/3-approximation: (i) the output of a greedy algorithm and (ii) a single item that
maximizes the profit [BUCM12]; referred to as greedy* in Table1.

The problem of maximizing a set function subject to a cardinality constraint using a test-score
algorithm was first introduced by [KR15]. They showed that formaximizing a particular submodular
set function (top-m function) subject to a cardinality constraint, there exists a test-score algorithm
that guarantees a constant-factor approximation. We obtained several new results for the test-score
algorithms. We found that the existence of test scores that guarantee a constant-factor approximation
is equivalent to the existence of special type of test scores– replication test scores. We identified a
set of sufficient conditions for the existence of replication test scores that guarantee a constant-factor
approximation; this conditions are shown to hold for most ofproduction functions from our catalogue.
We obtained new results for the performance of different types of test scores for the family of CES
production functions.

The approximation results for the profit maximization problem are summarized in Table 1.
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3 Team Selection Problem, Production and Cost Functions

In this section, we first provide a formal definition of the team selection problem and then introduce a
number of classic models of team production.

Team Selection Problem Suppose given is a set of individualsN = {1, 2, . . . , n}, a utility of pro-
duction functionu : 2N → R+ that returns a positive real-value for any subsetS ⊆ N , and acost
functionc : {0, 1, . . . , n} → R+ that returns a positive real-value for any team size|S|. We define the
profit functionp : 2N → R to be quasi-linear in the utility of production and the cost function, i.e. for
everyS ⊆ N it is defined byp(S) = u(S) − c(|S|). The goal is to find a set of individualsS∗ ⊆ N
that maximizes the profit function, i.e.

S∗ ⊆ argmaxS⊆Np(S).

We will use the abbreviating notationp∗ = p(S∗), u∗ = u(S∗), andc∗ = c(|S∗|). We also define
a = u∗/c∗, which we will show to play an important role in characterizing the performance of the
greedy algorithm.

The utility of production functionu is assumed to be non-negative, monotonically increasing, and
submodular set function, and the cost function is assumed tobe non-negative and with monotonically
increasing increments. Under these assumptions, the goal is to solve a combinatorial optimization
problem of maximizing a submodular function, which is knownto be NP-hard. Hence, we have to
settle to consider approximation algorithms for the given problem. An algorithmA is said to be a
c-approximation algorithm if it outputs a setSA with a profit of valuepA = p(SA) such thatpA ≥ cp∗.

Stochastic Model of Team Production A stochastic model of team production assumes additional
structure that is used to define the utility of production function u. Suppose that the individuals are
associated with respective performancesX1, X2, . . . , Xn that are assumed to be independent random
variables with cumulative distribution functionsF1, F2, . . . , Fn. Suppose that for every given set of
individualsS ⊆ N , a functionf : R|S| → R+ is given, which returns a positive real-value for every
given vector of individual performancesXS = (Xi, i ∈ S). We assume that functionf is permutation-
invariant, meaning that it assumes the same value for any permutation of its arguments. For every given
S ⊆ N , the utility of production is defined as

u(S) = E[f(XS)]. (1)

We shall refer to(f,F) as astochastic model of team production, whereF = (F1, F2, . . . , Fn).

A Catalogue of Production Functions We introduce some classic models of production functions
that are defined for every given non-empty set of individualsS ⊆ N and values of individual production
inputsx = (xi, i ∈ S) as follows:

1. Total production:

f(xS) = g

(

∑

i∈S

xi

)

(2)

whereg : R→ R+ is a non-negative monotone increasing function.
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2. Best-shot:
f(xS) = max

i∈S
xi. (3)

3. Top-m: given an integerm such that1 ≤ m ≤ |S|,

f(xS) =
m
∑

i=1

x(S,i) (4)

wherex(S,1), x(S,2), . . . , x(S,|S|) are the values ofxS rearranged in decreasing order.

4. Constant Elasticity of Substitution (CES): for given parameterp > 0,

f(xS) =

(

∑

i∈S

xp
i

)1/p

. (5)

5. Success-Probability:
f(xS) = 1−

∏

i∈S

(1− g(xi)), (6)

whereg : R→ [0, 1] is an increasing function.

A production function defined as an increasing function of the total individual investment in a
production activity, as given in (2), is a natural model of production. For a concave functiong, this
production function exhibits a diminishing returns increase property, where the marginal increase of
the production output becomes smaller or remains constant,the larger the total investment in the pro-
duction.

The best-shot production function in (3) defines the production output to be the largest production
input invested in the production activity. This type of production is common in online crowdsourcing
systems where often multiple solutions are solicited for a task, and eventually only the best solution is
selected.

The top-m production function in (4) is a natural generalization of the best-shot production func-
tion, where instead of restricting to selecting only the best solution for a task, a given number of best
solutions is selected.

