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On the Theory of Backscattering in Single-Mode
Optical Fibers

ARTHUR H. HARTOG anp MARTIN P. GOLD

Abstract—A new theory of backscattering in single-mode fibers is
presented. It allows backscatter waveforms to be predicted for fibers
of any refractive-index profile or scattering-loss distribution. The re-
sults agree with experimental data and provide confirmation of an
earlier, more restricted theory.

I. INTRODUCTION

HE BACKSCATTERING METHOD [1]-[3] has been

used increasingly in recent years to characterize loss and
imperfections in single-mode fibers. The technique involves
the launching of a pulse of light into the fiber and examining
the temporal behavior of the return signal. The latter consists
of energy which, having been scattered from the guided wave,
is recaptured by the fiber in the reverse direction.

A theoretical analysis of backscattering in single-mode fibers
appeared in 1980 [4] and was subsequently verified experi-
mentally [5]. A series of experimental results has been pub-
lished covering such aspects as long-range fault location [6}-
[12], determination of structural parameter variations |[13],
measurements of splicing loss [7], [8], and the examination
of polarization effects [14]-[16].

The backscatter factor, i.e., the ratio of the backscattered
power to the energy launched into the fiber, is important in
long-range fault location since it determines the magnitude of
the signal and hence the range which the apparatus can cover.
Moreover, for more quantitative measurements, such as the
evaluation of splicing losses, or the determination of variations
of fiber parameters along the length, it is essential to have an
accurate model of the dependence of the backscatter signal
on the parameters of the fiber. Without such a model, valid
and accurate interpretations of the results cannot be made
since one is usually interested in quite subtle changes in the
received power.

It is, therefore, of some concern that doubts have been ex-
pressed [6], [12] as to the validity of the presently available
wave-optics theory, due to Brinkmeyer [4]. Unfortunately,
the only alternatives to the latter are either approximate [11]
or based on geometric optics {17], an approach clearly inap-
propriate to the analysis of single-mode fibers. The resulting
impression is one of a confusion which requires clarification.
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In contrast, the theory of backscattering in multimode fibers is
well established [18]-[19].

The purpose of the present contribution is, therefore, to
resolve the disagreement in the literature. To this end, we pre-
sent a new theory of backscattering in single-mode fibers
which is derived using a different and more general approach
from those proposed previously. The result is a simple expres-
sion for the backscatter factor which may be used in circularly
symmetric fibers having arbitrary refractive-index profiles and
an arbitrary distribution of scattering loss. Comparisons are
made with previously published results. It is found that if the
near-field distribution is approximated by a Gaussian function,
our results agree exactly with those of Brinkmeyer [4].

1I. TIME-DEPENDENCE OF THE BACKSCATTER SIGNAL

For the purpose of the present argument, we assume that
the pulse launched into the fiber is a Dirac function of en-
ergy £(0) and of vanishingly narrow width. The effect of a
finite pulsewidth W is to limit the distance resolution of the
measurement to dx >~ v W/2 where v, is the group velocity
in the fiber; for a constant input energy, varying the pulse-
width will not alter the backscatter signal level.

The forward pulse energy is attenuated at a rate a{np/m)
and its dependence on position z is thus

E(z)=E(0) exp (-az). (1

The energy scattered while the pulse travels a distance element
dz situated at z is

dEy(z,z+dz)=E(z) ay(z) dz 2)

where ag is the Rayleigh scattering-loss coefficient.

We define the capture fraction B(z) as the proportion of
the total energy scattered at z which is recaptured by the fiber
in the return direction. The energy dEgg(z, z + dz) returning
from the length element dz to the launching end is, therefore,

dEps(z,z +dz) = E(0) ag(z) B(z) exp (-2 az) dz. 3)
This energy arrives spread over a time interval given by
dt= 2 dz (4)
Vg

which is simply the time taken by the impulse to travel the dis-
tance dz in both directions. In the case of a Dirac pulse (which
we have assumed), no energy will arrive from any other part of
the fiber during this time interval. The power received at the

0733-8724/84/0400-0076301.00 © 1984 IEEE



HARTOG AND GOLD: THEORY OF BACKSCATTERING IN OPTICAL FIBERS 77

launch end of the fiber at time z = 2z/ v, is, therefore,

(5)

55 - %gE(O) o, (2) B(z) exp (-202).

