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Abstract. In the solar corona the collisional mean free path λ for a thermal particle (electrons or protons) is of
the order of 10−2 to 10−4 times the typical scale of variation H of macroscopic quantities like the density or the
temperature. Despite the relative smallness of the ratio λ/H, an increasingly large number of authors have become
convinced that the heat flux in such a plasma cannot be described satisfactorily by theories which suppose that
the local particle velocity distribution functions are close to Maxwellian. We address this question through kinetic
simulations of the low solar corona by assuming that non thermal velocity distribution functions are present at
the base of the corona. In particular, we show that if one assumes that the electron velocity distribution functions
at the base of the corona have sufficiently strong suprathermal power law tails, the heat flux may flow upwards,
i.e. in the direction of increasing temperature. Using kappa velocity distribution functions as prototypes for non
thermal velocity distributions, we find that the heat conduction can be properly described by the classical Spitzer
& Härm (1953) law provided the kappa index is ∼> 5. This value is much smaller than the value previously found
by Dorelli & Scudder (1999). In addition we show that, unless extremely strong power law tails are assumed near
the base of the corona (i.e. κ < 4), a local heating mechanism (e.g. waves) is needed to sustain the temperature
gradient between the base of the corona and the coronal temperature maximum.
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1. Introduction

In this paper we present results from a one dimensional
kinetic model of a semicollisional electron–proton plasma
plunged in a gravitational field. The model is especially
suited for stationary (not necessarily static) flows and for
Knudsen numbers K = λ/H∼> 10−4, where H is a typical
scale of variation of a macroscopic quantity, such as the
density or the temperature and λ the distance between two
successive collisions of a typical particle in the system. A
simplified version of the model has previously been used
by Pantellini (2000) to simulate a one-species atmosphere
in a constant gravitational field. As expected, the result
was the formation of a stratified isothermal atmosphere
with an exponentially decreasing density known as the
barometric law. The fact that the barometric law could
be recovered was the first confirmation of the fact that,
despite being one dimensional, the model could correctly
reproduce known results. More recently, we implemented
a more sophisticated version of the model to simulate an
electron–proton plasma confined to the space between two
conducting plates held at different temperatures and not
subject to any external force (Pantellini & Landi 2000).
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We could show that the thermoelectric field needed to
ensure quasi–neutrality in our simulation compares quite
well with results of Fokker-Planck calculations with all
possible interspecies collisions included (Spitzer & Härm
1953). These encouraging results motivated us to use the
model to address the question of the heat flux in the solar
corona.

The motivation for applying the model to the solar
corona stems from the fact that observations suggest that
above the transition region the typical thermal Knudsen
number KT ≡ λ ∂ lnT/∂z is of the order 10−3 or larger
(e.g. Dupree 1972; Ko et al. 1997; David et al. 1998;
Fludra et al. 1999). It has been demonstrated that such
a value, despite being much smaller than unity, is large
enough for the classical transport coefficients (obtained by
applying the Chapmann-Enskog formalism to the Fokker-
Planck equation) to become substantially modified be-
cause of the presence of high non thermal energy tails
in the electron velocity distribution functions (e.g. Shoub
1983; Scudder 1992b). Whence the necessity of using a nu-
merical model appropriate for the solar atmosphere above
the chromosphere-corona transition region where high val-
ues of the thermal Knudsen number ∼> 10−3 are com-
monplace. The difficulty with the coronal plasma (and
even for the solar wind plasma out to distances of the
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order of astronomical units) is that neither a collisionless
model based on the Vlasov equation nor a fluid model with
Spitzer-Härm transport coefficients provide a convenient
framework for investigation. Unfortunately, acceptance of
the postulate of the existence of non thermal electron ve-
locity distributions in the solar corona introduces an in-
finite number of additional free parameters required to
define the distributions at the boundaries of the system.
However, it is common practice to generalize the standard
Maxwell-Boltzmann velocity distribution function using
kappa distributions (see Eq. (18) below) which have the
substantial advantage of requiring one additional free pa-
rameter only (the κ index). Depending on the value of the
parameter κ the distribution departs more or less signifi-
cantly from a Maxwell-Boltzmann distribution due to the
presence of a more or less large excess of high energy par-
ticles. At least two studies have already discussed the fate
of electron kappa distributions in the solar corona under
the action of collisions. Anderson (1994) shows that colli-
sions do strongly affect density and temperature profiles
obtained using Scudder’s (1992b) collisionless approach.
After assuming that collisions do merely introduce first
order perturbations to the collisionless distribution func-
tion he finds that the actual perturbations are of order
unity or larger showing that collisions need to be treated
self-consistently. To a certain extent this has been done
by Dorelli & Scudder (1999) who let collisions affect the
first order term of the Legendre polynomial expansion of
the electron distribution function without assuming that
this term was small but with the assumption of all higher
order terms being zero. However, as we shall demonstrate
below, higher order Legendre terms cannot be neglected.
For example we find that collisions substantially mod-
ify the collisionless temperature profile (this has been
observed by Anderson 1994, as well) indicating that at
least the second order Legendre term must be retained
in the expansion. The approach of Lie-Svendsen et al.
(1999) is not substantially different from that of Dorelli &
Scudder (1999) since they also use a first order truncated
Legendre expansions for the electron distribution function.
According to Chapman & Cowling (1970), such a trunca-
tion is valid for KT � 1 (weak inhomogeneity assump-
tion) but, as pointed out by Shoub (1983) and Anderson
(1994), KT ∼< 10−3 is probably a more appropriate con-
dition for the first order truncated Legendre expansion to
remain a justified approximation, especially in the case
of non-thermal boundary conditions. Unfortunately, 10−3

is a typical value for the thermal Knudsen number KT

in the corona and the weak inhomogeneity assumption
may be regarded as questionable. Assuming much stronger
temperature gradients than the ones assumed in both the
Dorelli & Scudder (1999) paper and in the present work,
Lie-Svendsen et al. (1999) argue that the classical Spitzer
& Härm (1953) heat flux adequately describes the heat
flux in the lower solar corona if Maxwellian boundary con-
ditions are chosen at both ends of the simulated plasma
slab. All these Fokker-Planck based models eventually are
affected by additional limitations. For example, Dorelli &

Scudder (1999) use the standard hydrostatic equilibrium
equation as a closure whereas, following Shoub (1983),
Lie-Svendsen et al. (1999) use a contestable zero-gravity
pressure equilibrium condition. We do not need such a
fluid closure equation nor do we require the velocity dis-
tribution functions to be of any particular form. However,
the principal advantage of our model stems from the fact
that collisions are included self-consistently, even though
their treatment is strongly simplified with respect to the
complexity of collisions in a real plasma. We are unable to
evaluate precisely the importance of the simplified treat-
ment of the collisions on our results. However, the very
fact that the transport properties measured in test simula-
tions compare well with those predicted by Fokker-Planck
calculations suggests that our simplified way of handling
collisions allows us to retain most of the essential physics
occurring in a non-magnetized plasma.

Since the simulation model we use has never been de-
scribed in full, we shall devote the next section to doing
so. Non-essential details of the algorithm are presented
in Appendix A. A brief discussion of the differences and
similarities between our model and conventional Fokker–
Planck models is given in Appendix B. The derivation of
some relevant quantities (density, temperature and heat
flux) for a collisionless plasma is given in Appendix C.

2. The model

A qualitative sketch of the model is shown in Fig. 1. The
model is based on the numerical integration of the one
dimensional motion (one space and three velocity compo-
nents) of N protons and N electrons plunged in a constant
gravitational field and an electric field which is generally
needed to ensure quasi–neutrality everywhere in the sys-
tem. Particles are confined to the interval z ∈ [0, L] by
two conducting plates. Each time a particle hits one of the
plates, it is instantly reinjected into the system according
to a user defined prescription (e.g. elastic reflection, con-
tact with a heat bath, etc.). Whenever the world lines of
any two particles meet they may (or not) make an elas-
tic collision depending on the magnitude of their relative
velocity. The functional form of the velocity-dependent
collision probability strongly influences the macroscopic
behavior of the plasma (cf. 2.3).