The constant elasticity of substitution or CES production function, defined in (5), was considered
in [Sol56] and has been much popularized following [ACMS61].The CES production function is a
textbook example of a production function, e.g., see Chapter1 in [Var92]. [ACMS61] used a CES
production function to describe how capital and labour map to a value of production. [Arm69] used
a CES production function as a model of demand for products distinguished by place of production.
[DS77] used a CES production function as a model of demand for commodities that are substitutes
among themselves in a monopolistic market to study optimum product diversity. Several properties of
the CES production functions were studied by [Uza62] and [McF63]. The CES production function
exhibits constant returns to scale, meaning that scaling the production inputs by a factor results in
scaling the production output by the same factor. This is equivalent to saying that the production
function is homogenous of degree1, i.e. f(tx1, tx2, . . . , txn) = tf(x1, x2, . . . , xn) for all t ≥ 0. The
CES production function corresponds to a weighted mean defined in [HLP52] as follows: for given
valuesx = (x1, x2, . . . , xn) ∈ R

n, and fixed parametersqi > 0 for i = 1, 2, . . . , n, a weighted mean
of x is given byMp(x) = (

∑n
i=1 qix

p
i /
∑n

i=1 qi)
1/p, wherep is any real value except for (i)p = 0
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and (ii) p < 0 andxi = 0 for somei ∈ {1, 2, . . . , n}. The family of CES production functions
accommodates different types of productions by a suitable choice of parameterp. The CES production
function models a production that is linear in the total production input for the value of parameterp = 1,
and it corresponds to the best-shot production in the limit as the value of parameterp goes to infinity.
The success-probability production function, defined in (6), is often used as a model of tasks for which
each individual solution is either good or bad, and it suffices to have at least one good solution for the
task to be successfully solved.

The utility of production function is a submodular set function under the following conditions on
the production functionf for our given examples. For the total production model, it suffices to assume
in addition that functiong is a concave function, i.e. it exhibits a diminishing increase with the value
of the total production. The utility of production under either the best-shot, the top-m or the success-
probability production function is a submodular function without making any additional assumptions.
The utility of production under the CES production function is a submodular function if and only if
p ≥ 1.

Cost Functions The class of cost functions with increasing marginal cost accommodates several
special cases of interest. For example, it accommodates a linear cost functionc(x) = ax, for a constant
marginal costa > 0, or a quadratic cost functionc(x) =

(

x
2

)

that can be interpreted as the number of
potential ties between individual team members. Another example of interest is that of acardinality
constraint: given an integerk ≥ 1, the cost function is defined as follows

c(x) =

{

0 if x ≤ k

∞ if x > k.
(7)

4 Greedy Algorithm and its Approximation Guarantee

We consider a naturalgreedy algorithmfor the team selection problem that selects team members se-
quentially with each hiring decision being a greedy choice that maximizes marginal profit gain, until
either a hiring decision yields a non-positive marginal profit or all the team members are hired. For-
mally, the greedy algorithm initializesS0 ← ∅ at stept = 0, and then performs the following steps:

At each stept, do:
Find i∗ = argmaxi∈N\St

p(St ∪ {i})− p(St)
If p(St ∪ {i

∗})− p(St) > 0
St+1 ← St ∪ {i

∗}
Elseterminate.

The greedy algorithm is known to be optimal for some particular models of stochastic team pro-
duction. For example, from the work [KR15], for the best-shotproduction function and individual
production inputs according to weighted Bernoulli random variables, for any cost function with in-
creasing marginal cost, the greedy algorithm is optimal.

From the classic work of [NW78], the greedy algorithm is knownto have the following approxi-
mation guarantee for the special case of the budget constraint: pG ≥ (1 − 1/e)p∗. A more detailed
statement is asserted in the following proposition:
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Figure 1: Constantca of the greedy algorithm approximation versusa.

Proposition 1 ( [NW78]) For every givenk, and every step ofgreedy algorithm, it holds

u(St) ≥

(

1−

(

1−
1

k

)t
)

max
S:|S|=k

u(S) ≥
(

1− e−t/k
)

max
S:|S|=k

u(S).

For the special case of the cost function restricted to be linear, from the work by [KPR98], it is
known that the greedy algorithm can guarantee a constant-factor approximation whenc∗/u∗ is bounded
away from1, and [FIMN13] have established the following approximation guarantee:

pG ≥

(

1−
log(a)

a− 1

)

p∗. (8)

In the following theorem, we establish an approximation guarantee of the greedy algorithm for the
team selection problem with an arbitrary increasing cost function with increasing marginal cost.

Theorem 1 For the profit maximization problem with a non-negative monotone submodular utility
function and a cost function with increasing marginal cost, the greedy algorithm guarantees a solution
that is aca-approximation of the optimum solution, i.e.pG ≥ cap

∗ where

ca =

{

1− log(a)
a−1

, if a ≤ e

1− 1
e

a
a−1

, if a ≥ e.

See Figure 1 for a graph ofca versusa.

Proof Let k∗ = |S∗|. From Proposition 1, for everyt ∈ {0, 1, . . . , k∗},

u(St)− c(t) ≥

(

1−

(

1−
1

k∗

)t
)

u∗ − c(t)

≥

(

1−

(

1−
1

k∗

)t
)

u∗ −
t

k∗
c∗, (9)

where the last inequality holds by the assumption thatc is a function with increasing increments.
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Let g be a decreasing piecewise linear function defined as follows:

g(x) =

{

(

1− 1
k∗

)x
, for x ∈ {0, 1, . . . }

(⌈x⌉ − x)
(

1− 1
k∗

)⌊x⌋
+ (x− ⌊x⌋)

(

1− 1
k∗

)⌈x⌉
, otherwise.

