
On the Test of Microprocessor IP Cores

F. Corno, M. Sonza Reorda, G. Squillero, M. Violante

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy
http://www.cad.polito.it/

Abstract

Testing is a crucial issue in SOC development and
production process. A popular solution for SOCs that
include microprocessor cores is based on making them
execute a test program. Thus, implementing a very
attracting BIST solution. This paper describes a method
for the generation of effective programs for the self-test of
a processor. The method can be partially automated, and
combines ideas from traditional functional approaches
and from the ATPG field. We assess the feasibility and
effectiveness of the method by applying it to a 8051 core.

1 Introduction

Technology advances made it possible to integrate on a
single chip enormous numbers of transistors, thus allowing
the inclusion on a single chip of entire systems, including
microprocessors, ASICs, memories, and peripherals. The
development of this new class of systems, called Systems-
On-a-Chip (or SOCs), is made easier by the availability of
Intellectual Property (IP) cores provided by third parties.
By exploiting these cores, ASIC designers easily and
quickly include into their SOCs complex cells such as
microprocessors, peripherals, or dedicated blocks (e.g.,
MPEG encoders-decoders). Testing SOCs is rapidly
becoming a major issue, mainly because of the complexity
of the blocks they embed and of their limited accessibility.
Other problems, such as the time required for testing and
the power consumed during this phase, also contribute to
make very challenging the problem of SOC testing.

In this paper we tackle test of microprocessor and
microcontroller IP cores that are often embedded in SOC
designs. Popular solutions are based on adopting a full-
scan approach, or on forcing the core to execute a given
test program. However, the first solution has several
drawbacks, mainly in terms of test length (and required
size of the ATE memory) and performance degradation

(due to the scan chain insertion). Moreover, it does not
allow an at-speed test of the core and requires special
chip-level architectures for allowing external access to the
scan chains. In this paper we only deal with the second
solution that, in principle, does not suffer of the above
limitations and allows test execution at the processor
speed with no area overhead. This approach has some
requirements: first, some memory space must be available
to store the test program; second, a way should be devised
to observe the results of the test program execution;
finally, the test program itself must be available. Fault
coverage is expected to be lower than in the full-scan
approach, but suitable test programs can attain acceptable
coverage levels.

In this paper we propose a test solution partly derived
from the one described in [4]: we assume that a RAM
memory of sufficient size is available on the SOC, and that
this memory can be easily accessed from both the external
ATE and from the microprocessor core. In this way, the
ATE can load into the memory the test program when
required, and the processor core can execute it. Test
execution is always performed at-speed, independently on
the speed of the mechanisms used for loading the RAM
and checking results. A suitable solution for observing the
results of the test program execution has also been
devised, based on repeatedly activating an ad hoc software
procedure which is in charge of compacting the values
produced by the test program and of writing back the
resulting signature in memory, so that it can be easily read
back and observed by the ATE. Finally in this paper, we
address the issue of generating a test program that matches
the above assumptions and is able to effectively test the
processor core, and propose a method to generate such
program.

Traditionally, the test of a microprocessor has been
performed by resorting to functional approaches based on
exciting all the functions and resources described in its
data-sheets [1]. This approach involves a high amount of
manual work performed by skilled programmers, and does
not provide any quantitative measure about the attained

Fault Coverage (FC). Recently, Dey et al. proposed a
deterministic method named DEFUSE [2] to generate test
programs able to reach a good Fault Coverage on the ALU
of a microprocessor, and to compact the result. The
approach is very effective with combinationally testable
parts (e.g., simple ALUs), but shows some limitation when
hard-to-test sequential modules, such as Control Units, are
addressed. Another approach has been proposed by
Batcher and Papachristou [3] that is based on generating
random sequences of instructions. However, this approach
also requires the insertion of additional hardware in the
microprocessor under test. Recently, Sheen et al. proposed
a technique where the processor itself generates test at run-
time by self-modifying code [6]. On the other hand,
Utamaphethai et al. showed a method for generating
instruction sequences for validating the branch prediction
mechanism of the PowerPC604 [7]. Generated sequences
are very effective, but the methodology exploits a deep
knowledge of the processor and it cannot be easily applied
on general designs.