2.1. Equation of motion

Both the gravitational field acceleration g and the electric
field E(z) = [E0 + δE(z)]ẑ are directed along the z axis
so that the equation of motion for a particle of species α
can be written as

dvz/dt = −g + qαE(z)/mα (1)
vz = dz/dt, vx = const., vy = const. (2)

where qα and mα are the charge and the mass of the parti-
cles of species α (electrons or protons). As can be seen on
the left hand side of Fig. 1, we assume that the electric field
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Fig. 1. Schematic illustration of the model for a proton-
electron plasma plunged in a z aligned constant gravitational
field. The particles’ velocities are 3D even though the model
is spatially 1D. E0 is a z aligned external electric field which
is generally needed to ensure local quasi-neutrality. In some
cases a constant electric field does not suffice for the system to
be neutral everywhere. In this case an additional small inter-
particle electric field is introduced (as shown on the left hand
side of the figure) to compensate for these polarization effects.
When two particles encounter each other, they may collide as
described in Sect. 2.3. If a particle of species α hits one of the
two boundaries at z = 0, L it is injected back into the system
according to prescribed velocity distributions f0,L

α (vz, v⊥) (cf.
Sect. 2.4) where vz is the particle’s velocity along the z axis
and v⊥ the absolute value of the particle’s velocity in a plane
perpendicular to z.

between adjacent particles is constant, eventually increas-
ing (decreasing) discontinuously by an arbitrary amount ε
at the position of each proton (electron) in the system as if
the particles where a succession of condensator plates at-
tracting or repulsing each other depending on the charges
on each plate. We then take the electrostatic field felt by
a given particle (or condensator plate) to be the mean of
the electrostatic field on either side of the particle. Thus,
if we number all the particles in the system from 1 (bot-
tom particle) to 2N (top particle) it follows that particle
i feels the electrostatic field E = Ēi ≡ (Ei +Ei+1)/2 dur-
ing the whole time interval δti until the earliest of the
three possible collisions between i and i± 1 and between
i − 1 and i − 2. Note that only a collision between parti-
cles of different charges may modify the topology of the
electrostatic field in the system, provided the interacting
particles exchange their relative position during the colli-

sion. Since the electrostatic field is piecewise constant, we
always integrate Eq. (1) using a constant E field.

2.2. The electric field

It is often possible to ensure a satisfactory charge neu-
trality in the system without the need for an interparticle
electrostatic field ε. In these cases, the same constant ex-
ternal electric field E0 can be used for all particles in the
system. Particles do not feel each other. However, in the
general case, a constant electric field is not good enough,
as the plasma may behave like a dielectric medium, where
polarization effects are no longer negligible. In that case,
the Poisson equation must be written in the form

∂D

∂z
≡ ∂

∂z
(ε0E + P ) = ρ (3)

where ρ is the charge density, ε0 the permittivity of the
vacuum, D the electric displacement and P the polariza-
tion. If P is negligible or (and) independent of z Eq. (3)
implies that the electric field E needed to ensure charge
neutrality (ρ = 0) is a constant E = E0ẑ. This may be
the case when the density or temperature gradients in the
system are small (Pantellini & Landi 2000). In cases where
polarization effects are not negligible, a better charge neu-
trality can be obtained by introducing a moderately strong
interparticle electric field ε as shown in Fig. 1. Let Ei de-
note the electric field between particles i and i − 1 and
let E0 be an external electric field, for example the gravi-
toelectric field (Rosseland 1924). Let us suppose that the
boundaries at z = 0 and z = L are conducting. It is well
known that in this case a charged particle is attracted by
the boundary as if there was a particle of opposite charge
in the symmetric position behind the conductor. In this
case, it is easy to see that the electric field E1 between the
conducting wall at z = 0 and particle number 1 as well as
the field Ei+1 above particle i must be given by

E1 = E0 + (q2N − q1)ε/2 (4)
Ei+1 = Ei + qiε, i ∈ {1, 2, ..., 2N}. (5)

We emphasize that to simulate a plasma, ε should be taken
to be small enough for the electrostatic energy between
neighboring particles |qiqi−1 εδz| (δz is a typical interpar-
ticle distance) to be much smaller than the typical kinetic
energy of the particles. Otherwise particles of opposite
charge become bounded and form atoms.

2.3. Collisions

A particle of the system shown in Fig. 1 can either collide
with another particle or with one of the two conducting
walls at z = 0, L. The former is elastic, i.e. both total mo-
mentum and total energy of the colliding particles are con-
served while the latter is not, as the walls reflect particles
according to a prescribed velocity distribution function re-
gardless of the particles’ velocities before the collision. Let
us discuss the case of a particle-particle collision first; we
shall come back to the particle-wall collision in Sect. 2.4.
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Two particles may collide if they simultaneously oc-
cupy the same position along the z-axis. During an elastic
collision between two particles (labeled 1 and 2) the veloc-
ity changes according to the well-known rules (e.g. Landau
& Lifshitz 1960)

v′1 =
m1v1 +m2v2

m1 +m2
+

m2

m1 +m2
un(u) (6)

v′2 =
m1v1 +m2v2

m1 +m2
− m1

m1 +m2
un(u) (7)

where primed and unprimed velocities represent pre- and
post-collision velocities, respectively and u ≡ |v2−v1|. We
note that the orientation of the unity vector n in velocity
space is not specified by the requirement of the total en-
ergy (1 equation) and total momentum (3 equations) to be
conserved during the collision, as the number of unknowns
is 6 (the three velocity components for both particles). Let
us use spherical coordinates to define the orientation of n
in velocity space with θ′ being the angle between n and
the z-axis and φ′ the angle between the projection of n in
the (x, y) plane and the x axis. The question is: how shall
we choose the angles θ′ and φ′ for any given collision in
the system? Given the rotational symmetry of our system
around the z axis, it is quite natural to choose φ′ according
to a uniform probability distribution in the interval [0, 2π[.
The answer is not as obvious concerning the angle θ′ since
the system is not spherically symmetric. In the case of
particles of equal mass (Pantellini 2000) the probability
distribution for θ′ is specified by the requirement that the
system (in its most simple configuration, e.g. without ex-
ternal forces and with elastic boundary conditions) must
relax towards a stationary state where the particle velocity
distribution function is isotropic. This condition implies
the post-collision angle θ′ should be chosen according to
(see Sect. II C in Pantellini 2000)

θ′ = arccos(
√
P ), with P = random number ∈ [−1, 1]. (8)

It is straightforward to convince oneself that the same
result holds in the case of particles of unequal mass.

Now, even though the orientation of the n in Eqs. (6)
and (7) must be chosen according to the above probability
distributions if one requires the relaxed particle velocities
to become distribute isotropically, one is still free to decide
whether or not two particles which encounter each other
effectively make a collision. If one decides that there isn’t
a collision, the two particles just go through each other
without changing their velocities. If one decides that there
is a collision, we compute the new velocities of the parti-
cles using Eqs. (6)–(8) to determine n. In general, one is
allowed to decide if two encountering particles collide de-
pending on the magnitude u of their relative velocity only.
The collision probability cannot depend on the orientation
of n as the relaxed state would no longer be characterized
by an isotropic velocity distribution.

Figure 2 shows two choices for the velocity depen-
dence of the collision probability R on the relative veloc-
ity u. One may interpret R as the collisional cross-section.

Fig. 2. Collision probability R for hard sphere type collisions
(solid line) and for Coulomb type collisions (dashed line) as a
function of the relative velocity u.

Accordingly, we call the caseR = 1, where particles collide
at each encounter, the “hard spheres” case and

Rαβ(u) =
{

1 if u < uαβ
(uαβ/u)4 otherwise (9)

the “Coulomb” case. In Eq. (9) the indices α and β indi-
cate that one is considering collisions between a particle of
species α and a particle of species β (e.g. electron-electron,
proton-electron, proton-proton).

A detailed comparison of the present model with other
numerical models based on the Fokker-Planck or the
Boltzmann equation (e.g. Shoub 1992) is beyond the scope
of the present paper. Qualitatively speaking, the justifica-
tion of the model stems from the fact that the scattering
cross-section due to the cumulated effect of distant en-
counters in a near-equilibrium plasma is proportional to
∝ u−4 (e.g. Chandrasekhar 1943). Accordingly, one may
interpret one collision in our model as representing the
cumulated effect of a large number of distant encounters
in a real plasma. Given that the most widely used (and
best justified) numerical model to simulate distant en-
counter dominated plasma are Fokker-Planck models, we
discuss more thoroughly the relation between our model
and Fokker-Planck models in Appendix B. In the paper
by Pantellini & Landi (2000) we show that using cut-off
velocities uαβ of the order of, or smaller than, the typical
relative velocity between α particles and β particles, our
model gives results that compare well with results from
Fokker-Planck calculations.

