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On the Temporal Effects of Mobile Blockers in

Urban Millimeter-Wave Cellular Scenarios
Margarita Gapeyenko, Andrey Samuylov, Mikhail Gerasimenko, Dmitri Moltchanov, Sarabjot Singh,

Mustafa Riza Akdeniz, Ehsan Aryafar, Nageen Himayat, Sergey Andreev, and Yevgeni Koucheryavy

Abstract—Millimeter-wave (mmWave) propagation is known
to be severely affected by the blockage of the line-of-sight (LoS)
path. In contrast to microwave systems, at shorter mmWave
wavelengths such blockage can be caused by human bodies, where
their mobility within environment makes wireless channel alter-
nate between the blocked and non-blocked LoS states. Following
the recent 3GPP requirements on modeling the dynamic blockage
as well as the temporal consistency of the channel at mmWave
frequencies, in this paper a new model for predicting the state of a
user in the presence of mobile blockers for representative 3GPP
scenarios is developed: urban micro cell (UMi) street canyon
and park/stadium/square. It is demonstrated that the blockage
effects produce an alternating renewal process with exponentially
distributed non-blocked intervals, and blocked durations that
follow the general distribution. The following metrics are derived
(i) the mean and the fraction of time spent in blocked/non-blocked
state, (ii) the residual blocked/non-blocked time, and (iii) the time-
dependent conditional probability of having blockage/no blockage
at time t1 given that there was blockage/no blockage at time t0.
The latter is a function of the arrival rate (intensity), width, and
height of moving blockers, distance to the mmWave access point
(AP), as well as the heights of the AP and the user device. The
proposed model can be used for system-level characterization
of mmWave cellular communication systems. For example, the
optimal height and the maximum coverage radius of the mmWave
APs are derived, while satisfying the required mean data rate
constraint. The system-level simulations corroborate that the
use of the proposed method considerably reduces the modeling
complexity.

Index Terms—Cellular networks, mmWave, human body
blockage, temporal consistency, mobility of blockers.

I. INTRODUCTION

The rapidly growing number of mobile devices as well as

the associated growth of mobile traffic call for an unprece-

dented increase in access capacity. To meet more stringent

performance requirements, the use of the so-called cellular

millimeter-wave (mmWave) technology operating at frequen-

cies such as 28 GHz and 73 GHz has been proposed in fifth-

generation (5G) mobile systems [1]–[3].

Together with the phenomenal increase in access capacity,

the use of the extremely high frequency (EHF) bands creates
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unique challenges for wireless communication systems. One

of them is a need for development of appropriate mmWave

channel models. Indeed, various groups and organizations have

recently developed a number of such channel models [4]–[10].

In contrast to microwave systems, the propagation charac-

teristics of mmWave systems (with wavelengths of under a

centimeter) are impacted not only by larger objects such as

buildings, but also by much smaller obstacles such as cars,

lampposts, and even humans. Given that mmWave systems are

envisioned to be deployed in urban squares and streets, 3GPP

has identified humans as one of the major factors affecting the

mmWave propagation and has incorporated a blockage model

into TR 38.901 of Release 14 [5].

The performance of mobile communications systems is

typically characterized by developing system-level simulation

(SLS) frameworks [11], [12]. Modeling the path loss with

simple power-law abstractions, these SLS tools may take into

account the necessary details of the target technologies and

deliver their output results within a reasonable time. How-

ever, when conducting system-level evaluation of a mmWave

system, in addition to the path loss model that captures the

propagation environment, one needs to explicitly represent

and track all of the relevant static and mobile objects with

dimensions larger than a few centimeters. This significantly

increases the required computational resources and expands

simulation time.

Motivated by the new effects in mmWave communications

systems as well as by the recent 3GPP requirements for 5G

channel modeling, this paper studies the dynamic blockage

caused by humans in outdoor urban mmWave cellular de-

ployments, while specifically concentrating on the temporal

consistency of the link states for a static user.

A. Background and Related Work

The importance of dynamic blockage of the LoS path in

mmWave deployments has recently been shown to be one of

the critical design factors that affect system performance [4]–

[6], [13]. An example illustration of the measured path gain

experienced by a node in a realistic crowded environment is

shown in Fig. 1. As one may observe, dynamic blockage by

small mobile objects within the environment, such as moving

people, cars, trucks, etc., introduces additional uncertainty in

the channel, which may eventually result in sharp drops (up

to 30 ∼ 40 dB) in the received signal strength [14], [15]. The

blockage frequency, duration, and the resultant degradation of

signal strength affect the performance of a mmWave system.

Recent work has studied the impact of LoS blockage in

urban microwave systems [16], [17]. However, the results do

7
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Fig. 1. Path gain in presence of dynamic blockage, reproduced from [14].

not directly apply to mmWave systems as the objects of inter-

est in mmWave and microwave systems are of fundamentally

different nature and hence would require different models for

their accurate representation. Indeed, in addition to mobility

of smaller obstacles, such as humans, one also needs to take

into account their inherently random dimensions.

The LoS blockage by humans in mmWave systems has been

evaluated through simulation studies in [18]. In [19], a LoS

blockage model where humans are represented as cylinders

of random width and height was proposed. However, there

the authors assumed that both the users and the blockers are

stationary. In addition to academic work, the 3GPP community

is currently exploring various options for modeling the impact

of human blockage appropriately [14], [20].

In [5], the human body blockage is taken into account

by creating rectangular screens dropped onto the simulation

map. A similar approach is adopted by [21], [22], where the

authors also evaluated the accuracy of their methods. Due to

the properties of the propagation model, which generates a

random sample of the propagation path at each run, a particular

attention of the 3GPP work groups is being paid to spatial and

temporal consistency of the mmWave links [5], [20].

In [23], the authors contributed a model for temporal

correlation of interference in a mobile network with a certain

density of users. It was demonstrated that the correlated

propagation states across the users significantly impact the

temporal interference statistics. Analytically tractable models

for correlated outdoor and indoor shadowing have been pro-

posed in [24] and [25], thus accentuating the high correlation

between the locations of the nodes and the shadowing effects.

The analytical expression to characterize the correlation be-

tween the signals of two antennas was given in [26].

Even though there has been a considerable literature cov-

erage on user mobility in general [27]–[30], to the best of

our knowledge there are only a few studies that incorporate

the user mobility into analytically tractable models [31], [32].

These latest results confirm the presence of memory in the LoS

blockage process and highlight its dependence on the mobility

characteristics of the users.

B. State-of-the-Art and Contributions

The goal of this paper is to contribute a novel mathematical

methodology that aims to characterize the dynamics and the

temporal correlation of LoS human body blockage statistics.

In this work, a model of the LoS blockage for a stationary

user in a moving field of blockers is proposed. This scenario

is more typical for outdoor mmWave systems as compared

to stationary blockage models assumed in prior work. The

blockers are modeled as cylinders of a certain height and width

that enter the LoS zone of a mmWave receiver according to a

Poisson process in time.