A similar expression has been put forward recently [12] in
which the factor of % is omitted. Note that the result given
above, in (5), and the derivation are virtually the same as for
multimode fibers [18].

III. EVALUATION OF THE BACKSCATTER CAPTURE
FRACTION

Rayleigh scattering is described by classical theory in terms
of electric dipoles driven by an electromagnetic wave traveling
through the material [20]. In a homogeneous medium, inter-
ference between the radiation patterns of the dipoles results in
cancellation of the secondary waves in all but the forward di-
rection. A localized inhomogeneity of the refractive index,
however, results in a dipole moment whose radiation is not
canceled by adjacent dipoles. A portion of the incident wave
is then radiated in all directions and power is lost to Rayleigh
scattering. The scattering process may, therefore, be repre-
sented by a large number of dipoles oscillating with a fixed
phase relative to the incident wave, but whose amplitude is
proportional to the random local deviation AX of the electric
susceptibility from its mean value ¥. With coherent illumina-
tion, the phase relationship between the light scattered by
separate dipoles is fixed. The scattered light, therefore, suffers
interference, a phenomenon akin to laser speckle. Some as-
pects of these coherence effects have been discussed in the
context of frequency-domain reflectometry by Eickhoff and
Ulrich [21]. They can also be observed in time-domain re-
flectometry [13] with pulsed lasers of sufficiently narrow
spectral width.

In the present analysis, we assume that the source used is
sufficiently incoherent that such interference effects are elimi-
nated [13]. The contribution of all dipoles to the scattered
light can, therefore, be added in intensity. The calculation of
the backscatter capture fraction B is then reduced to the evalu-
ation of the power coupling between the electric dipoles and
the fundamental mode of the fiber.

The power coupled into the HE;; mode is calculated with
the aid of an overlap integral in the far field following an ap-
proach used by Marcuse and Marcatili [22] for slab waveguides
and, more recently, by Wagner and Tomlinson [23] to study
components for single-mode fibers.

For simplicity, we assume linearly polarized mode fields. For
weakly guiding fibers there is no loss of generality since an
arbitrary state of polarization may be described as a combina-
tion of linearly polarized waves. The orientation of the electric-
field vector of the backscattered wave at the point of capture
is that of the dipole moment. For isotropic materials this
orientation coincides with that of the incident electric field,
and the state of polarization is thus preserved by the scatter-
ing process. Practical fiber materials are locally anisotropic
which results in a small degree (~35 percent) of depolarization
of the scattered light. It is interesting to note that this depo-
larized component of the scattered light recaptured in the

Fig. 1. Coordinates used in the near and far field.

forward direction imposes a fundamental limitation on the
ability of high-birefringence fibers to maintain a linear state
of polarization.

In order to calculate the power coupled to the fiber mode,
we consider one direction of propagation only and perform
the coupling overlap integral over a hemisphere centered on
the fiber axis. The coupling efficiency b, of a scatter point
situated at a distance R from the fiber axis is

fflllpll/sdﬂ

f f el 2 f sl do

where Yp and yg are the far-field distributions of the HE;,
mode and of the dipole, respectively, and d€2 is a solid angle
element. Distance R has been normalized to the core radius a.
The dipole, in fact, radiates the same amount of power into the
complementary hemisphere, which couples to the HE; mode
in the forward direction. The factor of % appearing in (6) is,
therefore, required to give the overall power coupling effi-
ciency between the dipole and the backscattered guided wave.