2.4. Boundary conditions

There are several ways of treating the problem of a par-
ticle hitting one of the boundaries at z = 0 and z = L.
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One may, for example, let the particle rebound elastically
by simply changing the sign of the z component of its
velocity. In this case, total energy is exactly conserved.
However, neither temperature gradients nor non-Max-
wellian distribution functions can be simulated in such
a system. Given that we are interested in situations where
both temperature gradients and non-Maxwellian distribu-
tions are present, we shall use more sophisticated bound-
ary conditions allowing the injection of an arbitrary ve-
locity distribution function. The prescription is as follows.
Each time a particle of species α hits one of the bound-
aries, it is reinjected into the system following a specified
velocity distribution function f0,L

α (v). This implies that in
a stationary state, and apart from statistical fluctuations,
the bulk velocity along z must be zero everywhere. We fur-
ther assume that particles are injected following isotropic
velocity distribution functions, i.e. f0,L

α (v) = f0,L
α (v),

where v = |v| is the magnitude of the velocity of the
injected particle. Accordingly, the theoretical flux of par-
ticles coming from the boundary with velocity v in the
magnitude interval [v, v+dv] and orientation with respect
to the z axis in the range [θ, θ + dθ] is given by

dF 0,L
α (v, θ) = v cos θ f0,L

α (v) 2π v2 sin θdθ dv.

This expression can be integrated separately for both the
velocity v and the angle θ, leading to the probability dis-
tributions Pv and Pθ of observing a particle entering the
system from the boundary at z = 0 with velocity V < v
and θ in in the range [0, θ]

Pθ(θ) = Aϑ

∫ θ

0

cosϑ sinϑdϑ = sin2 θ (10)

Pv(v) = Av

∫ v

0

f(V )V 3 dV (11)

where we have suppressed the species index α for readabil-
ity and where Av and Aθ are normalization constants such
that Pθ(π/2) = Pv(∞) = 1. Thus, each time a particle hits
the boundary at z = 0 it is reinjected following the prob-
ability distributions (10) and (11). This requires that the
expressions (10) and (11) be solved for θ and v . For exam-
ple, the angle θ is obtained by computing θ = arccos(

√
P )

where P is a random number in the range [0, 1]. Similarly
v = P−1

v (P ) where P is again a random number in the
range [0, 1] and where the function P−1

v is obtained by
inverting (in most cases numerically) Eq. (11). Of course
this procedure applies for both boundaries and all species.

3. Results

In the present simulations we consider a thin layer of a
fully ionized electron-proton plasma plunged in a uniform
gravitational field g = GM�/R2

� where M� and R� are
the solar mass and the solar radius, respectively while G
is the universal constant of gravitation.

Following the reference paper by Dorelli & Scudder
(1999), we assume typical temperatures and densities
at the z = 0 boundary to be TM

0 ≡ 5 × 105 K and

ne(0) = nM
0 ≡ 108 cm−3 (we shall use these quantities for

normalization in the remaining of the paper). The typical
temperature gradient between the two boundaries at z = 0
and z = L is of the order of 1.4×106 K/R�. For a system
length L = 0.1 R� this leads to an upper boundary tem-
perature TL = 6.4× 105 K. These parameters correspond
to a thermal Knundsen number KT ≡ λee(∂T/∂z)/T (T is
the temperature and λee the mean free path for electron-
electron collisions) of the order 10−4 to 10−3, which is
typical for the low solar corona in coronal holes (e.g.
Ko et al. 1997; David et al. 1998; Fludra et al. 1999).
The Fokker-Planck electron-proton collision frequency for
such a plasma is given by Eq. (B.11). The same collision
frequency is obtained in our simulation model if the num-
ber of electrons (or protons) N is of the order N ' 1000
(cf. Appendix B), which is therefore a typical value for all
the simulations presented in the paper.

In order to reduce computational time a proton-to-
electron mass ratio mp/me = 100 has been chosen for
all simulations. This can be done provided the relevant
dimensionless parameter

γ ≡ g(mp +me)R�
2kBT

≈ gmpR�
2kBTM

0

(12)

is chosen to be the same as in the real world, i.e. γ ≈ 23.
We note that γ is the length R� expressed in units of the
isothermal scale height of the atmosphere. Thus if one as-
sumes protons to be less massive than in the real world,
one has to assume gravity g to be stronger than in the
real world (i.e. a fictitious Sun more massive then the real
Sun), so as to ensure γ remains unchanged. On the other
hand, as we shall see below, a thermoelectric field ET is
needed to ensure quasi-neutrality in a plasma with an im-
posed temperature gradient (cf. Eq. (17)). Since ET does
not depend on the mass of the particles, at least as long
as me/mp � 1, there is no reason to use the real mass
ratio in the simulation, the only requirement being the
condition me/mp � 1.

In simulations it is generally convenient to suitably
normalize all physical quantities. Thus, throughout the
remainder of the paper, we shall assume that velocities
are normalized to vM

0 ≡
√

2kBTM
0 /me, distances to the

slab thickness L, time intervals to tM0 ≡ L/vM
0 , electric

fields to EM
0 ≡ me(vM

0 )2/(eL) and heat fluxes to qM
0 ≡

men
M
0 (vM

0 )3.
Distribution functions and moments are constructed

by regularly sampling positions and velocities of the parti-
cles in the system. In practice, we sample positions in bins
of width 0.03125L and velocities in bins of width of the
order of 0.4 times the thermal velocity of the given popula-
tion. In a typical simulation, 103 particles encounter some
1010 times and the distribution functions are obtained by
sampling positions and velocities every 104 encounters.
This sampling interval is roughly the time it takes for a
thermal proton to cross the plasma slab, which is also an
estimate of the time memory of the system.

The just described procedure allows the construc-
tion of density or heat flux profiles which are not yet
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normalized. In order to do so one has to determine the
“real” number density (in cm−3) somewhere in the system,
for example at z = 0. This is impossible in a collisionless
stationnary and quasi-neutral system where the absolute
density is an arbitrary parameter which can be eliminated
from the equations (e.g. from the Vlasov equation). In
a collisional system, however, the number density is no
longer an arbitrary parameter given its intimate (roughly
linear) connection with, for example, the electron-proton
collision frequency. Thus, by recording the electron-proton
collision frequency somewhere in the system (in units of
1/tM0 and thus in s−1), say at z = 0, one can determine the
absolute density there, provided a relationship between
density and collision frequency has been previously estab-
lished in some way. Such a relationship may have been
established experimentally by measuring the collision fre-
quency in a real Maxwellian plasma as a function of tem-
perature and density. As we shall discuss below, and in
Appendix B, we much more pragmatically adopt the rela-
tionship provided by a Fokker-Planck model. In brief, our
strategy goes as follows: we choose a number of simulation
particles N such that the recorded collision frequency near
z = 0 corresponds to a typical Fokker-Planck collision fre-
quency for a plasma with an electron (or proton) number
density n(0) of about nM

0 = 108 cm−3. In practice we just
ensure that the Knudsen number in our simulation and
in the solar corona are the same, despite the fact that
the number of particles N in our system is ridiculously
small compared to the number of particles which popu-
late the solar corona. Fortunately, only 103 to 104 particles
are required to simulate the corona. A number N ∼ 105

would already require a computational power well beyond
present day computer capabilities.

In the following subsections we shall discuss the be-
havior of a slab of solar corona for three different kinds of
boundary conditions. The thickness of the slab L is taken
to be either 0.1 R� or 0.2 R�. The temperatures (based
on the second moment of the velocity distribution func-
tion) of the boundaries are adjusted to make the mean
temperature and the temperature gradient of the system
compatible with the previously prescribed plasma condi-
tions. No energy sources or sinks are present in the system.
Energy is injected at the boundaries in the form of kinetic
energy of the particles. The only way of transporting en-
ergy in the system is through a collisional (or collisionless)
heat flux which means that all other means (e.g. radiation,
waves, internal energy of the particles) are excluded.

The first subsection is devoted to the simulation of the
“classical” case with thermalized (Maxwellian) boundary
conditions. We shall see that even in this case the Spitzer
and Härm heat flux (Spitzer & Härm 1953) is not able
to sustain the prescribed temperature gradient over a dis-
tance larger than 0.1 R� or so. In the second subsection we
shall discuss the case of non thermal velocity distribution
functions at the lower boundary. These simulations show
that the prescribed temperature gradient can be sustained
without local heating provided the number of suprather-
mal particles is high enough. This number turns out to be

Fig. 3. Maxwell-Maxwell boundaries: in the top panel the elec-
tron density (solid line) and the temperature (dashed line) pro-
files are plotted. The dotted profile in the top panel represents
the Spitzer-Härm temperature profile assuming a spatially con-
stant electron heat flux. The dark square on the right indicates
the temperature of the upper thermostat, i.e. the tempera-
ture of the boundary at z = 0.1 R�. The bottom panel shows
the proton and electron heat flux. As expected, their relative
strength is of the order

√
mp/me. The Spitzer labeled profile

in the bottom panel has been computed via Eq. (14) using the
measured electron temperature and density profiles.

much higher than suggested in previous works (e.g. Dorelli
& Scudder 1999). In the last subsection we briefly discuss
the case of both boundary conditions being non thermal.
We consider this case as rather unphysical as it supposes
a source of suprathermal particles somewhere above the
base depending on the position of the upper boundary. We
discuss this case mainly because in the collisionless studies
(e.g. Scudder 1992b) and in the reference paper by Dorelli
& Scudder (1999) the nonthermal distributions “survive”,
by construction, across the entire slab of plasma.