Combining with (9), we have

pG ≥ max
x∈[0,k∗]

{

(1− g(x))u∗ −
x

k∗
c∗
}

. (10)

We now establish the following inequality:

g(x) ≤ e−x/k∗ , for everyx ∈ R+. (11)

It suffices to show that for every positive integert, we have

max
x∈[t,t+1]

g(x) ≤ e−x/k∗ . (12)

Suppose thatg(t) = e−x̄/k∗ for somex̄ ∈ [t, t + 1]. Otherwise, the conditiong(t) 6= e−x/k∗ for all
x ∈ [t, t + 1] and the factg(t) = (1 − 1/k∗)t ≤ e−t/k∗ imply thatg(t) < e−x/k∗ for all x ∈ [t, t + 1],
which is becauseg is a decreasing function implies (12).

Note thatg(x)− e−x/k∗ is a concave function on[t, t+ 1], which is maximized at a unique pointx̄
since d

dx
g(x) = − 1

k∗
g(t) andg(t) = e−x̄/k∗ . It is readily checked that

max
x∈[t,t+1]

{

g(x)− e−x/k∗
}

= (x̄− t)

(

(

1−
1

k∗

)t+1

−

(

1−
1

k∗

)t
)

≤ 0

which establishes inequality (11).
Combining (10) and (11), we obtain

pG ≥ max
x∈[0,k∗]

{

(

1− e−x/k∗
)

u∗ −
x

k∗
c∗
}

.

Therefore, ifc∗/u∗ ≥ 1/e, we have

pG

p∗
≥

u∗ −
(

1− log
(

c∗

u∗

))

c∗

u∗ − c∗
= 1−

log(a)

a− 1
,

and, otherwise, we have
pG

p∗
≥

(1− e−1)u∗ − c∗

u∗ − c∗
= 1−

a/e

a− 1
.

�

The approximation ratioca in Theorem 1 increases with parametera, from zero value ata = 1 to
value1 − 1/e asa goes to infinity. The limit value of the approximation ratioca asa goes to infinity
coincides to that for the team selection problem with a cardinality constraint. This is intuitive as for
the team selection with a cardinality constraint, the valueof the utility of production is strictly positive
and the value of the cost in any optimal solution is equal to zero, hence the value of parametera is
infinite. The approximation ratioca is indeed smaller than or equal to the value in (8), which is an
approximation ratio for the restricted case of the team selection problem with a linear cost function.
More specifically,ca coincides to that in (8) for the casea ≤ e, and is strictly smaller, otherwise.

The result in Theorem 1 is established using a proof that usesthe known approximation guarantee of
the greedy algorithm for the problem of maximizing a non-negative monotone submodular set function
subject to a cardinality constraint and the increasing marginal cost property. The proof is different from
that in [FIMN13], which is for the special case of a linear cost function; we provide a more detailed
discussion in Appendix A.
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5 Test-Score Algorithms and Their Approximation Guarantees

In this section, we consider approximation guarantees of test-score algorithms for the team selection
problem with a cardinality constraint. Atest-score algorithmis defined for given values of individual
test scoress1, s2, . . . , sn and a cardinality constraintk ≥ 1 by hiring a set ofk individuals with the
largest values of test scores. We consider the utility of production according to a(f,F) stochastic
model of team production, which is introduced in Section 3. The test scores can be defined in different
ways for a given choice of the production functionf and cumulative distribution functions of individual
performancesF = (F1, F2, . . . , Fn).

Several examples of test scores are given in the following list of examples:

1. Mean test scores: si = E[Xi], for i ∈ N .

2. Quantile test scores: si = E [Xi | Fi(Xi) ≥ q], for i ∈ N , whereq is a positive-valued parameter.

3. Replication test scores: si = E[f(X
(1)
i , X

(2)
i , . . . , X

(k)
i )], for i ∈ N , whereX(1)

i , . . . , X
(k)
i are

independent and identically distributed random variableswith cumulative distributionFi.

The mean test scores represent a natural definition of test scores, defining a score of an individual
to be equal to his or her expected performance. The quantile test score of an individual is defined as
the conditional expected value of his or her individual performance, conditional on that it is at least of
value as large as theq-quantile of his or her distribution of performance. The quantile test scores have
been considered by [KR15] for the stochastic model of production with top-m production function. In
particular, for the best-shot production function,q = 1− θ/k for a positive constantθ. The replication
test score for an individual is defined for given choice of theproduction functionf as the expected
value of production of a team of sizek that consists of independent replicas of the given individual.

5.1 Good Test Scores

We introduce a condition that defines a subset of test scores,we refer to asgood test scores, and then
show that any test-score algorithm that uses good test scores guarantees a constant-factor approximation
for the team selection problem.

Definition 1 (good test scores)For given utility of production functionu, any given test scoress1, s2, . . . , sn
are said to begood test scores, if there exists a monotone increasing functionh and constantsc1, c2 > 0
such that

c2 min
i∈S

h(si) ≤ u(S) ≤ c1 max
i∈S

h(si), for everyS ⊆ Ñ (13)

whereÑ denotes a multi-set that consists of all elements inN , and each of these elements having at
leastn− 1 duplicates.

The good test scores are shown to imply the following guarantee.

Theorem 2 Whenever for a given utility of production there exist good test scores, then the test-score
algorithm that uses good test scores yields a solution with the following approximation guarantee:

pS ≥
c2

c1 + c2
p∗.