The far field Y (r, 8, ¢) of the HE;; mode may be obtained
from the near-field distribution Y (R, ¢o) using the Fraun-
hofer diffraction formula. The spherical polar coordinates
system used is represented schematically in Fig. 1. g is given
by [24], [25]

b(Rs) =5

oo 2m
Vp(r,0,¢0)= ] _'k"rf VU (R, o)
o Yo

- exp (jkanR sin 0 cos (¢ - ¢¢)) dpoR dR  (7)

where C is a normalization constant and R is the radial coordi-
nate normalized to the core radius . X is the wavelength of
the incident light measured in free space and k = 2n/X. On the
assumption of weakly guiding fibers, we make the approxima-
tion: n; > n, =n.
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Assuming circular symmetry and using the well-known inte-
gral representation of J, [26], the Bessel function of the first
kind, (7) may be rewritten in the form

Ck : =
Vr(r,0)=/ —rlg e"’k"’f YN (R)Jo (kR sin )R dR
0

(8)

where &k, = kan.
Similarly, the far field of the dipole may be expressed as
[20]

Ys(r,0,9) = Ysoe 9)

where g, is a normalization constant. §(Ry) is a phase shift
resulting from the displacement R of the scatter point from
the fiber axis. It carries the only information which remains
in the far field as to the value of R;. Using a simple geometric
argument, § may be shown to be

_j[knr+5(Rs)](1 _ Sinz 0 COS2 ¢)1/2

8(Ry) = kR sin @ sin ¢. (10)
The numerator |7;]? of (6) then becomes
Ck :
|11|2 =\J 14 wso e~knr
w2 oo
0 0
2m
f (1 _ Sil’l2 0 0052 ¢)1/2e—jk,Rs-sin 6 sin ¢
o .
2
-d¢sin0d0’ . (11)

For the values of refractive-index difference normally used
in single-mode fibers, the far-field distribution only has signifi-
cant intensity for small values of §. We can, therefore, make
the approximation

1-sin? @ cos?¢p==1.

For the same reason, the upper limit of the integral over 6 in
(11) may be taken to infinity and sin @ replaced by 6. The
accuracy of these approximations has been checked numerically
and found to be better than 0.5 percent for numerical aper-
tures of 0.2 or less and for V-values of 1 or more. Using these
approximations and the integral representation of Jo, (11) may
be rewritten as

. 2nCa

L)*=
|1| ]klr

wsoe‘”""’f xJo(xRy)
0

2

f Un(R)Jo(xR)R dR dx
0

(12)

where x = k£, 0.

From the definition of the Hankel transform [27], {/,|? sim-
plifies to

472 C%*
VARS 2 Vi Vi (Ry).
1

(13)

Similarly, the first term in the denominator of (6) is given by

2mC%32q? [ ?
Vel dQ = ——5— f
r 1]

2m

oo 2
- sin aU Un (R) Jo(ky R sin 0)R dRJ do
0

(14)

and, making the same approximation as previously, namely
sin 8 =~ @ and /2 = oo, (14) becomes

2nC?4?
Wrl?da= =
;

2n
oo o0 2
f x[f Yn(R)Jo(xR)R dR] dx,
V] 0

(15)

From Parseval’s equation, as applied to Hankel transform
pairs [27], it follows that the integration over x can be per-
formed in the near field, (15) is the equivalent to

2,2 had
ff |wp|2dsz=ﬁ’f2—"f R Y} (R)dR. (16)
27 0
Finally, it is found that
(17)

4
ff sl d= 5 .
2m

Substituting (13), (16) and (17) into (6), the following expres-
sion for the capture fraction at R; (the local capture fraction)
is obtained

3 VA (Rs)
2a2n2 o °
f Ry} (R)dR

0

bR)= 7 (18)

