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Hitherto the concept of differentials is introduced usually as the dual no-
tion of the derivations. For instance the differentials belonging to a function
field K/k are the dual elements of the A-derivations of X into itself. If V is
a differentiable manifold the local differentials at a point of V are nothing
other than the elements of the dual space of the space of tangent vectors at
the point. Recently P. Cartier introduced in [4]" the notion of differentials
without referring to the special module of derivations. His theory was used
to settle the problem of separability in the extension of fields and the theory
of simple points. We shall present here a more general version of the theory
of differentials in a commutative R-algebra. In §1 we list the notations and
terminologies which will be used throughout the rest of the paper. In §2 we
shall prove some properties of differentials in a commutative algebra. Among
others we shall introduce the notion of the quasi-separability for an R-algebra?®
S. When R is a field and S is a finite R-module the quasi-separability coincides
with the separability of S/R. In §3 we shall give a theorem by which we can
determine the structure of the module of differentials. §4 is devoted to the
proof of the following theorem. Let P be a point of an algebraic variety V
which is defined over k&, and let R be the quotient ring of P in V/k Then
under suitable conditions it will be shown that P is a simple point of V if and
only if the module of k-differentials Dy{(R) Is a free module. We shall study
in §5 the contribution of our theory to the theory of ramifications. We shall
introduce there the notion of d-different. Quasi-separability and unramifiedness
will be shown to be equivalent under some additional assumptions. On the
other hand we have another kind of different which is called the homological
diiferent in [2] We can easily prove that the homological different is con-
tained in the d-different and in some occasions they have the same radical.
But the precise relation hetween them is yet unknown. The relation between
the d-different and the differential index defined in our previous paper will
be discussed in the last paragraph. They give rise to the same results in the
case where we are studying the covering of algebraic curves. But in the case

1) The numbers in the bracket refer to the bibliography at the end of the paper.
2) For the precise definitions see §1.
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of higher dimensional varieties the matter is not so simple. The study of
their relation suggests us to introduce a series of differents associated with the
differentials of higher degree. We shall show in some special case that there
exists a non-increasing sequence of differents beginning from the d-different
and terminating in the different defined by the differential index. It is now
conjectured that the d-different has some geometric meaning related to the
differential forms of degree 1, but nothing is yet known about it.

§1. Notations and termineclogies

All rings considered in this paper are assumed to be commutative and con-
tain the unity which will be denoted by 1. Let S and R be two rings. We
shall say that S is an R-algebra if R is an operator domain of S and (i) there
exists an R-homomorphism f from R into S such that f{1) =1 (ii) each element
7 of R operates on S by the rule rs=f(#)s where s is in S and the right hand
side is the multiplication in S. Let a be an ideal of S, then we shall call the
ideal f~"a\f(R)) the contraction of a and will be denoted simply by anR. In
this case R/(a\R) can be considered as a subring of S/a in an obvious way.
Let x be an element of R, we denote usually the element f{x) in S by the same
letter x if there is no danger of confusion. Let Sand R be two R-algebra with
the ring homomorphism f: R—Sand g: R— 7. A ring homomorphism = from
S into 7" will be called an R-algebra homomorphism if we have g=mof.

Let S be an R-algebra, an R-derivation of S into an S-module V is an R-
linear map from S into V such that D(xy) = xD(y)+yD(x) for x and ¥ in S. D
is an R-derivation of Sif, and only if, D is zero on f(R). We shall denote by
Dy(S) the module of R-differentials in S, i. e. the S-module satisfying the follow-
ing conditions:

(1) There is an R-derivation dp from S into Dx(S) (dg will be called the
differential operater over R).

(2) Dg(S) is generated by {dgy,x =S} over S.

(3) For any R-derivation D of S into an S-module V, there exists an S-
linear map % from Dg(S) into V such that D=hd.

It is known that for a given R-algebra S, there exists a unique Dg(5), up
to an S-isomorphism. Let ¢ be the homomorphism from S S into S defined
by go(Xi)az-@bi):Z_)aibi. The kernel I of ¢ is generated by the element of

the form {I1Rx—x&1}. We make S®zS into an S-medule by the rule a(b&c)
=ab®c. Then SRS=S®1+TI (direct sum) as an S-module. Let % be the
submodule of S®S generated by the elements of the form {1Xaeb—a@b—b
X a}, then Dg(S) is given by the difference module (S®S)/N and the differ-
ential dgza(e = S) is defined as the class of 18« mod R. Since R=S®1-+I1*
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(direct sum) as S-module, we have Dg(S) is isomorphic to I/7? (cf. [4, Exposé 13]).

In the following we shall have occasions to consider several R-algebras S,
7,--- at the same time. To distinguish the differential operaters in Dg(S),
Dg(T), --- we shall use the symbols d$,d7%, --~. Thus for the same element x,
d¥x and d%x may have different meaning. We shall sometimes omit the sub-
script R if there is no danger of confusion. Let a4, --,a, be elements of S,
then the differentials da,, -+, da, will be called linearly independent if 2, da;,+ ---
+ida; =0 (4;=S) implies necessarily i, =---=1,=0. Differentials da,, -, da,
are linearly independent if there exist s R-derivations D; =1, ---, s) of S such
that Dfa,) =3,

§2. Module of R-differentials

Let S be an R-algebra with the ring homomorphism f: R—S, and let T be
an S-algebra with the ring homomorphism g:S— 7. Then T is an R-algebra
with the ring homomorphism Z=g-f: R—7T. Let x be an element of S, then

Zx stand for the R-differential deg(x) in Dg(T). Then Dx=d%x is an R-deriva-
tion of S into a T-module Dgy(T), hence there exists an S homomorphism
a: Dg(S)— Dg(T) such that

Dx=dix=oa-d%x for xS.