The new approach proposed in this paper is particularly
suited when a netlist of the processor is available
(although possibly encrypted). This situation often arises
then the microprocessor is bought from third parties, and
either a test program is not available, or the fault coverage
it attains is not sufficient. The proposed method requires a
limited amount of manual work aimed at developing a
library of macros, that are able to excite all the functions
of the processor. A macro is associated to each machine-
level instruction; each macro is composed of few
instructions, aimed at activating the target instruction with
some operand values representing the macro parameters,
and to propagate to an observable memory position the
results of its execution. The complexity of the work for
developing these macros and the required skills are much
lower than for the approaches based on functional testing,
such as [1]; in fact, our approach just requires the
development of one macro for every machine-level
instruction according to a simple pre-defined skeleton for
every group of instructions, and does not involve the
extraction of complex graphs describing the relationships
among resources, as in [1]. The final test program is
composed of a proper sequence of macros taken from this
library, each activated with proper values for its
parameters. The choice of the most suitable parameters
value is accomplished by resorting to a Genetic Algorithm.
Experimental results supporting the effectiveness of the
method are reported for a core implementing the Intel
8051 microcontroller.

The paper is organized as follows. Section 3 outlines
the assumptions we made in terms of test strategy and
SOC architecture for test. Section 0 presents an overview
of the test program generation approach we propose, as
well as details on the macros and on the Genetic
Algorithm we adopted. Section 4 reports some preliminary

experimental results assessing the effectiveness of our
approach, while Section 5 draws some conclusions.

2 Test Strategy and Test Architecture
Assumptions

For the purpose of this work we considered a SOC
design including a microprocessor or microcontroller IP
core whose test is not performed resorting to any Design
for Testability mechanism, such as partial- or full-scan.
The existence of some BIST structure for testing internal
parts of the core (e.g., the control memory) is compatible
with our approach, provided that the BIST structure can be
autonomously activated from the outside.

We assume that the processor core is able to access a
RAM memory that must also be accessible from the
outside. Note that this accessibility can be limited in terms
of speed and flexibility, since we only require that the
ATE is able to load this memory with the test program for
the processor core, and to read the compacted output
produced by the program. Therefore, even a low-cost ATE
can be explited for this purpose. In [4] it is suggested that
the transfer of data between the ATE and the memory can
be implemented resorting to a DMA mechanism.
Moreover, the test program can possibly be transferred to
memory in a compacted form. In this case, the processor is
in charge of de-compacting the test program before its
execution. A possible architecture of the considered SOC
design is shown in Fig. 1. Alternatively, the test program
could be stored in a ROM, thus allowing the activation of
the whole test process in a completely autonomous way, as
it is required in an on-line test mechanism.

Fig. 1: SOC design architecture.

The test program is composed of a sequence of
instructions, whose execution causes the activation and
propagation of faults inside the processor core. In order to
make the effects of possible faults observable, the results
produced by the program are written in one or few cells in

Processor
Core

RAM ASIC1 ASIC2

DMA
Controller

SOC

ATE

Internal Bus

the RAM, named result words. After the execution of each
macro, the content of each result word is immediately
processed by an ad hoc procedure, which compacts the
sequence of values written on each of them, and produces
a signature which is made available to the ATE, e.g., by
writing it into a specified position in the memory.