10



Proof Let S be the set output by the test-score algorithm. By the monotoneincreasing property of the
utility of production functionu, we have

u(S∗) ≤ u(S∗ ∪ S) ≤ u(S) + u(S∗ \ S)

≤ u(S) + c1 min
i∈S

h(si) ≤ u(S) +
c1
c2
u(S)

which establishes the theorem. �

The result in Theorem 2 tells us that if for a given utility of production function there exist good test
scores, then the test-score algorithm using good test scores guarantees a constant-factor approximation
for the team selection problem. It remains to understand when for particular choice of a utility of
production there exist good test scores, and given that there exist good test scores, how in particular
one would define them, and what exactly is the approximation gurantee of a given choice of good test
scores.

5.2 A Necessary and Sufficient Condition for the Existence of Good Test Scores

The following theorem shows that the existence of good test scores is equivalent to the existence of a
special type of test scores – replication test scores.

Theorem 3 If for a given utility of production function there exist good test scores, then replication
test scores are good test scores.

Proof Suppose that for a utility of production functionu, there exist good test scoress̄1, . . . , s̄n, so that
we have

c2 min
i∈S

s̄i ≤ u(S) ≤ c1 max
i∈S

s̄i, for everyS ⊆ Ñ . (14)

Consider an arbitraryi ∈ N . Let i(1), . . . , i(k) be a sequence of individuals with performances
X

(1)
i , . . . , X

(k)
i , which are independent and identically distributed randomvariables with cumulative

distribution functionFi. Let si denote the replication test score defined by

si = E[f(X
(1)
i , . . . , X

(k)
i )] = u({i(1), . . . , i(k)}). (15)

Sinces̄1, . . . , s̄n are good test scores, we have

c2s̄i ≤ u({i(1), . . . , i(k)}) ≤ c1s̄i. (16)

From (14), (15), and (16), we have

c2
c1

min
i∈S

si ≤ c2 min
i∈S

s̄i ≤ u(S) ≤ c1 max
i∈S

s̄i ≤
c1
c2

max
i∈S

si

which implies that replication test scores are good test scores. �

From Theorem 3, we observe that for every given production function, we can check whether there
exist good test scores by just checking whether replicationtest scores are good test scores. If for a
given production function, replication test scores are notgood test scores, then there exist no good test
scores.

11



5.3 A Sufficient Condition for Replication Test Scores to be Good

We present a set of sufficient conditions for replication test scores to be good test scores. This set of
conditions holds for all production functions from our catalogue of examples except top-m function;
see Appendix B. Note that for top-m function there exist good test scores by the result in [KR15],
which implies that replication test scores are good test scores for top-m function from Theorem 3.

We introduce the following conditions:

(S) u(S) = E[f(XS)] is a non-negative, monotone submodular set function;

(M) f(x, y)− f(x) is decreasing inx for everyy ∈ R+;

(B) f(f−1(f(x1, x2, . . . , xl−1)), xl) ≤ f(x1, x2, . . . , xl)

wheref−1(x) = max{y ∈ R+ | f(y) ≤ x}.
The next theorem tells us when replication test scores are good test scores, and identifies the values

of constants in the definition of good test scores.

Theorem 4 The following two claims hold:

1. If condition (S) holds, then replication test scores satisfy the lower bound in (14) withc2 = 1/2.

2. If conditions (S), (M), and (B) hold, then replication test scores satisfy the upper bound in (14)
with c1 = 4.

Proof We prove the two asserted claims as follows.

Proof of Claim 1 Without loss of generality, consider the setS = {1, 2, . . . , k} and assume that
s1 = mini∈S si. We show that for everyj ∈ {1, 2, . . . , k}, u({1, 2, . . . , j}) ≥ j

2k
s1. From this, it then

follows thatu(S) ≥ s1/2. The proof is by mathematical induction. Base casej = 1: sinceu is a
non-negative, monotone submodular set function, we have

u({1}) =
1

k

k
∑

t=1

u({1(t)}) ≥
1

k
u({1(1), . . . , 1(k)}) =

s1
k
. (17)

Induction step: suppose thatu({1, . . . , j}) ≥ j
2k
s1 holds for1 ≤ j < k and we need to show that it

holds thatu({1, . . . , j + 1}) ≥ j+1
2k

s1. Note that

u({1, . . . , j + 1}) = u({1, . . . , j}) + [u({1, . . . , j + 1})− u({1, . . . , j})]

(a)

≥ u({1, . . . , j}) +
1

k
[u({1, . . . , j, (j + 1)(1), . . . , (j + 1)(k)})− u({1, . . . , j})]

(b)

≥ u({1, . . . , j}) +
1

k
[u({(j + 1)(1), . . . , (j + 1)(k)})− u({1, . . . , j})]

≥

(

1−
1

k

)

u({1, . . . , j}) +
sj+1

k

≥
j + 1

2k
s1, (18)

where(a) and(b) hold by the assumption thatu is a non-negative, montonically increasing, and sub-
modular function, and the last inequality follows by the induction hypothesis.
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Proof of Claim 2 Without loss of generality, assume thatS = {1, 2, . . . , k} ands1 ≤ s2 ≤ · · · ≤ sk.
Let i∗ be an individual such thatXi∗ = x∗ with probability 1, for x∗ such thatf(x∗) = csk, for a
constantc ≥ 1. Sinceu is a non-negative, monotone increasing, and submodular function, we have

u(S) ≤ u({i∗} ∪ S)