The analysis is based on the combined application of

stochastic geometry, renewal process theory, and queuing

models. Three different scenarios are addressed, including two

street canyon use cases and a park layout (see Fig. 2). The

metrics of interest are those reflecting temporal behavior of

the LoS blockage process, such as the mean and the fraction

of blocked/non-blocked LoS, the residual time in blocked/non-

blocked states, and the time-dependent effects of conditional

blocked/non-blocked state probabilities.

In summary, the following contributions are delivered by

this work:

• To analyze the temporal correlation and the dynamic

blockage process by human bodies at mmWave frequen-

cies, a novel mathematical model is proposed. It is shown

that the analytical expression could be utilized to replace

explicit simulation of the mobile blockers in the SLS

studies. The associated improvement in the simulation

times depends on the crowd intensity and may reach

several orders of magnitude.

• To capture the general structure of the dynamic LoS

blockage process, including the impact of mobile ob-

stacles, the corresponding mathematical methodology is

developed. It is observed that non-blocked/blocked peri-

ods form an alternating renewal process where the non-

blocked intervals follow an exponential distribution and

the blocked intervals have a general distribution. The

latter is captured by employing methods for the busy

period analysis in the M/GI/∞ queuing model.

• To characterize the temporally consistent human body

blockage process, a simplified approach is developed to

calculate the conditional probabilities. It is demonstrated

that for realistic input parameter values, in all the consid-

ered scenarios there always is a significant dependence

between the states of the user at t0 and t1 over small

timescales.

• To demonstrate the applicability of the proposed method-

ology, the optimal height of the mmWave AP that max-

imizes the average time in non-blocked LoS conditions

as well as the maximum coverage radius that satisfies the

required mean data rate are estimated.

The rest of this paper is organized as follows. In Section II,

the system model and a description of the outdoor scenarios

proposed by 3GPP, which reflect real-life mmWave system

usage situations, are introduced. The analysis for the perfor-

mance metrics of interest is summarized in Section III. The

numerical results, particularly those related to the temporal

dependencies in the LoS blockage process, are discussed in

Section IV. Section V elaborates on the applications of the

proposed methodology. Conclusions are presented in the last

section of the paper.
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(a) Sidewalk 1, S1 (b) Sidewalk 2, S2 (c) Park/stadium/square, S3

Fig. 2. Three considered scenarios for further analytical modeling.

II. SYSTEM MODEL

A. General Considerations

The proposed system model is illustrated in Fig. 2. The

transmitter (Tx) and the receiver (Rx) are deployed at the

heights of hT and hR from the ground, respectively. The two-

dimensional distance between the Tx and Rx is r0. Follow-

ing [33], the potential blockers (i.e., humans) are modeled as

cylinders with the height of hB and the base diameter of dm.

Note that there always is an area between Tx and Rx,

where the emergence of a blocker will cause occlusion of

the mmWave LoS link. With the above parameters, this area

may be approximated by a rectangular shape, named here the

LoS blockage zone and denoted as ABCD in Fig. 3. The

particular dimensions of this area, its geometrical shape, and

the position with respect to Tx and Rx can be estimated given

the aforementioned parameters as discussed in what follows.

The speed of blockers V is assumed to be constant. How-

ever, the actual mobility model of blockers depends on the

scenario as introduced below. The main parameters and the

description of employed notation are collected in Table I.

B. Blocker Mobility and Arrival Modeling

To characterize the human mobility, the following three

scenarios are considered:

• Sidewalk 1 (First scenario, S1). In this scenario, the

mmWave Tx (the AP) is assumed to be mounted on the

wall of a building while the Rx may reside at any location

on the sidewalk of width wS within the coverage area of

the mmWave AP. The blockers move along the straight

line parallel to each other and the side of the sidewalk at a

constant speed of V while their y-coordinates of crossing

the width of the sidewalk are distributed uniformly within

(0, wS), see Fig. 2(a). The arrival process of blockers

crossing a vertical line – the width of the sidewalk wS –

is Poisson in time with the arrival intensity λI .

• Sidewalk 2 (Second scenario, S2). This scenario is similar

to the previous case, except for how the blocker positions

are distributed in the sidewalk. In practice, the users tend

to move closer to the center of the walkway. Therefore,

y-coordinates of crossing the width of the sidewalk are

modeled by employing a symmetric triangular distribu-

tion over (0, wS), see Fig. 2(b). The arrival process of

blockers crossing the width of the sidewalk is again

Poisson in time with the arrival intensity λI of blockers

per time unit.

• Park/Stadium/Square (Third scenario, S3). In this sce-

nario, the users are allowed to enter and leave the

mmWave LoS blockage zone at any point along the

three sides of the rectangle, see Fig. 2(c). It is assumed

that both the entry and the exit points are distributed

uniformly over the side lengths for each individual user.

The arrival process of users into the LoS blockage zone

is Poisson with the arrival intensity of λI per time unit.

The proposed methodology generally allows to capture more

specific types of blocker mobility. For example, one may

TABLE I
SUMMARY OF NOTATION AND PARAMETERS

Notation Description

hT , hR, hB Height of Tx, Rx, blockers
r0 Two-dimensional distance between Tx and Rx
dm, V Diameter and speed of blockers
wS Width of the sidewalk
wE , r Effective width and length of LoS blockage zone
λI Initial arrival intensity of blockers per time unit
λ Arrival intensity of blockers entering the LoS block-

age zone per time unit
λS Arrival intensity of blockers entering the unit area

of LoS blockage zone
λN Density of users per unit area
yA, yB , yC , yD y-coordinates of the edges of the LoS blockage zone
α Angle between Y-axis and the segment Tx-Rx
L Distance walked by a blocker in LoS blockage zone
T Residence time of a blocker in LoS blockage zone
ωj , ηj The non-blocked and blocked time interval
Fω(x), E[ω] CDF, the mean of non-blocked time interval
Fη(x), E[η] CDF, the mean of blocked time interval
FT (x), fT (x),E[T ] CDF, pdf, the mean of LoS zone residence time
FY (x) CDF of the y-coordinate of blocker entry point
F
Ỹ
(x) Truncated distribution of the entry point defined on

yA ≤ x ≤ yC
FL, fL CDF and pdf of the residence distance L
E[Tl], E[Tn] Fraction of time in non-blocked/blocked states
Ftω (x), Ftη (x) Residual time in non-blocked/blocked states

ξj jth time interval equal to ωj + ηj
Fξ(x), fξ(x), E[ξ] CDF, pdf, the mean of ωj + ηj
f(x) pdf of renewal process
p00, p01 Conditional probabilities to be in non-

blocked/blocked states at time t1 (0 and 1)
given that there was non-blocked state at t0

p10, p11 Conditional probabilities to be in non-
blocked/blocked states at time t1 (0 and 1)
given that there was blocked state at t0



4

decide to relax the assumption of the straight movement

and thus model the walking street environment, where the

user trajectories are not required to remain parallel to the

sides of the street. Also note that the straight trajectories of

blocker mobility inside the LoS blockage zone are the direct

consequence of small dimensions of the said zone, hence

resulting in negligible changes of behavior with respect to the

angle of motion.