3 Test Program Generation

3.1 Overview

Generating a test sequence for a microprocessor is a
challenging task, usually much harder than for a generic
ASIC. In fact, the internal structure of a microprocessor
and its behavior make unfeasible the adoption of a
standard ATPG. In particular, the internal structure is
based on a sequentially complex decode and control unit
that decodes instructions and sends the appropriate control
signals to a large data-path, which may include hard-to-
test elements such as multipliers and dividers. The two
main components of a microprocessor require different
approaches for their test: the decode and control unit can
be seen as a complex Finite State Machine (FSM), and its
test requires suitable sequences to traverse its state graph
to excite and observe possible faults. Therefore, its test is
mainly a sequential problem. On the other side, the
complexity of testing the data-path mainly stems from the
complexity of some combinational (or slightly sequential)
parts, such as multipliers and dividers, and requires a
careful selection of operands to be written on the inputs of
these parts.

Finally, test sequence generation for microprocessors
necessarily requires the knowledge of the processor
instruction set and instruction format, since only correct
programs can internally perform meaningful operations.

As a consequence of the above considerations, the
approach we propose is based on two steps.
• First, we build a set of macros, each composed of a

short sequence of instructions aiming at creating a
suitable framework for testing the part of control unit
and data-path affected by a given instruction (or group
of instructions). Each macro owns several parameters,
corresponding to the operands of the instructions it is
composed of. The macros are stored in a library, which
is exploited in the second step.

• The second step is a search algorithm and aims at
selecting from the library a sequence of macros, and at
choosing the values for their parameters, such that
maximum Fault Coverage can be reached. The first
goal is attained by adaptively selecting macros based
on the experience gathered during previous activations;
a Genetic Algorithm implements the latter.
The pseudo-code of the search algorithm we propose is

reported in Fig. 2. At each iteration, a macro is randomly
selected from the library resorting to a probability

distribution evolving during the process. In order to
implement the procedure select_the_operands, a
Genetic Algorithm is then activated, whose goal is to find
the values for the macro operands that maximize the
number of faults detected by the macro. If the algorithm is
successful, and at least a new fault is detected, the macro
is added to the final test program; otherwise, the macro
probability of being selected is decreased, thus reducing its
chance of being selected again in the future. The stopping
condition is true when either the Fault Coverage reaches a
given threshold, or the maximum number of iterations has
been reached.

Fig. 2: pseudo-code of the algorithm.

3.2 Macros

The macro library is built following some guidelines:
• for each machine-level instruction in the processor

instruction set (hereinafter called the target instruction)
one macro is inserted in the library;

• each macro aims at activating the target instruction,
and at verifying the correctness of the instruction
execution by propagating the outputs to one or more
result words (see Section 2).
As an example, the macro for any arithmetic instruction

is organized in three phases:
1. load values in the two operands of the instruction;

according to the machine-level instruction we are
considering, these parameters exploit different
addressing modes (register, immediate, memory, etc.);
the actual value of each parameter for every macro
activation will be defined during the optimization
phase;

2. execute the instruction;
3. make the result observable by writing it (directly or

indirectly) to one or more result words.
The reader should note that the purpose of the macro is

to make observable the complete result of each instruction,
which also includes any flag that is possibly affected by
the instruction itself. As an example, Fig. 3 reports the
code (for sake of readability we use a pseudo-8086
assembly language) for the macro concerning the addition
instruction between registers; K1 and K2 are two
parameters, whose value (in terms of addressing mode or
immediate value) determines the Fault Coverage the
macro attains. RW and RW2 are result words in the

do
{ m = select_a_macro();

O = select_the_operands(m);
F = compute_detected_faults(m, O);
if(F is not empty)

add m(O) to the test program;
} while(stopping_condition() == FALSE);

memory: just after every call to the macro, a compaction
procedure is activated, reading RW and RW2 and updating
the signature, which is then observed from the outside at
the end of the test program.

All macros for arithmetic and logical instructions
follow the same template reported in Fig. 3.

Fig. 3: pseudo-code of the macro for the ADD
instruction.