From this we can define a homomorphism @g;sr:T& sDp(S)— De(T) by
Pr s, {2 R d%x;) = ; tid%x, where t;, =T, and x;&S. Let Ng;5,r and Dgr be

the kernel and cokernel of ¢r;¢.» respectively, then we have an exact sequence

J
(A) 0 Ng:s,r T@sDR(S)—’DR(T)—’Ds,T——’O-

We shall show that Dg, r is isomorphic to Dg(T"). To prove this it is sufficient
to show that Dg, has the universal mapping property with respect to the dif-
ferential operator a=jd%. Let D be an S-derivation of T into a T-module V.
Then D is, a fortiori, an R-derivation of T into V, and there exists a T-homo-
morphism B:Dg(T)—V such that Dx= fd%x for x=T. Since D is an S-deri-
vation, Dx=0 holds for x in S, i.e. /£ vanishes on the image of ¢g;sr. Tak-
ing the quotient we get a homomorphism B from Dg r into V, and Dx = pd™x
= f-a@x which proves that Dgr has the property (3). Since it is easily seen
that Ds,, satisfies the properties (1) and (2), the uniqueness property of the
module of differentials implies that Dgr is isomorphic to Dg(T). The above
results will be formulated in the

Prorosition 1. Let S be an R-algebya and let T be an S-algebra. Then D (T)
is isomorphic to the difference module Dp(T)/TD(S), where D(S) is a submodule
of Dg(T) generated by the elements {d%s, s €S}. Moveover if Dg(S) is zero, Dy(T)
is isomorphic to Dgy(T).
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Tueorem 1. Let S be an R-algebra and let T be an S-algebra. Then any R-
derivation of S into @ T-module V can be extended to an R-derivation of T into
V if, and only if, (i) @r.s.r is injective and (i) T Dg(S) is the divect summand
of D(T) (as a T-module)®. Moveover if it is known that Dg(S) is a finite mod-
ule, then we'll have (A) and (1) if any R-derivation of S inio a finite T-module
can be extended to an R-derivation of T.

Proor. Let z= %} t:Qd%x; be such that ¢p.er(2)=0, i.e. Zi] tid%x,=0. (We

omit the subscript R for the sake of simplicity.) Since D:x—1@d5x is an R-
derivation of S into a (finite) T-module T&sDg(S), it can be extended to an
R-derivation of T into TR Dx(S). We shall denote this extension by the same
letter D. Let a be a 7-homomorphism Dg(T)— TR «De(S) such that Dx=
ad®x for x in 7. From Eitid Tx; =0, follows 0 = oc(Zi‘ tdTx) = S‘_iitiad Ty = Ei)tlii

=3t(1Rd%) =2t Dd%; since #’sare in S.  Thus ¢g;s r is injective. More-

over we see that a@g =1 from the definitions. Hence the exact sequence

Pr:s,T
0—— TR DR(S)—— DR(T)—“’DS.T—’O

splits and we get the condition (@i).

Conversely assume that ¢g.¢r is injective and TR Dg(S) is a direct sum-
mand of Dg(T). Let D be an R-derivation of S into a T-module V. Then
there exists an S-homomorphism « from Dg(S) into V such that D=ad® Let
«, be the T-homomorphism from 7' Dgx(S) into V which is induced in a natu-
ral way by a, i. e. «,(t R d5x) = taldSx). Since TX Dg(S) is the direct summand
of Dy(T), «, can be extended at least in one way to a T-homomorphism &,
from Dx(T) into V. Then the derivation D =&, d7x will be the extension of
D. 1In fact if x is an element of S, we have

Dx=a,dTr = a1l Rd5) = ad’x = Dx.

Cororrary 1. If T is a field, then any derivation of S into a T-module can
be extended to an R-devivation of T if, and only if, the kernel N of @p.s,p is zero.

In the above situation Dg(T) =0, if the extension of the derivation (if ex-
ists) is unique, hence we have the

Cororrary 2. The homomorphism @gr.sr i an isomorphism if, and only if,
any derivation of S can be extended in a unique way fto the devivation of T.

If T is not a field; the vanishing of the kernel ¢g.s» does not necessarily
imply that the extension is always possible.

ExamprLe. Let R be a field of characteristic #2, and let S=R[X?] and
T=R[X] The correspondence 1®d(X?)—2XdX gives clearly an isomorphism
of TR Dg(S) into Di{T). On the other hand let D be a derivation of S into

3) 'The necessity of the condition (ii) is pointed out by H. Sato.
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T defined by /0(X?. This derivation cannot be extended to the derivation
of T into T since DX =2XD(X)=1L

ProrosiTion 2. Let S be an R-algebra and let U be a multiplicatively closed
set in S. Assume that U does nof contain any zevo divisor. Then we have an
isomorphism Dgr(Sy) = Sy & DR(S).

Proor. By the above Cor. 2 it is sufficient to show that any R-derivation
of S into an Sy-module V can be extended in a unique way to an K-derivation
of S, into V. But it is seen immediately that D1 /%) = —(1/¢#*)Du is the unique
extension of the given derivation D of S.

The examle mentioned before is a special case of the following proposition,
in which @g;s,r» would be injective though the extension of the derivation might
be impossible.

Prorosition 3. Lel S be a domain with the quotient field K and L be a
separable extension of K. Let T be a subring of L such that L is the quotient
Jield of T. Then if Dg(S) is @ free module over S, the homomorphism ¢g.s,r 1S
an injective map.

Proor. Let us consider the following commutative diagram

Pris,7
0— N—TQsDp(S) — Dp(T)

¢ Prix,L
00— LR gDe(K) — Dg(L)

where @p;x,z 1S injective since any derivation of K can be extended to the
derivation of L. Let z be an element of T(®gDg(S) such that ¢g s,r(2) =0.
From the above diagram we see that ¢(z) =0. Let z=3t;0d5s;, where {d5s;}

is a free base of Dx(S). By Prop. 2, Di(K) = K& Dx(S), hence Dx(K) is also
a free module with the base {d*s;}. From the general property of tensor pro-
duct, L QxDg(K) is also a free module with the base {1&d%s;}. Hence if ¢(2)
= %} t,X0d%s; =0, we have f;=0 for all 7, 1. e. z=0. Thus the proof is complete.

Proposition 4. Let S be an R-algebrva and assume that S is the divect sum
of two ideals A and B. Then Dg(S)= Dg(A)+-Dg(B) (direct sum), and A annihi-
lates Dg(B) and B annihilates Dg(A).

Proor. Since S is the direct sum of A and B, we have SQgS=AXR A+
BRegB+ARrB+BX A (direct sum). Let $g, R, and Ry be respectively the
relation deals of SRS, AR A and BR B defining the modules of differentials.
Then it is easily seen that Re=N,+ R+ ARQB+BRA. Let ¢ and b be ele-
ments of A and B respectively, then ¢gla®@b)=ab=0. Hence ¢®@0b is in I
for any elements ¢ in A and 5 in B. From this we can see that a®Xb=
{aRep)esR0b) is contained in I} where e4 and ¢z are units of 4 and B respec-
tively. Thus we get the equality Rg=R, A+ R+ AR B+BRA. From this
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we can see that Dp(S)=(SKRS)/Re=(ARA)/R,+(BRB)/Rp =Dzl A)-+Dg(B).
adb =0 follows from the fact that ¢ ®b is contained in 7%.

Derinttion 1. Let S be an R-algebra, we shall say that S is a guasi-separable
R-algebra if we have Dg(S)=0.

The following propositions are immediate consequences of the exact se-
quence (A).