The considered metrics of interest are those pertaining to the

temporal behavior of the LoS blockage process and include (i)

the mean and the fraction of time in the blocked/non-blocked

state as experienced by the Rx, (ii) the residual time in the

blocked/non-blocked state, and (iii) the conditional probability

that there is blocked/non-blocked state at t1 given that there

was blocked/non-blocked state at t0, t1 > t0.

III. PROPOSED SYSTEM ANALYSIS

All of the three scenarios introduced in the previous Sec-

tion II can be characterized by following the proposed method-

ology. The key difference between them is in the distribution

of the residence time in the LoS blockage zone (that is, the

time that a blocker spends in the LoS blockage zone while

crossing it). In this section, the general method to obtain the

distribution of the zone residence time in the LoS blockage for

the first scenario (i.e., Sidewalk 1, S1) is described. For the

second and the third scenarios, the corresponding derivations

are reported in Appendix A. Finally, the target metrics of

interest are produced.

The step-by-step analytical approach may be summarized

as follows:

• Specify the zone where blockers may occlude the LoS

path and thus determine the LoS blockage zone geometry;

• Describe the process of blockage by introducing the

alternating renewal process that captures the non-

blocked/blocked intervals;

• Obtain the probability density function (pdf) of the non-

blocked time interval by analyzing the alternating renewal

process in question;

• Produce the pdf of the blocked interval by representing it

as a busy period in the M/GI/∞ queuing system1, where

the service time distribution corresponds to the time spent

by a blocker in the LoS blockage zone;

• Calculate all of the metrics of interest, including the

moments, the residual time distributions, as well as the

conditional non-blocked/blocked state probabilities by

applying conventional techniques.

A. LoS Blockage Zone Geometry

Consider the geometrical scenario represented in Fig. 3.

It should be noted that rectangle ABCD, named the LoS

blockage zone, is the only area where the presence of a blocker

causes blockage of the LoS link. Any blocker which appears

outside of this zone (closer to Tx, outside of ABCD) will not

affect the LoS link.

1According to the Kendall notation: M is Poisson arrival process, GI is
general distribution of service time, and ∞ is infinite number of servers.

Since any blocker entering the LoS blockage zone in ques-

tion (particularly, the center of a cylinder) occludes the LoS,

the width of the zone equals the base diameter of the blocker,

dm. The length of this zone reflects the maximum possible

distance, where the height of the blocker still affects the LoS.

As illustrated in Fig. 3, from the geometrical considerations

the latter follows as

r =
r0(hB − hR)

hT − hR

+ dm/2, (1)

where r0 is two-dimensional distance between the Tx and the

Rx, while hB , hR, and hT are the heights of the blocker, Rx,

and Tx, respectively.

The coordinates of Tx and Rx located at the points P and

O (see Fig. 3), respectively, are then given by

xP = 0, yP = wS ,

xO = r0 sin(α), yO = wS − r0 cos(α). (2)

The coordinates of the blockage zone vertices are thus

xA = xO − dm
2

cos(α), yA = yO − dm
2

sin(α),

xB = xO +
dm
2

cos(α), yB = yO +
dm
2

sin(α),

xC = xB − r cos(
π

2
− α), yC = yB + r sin(

π

2
− α),

xD = xA − r cos(
π

2
− α), yD = yA + r sin(

π

2
− α), (3)

where α is the angle characterizing the position of the Rx in

relation to the Tx location, as shown in Fig. 3.

B. Renewal process analysis

Let ωj and ηj , j = 1, 2, . . ., denote the time spent in the

non-blocked and blocked intervals, respectively, as shown in

Fig. 4. As one may observe, these intervals alternate, that is,

non-blocked period always precedes the blocked one and vice

Tx

Fig. 3. Geometry of the LoS blockage zone.
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Fη(x) = 1−
(

[1− FT (x)]

[

1−
∫ x

0

(1− Fη(x− z)) exp(−λFT (z))λdz

]

+

∫ x

0

(1− Fη(x− z))|de−λFT (z)|
)

. (4)

versa. Since the entry of blockers into the LoS blockage zone

is modeled as a Poisson process, durations of non-blocked and

blocked intervals are mutually independent. Hence, the process

of the LoS blockage can be modeled as an alternating renewal

process, as displayed in Fig. 4. The proposed methodology is

valid for all three scenarios of interest.

Define ξj = ωj+ηj . The points 0, ξ1, ξ1+ξ2, and ξ1+ξ2+ξ3
are the renewal moments that form the process at hand. The

density of this process follows from [34] as

f(x) = λFT (x) exp

(

−λ

∫ x

0

[1− FT (y)]dy

)

, (5)

where λ is the intensity of the blocker arrivals into the zone,

FT (y) is the cumulative distribution function (CDF) of the

zone residence time T = L/V for a single blocker, where L
is the distance over which a blocker travels inside the blockage

zone.

The time spent in the non-blocked part, ωj , follows an expo-

nential distribution with the parameter λ, Fω(x) = 1− e−λx,

with the mean E[ω] = 1/λ [35]. This result follows directly

from the fact that the left-hand sides of the time intervals

spent in the LoS blockage zone by a single blocker follow a

Poisson process in time with the arrival intensity of λ per time

unit. Therefore, the time period between the end of an interval

ηj (see Fig. 4), which is considered as an arbitrary point,

and the starting point of the next interval ηj+1 is distributed

exponentially.

Consider now the blocked interval.

Proposition 1. Let Fη(x) be the CDFs of the time in the

blocked intervals, ηj , j = 1, 2, . . . , with the mean of E[η].
The distribution of the blocked interval, Fη(x), is the same

as the distribution of a busy period in the M/GI/∞ queuing

system given by (4), see e.g., [36].

Proof. The proposition is proved by exploiting the analogy

with the busy time distribution in M/GI/∞ queuing system.

Consider now an evolution of a busy period in M/GI/∞
system. It starts at some t = t1 with a customer arriving into

the system. Each arrival during the service time of this cus-

tomer prolongs the busy period if and only if its service time is

η1 ω2 η2

ξ1

ω1

ξ2

time

Blocked 

time interval

Non-blocked 

time interval

0

A blocker leaves the 

 LoS blockage zone

 Moving time of a blocker

 inside LoS blockage zone

A blocker arrives at the 

LoS blockage zone border

Fig. 4. Renewal process associated with the LoS blockage, where every
blocker might spend different time when occluding the LoS.

greater than the service time of the customers that are currently

in service. The busy period ends when a customer upon its

departure leaves an empty system. Analyzing the illustration of

the renewal process associated with the LoS blockage interval,

the analogy with the busy period in M/GI/∞ system is

established. Indeed, each blocker extends the LoS blockage

period if and only if its blockage time is greater than the

blockage time of those blockers currently occluding the LoS.

The CDF of the busy period in M/GI/∞ system has been

obtained in [36] and is provided in (4).