A special class of macros is built to test conditional and
unconditional branch instructions: in this case the result
produced by the instruction is the execution of one
instruction flow or another. Therefore, different values are
written to a result word in the two cases, allowing the
detection of faults in both the circuitry evaluating the
condition, and in that modifying the Program Counter.
When conditional instructions are considered, phase 1
builds the condition, phase 2 evaluates the condition and
possibly performs the branch, and phase 3 writes different
values depending on the result of condition evaluation.
Fig. 4 shows a sample macro addressing the JG (Jump on
Greater) instruction: depending on the value appearing on
the result word RW one can detect possible faults affecting
the circuitry evaluating the condition and performing the
jump.

Fig. 4: pseudo-code of the macro for the JG
instruction.

3.3 Operand Selection

Once a macro has been selected from the library, a
Genetic Algorithm is activated to identify the best values
for its parameters. By suitably selecting these values, the
algorithm chooses the values for immediate operands, or
those to be written in the registers or memory cells used by
the target instruction.

The number of operands and their length (in terms of
bits) change depending on the macro. A standard Genetic
Algorithm is exploited, whose main characteristics are
summarized in the following:

• chromosomes are bit strings corresponding to the
concatenated operands; their length changes depending
on the macro;

• the standard random mutation operator has been
adopted, which randomly selects a bit in the
chromosome, and complements it;

• the one-cut cross-over operator has been adopted;
• chromosomes are selected for mating using a linearized

fitness function and a roulette wheel mechanism;
• population management is performed using elitism;
• the algorithm is stopped when a steady state is reached,

i.e., when a given number of generations have elapsed
without detecting new faults.
The fitness function of a chromosome is the number of

faults detected by the macro when it is fault simulated
with the operand values given by chromosome on a fault
list composed of gate-level stuck-at faults.

4 Experimental Results

In order to practically assess the effectiveness of the
proposed approach we implemented an Automatic Test
Program Generator System (ATPGS) whose architecture
is sketched in Fig. 5. The ATPG system amounts to about
1,000 lines of C code that interact with an in-house
developed Fault Simulator (about 3,000 lines of code)
based on a fault-parallel event-driven PROOFS-like [5]
algorithm for obtaining information about the
effectiveness of each set of macro parameter values.

The system has been evaluated on a description of the
Intel 8051 microcontroller. The Register Transfer level
model of the 8051 (which amounts to 5,800 lines of
VHDL code) has been synthesized using Synopsys
design_analyzer and mapped on a standard library.
The resulting netlist amounts to about 6,000 gates, not
including the internal memory for code. The fault
simulator is able to simulate the entire 8051 while it
executes the test program from the memory. Stuck-at
faults are injected in the combinational and sequential
logic, excluding memories. However, fault propagation
across memory cells is correctly taken into account.

We defined a library composed of 213 macros (the
number of instruction in each macro ranges from 3 to 6)
and then we run our Automatic Test Program Generator.
Macro generation took 2 working days of an experienced
assembler programmer. The experiment has been
performed on a Sun Enterprise 250 running at 400 MHz
and equipped with 2 Gbytes of RAM; it required 24 hours
of CPU time for both test program generation and
processor Fault Simulation.

The values we used for the Genetic Algorithm
parameters are reported in Tab. 1.

The results we obtained are reported in Tab. 2. To
assess the effectiveness of the approach we propose, we

MOV AX, K1 ; load register AX with K1
MOV BX, K2 ; load register BX with K2
ADD AX, BX ; sum BX to AX
MOV RW, AX ; write AX to RW
MOV RW2, PSW ; write status reg to RW

MOV BX, 0 ; clear BX
CMP AX, K1 ; compare reg AX with K1
JG IS_ABOVE ; jump if AX > K1
MOV BX, 1 ; move 1 to BX

IS_ABOVE:
MOV RW, BX ; write BX to RW

compared it with the fault coverage obtained by a purely
random approach. We generated a random test program,
composed of randomly generated macros. The number of
macros in the randomly generated program corresponds to
the number of macros we simulated during the whole
optimization process [Simulated]. Only macros that
detected additional faults are included in the test set, and
contribute to the test length [Final TS]. The program
generated by an ATPG was able to identify more useful
macros than the random approach, that comparatively
wasted more simulation time for achieving lower fault
coverage.