≤ u({i∗}) +
k
∑

i=1

(u({i∗} ∪ {i})− u({i∗}))

= csk +
k
∑

i=1

(u({i∗} ∪ {i})− u({i∗})) . (19)

Now, note that

u({i∗} ∪ {i})− u({i∗}) = E[f(x∗, Xi)− csk]

(a)

≤ E

[

f(f−1(f(X
(1)
i , . . . , X

(k−1)
i )), X

(k)
i )− f(X

(1)
i , . . . , X

(k−1)
i )|f(X(1)

i , . . . , X
(k−1)
i ) ≤ csk

]

(b)

≤ E

[

f(X
(1)
i , . . . , X

(k)
i )− f(X

(1)
i , . . . , X

(k−1)
i )|f(X

(1)
i , . . . , X

(k−1)
i ) ≤ csk

]

≤
u
(

{i(1), . . . , i(k)}
)

− u
(

{i(1), . . . , i(k−1)}
)

Pr[f(X
(1)
i , . . . , X

(k−1)
i ) ≤ csk]

(c)

≤
si/k

Pr[f(X
(1)
i , . . . , X

(k−1)
i ) ≤ csk]

(d)

≤

(

1−
1

c

)−1
sk
k
, (20)

where(a), (b), and(c) hold by conditions (M), (B), and (S), respectively, and(d) holds because by
Markov’s inequality and condition (S)

Pr[f(X
(1)
i , . . . , X

(k−1)
i ) ≥ csk] ≤

E[f(X
(1)
i , . . . , X

(k−1)
i )]

csk
≤

E[f(X
(1)
i , . . . , X

(k)
i )]

csk
≤

1

c
.

From (19) and (20), we obtainu(S) ≤ c2

c−1
sk, which implies Claim 2 whenc = 2. �

The result of Theorem 4 has the following corollary.

Corollary 1 Under conditions (S), (M), and (B), the test-score algorithm that uses the replication test
scores yields a solution that guarantees a1/9 approximation of the optimum solution.

5.4 CES Production Function

In this section we characterize the approximation guarantees of the team selection by using either the
mean test scores or the quantile test scores for a stochasticmodel of production according to a CES
production function with parameterp ≥ 1.

5.4.1 Mean Test Scores

The following theorem characterizes the approximation guarantee of the team selection using the mean
test scores.
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Theorem 5 Suppose that the utility of production is according to a stochastic model of production with
a CES production function with parameterp ≥ 1. For every given team sizek ≥ 1, let M be a team
of sizek that consists of individuals of highest mean test scores, and let S∗ be a team of sizek that
maximizes the expected utility of production. Then, we have

u(M) ≥
1

k1−1/p
u(S∗).

Moreover, this bound is tight.

Proof of the theorem is provided in Appendix C.
Note that for the value of parameterp = 1, selecting a team of individuals with the largest mean

test scores is optimal. Intuitively, one would expect that for small enough values of parameterp > 1,
the mean test scores would be good test scores. The result of Theorem 5 tells us that this is so if and
only if p = 1 + O(1/ log(k)). In the limit asp goes to infinity, in which the CES production function
corresponds to the best-shot production function, we have that the expected utility of a team with the
largest mean test scores is guaranteed to be at least1/k of the optimum expected utility, and this is a
tight bound; this conforms to the result in [KR15].

5.4.2 Quantile Test Scores

Since the CES production function corresponds to the best-shot function in the limit of large values
of parameterp, and we know from the result in [KR15] that quantile test scores are good test scores
for the best-shot function, one would expect that quantile test scores are good test scores for the CES
production function provided that the value of parameterp is large enough. In the next theorem, we
characterize a tight threshold for the parameterp below which the quantile test scores are not good test
scores for the CES production function.

Theorem 6 The following claims hold for quantile test scores withq = 1− θ/k:

1. If p = o(log(k)) and p > 1, the quantile test scores are not good test scores for any value of
parameterθ > 0;

2. If p = Ω(log(k)), the test-score algorithm with quantile test scores withθ = 1 yields a solution
that is a constant-factor approximation of the optimum solution.

Proof of the theorem is given in Appendix D.

6 Experimental Results

In this section, we present results of empirical study usingdata crawled from TopCoder, a popular
online platform for software development. Our goal is to evaluate performance of different test-score
algorithms for the team selection problem and compare theirperformance with optimum team selection.
Overall, the empirical results show that the average performance of a team selected using replication
test scores is typically near optimal, and that for some stochastic models of team production, they have
significantly better worst-case performance than some other test scores.
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Figure 2: (Left) Number of tasks per worker versus the workerrank with respect to the number of tasks;
(Middle) Mean score per worker versus the worker rank with respect to the mean scores; (Right) Mean
score per worker conditional on the number of tasks per worker.

6.1 Dataset and Basic Statistics

Our dataset contains information about solutions to web software development tasks submitted by
coders (we interchangeably refer to as workers) over a period from November 2003 to January 2013.
In our dataset, each solution is associated with the identity of the coder, identity of the task, and the
value of the score associated to the solution. Each such score is a real number in the interval from value
0 to value 100. These scores are assigned to solutions by a rating procedure that is part of TopCoder
online platform. We use these scores as indicators of individual performances. Table 2 presents some
basic statistics.

