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1. ORTHOALGEBRAS 

Orthoalgebras are algebraic systems that generalize Boolean algebras, orthomod-

ular lattices, and orthomodular posets. They were originally introduced in [13]. The 

following simplified definition is due to Golfin [6]. 

Definition 1.1. An orthoalgebra (OA) is a system (L, 0,1,0) consisting of a set 

L containing two special elements 0,1 G L and a partially defined binary operation 

0 on L that satisfies the following conditions for all p, q,r G L: 

(i) [Commutative Law] If p 0 q is defined, then so is q 0 p and p 0 q = q 0 p. 

(ii) [Associative Law] If p 0 r and p 0 (q 0 r) are defined, then so are p 0 </ and 

(p 0 q) 0 r and p 0 (q 0 r) = (p 0 q) 0 r. 

(iii) [Orthocomplementation Law] For each p G L there is a unique ^ G L such that 

p 0 a is defined and p 0 </ = 1. 

(iv) [Consistency Law] If p 0 p is defined, then p = 0. 

Example 1.2. Let L be an orthomodular poset (OMP). If p, q G L, define p 0 q 

iff p _L q, in which case p 0 q := p V <?. Then (L, 0,1, 0) is an OA. 

It can be shown [4] that an OA (L,0,1, 0) arises as in Example 1.2 from an OMP 

iff it satisfies the following condition: If p, q, r G L and p 0 q, p®r, and q 0 r are 

defined, then p 0 ( g 0 r ) is defined. This is the sense in which orthoalgebras generalize 

OMP's. 

For simplicity, we usually refer to L, rather than to (L,0 ,1 ,0) , as being an OA. 

Definition 1.3. Let L be an OA and let p,q e L. We say that p and q are 

orthogonal and write p _L q iff p 0 q is defined. If q is the unique element in L for 

which p _L a and p 0 O = 1, we say that a is the orthocomplement of p and write 
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q — p''. The relation p ^ q means that there is an element r £ L such tliat p _L r and 

p ® r = g. 

One can easily prove [4] that if L is an OA, then (L, 0, V ^ / ) forms an orthocom-

plemented poset. 

De f in i t ion 1.4. Let L be an OA and let P C L. We say that P is a suborthoal-

gebra of L iff 0,1 G P , p G P ==> p ' G P , and p, g G P with p _L g = > p 0 g G P . 

Evidently, a subor thoalgebra P of an OA L is an OA in its own right under the 

restriction of ® to P . As such, if P is a Boolean algebra, we refer to P as a Boolean 

subor thoalgebra of L. 

De f in i t ion 1.5. A subset D of an OA L is said to be orthogonal if its elements 

are pair wise orthogonal and there is a Boolean suborthoalgebra P of L with D C P . 

2. TENSOR PRODUCTS OF ORTHOALGEBRAS 

In this section we outline the basic facts abou t tensor produc ts of OA's (see [3]). 

Def in i t ion 2 .1 . If P , Q are OA's, then a morphism from P to Q is a mapping 

7 : P —» Q such that 7(1) = 1 and, whenever a,b £ P with a _L b, it follows that 

7(a) _L 7(b) and 7 ( a ® b ) = 7(a) 8 7 ( b ) . If, in addition, a, b G P with 7(a) _L 7(b) => 

a _L b, then 7 : P —> Q is called a monomorphism. An isomorphism is a surjective 

monomorphism. 

If 7 : P —» <2 is a morphism, then 7(0) = 0 and, for every p £ P, j(p') — l(p)'-

Also, if a ,b G P with a ^ b, then 7(a) ^ 7(b). Fur thermore, if 7 : P —> Q is an 

isomorphism, then it is a bijection and 7 _ 1 : Q —» P is a morphism. 

Def in i t ion 2 .2 . Let P , Q, L be OA's. A mapping /3: P x Q -> L is called a 

bimorphism iff it satisfies the following conditions: 

(i) a,be P with a _L b, g G Q = > /3(a, g) _L /3(b, g) and /3(a06, g) = /i(a, q)®p(b, g). 

(ii) p G P and c, d G Q with c _L d ==-> /3(p, c) _L /3(p, d) and ^(p , c 9 d ) = /i(p, r) 0 

/3(p,d). 

(hi) /3(1,1) = 1. 