In order to derive the overall capture fraction B it is now only
necessary to average b(R;) over the entire near field, weighted
by the intensity distribution of the scattered light. For a uni-
form distribution of the scattering loss, B is, therefore,

f R b(R) Y% (R) dR
0

B= (19)

f Ry} (R)dR
0
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i.e.,

J R YN(R)dR
3 0
B= (20)

aK’a*n® [ = 2
[ f Rw?v(R)dR]
[¢]

or, in terms of the normalized frequency V

f R YN (R)dR
3 (NA)? Yo

Tapr o 2
’:f R l,LIIZV(R) dR]
0

In the case of nonuniform scattering-loss distributions, B is
given by

(1)

oo

f R ag(R) Y (R)dR
5= 3 (NA)? )

T4 R

J- Ras(R)kaZV(R)de R YN(R)dR
0 0

(22)

It is then necessary to replace, in (5), a, with the intensity-
weighted mean value o defined by

f R ay(R) Y3 (R) dR
&= —— : (23)
f R Y} (R)dR
0

Equation (22) is a general expression for the capture fraction
for arbitrary refractive-index profiles and scattering-loss distri-
butions. Hence the backscatter factor may be evaluated from
the near field of the HE,; mode and the radial scattering-loss
distribution without resorting to the equivalent-step approach.

IV. RESULTS
A. Gaussian Approximation

Brinkmeyer’s theory of backscattering in single-mode fibers
[4] is based on the Gaussian approximation, i.e.. it is assumed
that the near-field distribution is of the form

2.2
Vo (R)= o exp ( Rw;’ ) (24)

0

where wy is the spot size. Substituting ¥ into (21) leads to
(for a uniform distribution of the scattering loss)
3 1

NA)?
ped Ly
V2<2.9> n

a2
Equation (25) is precisely that which is derived by Brinkmeyer
and thus confirms, within the limitations of the Gaussian ap-

(25)

03 T T A T

Normalised
Capture
Fraction

1.0 12 1.4 16 18 20 2.2 2.4 2.6 28

Normalised Frequency ¥

Fig. 2. Calculated values of the normalized capture fraction B' = B X
(NA/n)~2 for a step-index fiber having a uniform scattering-loss
distribution. Solid line: Present theory (27). Dotted line: Gaussian
approximation (25).

proximation, the validity of [4]. However, in those cases
where the detailed behavior of the function B(V) is of inter-
est, (21) and (22) are more useful since the accuracy of the
Gaussian approximation is itself sensitive to the V-value.

B. Step-Index Fibers Having Uniform Distributions
of Scattering Loss

In the case of the step-index profile, the field distribution
is the well-known Bessel function expression

Jo(URY o (U), R<1

(26)
Ko(WR)Ko(W), R>1

Yy (R)=

where U is the eigenvalue and W2 = V2 - U?. B is thengiven by

W J3(U) (NAY
ve JHU) n?

' J8UR) " . KiWR)
I:J‘o Rde+£ RWdR}. 27

Hence, as is the case for the Gaussian approximation, it is pos-
sible to separate the dependence of B on V-value and on nu-
merical aperture. A general curve of B' = B(NA/n)™? which
depends only on ¥ may, therefore, be produced.

In Fig. 2. the values of the function B'(V) have been com-
pared for the two above results. The solid curve is obtained
from (27); it has a peak of 0.258 at V'=1.75 and decreases
gradually for larger V-values. At low V-values, the fall of B’
is more dramatic and reflects the spreading of the power into
the cladding as the frequency decreases. The dotted line is
calculated with the aid of the Gaussian approximation, (25),
and using the expression for wyg /g due to Marcuse [28]

wela=0.65+1.619V715+2879) ¢ (28)

The peak value of B’ in this case is some 10 percent below that
obtained from the rigorous expression (solid line). Moreover,
the maximum backscatter factor occurs at a larger V-value in
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Fig. 3. Calculated values of the normalized capture fraction B’ for
various distributions of scattering loss in a step-index fiber. Labeling
parameter corresponds to the fiber numbers of Table I.