3.1. Maxwell–Maxwell boundaries

For the simulations in this section we impose Maxwellian
distribution functions at the boundaries, i.e.

f0,L
α (v) ∝

(
mα

2πkBT0,L

)3/2

e
− mαv

2

2kBT0,L . (13)



692 S. Landi and F. G. E. Pantellini: Temperature and heat flux in the solar corona

The normalized temperature and density profiles as well as
both the electron and proton heat flux profiles are shown
in Fig. 3. As expected, the electron to proton heat flux
ratio is roughly equal to

√
mp/me, which means that the

energy is predominantly transported by the electrons. The
dotted temperature profile in the upper panel has been ob-
tained by assuming that the electron heat flux qe between
the two boundaries is constant and that the heat flux is
given by the Spitzer & Härm formula (Spitzer & Härm
1953), which under the above conditions can be approxi-
mated by qe ∝ T 5/2

e ∂Te/∂z (cf. Eq. (14) and Appendix B).
From the figure, it appears that if the upper thermostat
is located at a distance of 0.1 R� from the surface, the
measured profiles are in good agreement with the Spitzer-
Härm predicted profiles, which seems to indicate that a
classical Spitzer-Härm heat flux can sustain the given tem-
perature profile up to a height of 0.1 R� without the need
for some sort of local heating mechanism (e.g. dissipation
of MHD waves). However, before accepting this statement
as definitive, we have to ensure that the simulated plasma
has the characteristics of the coronal plasma. In order to
do so, we have to compute the “real” density of the sim-
ulated plasma and compare it to the density of the lower
solar corona.

In a collisional plasma, the collision frequencies depend
on the density (the higher the density the higher is the rate
at which a particle undergoes collisions). On the other
hand, the gravitational timescale

√
L/g does not depend

on density, which means that density is not just a free
parameter as in the collisionless case (cf. Appendix C).
We may then estimate the “real” density of the sim-
ulated system from the measured electron-proton colli-
sion frequency. The measured electron-proton collision fre-
quency in the simulation is approximately νep = 717/tM0
near the bottom at z = 0. This means that in the av-
erage an electron collides 717 times with a proton dur-
ing the time interval tM0 . Based on the measured collision
frequency we may now determine the (unknown) num-
ber density n of the simulated plasma. In order to do
so we make a slight detour in the field of Fokker-Planck
models by observing that in Fokker-Planck models of a
close to equilibrium plasma, with temperature T , col-
lision frequency νFP

ep and density n are intimately con-
nected through Eq. (B.11) (cf. Appendix B). Thus, by us-
ing Eq. (B.10) with νep = 717/tM0 and setting νFP

ep = νep

in Eq. (B.11) we can estimate the density at the bottom
of our simulation region to be n0 = 1.01nM

0 ≈ 108 cm−3

which is an acceptable value for the low solar corona.
Similarly, we may compare the electron heat flux ob-

served in our simulation with the Fokker-Planck heat flux
for a fully ionized electron-proton plasma (e.g. Spitzer &
Härm 1953)

qSH = −3.19× 10−3 nek
2
BT

meν
FP
ep

∇T (SI units). (14)

Assuming, as above, that νFP
ep = νep with νep given by

Eq. (B.10) and taking the temperature gradient measured

in Fig. 3, one finds qSH = −1.0 × 10−3qM
0 , which is in

good agreement with the heat flux qobs = −0.9× 10−3qM
0

measured in the simulation.
We emphasize that even in the collisionless case there is

a heat flux flowing from the hot (upper) to the cold (lower)
boundary. The collisionless heat flux qNC can be computed
analytically by applying Liouville’s theorem (e.g. Landau
& Lifshitz 1960) to the electron and proton distributions
in constant gravitational and electric fields and subject to
the above-specified boundary conditions, i.e. TL = 1.28T0

with T0 = TM
0 . Given that the net particle flux is zero,

the neutralizing electric field is nothing but the familiar
gravitoelectric field (Rosseland 1924)

Eg =
gmp

2e

(
1− me

mp

)
. (15)

In general, for Maxwell-Maxwell boundaries the collision-
less electron heat flux is given by (see Appendix C)

qNC =

√
8
π

nLk
3/2
B

m
1/2
e

(
T0T

1/2
L − TLT

1/2
0

)
(16)

where the electron density at the upper boundary nL

is a complicated function of all other parameters, which
turns out to be nL = 0.085n0 for the present case. In
the particular case shown in Fig. 3 we have nL ≈ 0.1n0

from which we obtain a theoretical collisionless heat flux
qNC = −8.9× 10−3qM

0 which is much stronger a flux than
either qSH or qobs. The collisionless heat flux is an upper
limit for the electron transported energy flux.

As already stated, in the collisionless regime Eg is the
charge neutralizing field. However, in the collisional regime
the total electric field is generally made of the sum of Eg

and the thermoelectric field (see e.g. Golant et al. 1980;
Hinton 1983)

ET = −α
e

∂

∂z
(kBT ) (17)

where α is a constant of order unity. In our simulations,
α lies in the range 0.7 to 0.9 when uαβ in Eq. (9) is
smaller than the typical relative velocity between parti-
cles of species α and particles of species β (Pantellini &
Landi 2000). Fokker-Planck models including all kind of
collisions (electron-electron, electron-proton and proton-
proton) predict α = 0.71 (Spitzer & Härm 1953). The
thermoelectric field required to ensure quasi-neutrality in
the simulation of Fig. 3 is ET = −0.11, which is small
(but not negligible) compared to the gravitoelectric field
Eg = 1.17. The question one may now ask is whether the
above results depend on the position of the upper bound-
ary or not. Even if the exact position of the temperature
maximum is unknown it is likewise located somewhere be-
tween 0.2 and 1 R� above the solar surface (e.g. Ko et al.
1997; David et al. 1998). Without going up to such heights
where the zero mass flux hypothesis may no longer be
valid, we may just ask the question of what happens if
the upper boundary is located at twice the distance, i.e.
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Fig. 4. Maxwell-Maxwell boundaries: Same format as Fig. 3.

L = 0.2 R�. For coherence, the temperature of the up-
per thermostat has been chosen to be such that the tem-
perature difference between the two thermostats is twice
the value in the first simulation. The results are shown in
Fig. 4. Interestingly enough, they are not quite the same
as for the smaller system of Fig. 3. One observes that
the electron temperature gradient is too weak to smoothly
connect to the temperature of the upper thermostat (dark
square). The heat that flows from the upper to the lower
boundary is simply too weak to sustain the prescribed
temperature profile: a local heating mechanism (waves?)
is required in this case. The lower panel also shows that the
observed electron heat flux is rather badly approximated
by the Spitzer-Härm heat flux formula Eq. (14), suggest-
ing that even in the most favorable case of Maxwellian
boundary conditions, Eq. (14) does not provide a suffi-
ciently reliable estimate of the thermal heat flux in the
lower solar corona.

3.2. Kappa–Maxwell boundaries

In this section we discuss a run with Maxwellian boundary
conditions at z = L (as in the previous section) and kappa
velocity distribution functions

fκ(v) = Aκ

[
1 +

v2

(κ−3/2)v2
0

]−κ−1
(18)

Fig. 5. Kappa-Maxwell boundaries with κ = 4. The top panel
shows the density (solid line) and the temperature (dashed
line). Note that the temperature of the left boundary is only
0.49TM

0 (instead of TM
0 used in the Maxwellian case of Fig. 3)

to compensate for the strong collisional heating of the plasma
with height. The dashed line reproduces the temperature pro-
file of the thermal boundaries case shown in Fig. 3. The lower
panel shows the heat flux profiles for electrons and protons
as well as the total heat flux (protons + electrons). The colli-
sionless electron heat flux has been computed using Eq. (20).
Note that while the proton heat flows down the temperature
gradient (the “classical” behavior), the opposite is true for the
electrons.