Parameter Value
Number of individuals in the

population
5

Number of new individuals at
each generation

3

Number of generations 50
Mutation probability (Chromosome length)-1

Tab. 1: Genetic Algorithm Parameters

Simulated
[# Macros]

Final TS
[# Instr]

FC
[%]

ATPGS 7,000 624 85.19
Random 7,000 103 80.19

Tab. 2: Experimental Results

These preliminary results suggest that the approach is
effective since it provides high Fault Coverage figures
with respect to a purely random approach at a cost of an
acceptable amount of CPU time; moreover, it does not
require an in-depth knowledge of the processor under test
(while functional approaches do) and it does not require
additional test hardware to be added to the processor.

Fig. 5: the Automatic Test Program Generator
System.

5 Conclusions

In this paper we presented an approach for the test of
microprocessor and microcontroller test cores in a SOC.
An approach to their test is proposed, which is based on
first loading a test program for the core in an internal
memory, and then letting the core to execute it. This
approach implements a software BIST: it does not require
any high-cost ATE equipment, and allows an at-speed test
of the processor core. A method for computing the test
program is also presented. The method requires a limited
knowledge of the processor under test and is based on two
steps. A programmer on the basis of the processor
instruction set defines a set of macros. Then, a search
algorithm selects a suitable set of macros that maximizes
the attained Fault Coverage. In the selection process a
Genetic Algorithm is exploited in order to defines the
values for each macro parameters.

Preliminary results gathered on an Intel 8051 are
provided. They show the feasibility of the method, and
prove that the generated test program outperforms
randomly generated programs at a cost of an acceptable
amount of CPU time. The human effort in developing the
information necessary for activating the ATPG method is
much less than comparable approaches.

Currently we are experimenting different heuristics and
fitness functions to enhance the search process. Moreover,
we developed a new fault simulator, enabling the genetic
algorithm to exploits a tighter interaction. Preliminary
results are encouraging.

6 References

[1] S. Thatte, J. Abraham, “Test Generation for
Microprocessors”, IEEE Trans. on Computers, Vol. C-29,
June 1980, pp. 429-441

[2] L. Chen, S. Dey, “DEFUSE: A Deterministic Functional
Self-Test Methodology for Processors”, IEEE VLSI Test
Symposium, 2000, pp. 255-262

[3] K. Batcher, C. Papachristou, “Instruction Randomization
Self Test For Processor Cores”, Proc. IEEE VLSI Test
Symposium, 1999, pp. 34-40

[4] C.A. Papachristou, F. Martin, M. Nourani, “Microprocessor
Based Testing for Core-Based System on Chip,”ACM/IEEE
Design Automation Conf., 1999, pp. 586-591

[5] T.M. Niermann, W.-T. Cheng, J.H. Patel, “PROOFS: A
Fast, Memory-Efficient Sequential Circuit Fault Simulator,”
IEEE Trans. on CAD/ICAS, Vol. 11, No. 2, February 1992,
pp. 198-207

[6] J. Shen, J. Abraham, D. Baker, T. Hurson, M. Kinkade,
“Functional verification of the Equator MAP1000
microprocessor,” Proceedings 36th Design Automation
Conference, 1999, pp. 169 -174

[7] N. Utamaphethai, R.D. Blanton and J.P. Shen, “Superscalar
Processor Validation at the Microarchitecture Level,” 12th

IEEE International Conference on VLSI Design, 1999,
pp. 300-305

ATPG
Kernel

GA Fault
Simulator

µP
netlist

Fault
List

Macro
Library

Test
Program

Macro + Operands

Detected Faults

Ope
ran

ds

M
ac

ro