Prorosition 5. If S is a quasi-separable R-algebra and if T is a quasi-sepa-
vable S-algebra, then T is a quasi-separyble R-algebra. On the other hand if T is
a quasi-separable R-algebre, then T is a quasi-separable S-algebra.

ProrosiTion 6. Let A be an arbitrary ving and let a be an ideal of A, then
Al is a quasi-separable A-algebra.

The following proposition is a direct consequence of the definitions and
Prop. 6.

Prorosition 7. Let S be a quasi-separable R-algebra and let M be an ideal
of S. Let m be an ideal of R such that mS M\ R. Then S/M is a quasi-sepa-
rable (R/m)-algebra.

Proor. Let zg:S—S/M and wy: R R/m be respectively the natural homo-
morphism. Then there exists a homomorphism f: R/m—S/M such that zg-f
=f-rz. Then S/M is a quasi-separable R-algebra and hence it is quasi-sepa-
rable over (R/m) with the ring homomorphism 7 by Prop. 5.

Prorosition 8. Let S be a quasi-separable R-algebra and let U be a mulli-
plicatively closed set in S. Let V be the set U R then the quotient ring Sy is
quasi-separable over R and Ry respectively.

This is an immediate consequence of the successive applications of Prop.
7, Prop. 2 and Prop. 5.

Next we shall consider the generalization of Prop. 2 in the case where U
is an arbitrary multiplicatively closed set in S such that U does not contain 0
but contains 1. Let S be an R-algebra and let a be an ideal of S. Then ap-
plying the functor &¢Dx(S) to the exact sequence

0 Qa S S/a G

we see easily that (S/a)® sDgr(S) is isomorphic to the difference module Dg(S)/
aDg(S). Now we can define an S-homomorphism p from a/a® in Dg(S)/aDp(S)
by the rule

plclass of @)=class of da, a<=a.

We shall show the following
Prorosition 9. Using the notations as above

(Rernel of Pr.s,sn) = Umage of p)
i. e. the sequence

a/a?——(S/a) @ sDr(S) —— Dr(S/a) —
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is exact.®

Proor. For the sake of simplicity we shall use the notation d for d¥§ and
d* for d§/. We shall also denote the class of elements x moda by % Then
the map = ¢g;5,5n is given by the rule

h(zft(@dxt) = Elz@d*fl.

Hence D(a) = {S-module generated by the differentials da, ¢ =a} and aDy(S)
are contained in the kernel of 2. Thus the homomorphism /% induces the homo-
morphism £ of Dp(S)/D(a)+aDx(S) into Dg(S/a). We shall show that £ is an
isomorphism. Let & be the map from S/a into Dz(S)/D(a)+aDx(S) defined by
the following way. Let @ be an element of S/a and let ¢ be one of its repre-
sentative, then

d(@) = {the class of de¢ mod D(a)+aD(S)}.

It is not difficult to verify that the map & gives actually an R-derivation of
S/a into (S/a) R Dg(S). Then there exists an (S/a)-homomorphism « from Dg(S/a)
into (S/a) @ Dg(S) such that d=1d* Let x be an arbitrary element of S, then
hrd*(%) = hé(%) = i (class of dx)=h(dx)=d*% From this we see that fir=iden-
tity map. Similarly th(class of adx) = t(@d*Z) = drd *(%) = ao(%) = {class of adx}
and we see that t4=identity. Thus % is an isomorphism. On the other hand
it is seen at once that the image of p is equal to the class of aDx(S)+ D)
mod aDg(S). The final assertion follows from the isomorphism theorem.

Prorosition 10. Let S be an R-algebva and let U be e multiplicatively closed
set in S, them we have Dg(Sy) = Sy & Dg(S).

Proor. Let n be the ideal of S generated by the elements x such that xu
=0 for some element # in U. Let S*=S/n, then S; =S¥, by definition where
7% i3 the image of I/ under the natural homomorphism $—S* By Prop. 9
we have an exact sequence

1/n2—— S* Q) ¢Dp(S)—— Dp(S*)—0.
Applying the exact functor @S*,. (=X Sy) we get
(/1) X S * s —— S D sDg(S) —— Da(S*) @ S*pe — 0.
Since U* does not contain any zero divisor, Dg(S*) ) S* ;= is isomorphic to Dx(5%y+)
(Prop. 2)) and (n/n?)®S*y«=0 which completes the proof.
Prorostrion 11, Let S and T be R-algebras and assume that S is quasi-

separable over R, then SQrT is a quasi-sepavable T-algebra.
Proor. Let us put Y=5S& z7, then we have an exact sequence

/3
Y@ rDp(T)—— Dp(Y)— Dy(Y)—0,

4y The special case of this exact sequence is given in a more precise form in Ex-
posé 17 in [47.
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0
Y®SDR(S) — Dp(¥Y)——Dy(Y)—0.
By our assumption we have Dg(S) =0, hence Dg(Y) and DY) are isomorphic
by the isomorphism o defined by
ed R y) =dE(y), yeY.

Let y be an arbitrary element of ¥ and set y=Xs5,®¢ where s;€85,t, 1.
Then *

¥ =hdiy) = hoTd5(Z s:@t) = bp™ (@ DAFA 1)
S (5@ DA™ dFARE) = 2 (si Q Dhd K1 Q1)

2@ DA (1) =0.

This proves the assertion.

The following proposition is immediata.

Prorosition 12, Let kB be a field and let L be the perfect closuve of k, or a
separable extension of k, then D(L)=0.

Let S be an R-algebra. If S is a field and R is a subfield of S such that
[S: R} < oo, then it is easily seen that Dg(S) is equal 1o zero if, and only if,
S is a separable extension of R. We can prove a generalization of this results
in the following

Prorosition 13, Let S be an algebra over a field R and assume that S is of
finite rank over R. Then Dg(S)=0 if, and only if, S is a sepavable algebra®
over R.

Proor. Assume first that Sis a separable R-algebra. Then S is the direct
sum of the fields K; where K;’s are separable extensions of R. Hence Dg(S)=
Dy(K )+« +Dp(K,) =0 (Prop. 4).

Conversely assume that Dg(S) =10, and let S*=S®zS. Then we have an
exact sequence of S*modules

1
0 I Se S 0.

Since S is of finite rank over R and R is a field, the ideal I has finite gener-
ators. By our assumption Dg(S)= I/I?*=0, we see that 7=1% From this we
can conclude that S is S*projective ([2, Th. 2.5]). Hence S is a separable R-
algebra ([5, Th. 7.107.

The following gives a sufficient condition for S to be a quasi-
separable R-algebra.

Prorostrion 149 Let S be an R-algebra and assume that S is S°-projective,

5) When R is a field, S is called a separable R-algebra if S® ;K is semi-simple
for any extension K of R (cf. [I).
6) This result is stronger than the analogous one in [2]
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then S is quasi-separable over R.