I f / 3 : P x Q - > L i s a bimorphism, then /?(-, 1): P -> L and /3(1, ) : Q ^ L are 

morphisms. Also, if a, b G P and c,d e Q, then 

a ^ b, c ^ d = > /3(a, c) ^ /3(b, d) and /3(a, 0) = /3(0, c) = 0. 
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Definition 2.3. If P , Q are OA's, then a tensor product of P and Q is a pair 

(T, T) consisting of an orthoalgebra T and a bimorphism T: P x Q —» T such that 

the following conditions are satisfied: 

(i) If L is an OA and /?: P x Q -r L is a bimorphism, there exists a morphism 7: 

T -> L such that /3 = 7 o T. 

(ii) Every element of T is a finite orthogonal sum of elements of the form T(p, q) 

with pe P, q eQ. 

A tensor product of P and <5, if it exists, is unique up to isomorphism in the 

following sense: If (T,r) and (T*,T*) are tensor products of P and Q, then there 

exists a unique isomorphism a: T —•» T* such that T* = cr o T. Thus, if P , <5 admit 

a tensor product, we may speak of the tensor product of P and Q and denote it by 

(P ® Q, ®), or simply by P <g> Q. 

Theorem 2.4 [3]. Let P, Q be OA's. Then the tensor product P ®Q exists iff 

there is at least one OA L for which there is a bimorphism (3: P x Q —>> L. 

Although there are examples of OA's P and Q having no tensor product, the 

tensor product usually exists except for rather bizarre OA's [3]. 

3. T H E SUM OF A BOOLEAN ALGEBRA AND AN ORTHOALGEBRA 

In this section, we assume that B is a Boolean algebra and L is an OA. Our 

purpose is to construct the sum S of B and L. (Prior to that, let us call a finite 

subset D of L orthogonal if its elements are pairwisely orthogonal and there is a 

Boolean subalgebra P of L with D C P . It can be easily proved [4] that there is an 

element 0 D G L, called the orthogonal sum of D, such that 0 D is the least upper 

bound of D in any Boolean subalgebra of L that contains D.) 

Definition 3.1. A subset E of B is called a finite partition (FP) if 0 £ E, E is 

a finite orthogonal set, and 0 E = 1. 

If E C B is an FP and b G -5, then b = 0 { b A e | e G L : } follows from the fact 

that 0 P = 1 and the distributive law. In particular, if b ^ 0, there exists e G E 

with b A e 7- 0. Also, if E, F C P are FP's, then 

G : = { e A f | e G P , / G F , e A / = 0} 

is an FP. Furthermore, each element g G G can be written uniquely in the form 

g - e A / with e £ E, f e F. 
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Def in i t ion 3 .2 . Let E := {<p: E -•> L \ E C B is an F P } . If <D,i/> G E with 

E = dom(<,O), F = dom(^ ) , we define: 

(i) <p <: xP iff e G £7, / G F, e A / 7- 0 = > <p(e) ^ </>(/). 

(ii) <p = xp iS <p ^. xp and xp ^ <p. 

(iii) </>': F -> L by </>'(e) := <D(e)', for all ee E. 

(iv) (p ± xp iS (p ^ xp
1
. 

Lemma 3.3. ^ is a reflexive, transitive relation on E and = is an equivalence 

relation on E. 

P r o o f . It is clear that < is reflexive. To prove that it is transitive, suppose that 

( / ) , ( ^ G S with (p ^ f and £ ^xp. L<et E = dom(<.D), G = dom(c;), F = dom(^), and 

let e G F , / G F with e A / / 0. Then there exists <jGG with e A / A g 7- 0. Thus, 

e A # 7- 0, so that </>(e) ^ £(g), and g A / ^ 0, so that £(g) ^ ?/>(/)• Consequently, 

</?(e) ^ ip(f), proving that <p ^ xp. Since ^ is reflexive and transitive, it follows that 

= is an equivalence relation. D 

For (p,xp € E, it is clear that <p ^ xp =-=> xp' ̂  <p' and that <p,f = <p. Consequently

if </?*, -0* G E with <p = <p* and xp = xp*, then 

(p ±ip <=> cp* ± xp* and <p = xp' <=> <D* = (</>*)'• 

Definition 3.4. Let <p,xp e ^ with <p ± xp. Let F = dom(<p), F = dom(,0), and 

G := {e A / I e G F , / G F, e A / / 0 } . Define (<D 0 xp): G -> L for e G F , / G F , 

with e A / ^ 0 by 

( ^ e # A / ) = < ; ( c ) © ^ ( / ) . 