TABLE 1
. -1 4
Scattering loss (dB km “um ) oo,
Fibre No. oo —=
i
cora cladding
1 1.4 0.7 1%
2 1.05 0.7 0.5"
3 1.05 1.05
4 0.7 1.05 0.5 {
5 0.7 1.4 1 !

Note: Fibers 1 and 5 have unusually large index differences for single-
mode fibers, fibers 2 and 4 have a more typical numerical aperture, and
the scattering loss of fiber 3 is uniform for comparison.

the Gaussian approximation and the detailed shapes of the
two curves are thus significantly different. The difference is
scarcely important in the prediction of the range of backscatter
apparatus; use of the Gaussian approximation could, however,
lead to errors in the interpretation of features in backscatter
waveforms.

C. Step-Index Fibers Having Nonuniform Distributions
of Scattering Loss

In most fibers the scattering loss is a function of radial posi-
tion. In particular. the admixture of dopants such as GeO, or
B,0; tosilica in order to alter the refractive index is known to
modify the scattering level. In general, such additives lead to
increased scattering loss owing to small-scale fluctuations of
the glass composition and hence of its refractive index. In
order to evaluate the effect of nonuniform scattering loss on
the backscatter factor, the function B'(V) has been calculated
from (22) for step-index fibers having the scattering losses
given in Table I. The right-hand column in the table shows
approximate corresponding values of refractive-index differ-
ence, obtained from [29] and [30], and assuming that cither
the core or the cladding is made from pure silica.

Fig. 3 shows the resulting B'(V) curves. It is immediately
clear from the figure that the capture fraction increases as the
proportion of the scattering loss occurring in the core increases.
We note also that the peak values of the capture fraction oc-
cur at different V-values. The curves come together at large
V-values, as the power confinement improves and the effect
of the cladding loss is less important.

V. DiscussioN
A. Interpretation of Backscatter Measurements

The interpretation of features in backscatter waveforms re-
lies on the availability of a theory of backscattering applicable
to any refractive-index profile or distribution of scattering
loss. If the backscatter waveform of a fiber exhibits departures
from the simple exponential decay, one or more of the struc-
tural parameters must be a function of position. It would be
useful to determine which of the fiber properties are non-
uniform in order to provide feedback to the manufacturing
process.

Experimentally, the local backscatter factor [S] defined as

n(z) = Lay(z) B(z) v, (29)

is obtained by combining backscatter waveforms measured
from each end of the fiber [13], [31]. In general, it is not
possible to interpret this information unambiguously in terms
of the fiber properties, since the backscatter factor depends
on all of the major fiber parameters, even under the simplify-
ing assumption of a Gaussian near-field distribution.

In the case of a step-index fiber, the parameters which affect
the backscatter factor are the core radius, the index difference
and the scattering loss in the core and cladding. The impor-
tance of the distribution of the scattering loss, as well as its
mean value has been emphasized by the present theory. Since
all of these parameters are potentially length-dependent, it is
clearly not possible to distinguish their individual contribution
without additional information. However, we propose a
method whereby the origin of the observed nonuniformities
may be determined under certain conditions, as follows.

In order to calculate the backscatter factor, it is necessary
first to obtain the near-field distribution. This may either be
measured directly on the fiber, or calculated from the refractive-
index profile (by numerical solution of the wave equation).
A third possibility is to adopt one of the equivalent step-index
approaches. For the sake of clarity, the remainder of the pres-
ent discussion is restricted to the case of a step-index fiber
whose core scattering loss is allowed to be different from that
of the cladding.

We assume that the nonuniformity of interest is a perturba-
tion of one or more fiber parameters about their nominal
values. The sensitivity of n to changes in fiber parameters
has been calculated and the results are given in Figs. 4 and 5.
Fig. 4 shows the relative sensitivity (a/n - dn/da) of 7 to core
radius variations, for the same distributions of scattering loss
as used in Fig. 3. For variations of the numerical aperture, the
curves are the same except for a constant offset of 2 which re-
sults from the (NA)? factor in (27). The exact value depends
to some extent on the distribution of scattering and varies sub-
stantially with V-value, even over the limited range where low
microbending-loss single-mode operation is feasible.