Table 2: TopCoder dataset summary statistics.
# of workers # of tasks # of solutions Tasks per worker Workers per task Mean score

658 2,924 7,127 10.83 2.44 87.54

Some additional statistics is shown in Figure 2. The number of tasks per worker covers a range
from 1 to about500 tasks. Out of total of 658 workers, 75 of them have submitted solutions to 20 or
more tasks and 124 of them have submitted solutions to 10 or more tasks. The mean scores of solutions
submitted by workers cover a wide range from around 40 to 100 point scores. According to intuition,
the workers seem to improve upon their performance as they submit more solutions to tasks.

Figure 3 shows statistics for the scores of submitted solutions. The values of scores cover a wide
range of values from around 25 to 100. Conditioning on the scores of solutions submitted by workers
who submitted at leastθ solutions skews the distribution towards larger values. The cumulative dis-
tribution functions of scores of solutions submitted by individual workers in general differ from one
worker to another as shown in Figure 3-right, for a set of workers who made the largest number of
solutions.

6.2 Performance of Test-Score Algorithms

We evaluate performance of test-score algorithms for the team selection problem by the following
method. We consider the set of workers who submitted at leastθ solutions. We report the results for
θ = 20; we have also experimented with other values and observed qualitatively the same results. We fix
a stochastic model of team production, the team sizek, a test-score algorithm, and the distributions of
individual performances to the empirical distributions ofthe scores observed in the data. Specifically,
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Figure 3: Cumulative distribution function of individual performance score: (left) aggregate over all
submissions conditional on workers with at leastθ submissions, (right) top 6 workers with respect to
the number of submissions.

for a given workeri, we denote withF̂i the empirical cumulative distribution function of his or her
performance scores. For a workeri with ni observed performance scores of valuesx

(1)
i , x

(2)
i , . . . , x

(ni)
i ,

we defineF̂i(x) =
1
ni

∑ni

j=1 1(x
(j)
i ≤ x).

We estimate the expected utility of production by sampling aset ofn workers uniformly at ran-
dom without replacement from the input set of workers, and then apply given algorithm for the team
selection problem for each sample of the set of workers. In all our experiments, we draw 10,000 such
samples. We conducted experiments for different values of parametern, including the values5, 10,
and15. For space reasons, we report the results only for the casen = 10; the results for other values
of this parameter were observed to be qualitatively similar. For every given team size, we compute the
optimum value of the expected utility by a brute force search, examining all possible teams of given
size.

6.2.1 Best-Shot Production Function

We compare the performance of the replication test scores and the mean test scores for the best-shot
production function. The replication test scores are estimated byŝi =

∫

R+
(1− F̂i(x)

k)dx and the mean
test scores are computed by using the same formula but withk = 1.

Figure 4 shows results of our experiments. We observe that the expected utility indeed exhibits a
diminishing returns increase with the team size. We observethat the replication test scores provide
nearly optimal performance. The mean test scores provide worse performance, which on average is
still near to the optimum performance, but has worst-case performance that can be significantly worse
than the optimal performance.

6.2.2 Success-Probability Production Function

We conducted a similar analysis for the success-probability production function that is defined as fol-
lows. We assume that a solution submitted by a worker is successful if it achieves a point score larger
than or equal to a threshold valueδ. We have experimented with different values of this parameter,
but for space reasons report the results only forδ = 90. The replication test scores are estimated by
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Figure 4: Team selection using test scores for the stochastic model of team production according to the
best-shot function: (left) expected utility versus team size; (right-top) approximation ratio for replica-
tion test scores; (right-bottom) approximation ratio for mean test scores.

ŝi =
1
ni

∑ni

j=1 1(x
(j)
i ≥ δ). Figure 5 show the results of our experiments. We observe thatthere exist

cases when the mean test scores provide significantly worse performance than using the replication test
scores.

7 Conclusion

In this paper, we established the approximation guarantee of the greedy algorithm for the team selection
problem with arbitrary increasing cost functions in the team size that has increasing marginal costs. For
the team selection problem with a cardinality constraint, we showed that the existence of a test-score
algorithm that guarantees a constant-factor approximation of the optimum solution is equivalent to the
existence of good replication test scores. Sufficient conditions are identified for the existence of good
replication test scores, which are shown to hold for severalspecial instances of stochastic models of
team production, and are shown to guarantee a1/9-approximation guarantee. For the constant elasticity
of substitution production functions, we characterized the approximation guarantees of mean test scores
and quantile test scores.

An open problem for future work is to further study the tightness of approximation guarantees of
test-score algorithms.
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A Discussion of the Proof of Theorem 1

We now discuss the approximation guarantee established in Theorem 1 and that in (8) that was estab-
lished by [FIMN13] for the special case of linear cost functions. For the case of linear cost functions,
it was shown in [FIMN13] that for everyε > 0, it is NP-hard to find a setS ⊂ N such that

p(S) ≥

(

1−
log(a)

a− 1
+ ε

)

p∗.

and that the greedy algorithm guarantees

pG ≥

(

1−
log(a)

a− 1

)

p∗.