Note that (4) can be evaluated numerically for any FT (x).

C. Residence Time in the LoS Blockage Zone

To proceed further with deriving the metrics of interest, the

CDF of the residence time T = L/V in the LoS blockage

zone for a single user is required. Recalling the principles of

linear transformation of random variables [37], the pdf of the

time T = L/V (for all the scenarios of interest) reads as

fT (x) = V fL(xV ). (6)

Hence, it is sufficient to find the pdf of distance L that one

blocker travels inside the LoS blockage zone, fL, in order to

derive fT . The notation employed in what follows is clarified

in Fig. 3. Note that the arrival intensity of the blockers λ that

enter the LoS blockage zone is different for all the considered

scenarios and is derived in what follows by using λI . The

latter is the initial arrival intensity of blockers that cross the

width of the sidewalk for the first and second scenarios, S1 and

S2 (see Fig. 2). For the sake of the analysis, the park/square

scenario, S3, has the arrival intensity of λI = λ.

Note that the derivation of distance L is a scenario-specific

part of the analysis as it requires a certain distribution of the

entry points of blockers to the LoS blockage zone.

First scenario, S1. Let FY (x), 0 ≤ x ≤ wS , be the CDF of

the y-coordinate of the entry point for a blocker. Since only

the blockers crossing the blockage area are of interest, this

distribution is truncated. The resulting distribution F
Ỹ
(x) is

defined on yA ≤ x ≤ yC .

The CDF of the distance L traversed by a blocker in the

LoS blockage zone is therefore

FL(x) =































0, x < 0,

F
Ỹ
(yC)− F

Ỹ
(yC − x cos(α) sin(α))

−
(

F
Ỹ
(yA)− F

Ỹ
(yA + x cos(α) sin(α))

)

,

0 ≤ x < xmin,

1, x ≥ xmin,

(7)

where xmin = min(dm/ cos(α), r/ sin(α)).
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For the sidewalk 1 scenario (S1) (see Fig. 2(a)), (7) takes

the form of

F 1
L(x) =















0, x ≤ 0,
x sin(2α)

yC − yA
, 0 < x ≤ xmin,

1, x > xmin.

(8)

The arrival intensity of blockers entering the zone that

affects the LoS for the first scenario, S1, is delivered as

λ = λI

wE

wS

, (9)

where wS is the width of the sidewalk, λI is the ar-

rival intensity of blockers on the width wS , and wE =
max(yA, yB , yC , yD)−min(yA, yB , yC , yD) is the projection

of rectangle ABCD on Y-axis, named the effective width, as

shown in Fig. 3.

The residence time in the LoS blockage zone for the second

and the third scenario is derived in Appendix A.

D. Metrics of Interest

1) Mean and Fraction of Time in Non-Blocked/Blocked

State: The fraction of time in the non-blocked/blocked state

can be produced by utilizing the mean time spent in each state,

i.e., [35]

E[Tl] =
E[ω]

E[ω] + E[η]
, E[Tn] =

E[η]

E[ω] + E[η]
, (10)

where E[ω] and E[η] are the means of the non-blocked/blocked

intervals.

Recall that due to the exponential nature of ω, E[ω] = 1/λ.

The mean E[η] can be obtained numerically by using (4).

However, there is a simpler approach that is outlined below.

Observe that the renewal density f(x) is f(x) = 1/E[ξ], when

t → ∞. From (5), after employing the Laplace transform (LT),

we establish that it is also equal to f(x) = λ exp (−λE[T ]),
where E[T ] is the mean zone residence time for a single

blocker, see [19] for details. Hence, the following holds

E[ξ] =
1

λ
exp(λE[T ]). (11)

Then, E[η] can be established as

E[η] =

∫

∞

0

[1− Fη(x)]dx

=

∫

∞

0

(

1− Fξ(x)−
fξ(x)

λ

)

dx = E[ξ]− 1

λ
. (12)

Substituting (11) into (12), we arrive at

E[η] =
1

λ
[exp(λE[T ])− 1]. (13)

2) Residual Time in Non-Blocked/Blocked State: Here,

the distribution of the residual time spent in the non-

blocked/blocked state given that the user is currently in the

non-blocked/blocked state is characterized. Recall that the

distribution of the non-blocked interval is exponential, while

the CDF for the blocked interval is provided in (4). Hence,

the residual time distribution in the non-blocked state is also

exponential with the same parameter. Therefore, the residual

blocked time CDF is

Ftη (t) =
1

E[η]

∫ t

0

[1− Fη(y)]dy, (14)

and the residual non-blocked time CDF is

Ftω (t) = 1− e−λt, t ≥ 0. (15)

3) Conditional Non-Blocked/Blocked State Probabilities:

Consider now two instants of time, t0 = 0 and t1, t1 − t0 =
t > 0. Denoting the non-blocked and the blocked states by 0
and 1, respectively, the conditional probabilities, p00(t), p01(t)
as well as p10(t), p11(t) that there is non-blocked/blocked

state at t1 given that there was non-blocked/blocked state at

t0 are calculated further. The general solution for this problem

follows from [35] and particularly p00(t) can be established

as

p00(t) =
E[ω]

E[ω] + E[η]
+

g(t)

E[ω]
, (16)

where g(t) has the LT of

g∗(s) =
E[ω]E[η]

(E[ω] + E[η])s
−

(1− f∗

ω(s))(1− f∗

η (s))

s2(1− f∗

ω(s)f
∗

η (s))
, (17)

where f∗

ω(s) and f∗

η (s) are the LTs of fω(x) and fη(x),
respectively.

In the target case, the density of the blocked period is

not available in a closed form, thus preventing from tran-

sitioning to the LT domain. For practical calculations, a

simpler approach is proposed below based on utilizing the time

domain convolutions. Observe that the probabilities p00(∆t)
and p01(∆t) can be represented as

p00(∆t) =

∞
∑

i=0

P{Ai(∆t)},

p01(∆t) =

∞
∑

i=1

P{Bi(∆t)}, (18)

where Ai(t) are the events corresponding to starting in the

non-blocked interval at t0 and ending in the non-blocked

interval after some ∆t = t1 − t0, while having exactly i,
i = 0, 1, . . . , blocked periods during ∆t. Similarly, Bi(t) are

the events corresponding to starting in the non-blocked interval

at t0 and ending in the blocked interval at t1, while having

exactly i, i = 1, 2, . . . , non-blocked periods during ∆t.
The probability of the event A0, which is defined as residing

in the non-blocked interval ω at time t1 = t0 +∆t given that

the system was in the same non-blocked state ω at time t0, is

produced by

P{A0(∆t)} = 1− Ftω (∆t), (19)

where Ftω (∆t) is the residual time in the non-blocked period

as obtained in (15).