Proor. Assume that S is S®projective, then there exists an element z in
S&S such that z/=17z and @(z)=1 ([5, IX, Th. 7.7]). If z= ‘T‘?ai@)bi, then
Sab;=1. Let x be an arbitrary element of S. Since z(1Qx) =z(xX1), we
glet the relation

>a,Rbx= Zi] axXb;.

Hence 0=2a;@bx—~2 ax@b;
=2lal Qbx—x&) bi)
=2 ab: Q0= (T ab) Dr=1Qx» (mod %)

ie. 1®x=0 (mod®). Since R=S® 141 we see that IR x—x1=0 (mod I?).
Since [ is generated by {1 Qx—ax®1}, the above argument shows that 7=1%,
hence Dg(S)=0.

§ 3. The structure of Dy(S)

The following proposition is proved elsewhere (cf. [4])), but for the sake
of convenience of readers we shall write down the proof.

Prorosition 15. Let R be a ring and let A be an index set, and let {X;, 1 € A}
be a set of indeterminates. Let A be a polynomial ving in { X3} with coefficients
in R. Then Dgp(A) is a free module with the base {dX;}.

Proor. Let us introduce a new set of indeterminates{Y;} with the same
index set 4. Then A® A is isomorphic to the polynomial ring in two sets of
indeterminates {X;} and {Y;}. The homomorphism ¢ from AR zA into A de-
fined in §1 is given by the substitution of X in the place of ¥;. Let us put
Z,=X;—Y; and let us represent the elements of A® A as polynomials in X
and Z;. The kernal I of ¢ is given as the set of polynomials of degree =1
in Z; and I* is given as the set of polynomials of degree =2 in Z’s. Since
Dy(A) is isomorphic (as a A-module) to I/I2, we see immediately that Dg(A)
is ismorphic to the module of homogeneous elements of degree 1 in Z’s. By
definition Z;=dX; and they are linearly independent over A. Thus the proof
is complete.

Let S be a ring containing a ring R and {z;, A = A} be a set of generators
of Sover R. Let {Z,,A= A} be a set of indeterminates with the index set A
and let A be a polynomial ring in {Z;} with coefficients in R. Then there
exists an R-homomorphism ¢ : A4—S such that

AVAVEF I led.
The kernel M of ¢ will be called the defining ideal of S with respect to the
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generator system {z;}. Applying Prop. 9 to S= A/M, we get the exact sequence

2 Pria,s
M/ ME~—— S 4 Dp(A) —— Dg(S)——0.

Since Dz(A) is a free module, S& Dg(A) is also a free module over S with the
base {1RXd4Z;, A= A}. In the following we shall write simply dZ; for 1 Qd4Z;.
Then S® Dx(A) will be written as D(S*)= 3SdZ;. Let {F,n< M} be a set
of generators of the defining ideal M, and let N be the submodule of D(S¥*)
generated by the forms

{;(aFﬂ/az,q)dZA, ne M),

Then the image of the homomorphism p is given by N. From this we get
the following

Tueorem 2. Using the same notations and assumptions as above, the module
of differentials Dx(S) is isomorphic o the difference module D(S*)/N.

Cororrary 1. In the above notations assume that S is an wmitegral domain of
positive chavacteristic p and that the defining ideal W of S is generated by the
polynomials {F,} such that {F,} ave polynomials in {Z%5,2c A}, Then Dg(S) is
a free module over S.

Cororrary 2. Let R be a normal domain with the quotient fleld K and let
L be a separably algebraic extension of K. Lei z be an element of L integval over
R and let f(X) be an irreducible monic polynomial for z over R. Then Dp(R[z))
is isomorphic (as R-module) to R/(f'(2)).”

Proor. In this case the defining ideal of R[z] is the principal ideal (f(X)).
Hence the Cor. follows directly from the Theorem.

§4. Differentials in local rings

Let R be a local ring and let M be the maximal ideal of R. Assume that
R contains a field 2 Let us denote by L the residue class field of K, then &
can be considered in a natural way as a subfield of L. By Prop. 9 we have
an exact sequence
M/M?— L& gD (R)— Di(L)—0.
Moreover if L is a separable extension of %, then the sequence
(G) 00— M/M*— LR pD(R)— D(L)—0

is known to be exact (Th. 5 in Exposé 17 in [4).

Let R be a local ring with the maximal ideal M and let £ be a finite R-
module. A set of elements %, - ,u, of £ is a system of generators of F if,
and only if, 1®u; (=1,2,---,x) form a system of generators of (R/M)X zE.

7) The analogous result is obtained also in [6] and [8]
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Moreover (u,, -, #,) is a minimal set of generators of £ if, and only if, 1 X,
-+, 1®u, form a base of the vector space (R/M)&X E over the field R/M. Thus
the number of the minimal set of generators of £ (over R) is a well defined
integer independent of the choice of the generator system of £E. We shall call
this integer the 7rank of E and it will be denoted by rank pF.

ProposiTioN 16. Let R be a local ring containing a field k such that the res-
idue class field of R is a finite separable extension of k, and that D(R) is a finite
module. Let uy, - ,u, be a set of elements in the maximal ideal M of R. Then
the diffeventials du,, -, du, (Where d stands for df) form a minimal set of gener-
ators of DW(R) if, and only if, wy, -, tts form a minimal set of generators of M.

TueoreMm 3. Let A be an affine ving® over a field k and let R be the quotient
ving of A with respect to a prime ideal B. Assume that (1) A is an integral do-
main; (i) the quotient ficld K of Ais a separable extension of k; (iii) the residue
class fiedd L of R is sepavably algebraic over k. Then R is a regular local ring
if, and only if, the module of k-differentials D\(R) is a free module.

Proor. By our assumption 8 is a maximal ideal of A, hence the rank of
R(=the rank of B) is equal to the transcendence degree of A over k. Let us
put r=rank R. By Prop. 2 we have Dy(K)= KX DJR). Moreover this iso-
morphism is given by the rule 1&d®u— d¥x (where we omit the subscript
k in the differential operators). Now assume that & is a regular local ring
and let #,--,u, be a regular system of parameters of R. By the preceding
Proposition we see that {d®u,, ---,d®u,} is a minimal set of generators of Di(K).
Hence by the above isomorphism we see that {d%u,, - ,d%u,} is a system of
generators of Dy(K). On the other hand K is a separable extension of dimen-
sion ¥ over &, hence D.(K) is a free module of rank . This implies that
d%u,, -+, d%u, are linearly independent over K. That d®u,, ---, d®u, are linearly
independent over R follows immediately from this.