Theorem 3.5. Let <p,<p* ,xp,xp* G E with </?* ^ <D. xp* ̂  ^ , and <p ± xp. Then 

(p* ± xp* and <p* © f ^ </> 0 -0. 

P r o o f . Let e* G dom(<.D*), /* G dom^*) , e G dom(<D), and / G dom(^) and 

assume that e* A/*AeA/7-O. We have to prove that </>*(e*)0^*(/*) ^ <p(e)®xp(f). 

But this follows immediately from <p*(e*) ^ </?(e), ip*(f*) ^ ^ ( / ) a n d V^) --- </>(/)• 

D 

Corol lary 3 .6 . Let (p,(p* ,xp,xp* G E with </?* = <p, xp* = ip, and <p ± ip. Then 

<p* © f = <pe>xp. 

L e m m a 3.7 . Let <p,xp,^ G E with <p ± £ and <p ± (xp 0 0 - ^ e n
 <P --- ^> 

(</? 0 </>) _L £, and </> 0 (xp 0 0 = ((p 0 ^ ) 0 £. 

The proof is easy. 
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Definition 3.8. Define C € E by dom(C) = {1} and C(l) = 0. 

If <D E E, it is clear that <D ̂  C <=> <P = C ^=> ^( e) = ° f° r ai^ e £ dom(</>). 

Consequently, C' ^ <P <=> C = <P <=> <P(e) = 1 f° r au" e G dom(<D). Also, <D ^ 

<P; < = * <P = c . 
The proof of the following lemma is straightforward. 

Lemma 3.9. Let ip,i/j E E. Then: 

(i) If <D _L ^ , then <D 0 ip = C' <=> V> = V'• 

(ii) (D ^ T/j <=> 3£ez,<p ±£, <pe£ = tp. 

Definition 3.10. For (DEE, define [<D] := {ip E E | <D = ^ } and define S := 

{[ip] | <D E E}. For <p,il> E E, define: 

(i) [<p]^[^] i f f<^<^ 

(ii) [p] JL [iP] iff <D _L </>, 

(hi) fo>]' := [tf]', 

(iv) 0 := [C], 

(v) 1 := [C], 

(vi) Hip Lip, [p] 0 [</>] := [<p 0 </>]. 

Our work thus far shows that all notions introduced in Definition 3.10 are well 

defined. 

Theorem 3.11. (5, 0,1, 0 ) is an orthoalgebra. 

P r o o f . The commutative and consistency laws are obvious, the associative law 

follows from Lemma 3.7, and the orthocomplementation law follows from Part (i) of 

Lemma 3.9. • 

We refer to the orthoalgebra S in Theorem 3.11 as the sum of the Boolean algebra 

B and the OA L. 

4. T H E ISOMORPHISM OF B 0 L AND THE SUM S 

In this section, we continue with the notation of Section 3, and prove that the 

tensor product 5 ® L exists and is isomorphic to the sum S of B and L. 

Definition 4 .1 . Let b E B, p E L. Define b • p E E as follows: 

(i) If b = 0, then b • p := C-

(ii) If b = 1, then dom(b • p) = {1} and (b • p)(l) := p. 

(iii) If b 7- 0,1, then dom(b • p) = {b, b'} • (6 • p)(b) := p, and (6 • p)(V) = 0. 
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The proof of the following lemma is a straightforward verification based on Sec-

tion 3 and Definition 4.L 

Lemma 4.2. Let a,b e B, p,q e L. Then: 

(i) 1-1 EEC-

(ii) a • p = C <=> a = 0 or b = 0. 

(iii) a • p _L b • q <=> a ± b or p ± q. 

(iv) a _L b ===> a - p e b . £ > = ( a e b ) - p 

(v) p ± a = > b.(p©a)=b-p©b.O 

Lemma 4 .3. Let D be a finite, nonempty, orthogonal set of nonzero elements of 

B and let n: D -> L. Let E C B be an FP with D C E, and define <p: E -» F by 

<p(d) := 77(d) for d e D and <p(e) := 0 for e € F \ D. Then { [d • <p(d)] | d <E £>} is an 

orthogonal subset of S and 

M = ®[d.v(d)]. 
ciED 

P r o o f . The proof is by induction on JZ), the cardinal number of D. The result 

is obvious for jtF> = 1. Assume that it holds for jjL> = n, and suppose $D = n + 1. 