with

Aκ =
n0

2π (κ−3/2)3/2 v3
0

Γ (κ+1)
Γ (3/2)Γ (κ−1/2)

as boundary condition at z = 0. In order to ensure energy
equipartition among species, we use the same κ index for
both protons and electrons and a velocity v0 (reminis-
cent of the thermal velocity in a Maxwellian distribution)√
mp/me smaller for protons than for electrons. The den-

sity and temperature profiles as well the vz distribution
profiles for electron and protons are shown in Fig. 5 for
the case κ = 4. The upper panel shows that the temper-
ature profile increases very rapidly away from the lower
boundary. The rapid rise in temperature is not the man-
ifestation of the collisionless gravitational velocity filtra-
tion mechanism first described by Scudder (1992a) but is
essentially due to collisional effects. This can be demon-
strated easily by estimating the temperature gradient due
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to the velocity filtration mechanism. According to Scudder
(1992a) the latter is given by

T∗(z) = T0

[
1 +

ψ(z)
(κ−3/2)kBT0

]
= T0

[
1 +

gz/v2
0

κ− 3/2
mp +me

me

]
(19)

where ψ(z) = mpgz+ eφg(z) = megz− eφg(z) is the total
potential energy of a particle with eφg(z) = (me−mp)gz/2
being the gravitoelectric potential energy (cf. Eq. (15)).
According to Eq. (19), the temperature rises linearly
with height provided 3/2 < κ < ∞. For κ = 4 and
T0 = 0.49TM

0 one has T∗(z) = T0(1+1.95z) and at z = 0.3
the temperature should be T∗(0.3) = 1.59T0 = 0.78TM

0

only. Such a temperature is well below the temperature
T (0.3) ≈ 1.1TM

0 observed in the simulation (see Fig. 5)
from where we conclude that velocity filtration is not the
principal reason for the rapid rise of the temperature pro-
file inward from the z = 0 boundary. Indeed, the strong
inward heating of the plasma is neither due to the gravi-
tational field nor to the temperature gradient imposed by
the boundary conditions. The heating is essentially due
to the effect of collisions on the κ velocity distribution in-
jected from the z = 0 boundary. Of course the heating
effect decreases with increasing κ and in the limit κ→∞
(the Maxwellian case) it disappears completely, as shown
in Fig. 5. Let us give a qualitative physical interpretation
of the strong temperature gradient near the kappa bound-
ary. If there were no collisions in the system, a collisionless
electron heat flux would flow from the lower to the upper
boundary (see Eq. (20)). However, the system is collisional
and collisions do always act in the sense of a reduction of
the heat flux. This is clearly visible in Fig. 5, where the
electron heat flux is seen to decreases inwards from the
right hand boundary over a distance of the order of 0.3L,
inducing a strong heating of the plasma over this very
same distance. Since protons become thermalized much
more rapidly than electrons, the former carry energy in a
“classical” way, i.e. protons transport heat down the tem-
perature gradient against the electron heat flux. We note
that the total (proton + electron) heat flux is constant
despite the fact that this is not so for individual species.
Thus energy is transferred from electrons to protons and
vice versa.

This peculiar behavior of the plasma near a kappa
boundary does not show on the temperature profiles in
Fig. 2 of Dorelli & Scudder (1999). The difference is due
to the restrictions imposed upon the general shape of
the electron velocity distribution functions by Dorelli and
Scudder. In their paper, the general form of the electron
velocity distribution function is a first order truncated
Legendre polynomial expansion. Thus, at any given height
z, the electron velocity distribution is a superposition of an
isotropic kappa distribution function and an odd function
of vz (the first order correction) which does not affect the
even moments of the velocity distribution function so that
the temperature is by construction determined by the zero

order distribution only, i.e. by the isotropic kappa distribu-
tion. Our simulation shows that restricting the Legendre
expansion to the first order term only does not allow for a
correct description of the temperature profiles especially
for boundary conditions with low κ indices. However, as
we shall see in the remainder of this section, and in the
next section, the unusual behavior of the heat flux (un-
usual from a fluid point of view) described by Dorelli &
Scudder (1999), remains qualitatively valid for small val-
ues of κ.

The average total heat flux observed in our simulation
is qobs ≈ 1.6× 10−3qM

0 and is mainly carried by the elec-
trons (cf. Fig. 5). The very fact that qobs > 0 means that
energy flows upwards, i.e. from the cold to the hot thermo-
stat. This may appear to be a surprising result as it seems
to contradict the second law of thermodynamics (cf. the
Introduction in Scudder 1992b). However, the behavior of
our system can be described by the Boltzmann equation
with a particular scattering operator, defined by the rules
outlined in Sect. 2.3, and must therefore obey Boltzmann’s
H-theorem (Boltzmann 1872) and all fundamental laws of
thermodynamics.

As a guiding reference for future discussion, we com-
pute the collisionless electron heat flux qNC by applying
Liouville’s theorem to the proton and electron velocity dis-
tribution functions imposed by the boundary conditions at
z = 0, L and the constraint of zero bulk velocity. Under
these conditions, the charge-neutralizing electric field is
precisely the gravitoelectric field Eg given by Eq. (15).
Straightforward application of Liouville’s theorem then
leads to

qNC =

√
8
π

nLk
3/2
B

m
1/2
e

√
T∗L TL√

T∗L +Bκ
√
TL[(

κ−3/2
κ−2

)
T∗L − TL

]
(20)

where the density nL = n(L) is a complicated function
of the other parameters of the problem (cf. Appendix C),
T∗L ≡ T∗(L) and Bκ is a κ dependent constant

Bκ ≡
Γ (κ−1/2)

(κ−3/2)1/2 Γ (κ−1)
· (21)

With the parameters of the present simulation (i.e. κ = 4,
TL = 1.28TM

0 ) one finds nL = 0.1nM
0 , and qNC = 5.4 ×

10−3qM
0 which, as expected, is stronger than the observed

collisional electron heat flux observed in the simulation
(Fig. 5). However, the general behavior of the system is
neither that of a strongly collisional plasma with a Spitzer
& Härm heat flux (1953) nor that of a collisionless plasma
since the electron heat flux intensity is both spatially vari-
able and substantially smaller than the collisionless value
qNC.

The vz velocity distributions for both electrons and
protons at z = 0.5L are shown in Fig. 6. From the figure
it appears that while the proton distribution is essentially
Maxwellian, the electron distribution has still substantial
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Fig. 6. Velocity distribution functions for kappa-Maxwell
boundary conditions (κ = 4) at height z = 0.5L for the case
L = 0.1 R� shown in Fig. 5. Velocities have been normalized
to the local thermal velocity vT ≡

√
2kBT/m of the relevant

species. The dotted curves are Maxwellians normalized to the
local temperature and density. The dashed curves are kappa
distributions with κ = 4 where n0 and v0 are determined by
the local density and temperature (cf. Eq. (18)).

suprathermal tails, particularly for large positive veloci-
ties vz∼> 2.5. The obvious reason is that the collisional
cross section for a suprathermal proton vs. thermal elec-
tron collision is only weakly velocity dependent given that
the relative velocity is always approximately ve, indepen-
dent of the proton’s velocity. Thus suprathermal protons
are efficiently thermalized by collisions with thermal elec-
trons. This is not so for a suprathermal electron since its
velocity with respect to either a thermal proton or a ther-
mal electron is, by definition, larger than ve. Given that
the collisional cross section decreases as the forth power
of the relative velocity it then follows that the thermal-
ization of the suprathermal electrons is much less efficient
than the thermalization of the suprathermal protons.

Let us conclude this section with a short discussion
of the simulation in the light of the Dorelli & Scudder

(1999) model (we shall call it the DS model). As already
stated, there are some qualitative similarities between the
behavior of the plasma observed in our simulations and
the behavior of the plasma in their model. However, the
very particular form of the distribution function in the
DS model implies that their temperature profiles do dif-
fer significantly from ours. As already stated, the differ-
ence stems from the fact that in the DS model the just
described collisional heating near a kappa boundary is
missing, essentially because by construction the tempera-
ture in the DS model is that of a κ distribution function
with the same κ index throughout the whole plasma slab.
The reason for the DS temperature profile not being the
collisionless temperature profile is due to the fact that
their electric field (which has not been computed explic-
itly by the authors) is not Rosseland’s gravitoelectric field
(cf. Eq. (15)), which happens to be charge neutralizing in
the collisionless case only. Despite these substantial differ-
ences, we do observe an upward-directed heat flux for the
κ = 4 in accordance with the DS model which predicts an
upward directed heat flux for κ∼< 10.

How sensitive are the above results on the rather arbi-
trary position of the upper boundary? Figure 7 shows that
doubling the size of the system and changing the tempera-
ture of the upper thermostat accordingly does not change
the conclusions in a very substantial way. The main differ-
ence is that the average temperature gradient is slightly
reduced with respect to the shorter system. As a conse-
quence, the temperature of the plasma near the upper
boundary is clearly below the prescribed temperature of
the boundary (dark square on the figure). Thus, even with
a kappa index as small as κ = 4 one has to invoke a lo-
cal heating mechanism to sustain the prescribed temper-
ature gradient up to the z = 0.2 level. For comparison, if
the system was entirely collisionless, the temperature near
the upper boundary would be as high as 1.7TM

0 , i.e. above
the temperature of the boundary.