Their proof exploits a property of the linearity of the cost function, which we discuss as follows. When
the greedy algorithm has utility of valuex for setSt at roundt andx < p∗, S∗ \ St is non empty. From
the non-decreasing property ofu, we have

u(St ∪ S∗)− u(St) ≥ u∗ − x.
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Sinceu is a submodular function andc is a linear function, we have

p(St+1)− p(St)

u(St+1)− u(St)
≥

p(St ∪ S∗)− p(St)

u(St ∪ S∗)− u(St)
(a)

≥
u(St ∪ S∗)− u(St)− c∗

u(St ∪ S∗)− u(St)

≥
u∗ − x− c∗

u∗ − x
,

where(a) uses the linearity of the cost functionc.
Note that when the cost function has strictly increasing increments, thenc(|St ∪ S∗|)− c(t) can be

much larger thanc∗.
It follows that for the case of linear cost functions, we have

pG ≥
∞
∑

t=0

max

{

0,
u∗ − u(St)− c∗

u∗ − u(St)
(u(St+1)− u(St))

}

≥

∫ u∗−c∗

x=0

u∗ − x− c∗

u∗ − x
dx

=

(

1−
log(a)

a− 1

)

p∗.

We prove that the same bound holds for every cost function with increasing increments whenever
u∗/c∗ ≤ e, and, otherwise, establish that the following bound holds

pG ≥

(

1−
a

a− 1

1

e

)

p∗.

Note that it is not possible to guarantee that for every cost function with increasing increments,

p(S) ≥

(

1−
log(a)

a− 1
+ ε

)

p∗.

For instance, for the case of a budget constraint in (7), the greedy algorithm can guarantee at most
1− 1/e whereas

lim
a→∞

{

1−
log(a)

a− 1

}

= 1

which is a contradiction.

B Checking Conditions for Some Production Functions

One can easily check that all production functions from our catalogue examples are non-negative,
monotone submodular set function. In this section, therefore, we show that conditions (M) and (B)
hold for all production functions in the catalogue of examples in Section 3.

Total production: f(xS) = g(
∑

i∈S xi) Condition (M) holds becausef(x, y)− f(x) = g(x + y)−
g(x) andg has decreasing increments being a concave function. Condition (B) holds becausef−1(x) =
g−1(x) whereg is the inverse function ofg, and hencef(f−1(f(x1, . . . , xl−1)), xl) = g(g−1(g(x1 +
· · ·+ xl−1)) + xl) = g(x1 + · · ·+ xl) = f(x1, . . . , xl).
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Best-shot: f(xS) = maxi∈S xi Note thatf−1(x) = x. Condition (M) holds becausef(x, y) −
x = max{x, y} − x, which is indeed decreasing inx, for every fixed valuey ∈ R+. Condition
(B) holds becausef(f−1(f(x1, . . . , xl−1)), xl) = max{max{x1, . . . , xl−1}, xl} = max{x1, . . . , xl} =
f(x1, x2, . . . , xl).

CES: f(xS) = (
∑

i∈S x
p
i )

1/p, for parameter p ≥ 1 Note thatf−1(x) = x. Condition (M) holds
becausef(x, y)− x = (xp + yp)1/p − x, and hence,

∂

∂x
(f(x, y)− x) =

(

x

(xp + yp)1/p

)p−1

− 1 ≤ 0.

Condition (B) holds becausef(f−1(f(x1, . . . , xl−1)), xl) = (((xp
1 + . . .+ xp

l−1)
1/p)p + xp

l )
1/p = (xp

1 +

· · ·+ xp
l )

1/p = f(x1, . . . , xl).

Success-Probability:f(xS) = 1−
∏

i∈S(1− g(xi)) Condition (M) holds becausef(x, y)− f(x) =
g(y)(1−g(x)) andg is an increasing function. Condition (B) holds becausef(f−1(f(x1, . . . , xl−1)), xl) =
1−

∏l
i=1(1− g(xi)) = f(x1, . . . , xl).

C Proof of Theorem 5

Without loss of generality, assume thatE[X1] ≥ E[X2] ≥ · · · ≥ E[Xn]. LetS = {i1, i2, . . . , ik} be an
arbitrary team. Then, we have

u(S) = E[f(XS)]

= E[(f(XS)− f(XS\{ik})) + (f(XS\{ik} − f(XS\{ik−1,ik})) + · · ·+ (f(X{i1})− f(0))]

≤ E[f(X{ik}) + f(X{ik−1}) + · · ·+ f(X{i1})]

=
∑

i∈S

E[Xi]

≤
k
∑

i=1

E[Xi] (21)

where the first inequality follows by the submodularity of functionu(S), the second inequality is by
the assumption that individuals are enumerated in decreasing order of the mean test scores.

Now, observe that for every(x1, x2, . . . , xk) ∈ R
k
+,

1

k

k
∑

i=1

xi =
1

k

k
∑

i=1

(xp
i )

1/p ≤

(

1

k

k
∑

i=1

xp
i

)1/p

which is by Jensen’s inquality. Hence,

k
∑

i=1

E[Xi] ≤ k1−1/p
E





(

k
∑

i=1

Xp
i

)1/p


 .
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Combining with (21), it follows that for everyS ⊆ N such that|S| = k,

E





(

k
∑

i=1

Xp
i

)1/p


 ≥
1

k1−1/p
E





(

∑

i∈S

Xp
i

)1/p


 .