Conversely assume that Di(R) is a free module over R and let {uy, ---, u,}
be a minimal set of generators of M (=the maximal ideal of R). Then {d%u,,
o+, d®Bu,} form a base of Dy(R). Applying again Proposition 2 we see that
DK =KX gDy(R) is also a vector space of dimension #. From this we get
immediately the equality » =7, proving that R is a regular local ring.

As an application of the preceding Proposition we can give an alternative
proof of the Jacobian criterion for simple points (cf. [47, [97).

Prorosition 17 Let V" be an affine variety defined over k and let P be the
defining ideal of V in klxy, - ,x.). Let P be a point of V such that RP) is
separably algebraic over kB and let O be the quotient ving of P in V/k. Then £
is « regular local rving if, and only if, there exist (n—r)-polynomials fi, -, for i0t

8) An affine ring over %, is a homomorphic image of a polynomial ring in a finite
number of variables over Z.
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B such that the vank of the matrix (3f,/0x;) is n—vr at P.

Proor. Let m be the maximal ideal of A= #&[x, -, x,.] defining the point
P and let us put R=A,. Then £=R/PBR. By Prop. 9 we have the exact
sequence :

Je) )
P /P2 —— (P/P*) @ gD R)—— Di(R/P*) —— 0

where $$* =P R. Now assume that R/B* is a regular local ring. Applying
Theorem 3 we see that Dy(R/P*) is a free module of rank »—7. Let ¢ be an
(R/P*)-homomorphism : Dy (R/B*) —(R/P¥)R D(R) such that

i@ = the identity.
Then the above sequence implies the direct sum decomposition
(R/PF)YQQD(R)=1Im p+Im .

Since Dy(R) is a free module with the base {dx, -, dx,}, (R/B¥)RrD(R) is
also a free module with the base {1Qdx, - ,1Xdx,}. Since R/T* is a local
ring, each term in the right hand side is also a free module, and the rank of
Ime=n—r. From this we can find (n—7)-polynomials 1, -+, fner in P such
that {dfi, -, dfn-,} form a subsystem of free base of DyR) module P*D(R)
(where (R/P*) X gD(R) is canonically isomorphic to the residue class module
D(R)/TB*D (). On the other hand we have

(R/m*) Q) gDy(R) = (B /M%) Q) py((R/P*) Q) e D(R)) -

This implies that a free base of (R/P*)XRD(R) is also a free base of (R/wm*)
R D{R). Hence df,, -+, dfs_r must also be linearly independent module m*D,(R).
This is the required result. Conversely assume that J contains (n—r)-polyno-
mials fi, -, far such that the rank of the matrix (8f;/9x;) modulo m is equal
to n—r». Then {df, - ,dfn.r} is a part of minimal base of D (R) modulo
m*Di(R). Hence we can find a free base of D;(R) containing dfy, -, dfn_r as
members. Since Im{p) is contained in Dy(R)df i+ «++ +Du(R)df ur+P*Du(R), Im(p)
= (R/P*)-1Qdf,+ - HR/P*)-1&dfn-r. Moreover {1&df, - ,1Xdfnr} is a
part of free base of (R/P*)X Dy(R), hence D (R/P*) is a free module over 4.
Now the assertion follows from Th. 3.

CoroLrary 1. Retaining the natations and asswmptions as in Prop. 17, P is
a simple point of V if, and only if, Di(D) is a free module.

CoroLLary 2. Retaining the notations and assumptions as in Prop. 17 and
assume that O is a regular local ving. Then, any regular system of parameters
is a sepavating transcendent base of the function field k(V) over k.

Remark. We shall give here some examples which show that the assump-
tion made in these propositions are inevitable.

ExamrLe 1. Let £k be a non-perfect field and let # be an element of % such
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that z[;'_ &k Let A=FX Y]/(X?+aY?) and let R= A, ,, where x and y are
residue classes of X and Y respectively. Then Dy(R) is a free module with
the base dx and dy (cf. Cor. 1 of Th. 2), but R is not a regular local ring. In
this example the quotient field K of R is not a separable extension of £.

ExampLre 2. Let V be a plane curve defined over a non-perfect field £ by

N
the equation X?2-+Y?=y, where # is an element of %2 such that #? is not
contained in & As is easily seen V is a normal curve, and in particular the

point P= (0, u"il’") is a normal point of V and the quotient ring R of P in V/k
is a regular local ring. Let A be the affine coordinate ring of V. By Th. 2
we see easily that D,(A) is generated by dx and dy with the relation 2xdx=0.
Hence Dy(R)= R& D(A) is also generated by d¥x and dFfy with the relation
2xdBx=0 (dBx+0). Thus DyR) is not a free module. In this example the
assumption (iii) in Th. 3 is not satisfied.

In the same example the coordinate function x is a regular system of param-
eter of R. But k(V) is not separable over A(X), showing the Cor. 2 does not
hold in general if 2(P) is not separable over k.

Let R be a local domain containing a field £ and let M be the maximal
ideal of R. Let L be the residue field of R and assume that L is a separable

extension of £ Let {#, -+, %} be a set of separating transcendence basis of
L over % and let a4, -+, &, be representatives of #,, -+, %, in K. The elements
«, -+, o are algebraically independent over &, hence the field klay, -, a)=F

is contained in the ring R. Let us denote by K the quotient field of R and
assume that it is possible to find elements #'s and «’s in such a way that K
is a seperable extension of the field F. In this case we shall say that the local
ring R has a separating residue field. Now we can generalize in
the following

Tueorem 3. Let A be an affine ving over a field k and let R be the quotient
ring of A with vespect to a prime ideal. Assume that (1) A is an integral domain,
(ii) the quotient field K of A is a separable extension of k, (iii) the vesidue class
field of R is a separable extension of k, (iv) R has a separating residue field.
Then the module of differentials D{(R) is a free module if, and only if, R is a
regular local ring.

Proor. Let L be the residue field of R. By our assumptions there exists
a field F in R such that L is separably algebraic over F and the quotient field
K of R is a separable extension of F, and such that F is a purely transcen-
dental extension of %k of dimension v (# =dim, L). Since K is a separable ex-
tension over F, the module of differentials Dp(K) is a free module of rank #—r
where #=dim; K. Now assume that R is a regular local ring. By Th. 3 we
see that Dx(R) is a free module. On the other hand, applying the Prop. 3 and
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the exact sequence (A) we see that the sequence
0——>RQpD(F)— D(R)—— Dp(R)~—0

is exact. Since Dp(R) is a free module the above exact sequence splits and
D(R) is isomorphic to the direct sum of R DF) and Dg(R), both of them
are free modules over R. Thus we have proved that D(R) is a free module.
Conversely assume that Dy(R) is a free module of rank m. Then Du(R)=
K& gDy(R) is also a free module of rank m, hence m=mn. Let M be the
maximal ideal of R. Then R/M is a separable extension of dimension 7 over
k and D (R/M) is a vector space of dimension v over the field R/M. From
this and the exact sequence

0—— M/M?—— (B/M)Q Di(R)— D(R/M)—0,

we see that M/M? is a vector space of dimension n—r over R/M. Since the
rank of R is n—y, R must be a regular local ring.