The probability of the event B1, which is defined as residing

in the blocked interval η at time t1 given that the system was

in the preceding non-blocked state ω at time t0, is

P{B1(∆t)} = 1− Fη+tω (∆t)− (1− Ftω (∆t))

= Ftω (∆t)− Fη+tω (∆t), (20)
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Fig. 5. Benchmarking the analytical model against the simulation results for the first usage scenario, S1.

where Fη is the CDF of the blocked interval from (4) and

Fη+ω denotes the CDF of the sum of random variables x and

y. As it was stated previously, note that the random variables

η, ω, and tω are independent. Hence, the CDF of the sum

Fη+ω is obtained by convolving the densities of x and y and

then integrating from 0 to x.

Consider the event A1 corresponding to when the Rx is in

the non-blocked interval at time t1 given that it was in the

preceding non-blocked interval at time t0 (there is a blocked

interval embedded in between t0 and t1). The probability of

this event is

P{A1(∆t)} = Fη+tω (∆t)− Fω+η+tω (∆t), (21)

where Fω is the CDF of the non-blocked interval.

Further, the probability of the event B2 that the Rx is in

the blocked interval at t1 given that it was in the preceding

blocked interval at t0 (there is an additional non-blocked

interval embedded in between t0 and t1), is established as

P{B2(∆t)} = Fω+η+tω (∆t)− Fη+ω+η+tω (∆t). (22)

Finally, the following is obtained

P{Ai(∆t)} = F∑i−1

j=1
(η+ω)+η+tω

(∆t)

− F∑
i
j=1

(η+ω)+tω
(∆t), i ≥ 1,

P{Bi(∆t)} = F∑i−1

j=1
(η+ω)+tω

(∆t)

− F∑i−1

j=1
(η+ω)+η+tω

(∆t), i ≥ 1. (23)

Note that the sum in (18) is infinite, and the probabilities

p00 and p01 are numerically approximated by summing the

terms up to the next summand that is sufficiently close to zero,

until when the desired accuracy is achieved. The probabilities

p10(∆t) and p11(∆t) are obtained similarly.

IV. ACCURACY ASSESSMENT AND NUMERICAL ANALYSIS

In this section, the accuracy of the proposed model is

assessed by benchmarking against system-level simulations.

Then, the extent of temporal dependence under study is

characterized as a function of the input parameters.

A. Accuracy Assessment

In Fig. 5, the benchmarking of the proposed analytical

model is conducted by utilizing our in-house simulation

framework developed specifically for the purposes of this

study. For the sake of exposition, it is assumed that the

location of the user device of interest is fixed. The initial

number of deployed blockers is calculated based on the arrival

intensity of blockers entering the width of the sidewalk, λI .

Particularly, considering the first usage scenario, S1, whenever

the simulation is started, new blockers appear at the sidewalk

edge of length wS according to a Poisson process with the

arrival intensity of λI . Blockers then move around across the

deployment with the constant speed up to the edge of the

deployment area.

Fig. 5(a) reports on the average user blockage time for the

first scenario (S1) obtained by using simulations as well as

produced with the proposed analytical model for the width of

the sidewalk, wS = 10 m where the remaining parameters

are given in the plot and Table II. The target accuracy was

set to 10−4 which required from 6 to 9 summands in (18) to

achieve it. As one may observe, the analytical results agree

well with the simulation data, while both increase linearly

with the growing arrival intensity of blockers. To assess the

time correlation in the non-blocked/blocked state, the CDF of

blocked duration is displayed in Fig. 5(b), where the width

of the sidewalk is taken as wS = 10 m, r0 = 7.9 m, and

α = 18.4o with the rest of the parameters given in the Table II.

Here, close match between the analytical and the simulation

TABLE II
BASELINE SYSTEM PARAMETERS

Parameter Value

Height of Tx, hT 3 m
Height of Rx, hR 1.3 m
Tx-Rx distance, r0 4.6 m
Height of a blocker, hB 1.7 m
Diameter of a blocker, dm 0.5 m
Speed of a blocker, V 1 m/s
Width of the sidewalk, wS 5 m
Angle, α π/6
Frequency 28 GHz
Bandwidth, B 1 GHz
Noise level −84 dBm
Transmit power 30 dBm
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results is also clearly visible. Small discrepancy between sim-

ulation and analysis is caused by the specifics of the analytical

model. Particularly, in simulations the LoS blockage zone is

explicitly modeled by taking into account the circular nature

of the blocker. In the developed mathematical model, the LoS

blockage zone is assumed to be of rectangular shape thus

neglecting the curvature caused by the blocker, see Section III

for details. Even though one could extend the model to the

case of more complex geometry of the LoS blockage zone

thus leading to more complex expressions, the resulting error

of approximation by a rectangle is negligible. Also, note that

the steep behavior of the CDF around 0.5 s is explained by

the fact that for these particular environmental parameters and

intensity of blockers most of the busy periods on the associated

M/GI/∞ queue are caused by a single blocker.

B. Numerical Analysis

Further, the response of the blockage-related metrics to

the selected ranges of input mmWave system parameters is

analyzed. It should be mentioned that the choice of values for

the parameters, and especially the Tx-Rx distance, is according

to the need to compare all three mobility models. However,

all parameters are adjustable during the computation if needed.

Therefore, the key performance indicator in the deployment of

interest is considered, namely, the fraction of time spent in the

non-blocked state as illustrated in Fig. 6. It is a function of

the arrival intensity of blockers, λI , for all the three scenarios

under study. It should be noted that the fraction of time in

blocked state is the complement of the fraction of time in

the non-blocked state. The parameters for scenarios that are

collected in the plot are shown in Table II.

For the purposes of a numerical comparison, consider the

initial intensities for the first (S1) and the second scenario

(S2) to be equal to 1 and 3 blockers per second, respectively.

This corresponds to the following intensities of entering the

LoS zone: 0.24 and 0.71 blockers per second. The initial

arrival intensity is equal to the intensity of entering the

LoS zone for the third scenario (S3). Clearly, as the arrival

intensity of blockers grows, the fraction of time spent in

the non-blocked/blocked state decreases/increases correspond-

ingly. The main observation here is that the resulting trend

is close to linear. One may notice further that for the arrival

intensity of 0.24 blockers per second the fraction of time spent
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~70% of time Rx is non-bl.

Fig. 6. Fraction of time in non-blocked/blocked state as a function of λI .

in the non-blocked state is almost the same for all the three

scenarios. As the arrival intensity increases and approaches the

value of 0.71, the difference between the first two scenarios

and the third scenario becomes more considerable.

Fig. 7(a) and 7(b) report on the absolute values of the mean

time spent in the non-blocked/blocked state for the same input

parameters. As one may observe, the mean time spent in the

non-blocked state decreases significantly as λI increases from

0 to 3. However, the difference between the three scenarios for

the two selected intensities is not significant. The mean time

spent in the blocked state is the longest for the third scenario. It

may be explained by the fact that the possible walking distance

of a blocker is higher in this third scenario, since the blocker

can move closer to the diagonal of the rectangle. Note that the

blocked state behavior does not change drastically over a wide

range of the considered blocker intensities. This is because

even for higher intensities of blockers the blocked intervals

are likely to feature only a single blocker occluding the LoS.