Choose and fix d0 £ F>. By the induction hypothesis, the theorem holds for D \ {d0} 

and the restriction of n to D \ {d0}. Therefore, with-F := (D \ {d0}) U {/0}, 

/o := (®(D \ {d0})' = d0 © (©D) ' , and ^ : F -> F defined by ^(d) := ??(d) for 

d e D \ {d0} and VK/o) : = 0> we have that {[d • tp(d)] \ d e D, d ?- d0} is an 

orthogonal subset of 5 and 

M= © [d-̂ (d)]. 

Evidently, d0 • </?(d0) J_ [-0]. [ip] © [d0 • v?(d0)] = [<p], and the induction argument is 

complete. • 

Corollary 4.4. If ip e E, and E = dom(<p), then { [e • v?(r)] | e e E} is an 

orthogonal subset of S and 

M = ®[e-V(e)]. 
e€E 

Lemma 4 .5. The tensor product B <S> L exists and there is a surjective morphism 

7: B <g> L -> 5 such that, for b G B, p e L, 7(6 ® p) = [6 • p]. Furthermore, for 

a,b e B, p,q e L, 

(a <S> p) -L (b 0 G) <=> a J_ b or p _L a. 
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P r o o f . By Parts (i), (iv), and (v) of Lemma 4.2, the mapping (b,p) i-» [b • p] is 

a bimorphism from P x L to 5; hence, B 0 L exists by Theorem 2.4. Therefore, by 

Part (i) of Definition 2.3, there is a morphism 7: BxL <— 5 such that 7(b0p) = [b-p] 

for every b £ B, p €. L. If (D G S with E = dom((D), then 

7 ( 0 e ® y > ( e ) ) = 0 7 M ^ e ) ) = 0 [e • y>(e)] = M 
eGE e£E eGE 

by Corollary 4.4, and it follows that 7: B 0 L —• S is surjective. Finally, a 0 p _L 

b 0 a ==> 7(a 0 p) = [a • p] _L 7(b 0 q) = [b • q] =-> a • p _L b • a ==> a _L b or p _L g b

Part (iii) of Lemma 4.2. • 

Corollary 4.6. If0^beB,Pisa finite subset of L, and {b®p\peP}is an 

orthogonal subset of B 0 L, then P is an orthogonal subset of L and 0 b 0 p = 
PGP 

6 0 0 P . 

Lemma 4.7. Suppose that t G 19 0 L has the form £ = 0 a 0 a (a), where A is 
aeA 

a finite subset of B and a: A —•> L. Let E C. B be an FP such that, a £ A => a = 

0 e. Then: 
eGE, e^a 

(i) e e E ^ {c(a) | a G A, e < a} is an orthogonal set. 

(ii) If(p:E-+L is defined by (p(e) := 0 O(a), then t = 0 e 0 (D(e). 
a £ A , e ^ a eGE 

P r o o f . For each fixed e G E, we have a G A with e ^ a => e 0 cr(a) ^ a 0 cr(a), 

and it follows that {e 0 a (a) \ e ^ a G A} is an orthogonal subset of B 0 L. 

Hence, by Corollary 4.6, e e E => {a(a) | e ^ a} is an orthogonal subset of L and 

0 e 0 a(a) = e 0 <D(e). Therefore, 
aG-4, e^a 

í =  ф a ® a ( a )  =  ф (  ф  e)  ®a(a) 

aЄA  aЄЛ  eЄE ,e^a 

= Ф (  ф  в®"(<0)=ф(  Ф  e®a(a)) 
aЄA  eЄE ,e^a  eЄE  aЄA,e^a 

= ØeØ<D (e) . 

eЄE 

D 

Lemma  4.8.  Every  element  t  G  H0L  can be written  in  the form  t  =  0  e0</?(e), 
eGE 

wheTe E  C  B  is  an  FP  and  ip:  E  -»  L. 
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P r o o f . We can write t in the form t = 0 a±; 0p i , where I is a finite, nonempty 
iei 

indexing set, a* G B, and p; G L for all i G I. Let A := {Oz- | i G I} and, for each 

a G A, let Ia := {i G I | a* = a}. By Corollary 4.6, a G A => {pi \ i G Ia} is an 

orthogonal subset of L and 0 a 0 pi = a 0 O(O), where O: A -> L is defined by 

aia) •'= © Pi- Therefore, t = 0 ( 0 a 0p z ) = ® a ® O(a). Let E be the set of 
ieia aeA iela aeA 

all nonzero elements of B having the form e = /\ s(a), where, for each a E / 4 , e(a) 
aeA 

is either a of a'. Then E is a FP and a G A ==> a = 0 e. An application of 
eeE, e^a 

Lemma 4.7 now completes the proof. D 

Corollary 4.9. IfteB®L, there exists ^ G S such that t = 0 e 0 cp(e) 
eedom(<p) 

and 7(0 = [</>]. 