Corovrrary. Let V™ be a variely defined over @ field k and let P be a point
of 'V (not necessavily algebraic over k) and let R be the quotient ving of P in V/k.
Now assume that the local ving R has a separating residue field, then the module
of differentials DR is a free module if, and only if, P is a simple point of V.
Moveover the rank of Dy(R) is equal to n.

¢ 5. Ramification theory and quasi-separability

Let S be an R-algebra and let L be a prime ideal of S and let p be the
contraction of P in K. We shall say that P is unvamified if

(U Sy = Sy,

(U,) Sy/PBSy is a finite separable extension of R,/pR..

Let p be a prime ideal of R, then S will be said to be wunramified over p if

(U,) every prime ideal P of S such that P R=p is unramified ;

(Uy) There exist only a finite number of primes in S such that P R=5.

We shall say that S is unramified (over R) if S is unramified over every
prime ideal P of R.

The following proposition is convenient in further discussions.

Prorosition 189 Let S be an R-algebra and let p be a prime ideal of R.
Then S is wunramified over b if, and only if, Sy/bSy is a separable (Ry/PRy)-
algebra, where U= R-—Y.

Proor. Let P be a prime ideal of S. Then we have B\ R=1 if, and only
if, S, /nSy is the prime ideal of S*=S,/pSy;. Now assume that S* Is a sepa-
rable R* = Ry /pRy algebra. Then there are only a finite number of prime

9) This formulation is due to [2]
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ideals £, ---,8, in S* and we have (h\Di:O. Let i"s,, be the complete inverse
i=1

. . ~ ~ n ~
image of Q; in Sy, and let [, =P;~S. Then P, =P,S,, (\193@'5:/‘—" MNP, = 1Sy,
Hence we have EBiSU(ssisw :pSU(zB,-sU)' Since SU(miSU) = Sg, we get the relation

(U,). Moreover Sy/P.=(Sy/pS;)/D; is a separable extension of the field R¥,
and (U,) is also satisfied.

Conversely assume that S is unramified over R, then we see easily that any
two prime ideals P and Q in Ssuch that P R=Q R=1p cannot satisfy the
inclusion relations. Let P, ---, By, be all the prime ideals of S such that R~ P,

- D, thel’l (’i%zSU - pSU and SU/DSU - SU/%ISU_‘" e -{"SU/%;]ISU (direCt Sum)- Si[’lce

Su/BiSy = Sy, /P:Swe, is a separable field extension of R*, S* is also a separable
R*-algebra, and the proof is complete.

In the following we shall discuss the relation between quasi-separability
condition and the unramifiedness condition.

DeriniTion 2. Let S be an R-algebra and let B be a prime ideal of S. We
shall denote by 9 the contraction of P in R. We shall say that P satisfies the
finiteness condition if Sp/PSp is a finite extension of R,/bR,.

S will be said to satisfy the finiteness condition over the prime ideal v of R,
if Sp/PSy is a finite (Ry /v Ry)-algebra, where U= K—).

An R-algebra S will be said to satisfy the finiteness condition if S satisfies
the finiteness condition over any prime ideal of R.

TreoreMm 4. Let S be an R-algebra and let P be a prime ideal of S satisfying
the finiteness conditions, and let b be its contraction in R. Then if the quotient
ring Sy is noetherian and quasi-separable over R, then B is unramified.

Proor. By our assumption Sg is quasi-separable over R, and bR, is con-
tained in PSy. Hence Sp/PSy is quasi-separable over the field R,/pR; by Prop.
7. This and the finiteness condition implies the condition (U,). Let S*=
Sgp/pSz, then S* is a local ring with the maximal ideal P* =BSy/pSy, and S*
contains the field R* such that the residue field S*/P* (= Syp/PSy) is separably
algebraic over R*. From (G) in §3 we get an exact sequence

0— PH/P*— (S*/P*) @ Dl SH) .

From Dg (Sp) =0 we get Dp(S*)=0 by virtue of Prop. 9. Hence the above
exact sequence implies that P* = P*2. Since P* has a finite set of generators we
must have P* =0, i. e. PSy = vSy, proving (U,).

TueoreM 5. Let S be an R-algebra and assume that S satisfy the finiteness
condition over a prime ideal p of R. Then if S is quasi-sepavable over R, S is
unramified over b.

Proor. Let U= R—p, then from Dx(S) =0 we get Dp,(Sy)=0 by Prop. 8.
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Applying Prop. 7 to the last relation we see that S;/pSy is a quasi-separable
(Ry/vRy)-algebra. The theorem will follow from Prop. 13, Prop. 18 and the
finiteness condition for S.

CoroLrary. Let S be an R-algebra and assume that S is a finite R-module.
Then if S is quasi-separable, S is unramified.

In the next place we shall study when the quasi-separability will follow
from unramifiedness. For this purpose it is convenient to introduce the notion
of d-different.

Dermvition 3. Let S be an R-algebra and let Dg(S) be the wmodule of R-
differentials in S. Let D be the idexl of S genevated by the elements x in S such
thzt xDp(S)Y=0. We shall call © d-different of S over R and will be denoted by
DS/ R), or simply by Dy if it is clear from the context.

Tueorem 6. Let S be an R-algebra and assume that the module Dg(S) of R-
diffeventials in S is a finite S-module. Let P be a prime ideal of S which is un-
ramified over R, then B does not contain the d-different .

Proor. Let S*=Sy and R* = R,. where p=R\P. Then S* is unramified
over R* i.e. if we denote by P* and p* the maximal ideals of S* and R* re-
spectively, S*/P* is a finite separable extension of R¥*/p* and §§* = p*S*. Hence
De(S*/P*) =0 and (S*/PF) X oDl S*) 1s generated by the elements da,, -+, day,
where «a,, -, @, are any set of generators of LF* (Prop. 9) and d stands for d%a.
Since P* is generated by the elements in p* we see that Dp(S*) R (S*/P*) =0.
On the other hand Dz(S*) = Dx(S*) is a finite module since it is a homomorphic
image of S*X) Dg(S), hence we must have Dx(S*)=0. By Prop. 10, Di(S*) =
S*R Dg(S), and the annihilator of Dg(S*) is given by D®S*=D*%, The
above results implies that the annihilator ©* of Dx(S*) must be a unit ideal,
hence P cannot contain the d-different .