From (29), the relative sensitivity of i to variations of the
mean scattering loss is unity. This is not the case if g varies
differently in the core or cladding regions as might be ex-
pected for defects in MCVD fibers. The relative sensitivity of
M to core scattering variations is shown in Fig. 5. The effect
of variations of ag in the cladding is exactly complementary
to the curves of Fig. 5. It is, therefore, found that. if V is
greater than ~1.5, 7 is sensitive to variation of the scattering
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Fig. 4. Relative sensitivity of the backscatter factor n to variations of
the core radius (left-hand axes) and of the numerical aperture (right-
hand axes) for the distributions of o given in Table .

Relative o8 p
senaitivity
to core -
scattering
loss 0.4 p
S 4
0z 4
b 4
0 N . N N " " " .
10 1.2 1.4 1.8 1.8 20 2.2 24 2.8 28

Normalised Frequency V

Fig. 5. Relative sensitivity of the backscatter factor to the scatter loss
in the core, for the distributions of ag given in Table L.

loss in the core but largely unaffected by changes of a; occur-
ring in the cladding region.

The interesting point to note from Figs. 4 and 5 is that the
relative sensitivities of the backscatter factor to the different
fiber parameters vary in markedly different ways as the V-value
changes. This characteristic can be exploited by performing
backscatter measurements at 2 or 3 well-spaced wavelengths.
Comparison of the behavior of the measured features at the
different V-values with the parameter sensitivities predicted
by the theory for the nominal fiber characteristics will then
reveal which parameters are changing at the observed back-
scatter features.

B. Comparison of the Present Theory with Experiment

Measurements of the backscatter factor in single-mode
fibers have been published by the present authors [S]. The
results are reproduced in Table II. The measurements were
shown to agree with the predictions of the Gaussian-approxi-
mation theory of Brinkmeyer. Comparison of the experi-
mental results with the present theory shows an agreement
slightly worse than was found with the Gaussian-approximation
theory but nevertheless within the accuracy to which the fiber
parameters are known. '

If, however, the factor of 3 had been omitted from (5), as
[12] suggests it ought, then there is no longer agreement be-
tween theory and experiment (see Table IT). In [12], this lack

TABLE 11
[
Backscatter factor
Fibre V-value| Scattering
number at loss* at Experiment Values predicted
1.06um 1.06um using:
Pef.4 Present Rkef.l12
work
dB/km W/J W/J
347 1.88 0.59 14.5¢ 0.5) 15.1 17.2 0.2
348 1.99 0.62 19.6( = 0.6)] 20.3 22.4 10,6

* obtained from published scattering loss dntdﬁ“ﬂ on the
basis of measured fibre parameters.

of agreement is put down to uncertainty in the estimates of
the scattering loss in the fibers. We note, however, that in
order for our previous experimental results to agree with the
theory of [12], the scattering loss at A = 1.06 um in our fibers
would have to be about 0.3 dB/km. Such alow scattering loss
is, sadly, unrealistic in silica-based fibers at this wavelength.
The present theory and, by extension, that of [4] are thus the
only ones of those presented to date to agree accurately with
the experimental evidence.

VI. CONCLUSIONS

A new approach to the theory of backscattering in single-
mode fibers has been presented. A simple expression has
been derived for the backscatter capture fraction which in-
volves only the near-field distribution of the HE;; mode. This
result enables the backscatter power to be calculated for a
fiber of arbitrary refractive-index profile and scattering-loss
distribution.

The predictions of the theory were found to agree with pre-
viously published experimental data and also to confirm the
validity of an earlier, less general, result derived by a separate
argument.

Finally, the theory presented in this paper allows the effect
of fiber imperfections to be modeled so that the features ob-
served in backscatter waveforms may be interpreted more
accurately.
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