The mean time spent in the non-blocked/blocked state

together with the associated fractions produce a direct im-

plication on the dimensioning of mmWave systems. More

specifically, using an appropriate propagation model, such as

the one presented in [38], as well as accounting for the set

of the modulation and coding schemes, one can evaluate the

average throughput of a user located at a certain distance from

the mmWave AP over a particular time slot. Given a certain

value of the target mean data rate at the input, this information

can be used further for determining the optimal coverage of

a single mmWave AP. A close match with the result in [29]

in terms of the mean time of LoS link blockage under the

corresponding values of parameters is noted.

In Fig. 7(c) and 7(d), the CDFs of the residual time in the

blocked/non-blocked state are shown. As one may observe,

the probability for the time spent in the blocked interval to

exceed the blocker’s mean residence time is rather small.

For example, the mean time in the blocked interval for the

first scenario with λI = 1 bl/s is about 0.5 s and the CDF

Ftη (t < 0.5) = 0.9 approximately. This fact implies that for

a wide range of the considered intensities, in most cases, the

blocked interval coincides with the residence time of a single

blocker. Therefore, a user enters the non-blocked state after a

certain time interval, which mainly depends on the size and

the speed of the blocker, and less so on the arrival intensity of

the blockers (note that the mean time in the blocked interval,

Fig. 7(a), and the CDF of the residual time in the blocked state,

Fig. 7(c), do not change drastically with increasing arrival

intensity of blockers). Generally, knowing that the Rx is in the

blocked interval, one can estimate the remaining time in this

period. This may reduce the amounts of signaling information

required for tracking the state of mmWave receivers. Also, the

shape of the CDF curves for the residual time in the blocked

interval is explained by the particular behavior of the CDF of

time for a single blocker movement inside the LoS blockage

zone, which has a distinct plateau.

Fig. 7(e) and 7(f) illustrate the behavior of the conditional

probability to be in the non-blocked/blocked state at time t1
given that the Rx was in the non-blocked/blocked state at time

t0 = 0, t1 > t0. Due to the long average time in the non-
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Fig. 8. Optimal height of the mmWave AP vs. cell radius and arrival intensity of blockers for the third scenario, S3.

blocked state as compared to the average time in the blocked

state, the probability to change the state from non-blocked

to blocked is rather small for the considered values of t1. In

contrast, the probability to become non-blocked given that the

Rx was blocked at time t0 increases significantly. After that,

the conditional probability converges to the unconditional one

and the process in question “loses” its memory.

V. EXAMPLE APPLICATIONS OF THE METHODOLOGY

This section first summarizes two important analytical re-

sults stemming from the direct application of the proposed

methodology. Then, the achievable performance gains in terms

of the computation complexity are demonstrated after applying

the model for system-level evaluation of mmWave systems.

A. Optimal Height of the mmWave AP

Let us first determine the height of the mmWave AP, such

that the average path loss to the user is minimal. To this end,

the blocker mobility model to estimate the fraction of time in

the non-blocked state as a function of hT is utilized, and then

the mmWave propagation model from [38] to characterize the

mean path loss as a function of hT is applied.

The average path loss can thus be established as in [19]

Le = E[Tl]LLoS + (1− E[Tl])LnLoS , (24)

where E[Tl] is the fraction of time that the Rx spends in

the non-blocked state, which has been derived in (14), while

LLoS = 61.4 + 20 log10(d) and LnLoS = 72 + 29.2 log10(d)
are the path loss values for the LoS and the nLoS components

for 28 GHz as obtained in [38] and d =
√

(hT − hR)2 + r20
is the three-dimensional distance between Tx and Rx.

For any value of the arrival intensity of blockers, the optimal

height of the mmWave AP within the range of reasonable

values can now be established by utilizing the graphical

approach and plotting (24) to identify the value minimizing the

average path loss at the cell edge (two-dimensional distance
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between Tx and Rx, r0, is equal to the cell radius in that

particular problem). The same could be derived numerically

by taking a derivative of the average path loss from (24).

To vary the arrival intensity of blockers that enter the LoS

blockage zone proportionally to its dimensions, it is assumed

that λS = 0.1 bl/s is the arrival intensity of blockers crossing

the unit square area. The intensity of blockers entering the

LoS blockage zone can then be written as λ = λSrdm.

Fig. 8(a) demonstrates the optimal Tx height for different

cell radius values in the third scenario. Here, the constant

arrival intensity of blockers is set to λS = 0.1 bl/s, while the

remaining parameters are given in Table II. As one may learn,

an increase in the cell radius requires the mmWave Tx to be

deployed higher in order to achieve the optimized propagation

conditions at the cell edge. Further, Fig. 8(b) shows the optimal

height of the Tx for a fixed cell radius of 30 m and different

intensities of blockers that enter the unit square area of the LoS

blockage zone, λS . It could be noticed that with the growing

blocker arrival intensity the optimal height of the mmWave

Tx increases as well. This effect is explained by the fact that

the probability of residing in the non-blocked state decreases;

hence, one needs to increase the height of the Tx to maximize

the fraction of time spent in the non-blocked state.

The impact of the cell radius and intensity of blockers on

the optimal height of the AP is summarized as follows:

• The optimal height of the AP from the range of realistic

values highly depends on the cell radius, e.g., after

increasing the cell radius by 7 times the optimal height

grows by approximately 6 times.

• The impact of the intensity of blockers on the optimal

height is less pronounced. For example, after increasing

the intensity of blockers by 10 times the optimal height

grows by only 1.7 times.

B. Cell Range Analysis

Another direct application of the proposed model is to

determine the maximum coverage range of the mmWave AP,

such that a certain average data rate is delivered to all of the

users. The latter can be achieved by ensuring that the user data

rate at the cell edge is higher than the required minimum.

Assume a Poisson field of users in ℜ2 with the density of

λN users per square unit. Let x be the intended radius of the

mmWave coverage zone. The number of users in this covered

area follows a Poisson distribution with the parameter λNπx2.

The traffic model is considered here to be “full buffer”, that

is, the mmWave system is observed in the highly-loaded

conditions. Further, the maximum radius x is determined, such

that the capacity of at least k Mbps is provided to each user.

The bandwidth of the mmWave system, B, is allowed to be

infinitesimally divisible. For simplicity, an equal division of

bandwidth between all of the users is considered, even though

any reasonable resource allocation mechanism can in principle

be assumed, e.g., max-min or proportional fair [39].

The capacity delivered to the mmWave Rx located at x can

be derived as

R(x) = cBi log[1 + S(x)], (25)

where Bi is the bandwidth made available to the user of

interest, S(x) is the average signal-to-noise ratio (SNR) at

this user, and c is a constant accounting for imperfections of

the modulation and coding schemes. In what follows, c = 1
is taken for simplicity.