CororLrary. Let S be an R-algebra and assume that Dg(S) is a finite S-
module. Then if S is unvamified over R, S is quasi-sepavable over R.

Proor. Assume that Dx(S) is not zero. Then the d-different © is not a
unit ideal, and there exists a maximal ideal MM containing ®. M must be the
one which is ramified over R.

Tueorem 7. Let S be a noetherian R-algebva and let D be the d-different.
Let P be a prime ideal of S satisfying the finiteness condition. Then if P29D, P
is unvantified.

Proor. By Prop. 10 we eave Dr(Sp) = S: X ¢P=(S), hence if we have B2 D,
then Dg(Sy)=0. Applying Prop. 8 we see that Dy, (Sp) # 0. The assertion fol-
lows from Th. 4.

Let R be a noetherian normal domain with the quotient field K and let L

10) In general if E is a finite S-module and if a is the annihilater of F, then the
annihilater of E@4Sy is given by a® 5Spy.
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be a finite separable extension of K. Let S be the integral closure of R in L,
then as is well known S is a finite R-module and every prime ideal of S satis-
fies the finiteness condition. Then we can apply [Theorem 6and 7 to this case
and we get the

Traeorem 8. Under the same notations and assumptions as above let D, be
the d-diffevemt of S over R. Then any prime ideal B of S is unvamified if, and
only if, B does not contain the d-diffevent D,

E. Noether and Auslander-Buchsbaum defined another kind of different for
an R-algebra S (cf. and [2]). The different is called by the name of “homo-
logical different ” in [2] Homological different is defined in the following way.

Let S be an R-algebra. As we mentioned bzfore, there exists an exact sequence
of S*=58zS modules

4
0 I 5S¢ S 0.

The homomorphism ¢ is defined by ¢(Zx;@y;) = > %%, and S is made into a

S¢-module by the rule (@R bd)x=abx, where @, b and x are elements of S. Let
N be the annihilater of the ideal 7, then the homological different % is given
by o(R).

Prorosition 19. The homological different B is contained in the d-different
D. Moreover if the kernel I has a finite number of generaters, then the radicals
of § conincides with that of DY,

Proor, Let ©=1712:], i.e. the set of elements s in S* such that s/ < I
We shall show that ¢(&)=D. Let ¢ be an element of ®. Since Dg(S) is iso-
morphic (as a S-module) to I/7? we see that e/ S 12 Hence «®1 is contained
in &, and ¢ =¢(@®1) is contained in ¢(&). Conversely let « be an element of
@(©). Then there exists an element « in S¢ such that ¢(a)=a. Let us put

o= ‘_‘_sjl c:60d;. Let x be an arbitrary element of S. Using the relation 3¢d; =
a, we get
alR2—23 D =(@RDN01RKx—xX1)
=({(Zed) QDU R x—21)
=[(2;@d)—2(c.: DA R d;i—d; Q1R x—xRX 1)
=a(l@rx—xR1=0 (mod I?).
Since [ is generated by 1Qx—x®1, the above relation implies that ¢ is con-
tained in ©. By definition h=¢(M) and R=(0): ICI?:I=&. Hence §=(N)
is contained in ® = @(&).
Now assume that [ has a finite number of generaters and let {ay, -+, a,}

11) We owe the last part of the proposition to H. Sato.
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be a set of generaters of I. Let s be an arbitrary element of &. From s/ & I?
we get the relation

n
sai:-zlaijcxj (Zil,"',n)
i=

where &’s are in I. If we put d =det|sd;;—a;;|, then da; =0 for i=1,2, -, n.
Hence § is contained in . Applying the homomorphism ¢ to the relation 6 =
det|sd;;—a;;|, we see that ¢(s)” is contained in @(M) =1 Since D= ¢(S) and s
is an arbitrary element of &, the above relation implies that the d-different D,
hence the radial of ®, is contained in the radical of .

§6. The module of differentials of higher degree

Let R be a local ring and let £ be a finite R-module. Then the number
of minimal set of generators w, -, u#, of E is a well determined integer. It
is equal to the dimension of the vector space EQ (R/M) over the field R/M,
where M is the maximal ideal of R. We shall call this integer the rank of E
and denote it by rank pE.

Lemma. Let R be a local ving and let E be a finite R-module over R. Let
n=rank E, then the rank of the exterior algebra A'E is equal to ,C,. Moreover
if Eis a free module, then A'E is also a free module.

Proor. Let M be the maximal ideal of R and let KX=R/M. If E=
EQ® K, then the dimension of A’E is, as is well known, equal to ,C;, Hence if
we can show that A‘E is isomorphic to (4'£)R zK the proof will be complete.
For the sake of simplicity we shall denote 1 & x by % where x is an element
of E. Let f be a map from EX --- XE into A'E defined by

| —
t

J(&y oy x) =X N - ANX;.
Then s is multilinear and skew symmetric. Hence there exists an R-homo-
morphism g: A'E— A'E such that
g(.?ﬁ VAN /\xt) zfi FANREERVAN 9_6:; .

Since A’E is a K-vector space, g induces a homomorphism ¢ : (LE)Q zK— AE
defined by

PLIR@E AN = A= A - ANF .
On the other hand

YN AT =1R A - Axy)
is a well defined homomorphism from A‘E into (A'E)RQ K. Since ¢y =1 and
Jrog =1, we see that A'E and (A'E)® K are isomorphic. The last assertion is
proved in [3, Chap. III].

In this occassion we would like to give a refinement of Th. 2 in our pre-
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vious paper [7]

Tuarorem 9. Let V7 be a variety defined over ¢ field k and let P be a point
of V such that k(P) is sepavably algebraic over k. Let R be the quotient ring of
P in V/&, and assume that A"D(R) is a¢ free R-module with the base di, /\ -+ N dt,.

Then P is a simple point of V and {t,, -+, 1.} is «a set of uniformizing parameters
at P.
Proor. Let M be the maximal ideal of R and let {z,,---,u,} be a set of

minimal base of M. Then Di{R) is of rank n by Prop. 16. Hence by the above
Lemma the rank of A"D.(R) is of rank ,C,. From this we see that the rank
of ATDy(R) is 1 if, and only if, n=r. Since rank of R is  and » is equal to
the number of minimal base of M, we have n =r if, and only if, R is a regular
local ring. This proves that R is a regular local ring. Moreover P is separably
algebraic over the ground field, P must be a simple point of V. Let #,, -, %,
be a set of uniformizing parameters at P, then by Prop. 17 Di(R) is a free
module with the base duy, -, du,, hence A"DyR) is a free module of rank 1

with the base du,, -, du,. Combining the assumptions in the Theorem we see
that df;, A -+ Adt, and duy A -+ A du, differ by a unit of R. Then by Prop. 1
in [7], ¢, -, ¢ are a set of uniformizing parameters at 2 on V.