P r o o f . Lemmas 4.8, 4.5, and 4.3. D 

Lemma 4.10. If E C B is an FP, <D: F -» L, and £ = 0 e 0 </>(e), then 

*' = 0 e®^(e ) ' . 
eGE 

P r o o f . l = l<g>l = ( ® e ) ® l = 0 e 0 l = 0 e 0 (<p(e) 0 <D(e)') = 
eGE eeE eeE 

( 0 e®<p(e ) )e ( 0 e0<D(e)'). D 
eGE eGE 

Theorem 4.11. 7: B 0 L —•> S is an isomorphism. 

P r o o f . Since 7 is surjective, it suffices to prove that it is a monomorphism. 

Thus, let s,t G B 0 L with 7(5) J_ 7^). By Corollary 4.9, there exist a, r G E with 

dom(O-) = G, dom(r) = H such that s = 0 0 0 cr(#), * = 0 /i 0 r(/i), 7(s) = [a], 

geG heH 
l(t) = [r] and <r _L r. Let E := {O A ft | g G G, ft G H, g A ft 7- 0}. Noting that £ is 
an FP, geG => g = 0 e and ft G H =!> ft = 0 e. Applying Lemma 4.7 

eeE,e^g eGE.e^/i 

with £ replaced by s and .4 replaced by G , we find that s = 0 e 0 <p(e), where </?: 

I£ —•» L is defined for e G -5 by <D(e) := 0 O(g)- Likewise, £ = © e 0 -0(e), 
geG,e^g eeE 

where ip: E -> L is defined for e G £ by ^p(e) : = 0 r(ft). By Corollary 4.9, 
heH,e^h 

[a] = 7(5) = [if] and [r] = 7(f) = [0], and it follows from a ± r that <p ± I/J. 

Therefore, e G £ ==> <p(e) _L ^p(e) => e0</?(e) ^ e00(e ) ' ===> s ^ l' by Lemma 4.10. 

Therefore, 7(5) _L -y(t) => s ± t. D 
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5. CONCLUDING REMARKS 

In [10] the sum S of a Boolean algebra B and an OML L is shown to have the 

following properties: 

(i) There exist isomorphism / : L? —>> S# and g: L -> SL, where S#, SL are sub-

OML's of S, such that /(b) A g(p) = 0 iff b = 0 or p = 0. 

(ii) There is no proper sub-OML of S that contains f(B) U g(L). 

(iii) If fj, is a probability measure on B and v is a probability measure on L, then 

there exists a probability measure Ltu on S such that fiv(f(b)) = //(b) and 

^ ( g ( p ) ) = ^(P) for all b G L?, p G L. 

It is not difficult to show that, even if L is only an orthoalgebra, the sum S has 

analogous properties. Indeed, if we identify S with B eg) L by the isomorphism of 

Theorem 4.11, we can define SB := {o(g>l | 6 G B}, SL := {l®p | p G L}, /(b) := 6(8)1 

for b e B, and o(p) := 1 0 p for p G L. Then S# and SL are suborthoalgebras of S 

and / : 5 —>> S#, o: L —> SL are isomorphisms. Even though S need not be a lattice, 

it turns out that the infimum f(b)Ag(p) exists in S for all b G B, p G L, and we have 

f(b)Ag(p) = (bcg)l)A(l®p) = bcg>p. In particular, f(b)Ag(p) = 0 iff b = 0 or p = 0. 

Thus, the analogue of Condition (i) holds. The analogue of Condition (ii) would 

state that there is no proper suborthoalgebra of B 0 L that contains f(B) U g(L) 

and is closed under existing finite infima. The analogue of Condition (iii) is a direct 

consequence of Theorem 2.7. 

In [1] and [7] (see also [11]) it is shown that the sum S of a Boolean algebra B and 

an OML L is isomorphic to the bounded Boolean power L[B]* of L by B. By exactly 

the same argument, this result holds even if L is only an orthoalgebra. Therefore, we 

may conclude that the sum S, the tensor product B <g> L, and the bounded Boolean 

power L[B]* are mutually isomorphic. The tensor product seems to be the only one 

of these three constructions that is available for the more general case in which B is 

replaced by an OML, and OMP, or an orthoalgebra (see [5] and [12]). 
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