Since the radio resource in the system is assumed to be

distributed equally between all of the users, the bandwidth

share actually available2 to the Rx located at x is Bi = B/N ,

where N is a discrete random variable (RV) having a Poisson

distribution with the density of λNπx2 per considered area of

interest. To obtain the SNR S(x), the mmWave propagation

model in [38] is employed by defining as s0(x) the SNR asso-

ciated with the LoS state and as s1(x) the SNR associated with

the nLoS state. The aggregate SNR is a two-valued discrete

RV taking the values of si(x), i = 0, 1, with the probabilities

corresponding to the fraction of time spent in the non-blocked

(E[Tl]) and blocked (1 − E[Tl]) state, respectively. The RVs

Bi and S(x) are independent and their joint probability mass

function (pmf) is derived as the product of the individual pmfs.

2Note that instead of equal division of the bandwidth, more sophisticated
resource allocation strategies can be enforced providing a certain degree of
trade-off between fairness of per-user rates and aggregate system capacity,
e.g., max-min, proportional fairness, weighted α-fairness, see [40].
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Fig. 10. Mean data rate across the cell vs. cell radius, user, and blocker arrival
intensities for the third scenario, S3.

Once this joint pmf is obtained, one may proceed with

determining the mean capacity R(xc) that is provided to a

user located at the cell edge xc as

E[R] =

∞
∑

N=1

(λNπx2
c)

N (e−λNπx2

c)

N !

×
(

E[Tl]c
B

N
log[1 + s0(xc)]

+ (1− E[Tl])c
B

N
log[1 + s1(xc)]

)

, (26)

which can be evaluated numerically.

The mean capacity made available to a user located at the

cell edge xc is reported in Fig. 9 for different user and blocker

intensities. It is a function of the cell radius as well as the

user and blocker intensities. The rest of the parameters are

collected in Table II. In Fig. 9(a), the density of the users is

set as λN = 0.01 users/m2, and the height of the mmWave

Tx is assumed to be hT = 10 m. As an example, these

plots correspond to the third scenario of interest. As one may

observe, the mean data rate decreases as the cell range and/or

the arrival intensity of blockers grows. It should be noted

that for equal density of users and cell radius, increase in the

density of human blockers leads to the drop in the mean data

rate. Provided with a particular target data rate, one may use

Fig. 9 to estimate the maximum cell radius for given blocker

and user intensities, such that the chosen data rate is made

available to all of the mmWave users.

In addition to the above, the analytical formulation for the

mean data rate R(x) of each user in the cell is given as

E[R] =

∞
∑

N=1

(λNπx2)N (e−λNπx2

)

N !
c
B

N

×
∫ xc

0

(

E[Tl(x)] log[1 + s0(x)]

+ (1− E[Tl(x)]) log[1 + s1(x)]
)

fXU
(x)dx, (27)

where fXU
(x) = 2x/x2

c is the pdf of the distance XU between

Tx and Rxs uniformly distributed in the cell of the radius xc,

while the fraction of time in non-blocked state is obtained by

using (10) and (13) as

E[Tl(x)] =
1

exp(λE[T ])
, (28)

where E[T ] is the mean residence time.

The mean rate of a randomly selected user in the cell is

illustrated in Fig. 10. As one may observe, increasing the

arrival intensity of blockers entering the unit area of the LoS

blockage zone, λS , does not drastically affect the mean rate

of a randomly selected user, as opposed to the mean rate at

the cell edge.

The main points of the cell range analysis are summarized

below:

• It is demonstrated that higher intensity of blockers de-

creases the mean rate of the user at the cell edge. By

increasing the cell radius, the impact of the intensity of

blockers becomes stronger, e.g., at the cell edge of 30 m

the mean rate of a user is decreased by 1.7 times when

the intensity grows by 10 times. However, when the cell

radius is 100 m, the mean rate is 30 times lower.

• The mean rate of an arbitrarily chosen user decreases with

the increased intensity of blockers. However, the effect of

cell coverage on the mean rate is rather limited for all the

considered intensities, e.g., 10 times higher intensity of

blockers in the cell of radius 30 m decreases the mean

rate by a factor of 1.05, whereas the same increase for

100 m radius cell decreases the mean rate by 1.3.

C. System-Level Simulation Complexity

Today, the performance of complex wireless systems is

primarily assessed within large-scale system-level simulation

(SLS, see e.g., [41]) environments. The proposed mathematical

model can be efficiently utilized as part of an SLS tool

to substitute for the need to explicitly model the blockage

process. This may drastically improve the simulation run

times, especially in highly crowded urban scenarios.

In Table III, the computation complexity measurements is

reported in terms of the SLS run time as a function of the

blocker arrival intensity and the environment update interval,

TU for the two cases: (i) direct simulation of the blockage

process and (ii) application of the proposed model. From the

SLS perspective, the environment update interval corresponds

to how frequently the state of the users is monitored. In the

latter case, each user has been associated with the pdf of the

non-blocked and blocked intervals, thus implying that there is

a need to update its state whenever the said interval expires.

In the former direct modeling approach, at each environment

update interval, one has to re-estimate the state of the users

by employing the straightforward geometry considerations.

TABLE III
ABSOLUTE RUN TIME MEASUREMENTS IN SLS EVALUATION, S.

Tu, ms
λI , bl./s.

0.1 0.3 0.5 0.7 1.0

100
simulation 0.101 0.215 0.532 0.860 0.928

analysis 0.250 0.272 0.243 0.256 0.292

70
simulation 0.208 0.290 0.820 1.356 2.801

analysis 0.342 0.398 0.287 0.316 0.351

50
simulation 0.581 1.012 1.91 3.282 5.982

analysis 0.681 0.538 0.369 0.694 0.499

10
simulation 1.211 3.921 5.867 7.119 10.92

analysis 2.968 3.690 1.762 2.774 2.104

1
simulation 10.28 21.40 54.91 78.92 1.24e2

analysis 22.64 18.18 23.98 19.09 22.11
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Doing so significantly increases the computation complexity

of the SLS evaluation, especially in dense environments. The

experiments were conducted for the following parameters: the

distance between the mmWave AP and the user is r0 = 10 m

and the blocker speed is V = 1 m/s. The simulation time was

set to 50 s, while the hardware parameters were Intel Core

i7-6700HQ CPU, 2.60 GHz (1 core run), and 32 GB RAM.

As it can be established by analyzing Table III, the complex-

ity of both simulation and analysis grows as the environment

update interval decreases. Even though the simulation run time

does not depend on the blocker density (nor on the distance

between the mmWave AP and the Rx), the SLS modeling

complexity increases with a higher number of blockers. This

is because the computation complexity is associated with the

need to characterize an intersection with every blocker to

determine the current state of each user. For the SLS results

reported in this work, the blockers are deployed at the edge

of the modeled scenario and move across the street. From the

simulation perspective, computation complexity grows linearly

as blocker arrival intensity increases, i.e., the overall modeling

complexity is O(n). Although the use of sophisticated tech-

niques, such as spatial hashing, may reduce the complexity

down to O(log(n)) at the expense of more cumbersome

implementation, the resulting complexity would still grow

rapidly for higher user densities. In stark contrast, with the

proposed analytical modeling, the complexity remains constant

at O(1). Finally, with the decreasing update interval TU , both

analytical and simulation complexity grow linearly (O(n)).
However, it may not be as important, because the value of

TU <1 ms is seldom used in practical systems.