Remark. The assumptions made in Th. 2 in {7] are superfluous since we
have assumed that A"D.(R) is of rank 1.

Let V be a normal variety defined over a field £k and let K=%&(V) is the
function field of V over .. Let L be a finite separable extension of K and let
U be the normalization of ¥V in L. Then there exists a natural rational map
r: U—V called a covering map. Let P be a point of 7 and let @ be a point
of U lying above P. We shall denote by R and S respectively the quotient
rings of Pand @ in V/%k and U/k We shall denote by #, -+, %, a minimal set
of generators of the maximal ideal A of R. To avoid the confusion in the
notations we shall denote d§ simply by d. Let E be the submodule of D(S)
generated by dt, -, dtn, Then Dg(S) is isomorphic to the difference module
Di(S)/E by Prop. 1. Let g, be the annihilaters of the difference modules A'D,(S)/
AE (¢=1,2,--). a, is nothing other than the d-different of S/R.

Tueorem 10. Assume that P and Q ave simple points of V and U respec-
tfively, then we have

G202 20,20,
where y=dim V. Moreover a, is a principal ideal.'? :

Proor. Let (#,---,¢,) and (u,, ---,u,) be a regular system of parameters of
R and S respectively. Then, since Dy(R) is a free module with the base {d%Z,
e, dBt ), d5t, -, d5t, are also linearly independent over S (Prop. 3). For the
sake of simplicity we shall use the symbol d for d5. Let us express df's in

12) Here we again have the proof of purity of branch loci in this special case.
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terms of the free base du, -+, du, of Dy(S),
M ati= S aydu;, 1=i<r, ayeS,
j=1

Let A;; be the cofacter of @;; and A=det|a;,|. Then we can solve (10) in the
form
) duy = 3 A/ Aty 1=j<r.
From (20) we get
dug, N - Ndug,= D (Aje, - Ajp Ddte, N -+ N diy,
= B A 20 (A - A/ Adta, N -+ A diy,}

where the sum ;; is extended over all the ¢! permutations &, ---, &, of ay, -+, &
()

and the sum 3, is extended over all set of indices «; < --- < «, taken from
1,2,--,7. Now assume that an element ¢ of Sisin a,. Then aduj A -+ A duy,
is contained in 23, S(dfy, A -+ Adts,) for all a, < --- <« and vice versa. Taking
into account that d#,, ---, dt. are linearly independent over S we get the con-
clusion : a is contained in o, if, and only if,

74 %1 AJ'J’H ees AJ’tkt &= (At)

for all pairs of t-tuples (7y, -+ ,7) and (ay, -+, ay). We shall calculate
Ajlml Ahac

%1 Ajiry o Agy = det :
Ajt”'l Aiwt

Let s, < -- <8py and B, < -+ <A, be the set of integers such that (4, -, 7,

Sy oty Semg) and (ky, o0, Ry, By, 000, Broy) are even permutations of (1,2, --,7) re-
spectively. By an easy calculation we get

Ajray = Ajray Ay Ajipres Tjrayg """ Tjpvy  Cspay " Asytay
Ajm Afm Aﬁcﬁl Ajc.?rwt Ajlog """ @jpry  Aspap """ Tsr—tay
1 . @jipr o @je31  Gsypr =" Asyr_18y
0 . . . .
1 Ajiprey " APy s1fyy """ Cspotfras
A
. 0
A
Bsyp""" Dsyes81
e . .

Qs 1Pyt *"" Lsy_tPr—y
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Taking the determinant of both sides we get the equation'®
Ajiwy = Agyay Tsggy " sy Pyt
: = AR, where B=] :
Ajpy Ajm Qsp_181 """ Csp_tfr_t

From these calculation we can conclude the following: e <=aq, if, and only if,
aB < (A) for any minor determinant B of order r—¢ of A (where it should be
understood that B=1 if ¢=17). From this assertion the inclusion relation

a,=2a=" 20,

follows immediately. In particular ¢ < a, if, and only if, @ is contained in the
principal ideal (A), and A is itself contained in a,. From this we get a, = (A).

Now assume that ay, -+, e, are elements in a;, then ;4,3 <€ (A) for any triplet
G,a,/), 1<i,a,8=r. Hence
Au e Ay
al oy E S = ...aTAT—le(AT)
Arl ot A'r'r
ie @ - a <(A). This proves that af is contained in a,. Thus the proof is
complete.

Let V and U be as before and let C be an irreducible subvariety of codi-
mension 1 on U and let D be a subvariety of V lying under C. Let @ and P
be respectively the points of C and D such that z(Q)= P. It is possible to find
such a pair among the simple points of I/ and simple points of V. Let R and
S be the quotient rings of P and @ in V/k and U/k respectively and let {#,
-t} and {uwy,--,u,; be sets of uniformizing parameters at P and &. Let
@ =d® A - ANdPt,. Then the multiplicity of C in the divisor of the differ-
ential form msw =dStH A --- ANd5, 1s called the differential index'® of C and
will be denoted by ¢(C). If we represent d*®f's in terms of d%#’s, we can write

ASE N o NdSt,=adPu, A - ANdSu,.

Then the differential index e(C) is given by the multiplicity of C in the divisor
{). On the other hand let p be the prime ideal in S defining the divisor C,
then S; is a discrete valuation ring. Let & be its prime element, and let ® be
the d-different of S over R. Then the above Theorem implies that (@%®) is
contained in ®S,. Hence if we define ¢; by S, = (&%), we get the inequality

3 er = e(C).

13) This is a generalization of the Theorem of Sylvester.

14) In [7] we did not distinguish ¢& and dS. But it was reasonable since SRD(R)
— D(S) is injective (Prop. 3). But here we adopt the precise notations to make the
matters clear.

15) Cf. [7] §6.
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From Th. 14 we get at once the

CoroLrary. ¢, =¢C) if dimlV'=1.

The inequality cannot be replaced by an equality in general as is shown
in the following example.

ExamprLe. Let ¥V be an affine space with coordinates x and y, and let U be
an affine space with coordinates # and ». We shall assume that they satisfy
the following relation

x=u*+uv, y=uv.

Let P and @ be the points with the coordinates (0,0) and (0,0). Let A=Ek[x, v]
and B=Fk[u,v], then the local rings R and S of Pand @ are given by k[, ¥l
and k[ u, v]w,» respectively. By a simple calculation we see that d-different of
S/R is given by («%), but the ideal a, in the Theorem is given by (#!). Hence
e, =3, ¢(C) =4, where C is the straight line defined by the equation #=0 in U.
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