The temperature profiles for different kappa indices of
the z = 0 boundary distribution functions are plotted in
Figs. 8 and 9. For each run the temperature of the z = 0
boundary has been adjusted to obtain equal mid-box tem-
peratures and temperature gradients. The collisional heat-
ing near the z = 0 boundary is clearly visible on all plot-
ted profiles except the κ = ∞ case. Figure 8 shows that
if the upper boundary (the source of energy) is located at
z = 0.1 R� the system is able to sustain the prescribed
temperature profile independently of the κ index. On the
other hand, Fig. 9 shows that if the upper boundary is
located at a height z = 0.2 R� the system is no longer
able to sustain the 1.4× 106 K/R� temperature gradient
unless some local heating is at work. Indeed, all tempera-
ture profiles reach the z = 0.2 R� level with a temperature
which is clearly below the value imposed by the boundary.
We note in passing that the steepening of the temperature
profiles above z ≈ 0.17 R� is not due solely to the vicinity
of the hot boundary but also to the collisionless gravita-
tional velocity filtration. The reason for the collisionless
filtration to become more efficient above z ≈ 0.17 R� is
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Fig. 7. Kappa-Maxwell boundaries with κ = 4. The format
of the figure is the same as in Fig. 5. Note that the upper
boundary is located at z = 0.2 R� and the temperature of the
upper thermostat is the same as for the Maxwell-Maxwell case
of Fig. 4. Again, the temperature of the lower thermostat is
0.49TM

0 , as in Fig. 5. The dashed line in the top panel repro-
duces the temperature profile for the thermal boundary case
of Fig. 4. As in the shorter system of Fig. 5, heat flows upward
in the temperature gradient.

that at such heights the density has become extremely
low (of the order 10−2 times the density at z = 0) and
collisions much less effective in thermalizing the electron
distribution function which still have suprathermal tails
at a non negligible level (cf. Fig. 6) going into the heating
via the collisionless gravitational velocity filtration mech-
anism. Of course gravitational filtration does not work in
the Maxwellian case, which is the reason for the tempera-
ture to grow more slowly for z ∼> 1.7 R� in the Maxwellian
case than in the κ = 4 case (cf. Fig. 7).

Even though the temperature and density profiles ap-
pear to be quite similar over the major part of the sim-
ulation domain for all cases shown in Figs. 8 and 9, the
transport properties are different. This is particularly ev-
ident for the heat flux. In Fig. 10 are plotted the values
of the total heat flux observed in the simulations for dif-
ferent values of the kappa index. The horizontal solid line
represents the total heat flux for the Maxwell–Maxwell
boundaries case, i.e. the classical Spitzer & Härm (1953)
heat flux for the given temperature gradient and plasma
parameters. For the kappa–Maxwell simulations, the en-

Fig. 8. Temperature and density profiles for kappa-Maxwell
boundary conditions. Each profile corresponds to a different
kappa index ranging from κ = 4 (dotted line) to κ =∞ (solid
line). The heat flux associated with each profile are shown in
Fig. 10.

ergy flows depend sensitively on κ; for κ∼< 4 the heat flux
is positive and flows from the cold to the hot boundary.
For κ = 5 the heat flux is negative but its intensity is
still significantly smaller than the classical Spitzer-Härm
value. For κ∼> 6 the heat flux is essentially Spitzer-Härm.
The index κo below which the energy flows in the upward
direction can be determined in the collisionless limit us-
ing Eq. (20) and the condition qNC ≥ 0 from where one
obtains

κ ≤ κo =
1
2

TL

TL − T0

(
1 + 2

ψL

kBTL
+ 3

TL − T0

TL

)
. (22)

Plugging the parameters of the above simulations into
Eq. (22) one finds κo ≈ 12 which is significantly larger
than the value we find in Fig. 10. We conclude by noting
that in the DS model, reversal occurs for κ ≈ 10 which is
also the value for which the collisionless heat flux reverses
in the kappa-kappa case (see Eq. (24) below). Our simula-
tions indicate that the effect of collisions on both the heat
flux and the temperature profile is much stronger than
suggested by the DS model.
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Fig. 9. Same as Fig. 8 for the case extending up to 0.2 R�.

Fig. 10. Heat flux measured in the simulations for kappa-
Maxwell boundaries shown in Fig. 8. Solid line represents the
Spitzer-Härm value for the Maxwell-Maxwell case (cf. Fig. 3).

3.3. Kappa–kappa boundaries

In this section we briefly discuss the case where the veloc-
ity distribution functions are kappa at both boundaries
z = 0 and z = L. The collisionless electron heat flux qNC

can be computed analytically using the general expres-

sions given in Appendix C

qNC =

√
8
π

nLk
3/2
B

m
1/2
e

1
Bκ

κ− 3/2
κ− 2

·√
T∗L TL

(√
T∗L −

√
TL

)
. (23)

As for the kappa-Maxwell case, one can determine the
limiting value κr below which heat flows in the direction
of the temperature gradient by setting qNC ≥ 0 in Eq. (23).
The result is

κ ≤ κr =
3
2

+
ψL

kB(TL − T0)
· (24)

For the parameters we use (which are the same as in the
Dorelli & Scudder 1999, paper) one finds κr ≈ 10 which, of
course, is precisely the value predicted by the DS model.
Indeed, the main effect of collisions in the DS model is
to reduce the intensity of the heat flux, not its sign. We
note that κr is always smaller than the heat flux reversal
value κo found in the kappa-Maxwell case by an amount
TL/2(TL−T0). This difference is due to the fact that heat
flows more easily up the temperature gradient if there is
no downward-directed suprathermal tail due to the kappa
boundary condition at z = L.

We have opted not to present simulations with kappa-
kappa boundary conditions for two reasons. The main rea-
son is that from a conceptual point of view it does not
make much sense to suppose that there is a generator of
kappa distributions located at an arbitrary height L above
the coronal base. How shall one choose this point? What is
the most appropriate value of the kappa index there? Our
approach consists of assuming that there is a mechanism
(e.g. shocks) capable of generating suprathermal tails at
the base of the corona, i.e. at a natural boundary of the
solar atmosphere. This is not so for the fictitious upper
boundary we suppose to be located at 0.1 R� (following
Dorelli & Scudder 1999) or 0.2 R�, given that the solar
corona extends out to distances of the order of many tens
of AU. Also, given the strong collisionality of the system,
we found the choice of the Maxwellian distribution to be
the most natural one (or the less artificial one).

Simulations with a kappa boundary located at much
larger distances, where the wind is supersonic and essen-
tially collisionless, may be realistic as non thermal distri-
butions are systematically observed there. Such simula-
tions may become possible in the near future.

We conclude this section by noting that in the DS
model the lower and the upper boundary conditions are
not independent of each other, as the zero order distribu-
tion function is supposed to be a kappa distribution, with
the same index κ, in all points of the system. The constant
kappa index assumption in the DS model finds its justifi-
cation in the fact that the kappa index is known to remain
unchanged in the collisionless case (Scudder 1992a). As a
consequence, the above discussion on the choice of the up-
per boundary condition for our simulation is irrelevant in
the DS model where the two boundaries cannot be treated
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separately due to the constant constant kappa index as-
sumption.