The tightness can be established as follows. LetN consists of two subsets of individualsM andR,
whereM consists ofk individuals whose each individual performance is of value1+ ǫ with probability
1, for a parameterǫ > 0, andR consists ofk individuals whose each individual performance is of value
a with probability1/a and of value0 otherwise, for parametera ≥ 1. Then, we note that

u(M) = k1/p(1 + ǫ)

and

u(S∗) ≥ u(R) = E





(

∑

i∈R

Xp
i

)1/p




≥ aPr

[

∑

i∈R

Xi > 0

]

= a

(

1−

(

1−
1

a

)k
)

≥ a
(

1− e−k/a
)

.

Hence, it follows that
u(M)

u(S∗)
≤ (1 + ǫ)

1

k1−1/p

k/a

1− e−k/a
.

The tightness claim follows by takinga such thatk = o(a), so that(k/a)/(1− e−k/a) = 1 + o(1).

D Proof of Theorem 6

D.1 Proof of Claim 1

If k is a constant, there is nop satisfying both conditionsp = o(1) andp > 1. Hence, it suffices
to considerk = ω(1) and show that the following statement holds: for any givenθ > 0, there ex-
ists an instance for which the quantile test-score based team selection cannot give a constant-factor
approximation.

Consider the following distributions forXi:

1. Let eachXi be equal toa with probability 1 for 1 ≤ i ≤ k. Then, each quantile test-score is
equal toa and each replication test-score is equal toak1/p.

2. Let eachXi be equal to0 with probability1− 1/n, and equal tobθn/k with probability1/n for
k + 1 ≤ i ≤ 2k. Then, in the limit asn grows large, each quantile test-score is equal tob and
each replication test score is equal tobθ.
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3. Let eachXi be equal to0 with probability 1 − θ/k and equal toc with probability θ/k for
2k + 1 ≤ i ≤ 3k. Then, each quantile test-score is equal toc and each replication test-score is
less than or equal tocθ1/p.

4. LetXi be equal to0 for 3k + 1 ≤ i ≤ n.

If θ is a constant (i.e.,θ = O(1)), we can easily check that the quantile test-score algorithm cannot
give a constant-factor approximation witha = b = 1 and c = 2. Under this condition, the set of
individuals{2k + 1, . . . , 3k} is selected by the quantile test-score algorithm. However,

E

[

(

∑3k
i=2k+1 X

p
i

)1/p
]

E

[

(

∑k
i=1 X

p
i

)1/p
] =

E

[

(

∑3k
i=2k+1 X

p
i

)1/p
]

k1/p

≤

(

∑3k
i=2k+1 E [Xp

i ]
)1/p

k1/p

= 2

(

θ

k

)1/p

= o(1),

sincek = ω(1), θ = O(1), andp = o(log(k)).
If θ goes to infinity asn goes to infinity (i.e.,θ = ω(1)), we have

E

[

(

∑3k
i=2k+1X

p
i

)1/p
]

E

[

(

∑2k
i=k+1 X

p
i

)1/p
] ≤

(

∑3k
i=2k+1E [Xp

i ]
)1/p

θ

= 2θ(1−p)/p = o(1),

becausep > 1. Therefore, the quantile test-score based team selection has a negligible utility compared
to the optimal utility.

D.2 Proof of Claim 2

Let T (XS) be a subset ofS such thati ∈ T (XS) if, and only if,Xi ≥ F−1
i (1 − h/k), for i ∈ S. Let

smax = maxi∈S si andsmin = mini∈S si. In this proof, we will show that there exist constantsc1 andc2
such that

c1smin ≤ E





(

∑

i∈S

Xp
i

)1/p


 ≤ c2smax.

Since(x+ y)1/p ≤ x1/p + y1/p whenx, y ≥ 0 andp > 1,

E





(

∑

i∈S

Xp
i

)1/p


 = E











∑

i∈T (XS)

Xp
i +

∑

i∈S\T (XS)

Xp
i





1/p






≤ E











∑

i∈T (XS)

Xp
i





1/p

+





∑

i∈S\T (XS)

Xp
i





1/p
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≤ E







∑

i∈T (XS)

Xi +





∑

i∈S\T (XS)

Xp
i





1/p






≤ E







∑

i∈T (XS)

Xi +





∑

i∈S\T (XS)

spmax





1/p






≤
(

E [|T (XS)|] + k1/p
)

smax = (1 + k1/p)smax.

By the Minkowski inequality,
(
∑

i∈A E [Xi]
p)1/p ≤ E

[

(
∑

i∈A Xp
i

)1/p
]

for all A ⊆ S. Thus, we

have

E





(

∑

i∈S

Xp
i

)1/p


 = E











∑

i∈T (XS)

Xp
i +

∑

i∈S\T (XS)

Xp
i





1/p






≥ E











∑

i∈T (XS)

Xp
i





1/p






=
∑

A⊂S

Pr{T (XS) = A}E









∑

i∈A

Xp
i

)1/p
∣

∣

∣

∣

∣

∣

T (XS) = A





≥
∑

A⊂S

Pr{T (XS) = A}

(

∑

i∈A

E[Xi|i ∈ T (XS)]
p

)1/p

≥
∑

A⊂S

Pr{T (XS) = A}|A|1/psmin

≥
(

1− (1− 1/k)k
)

smin ≥ (1− 1/e)smin.

Therefore, the quantile test-score team selection is a constant-factor approximation algorithm.
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