VI. CONCLUSIONS

This work is aimed at a systematic characterization of

the effects caused by the LoS blockage in cellular mmWave

systems in presence of mobile blockers. To this end, three

representative urban scenarios – as discussed in the current

3GPP specifications – were considered. The underlying pro-

cess in the proposed mathematical approach was shown to

be of alternating renewal nature, where non-blocked periods

interchange with blocked intervals. The distribution of the non-

blocked intervals was characterized by a simple memoryless

exponential formulation, while the blocked periods were estab-

lished to follow a general distribution. As example applications

of the model, the height optimization of the mmWave AP, the

mmWave cell range analysis, and the system-level modeling

complexity reduction were considered.

Relying on the developed mathematical methodology, the

impact of the LoS blockage is analyzed by establishing that

the mean time in the blocked state is around 400-1000 ms for

the typical input parameters, which amounts to a significant

number of mmWave cellular superframes (around 20-50 ac-

cording to [2]). Moreover, a strong temporal correlation for

the timescales of interest in mmWave systems (i.e., less than

about a second) was demonstrated. The contributed temporal

analysis could be useful for modeling human body blockage

in the mmWave-specific system-level evaluation tools as well

as when designing the mmWave-centric communication pro-

tocols.

APPENDIX A

RESIDENCE TIME IN THE LOS BLOCKAGE ZONE

Here, the CDFs of the residence time in the LoS blockage

zone is derived for the sidewalk 2 and the park/square/stadium

scenarios (see Fig. 2).

Second scenario, S2. Consider the sidewalk 2 scenario.

Here, the main difference as compared to the sidewalk 1

scenario is in that the users tend to move closer to the central

lane of the street. We model this effect by using the triangular

distribution with the following CDF

FY (x) =































0, x ≤ 0,
x2

wSc
, 0 < x ≤ c,

1− (wS − x)2

wS(wS − c)
, c < x ≤ wS ,

1, x > wS ,

(29)

where c is the mode of the triangular distribution, which

denotes the point with the highest probability density.

The distribution of distance, which is traveled by a blocker

in the blockage zone, depends on the position of the LoS

blockage zone with respect to the mode of the triangular

distribution. The following five different cases are observed:

1) If yC ≤ c:

F 2,1
L (x) =















0, x ≤ 0,
x sin(2α)

yC − yA
, 0 < x ≤ xmin,

1, x > xmin.

(30)

2) If yC − ymin ≤ c < yC , ymin = xmin cos(α) sin(α):

F 2,2
L (x) =











































0, x ≤ 0,
sin(2α)(4c(yA+yC)−wS(x sin(2α)+4(c+yA)))

4wS(y2

A
+c(c−2yC))+c(y2

C
−y2

A
)

,

0 ≤ x < yC−c
sin(α) cos(α) ,

wS(c−yC)2+x sin(2α)(c−wS)(yA+yC)
wS(y2

A
+c(c−2yC))+c(y2

C
−y2

A
)

,
yC−c

sin(α) cos(α) < x ≤ xmin,

1, x > xmin.

(31)

3) If yA + ymin ≤ c < yC − ymin:

F 2,3
L (x) =























0, x ≤ 0,
x sin(2α)(4c(yA+yC)−wS(x sin(2α)+4(c+yA)))

4(wS(y2

A
+c(c−2yC))+c(y2

C
−y2

A
))

,

0 < x ≤ xmin,

1, x > xmin.

(32)

4) If yA ≤ c < yA + ymin:

F 2,4
L (x) =











































0, x ≤ 0,
x sin(2α)(4c(yA+yC)−wS(x sin(2α)+4(c+yA)))

4(wS(y2

A
+c(c−2yC))+c(y2

C
−y2

A
))

,

0 < x ≤ c−yA

sin(α) cos(α) ,
wS(c−yA)2+xc sin(2α)(yA+yC−2wS)

wS(y2

A
+c(c−2yC))+c(y2

C
−y2

A
)

,
c−yA

sin(α) cos(α) < x ≤ xmin,

1, x > xmin.

(33)
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5) If c ≤ yA:

F 2,5
L (x) =











0, x ≤ 0,
x sin(2α)
yC−yA

, 0 < x ≤ xmin,

1, x > xmin.

(34)

For the second scenario, the arrival intensity of the blockers

that enter the LoS blockage zone is given by

λ = λI

(

FY (yC)− FY (yA)
)

. (35)

The above may be explained by the fact that the majority

of blockers cross the width of the sidewalk in the middle

by following the triangular distribution for the entry point.

Therefore, the Poisson process in time has the arrival intensity

of blockers emerging at the effective width per time unit, wE ,

equal to λ as derived in (35).

Third scenario, S3. Finally, for the park/stadium/square

scenario, the CDF of distance walked by a blocker in the

blockage zone is given by

F 3
L(x) =



















0, x ≤ 0,

w1F
3,1
L (x) + w2F

3,2
L (x),

0 < x ≤
√

d2m + r2,

1, x >
√

d2m + r2,

(36)

where the weights w1 and w2 are the probability for a blocker

to enter from the long side (AD or CB, see Fig. 3) and to

leave from another long side (AD or CB), and the probability

for a blocker to enter from the short side (DC) and to leave

from the long side (AD or CB), respectively, which are given

by

w1 =
d2m + 3dmr

d2m + 3dmr + 2r2
,

w2 =
2r2

d2m + 3dmr + 2r2
, (37)

and the corresponding CDFs are

F 3,2
L (x) =























0, x ≤ dm,
d2

m−x2+2r
√

x2
−d2

m

r2
,

dm < x ≤
√

d2m + r2,

1, x >
√

d2m + r2,

(38)

and

F 3,1
L (x) =











































































































0, x ≤ 0,
πx2

4rdm
, 0 < x ≤ min(r, dm),

1
2rdm

(min(r, dm)
√

x2 −min(r, dm)2

+x2 arcsin(min(r,dm)
x

)),

min(r, dm) < x ≤ max(r, dm),
1

2rdm
(min(r, dm)

√

max(r, dm)2 −min(r, dm)2

+dm(
√

x2 − d2m −
√

max(r, dm)2 − d2m)

+r(
√
x2 − r2 −

√

max(r, dm)2 − r2)

+max(r, dm)2(arccos( r
max(r,dm) )

+ arcsin(min(r,dm)
max(r,dm) )− arcsin( dm

max(r,dm) ))

+x2(arcsin(dm

x
)− arccos( r

x
))),

max(r, dm) < x ≤
√

d2m + r2,

1, x >
√

d2m + r2.

(39)

The arrival intensity of the blockers that enter the zone,

which affects the LoS for the third scenario, is then λ = λI .
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