4. Conclusion

There we summarize the most important aspects arising
from our simulations. First of all, as already suggested by
other authors, it appears that due to their rapid thermal-
ization, on a scale much shorter than the density or tem-
perature scale of height, proton velocity distributions are
close to Maxwellian in the solar corona. Unless some non-
thermal local ion acceleration mechanism (e.g. some kind
of magnetic turbulence) is at work, the Spitzer & Härm
(1953) theory provides a good description of the proton
transport properties in the corona. This seems not to be
the case for the electron velocity distributions which, if
not Maxwellian at a given height (at z = 0 in the simula-
tion), remain non Maxwellian over distances greater than
the scale of height of macroscopic quantities. More specifi-
cally, if the electron velocity distributions have suprather-
mal tails, there is no hope for the Spitzer-Härm theory
to provide the correct value of the electron heat flux. On
the other hand, heat flux density and temperature pro-
files cannot be described by Scudder’s collisionless model
either (Scudder 1992a). This has been demonstrated by
Anderson (1994), who also showed that the effect of colli-
sions on the velocity filtration model is not a minor effect,
which means that linearized collisional operators are in-
adequate for the description of the transport properties
in the corona. Dorelli & Scudder (1999) tried to overcome
this difficulty by expanding kappa distributions in terms
of Legendre polynomials. This approach has the advan-
tage of not requiring the first order Legendre term f1 to
be small compared to the zero order term f0. However,
the limitation of the development to the first order term
only turns out to be too restrictive because of the strong
up-down anisotropy of the problem. In particular, the
temperature profiles cannot be conveniently described us-
ing a Legendre expansion truncated after the first order
term, given that the latter does not directly contribute
to the temperature. This is not very surprising. Anderson
(1994) already suggested that the collisionless tempera-
ture profile is strongly modified by collisions (see Fig. 4 in
his paper). Here we show that the collisionless tempera-
ture profiles of kappa distributions are strongly modified
by collisions and that the effect is strongest close to the
boundaries where the kappa distributions are artificially
maintained (the z = 0 boundary in our simulations). The
simulations show that the collisional heating of the plasma
near a kappa boundary increases with decreasing kappa
index. The scale height of the collisional heating is deter-
mined by the relaxation length of the electron velocity dis-
tribution function, which for coronal plasma conditions is
much shorter than the assumed temperature scale height
[(∂T/∂z)/T ]−1 ≈ 0.4 R�. The heating of a plasma near
a kappa boundary could not be observed by Dorelli &
Scudder (1999) due to the limited impact on the temper-
ature that collisions are allowed to have in their model.

One of the key points of the DS model was to show that
the predictions of the collisionless gravitational velocity
filtration model (Scudder 1992a) for the corona are only
weakly modified by collisions. For example, for a given
coronal temperature gradient, heat flux reversal occurs at
the same kappa value whether collisions are included or
not, the only effect of collisions being a reduction of the
heat flux intensity. In reality, the effect of collisions on the
collisionless results happens to be much more destructive
than suggested by the DS model. We find that in the coro-
nal plasma, heat flux reversal already occurs at κ ≈ 4. For
κ = 5, the heat flux is already of the Spitzer-Härm type
whereas the DS model predicts strong departures from the
classical heat conduction even for κ ∼> 10. Our simulations
also suggest that velocity filtration alone is not capable of
sustaining the assumed coronal temperature gradient of
1.4 × 106 K/R� unless κ < 4. This means that unless
some extremely intense source of suprathermal electrons
exists near the base of the corona some local heating mech-
anism (e.g. waves) has to be at work between the base of
the corona and the coronal temperature maximum, which
we assume to be at a height z∼> 0.2 R�. Thus, gravita-
tional velocity filtration may be capable of sustaining the
observed temperature gradient without substantial heat-
ing, provided electron distributions near the coronal base
have strong suprathermal tails. Even if present observa-
tions of the corona do not allow us to exclude the presence
of strongly non thermal electron distributions at low alti-
tudes, it seems hard to imagine a mechanism (e.g. Fermi
acceleration, Fermi 1954) capable of sustaining such dis-
tributions given the high collisionality of the plasma. The
conclusion would eventually be different if kappa distribu-
tions were injected into the system from the top, i.e. from
the solar wind where non thermal electron velocity dis-
tributions are commonplace. However, this is much more
general problem which cannot be treated in zero mass flux
and plane parallel approximation used in this paper.

Appendix A: The algorithm

The structure of the algorithm for advancing the particles
of the system of Fig. 1 during a given time interval is
very similar to the algorithm described in Pantellini (2000)
for the case of hard sphere particles of equal mass and
no charge. The main difference is that the presence of
an electric field makes the integration of the equations of
motion slightly more complicated (not all particles feel the
same acceleration). In addition, a non negligible fraction
of the simulation time must be spent in computing the
charge-neutralizing electric field.

The algorithm can be summarized as follows:

1. Initialize the velocities {vi(t = 0)} and the positions
{zi(t = 0)} of N protons and N electrons. Order the
particles based on their height such that 0 < z1 < z2 <
... < z2N < L. Make an initial guess for the external
electric field E0 and eventually choose a non zero value
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for the variable ε (cf. Eqs. (4) and (5)) if polarization
effects are expected to be important;

2. Determine for each pair of neighboring particles, with
indices i and i − 1 and for i = 2, 3, ... 2N , the time
interval δti until their next collision. If particle i and
i − 1 do not collide in the future, we shall set δti =
∞. Also compute the time δt1 and δt2N+1 until the
next collision of the first and last particle with one of
the boundaries. The equations of motion to be solved
are Eqs. (1) and (2) with the electric field felt by the
particle i being Ei+qi ε/2, where Ei is recursively given
by Eqs. (4) and (5);

3. Determine the time interval δtmin = min{δti} until the
next collision in the system. Let I ∈ {1, 2, ..., 2N + 1}
be the index of the particle making this collision;

4. Advance all particles through the time interval δtmin;
5. Make the collision between particle I and particle I−1

if I ∈ {2, 3, ..., 2N} according to the prescriptions given
in Sect. 2.3. If I = 1 or I = 2N + 1 (particle-wall
collision), draw a new velocity vector for the particle
using, in particular, Eqs. (10) and (11);

6. If the system’s charge neutrality is not satisfactory, in-
crease or decrease E0 in order to reduce departures
from neutrality. E0 should not be corrected too often.
Ideally one should not update E0 before the system
has become stationary. This can be a very long time
since it is of the order of the longest macroscopic relax-
ation time. For a Maxwellian plasma, the characteristic
timescales could be

√
L/g or L/c, where c is the sound

speed. This step is rarely performed;
7. Repeat steps 2–5 until a given time level has been

reached.

The computational time needed to go through one cycle
is proportional to N . A more sophisticated version of the
algorithm allows us to make the computational time be
proportional to

√
N instead.

Appendix B: Comparison with Fokker–Planck
model

Let’s consider a relaxed system where N particles of
species α and N particles of species β are uniformly dis-
tributed in a box of dimension L. Let’s consider particles
which have relative velocities in the spherically geomet-
ric velocity-space element 2πu2dudµ, where µ ≡ cos θ (θ
being the angle between u and the z direction). The num-
ber of collisions per time unit experienced by a particle of
species α with particles of species β with relative velocities
near u is then given by

dναβ = u |µ|Rαβ(u)fαβ(u, µ) 2πu2dudµ (B.1)

where Rαβ is the collision probability function defined in
Eq. (9) and fαβ is the distribution function for the relative
velocities between α and β particles. If the distribution
functions for both species are Maxwellians with thermal

velocities vα =
√

2kBTα/mα and vβ =
√

2kBTβ/mβ, re-
spectively, one has

fαβ(u) =
1

π
3
2 v3
αβ

N

L
e−u

2/v2
αβ (B.2)

with v2
αβ ≡ v2

α+v2
β . Integration of Eq. (B.1) over all veloc-

ities and directions then gives the total collision frequency

ναβ =
4√
π

N

L

1
v3
αβ

∫ 1

0

µdµ
∫ ∞

0

Rαβ(u)u3e−u
2/v2

αβdu (B.3)

i.e.

ναβ =
1√
π

N

L
vαβΨ(ũ2

αβ) (B.4)

where ũ2
αβ ≡ u2

αβ/v
2
αβ and Ψ is the function

Ψ(x) ≡ [1− (1 + x)e−x + x2Γ (0, x)] (B.5)

with

Γ(0, x) =
∫ ∞
x

e−tt−1dt

being the incomplete gamma function of order 0. Sample
values for the function Ψ(x) are given in Table B.1.

Table B.1. Sample values for the function defined in Eq. (B.5);
x =∞ correspond to hard spheres collision.

x 0.125 0.25 0.5 1 ∞
Ψ(x) 0.03256 0.0918 0.230 0.484 1

Let us now consider the case of a thermalized and fully
ionized electron-proton plasma and let’s choose uαβ in
Eq. (9) by setting

uαβ = vαβ/
√

2 (B.6)

so that the dependency on Ψ is the same for all kind
of collisions (i.e. proton-proton, electron-proton, electron-
electron). For mp � me, we then have vee =

√
2ve,

vep ' ve and vpp =
√
me/mpvee which leads to the fa-

miliar relationship between the collision frequencies

νee =
√

2νep =
√
mp

me
νpp. (B.7)

It is common practice to define the collision frequency
ναβ as the rate of momentum exchange between particles
of species α and particles of species β. For isotropic dis-
tribution functions and elastic collisions one has (Golant
et al. 1980)

ναβ =
〈

∂

∂uk

[
ukν
∗
αβ(u)

]〉
(B.8)

where 〈...〉 means averaging over the relative velocities dis-
tribution Eq. (B.2) and ν∗αβ ≡ (N/L)u|µ|Rαβ(u) is the
collision frequency for the particles in the velocity-space
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element 2πu2dudµ. Carring out the integration, using the
collision frequency Eq. (B.4), leads to

ναβ =
2√
π

N

L
vαβ [1− (1 + ũ2

αβ)e−ũ
2
αβ ] (B.9)

= ναβ
2

Ψ(ũ2
αβ)

[
1− (1 + ũ2

αβ)e−ũ
2
αβ

]
. (B.10)

On the other hand, the Fokker-Planck electron-proton
transport collision frequency for a plasma with an elec-
tron density n and temperature T is known to be (e.g.
Golant et al. 1980)

νFP
ep =

ne4

3ε2
0m

1/2
e (2πkBT )3/2

lnΛ (B.11)

where

lnΛ = ln
[

12π(ε0kBT )3/2

n1/2e3

]
is the Coulomb logarithm. We emphasize that the colli-
sion rate given in Eq. (B.11) is based on the time inter-
val it takes for a thermal electron’s trajectory to become
strongly deflected by the protons in the system. After set-
ting νFP

ep = ναβ we find the number of electrons N needed
to simulate a plasma with a given Fokker-Planck collision
frequency νFP

ep to be

N =
1

24π
ne4 lnΛ
ε2

0k
2
BT

2

L[
1−
(
1+ũ2

ep

)
e−ũ2

ep

] · (B.12)

For typical coronal conditions, e.g. n = 108 cm−3 and
T = 5 × 105 K one has νFP

ep = 20.4 s−1. Thus, in order
to simulate a plasma slab of thickness L = 0.1 R� some
N ' 4000 particles are required. We note that the number
of particles needed to simulate a given plasma strongly
depends on the choice of uαβ in Eq. (B.6): the smaller
the ratio uαβ/vαβ the larger N and the heavier the sim-
ulation. One should therefore choose uαβ/vαβ as large as
possible remembering that when uαβ/vαβ∼> 1 the macro-
scopic characteristics of the plasma (e.g. heat conduction,
thermoelectric coefficient, etc.) are no longer those of a
Coulomb collision dominated plasma because of the large
number of hard-sphere type collisions involving all parti-
cles moving at relative velocities u < uαβ. The properties
of such a plasma may differ substantially from the prop-
erties of a real electron-proton plasma!

Appendix C: The collisionless limit

Let us consider a collisionless electron-proton plasma
plunged in a gravitational field g(z) = −∂φG/∂z, which
is not necessarily constant. At the boundaries, z = 0 and
z = L, particles are injected with kappa type velocity dis-
tributions with temperatures T0 and TL and kappa indices
κ0 and κL, respectively. Due to the unequal mass of elec-
trons and protons, an electric field E(z) = −∂φE/∂z is
needed to ensure local charge neutrality. The stationary

distribution function f(v, z) for particles of mass m and
charge q with a monotonical potential energy

ψ(z) = mφG(z) + qφE(z) (C.1)

can be computed using Liouville’s theorem, viz.

f (v, z) =
{
f0 (v, z) vz > −w
f∗0 (v, z) vz < −w

(C.2)

where w2 ≡ 2 [ψL − ψ (z)] /m and

f0 =
(

m

2πkBT0

)3/2
A0Γ(κ0+1)

(κ0−3/2)
3
2 Γ(κ0−1/2)[

1 +
mv2 + 2ψ

(κ0−3/2)2kBT0

]−κ0−1

(C.3)

f∗0 =
(

m

2πkBT ∗0

)3/2
ALΓ(κL+1)

(κL−3/2)
3
2 Γ(κL−1/2)[

1 +
mv2 + 2ψ

(κL−3/2)2kBT ∗0

]−κL−1

(C.4)

and where we have set ψ(0) = 0 and ψ(L) = ψL. In
Eq. (C.4) T ∗0 is the temperature of the downward-traveling
kappa distribution at z = 0 which is linked to the temper-
ature TL = T (z) via (Scudder 1992a)

T ∗0 = TL

[
1− ψL

(κL−3/2)kBTL

]
. (C.5)

The problem has two unknown parameters, A0 and AL,
which are determined by the condition of zero bulk veloc-
ity and nL = n(L). The electric field profile is obtained
by imposing local charge neutrality. We shall show that
this field corresponds to the field required to make the
potential energy of protons and electrons to be equal (cf.
Eq. (C.14)).

Let χ (v, µ) be an arbitrary function of the absolute
velocity v and µ = cos θ, where θ is the angle between z
direction and the velocity. The mean value of this function
is then given by

〈χ〉 = 2π
∫ w

0

∫ 1

−1

dµv2dvχf0

+ 2π
∫ ∞
w

∫ 1

−w/v
dµv2dvχf0

+ 2π
∫ ∞
w

∫ −w/v
−1

dµv2dvχf∗0 . (C.6)

For example, the density is obtained by integrating of
Eq. (C.6) with χ = 1:

n (z) =
A0

2

[
1 +

ψ

kBT0 (κ0−3/2)

]−κ0+1/2

[1 +K (κ0−1, ξ0)]

+
AL

2

[
1 +

ψ

kBT ∗0 (κL−3/2)

]−κL+1/2

[1−K (κL−1, ξL)] (C.7)
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where

K (κ, ξ) ≡ 2√
π

Γ (κ+ 1)
Γ (κ+ 1/2)

∫ ξ

0

dx
(1 + x2)κ+1 (C.8)

and

ξ0 ≡
√

ψL − ψ
(κ0−3/2) (kBT0 + ψ)

(C.9)

ξL ≡
√

ψL − ψ
(κL−3/2) (kBT ∗0 + ψ)

· (C.10)

In the limit k → ∞ we have ξ →
√

(ψL − ψ)/kBT and
K → G, the standard error function

G ≡ 2√
π

∫ ξ

0

e−x
2
dx. (C.11)

On the other hand the zero bulk velocity condition 〈vz〉 =
0 leads to

A0 = A

[
(κ0−1)κ0Γ(κ0−1/2)

(κ0−3/2)
1
2 Γ(κ0+1)

]
[
1 +

ψL

(κ0−3/2)kBT0

]κ0−1

(C.12)

AL = A

[
(κL−1)κLΓ(κL−1/2)
(κL−3/2)

1
2 Γ(κL+1)

]
[
1+

ψL

(κL−3/2)kBT ∗0

]κL−1(
T0

T ∗0

)1/2

. (C.13)

All the above calculations indicate that the density n(z)
only depends on the charge and mass of the particles via
the potential energy ψ(z) . Thus, if we use the same κ and
same boundary temperatures T0 and TL for both electrons
and protons the charge neutrality condition reduces to

mpφG + eφE = meφG − eφE (C.14)

which arises from where one easily computes the classical
gravitoelectric field (Rosseland 1924)

φE =
1
2

(mp −me)φG. (C.15)

The constant parameter A in Eqs. (C.12) and (C.13) is
determined by the condition n(L) = nL, i.e.

A =
2nL√
T0

1
(Bκ0/

√
T ∗L) + (BκL/

√
TL)

(C.16)

with

Bκ0 ≡
Γ (κ0−1/2)

(κ0−3/2)
1
2 Γ(κ0−1)

(C.17)

BκL ≡
Γ (κL−1/2)

(κL−3/2)
1
2 Γ (κL−1)

(C.18)

and where the quantity

T ∗L = T0

[
1 +

ψL

(κ0 − 3/2)kBT0

]
(C.19)

has been introduced.
We can now compute explicitly the higher moments for

the velocity distribution function Eq. (C.2). For example,

the parallel pressure (with respect to z) turns out to be

P (z) =
A0kBT0

2

[
1 +

ψ (z)
(κ0−3/2)kBT0

]−κ0+3/2

[1 +K(κ0 − 2, ξ0)]

+
ALkBT

∗
0

2

[
1 +

ψ (z)
(κL−3/2)kBT ∗0

]−κL+3/2

[1−K(κL − 2, ξL)] . (C.20)

If we impose κL = κ0 and T ∗0 = T0, using Eq. (C.7)
and Eq. (C.20), we obtain the well known result (Scudder
1992a)

T∗(z) = T0

[
1 +

ψ(z)
(κ− 3/2)kBT0

]
. (C.21)

Similarly we find the collisionless heat flux by setting χ =
0.5mv3µ in Eq. (C.6), whence

q =

√
8
π

nLk
3/2
B

m
1/2
e

√
T ∗LTL

Bκ0

√
TL +BκL

√
TL[(

κ0−3/2
κ0−2

)
T ∗L −

(
κL−3/2
κL−2

)
TL

]
. (C.22)

The heat flux for the Maxwellian case given in Eq. (16)
can be obtained in the limit κ0 → ∞ and κL → ∞.
Equation (20) is obtained in the limit κL → ∞ and
Eq. (23) by imposing κ0 = κL.
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