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This case includes all the systems usually met with in the Quantum Thegpy
the vanishing of the (s for certain values of the suffixes manifesting itself
selection principles which allow only a finite number of changes for each of
the quantum numbers except at most two of them. The quantum integrals
of such systems are invariant under any adiabatic change except at & finj
set of points where ’\

0/, = g0 aﬁ(ﬁ’,
i da | Ca
o and @, being the frequencies corresponding to the quantum numbers whose
changes are unrestricted, and at another finite set (or possibly infinite enumerable
set tending to points of the previous set) where relations of the type Zm,c, = 0
hold.

The writer is much obliged to Mr. R. H. Fowler for suggesting this investiga-
tion, and for his help during its progress.

On the Theory of Elastic Stability.
By W.R. Deax, B.A., Fellow of Trinity College, Cambridge.
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The object of the present paper is to derive equations that are adequate to
decide questions of the stability under stress of thin shells of isotropic elastic
material. Equations for the same purpose have been given by R. V. Southwell,*
who used a method that is closely followed in a part of this paper.

Such equations must contain terms that may be, and are, neglected in
applications of the theory of elasticity to problems in which the stability of
configurations is not considered. The truth of Kirchhoff’s uniqueness theorem,f
which has reference to the ordinary equations of elasticity, in which powers of
the displacement co-ordinates above the first are neglected, is sufficient proof
of this statement. In practice it is generally sufficient to retain only the
first and second order terms,} and no terms of higher order are considered

* " On the General Theory of Elastic Stability,” * Phil. Trans.,” A, vol. 213, p. 187.
1 A. E. H. Love, * Mathematical Theory of Elasticity * (3rd Edition), § 118.
+ There are exceptions to this. Cf. a paper by J. Prescott, ¢ Phil. Mag.,” vol. 43, p. 97
(1922), which, though not immediately concerned with elastic stability, obtains equations
which can be applied to this theory. See also § 9 below.
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here. To obtain such equations an extended form of Hooke's Law is necessary ;
the extension made by Southwell® is used in this paper. There are then two
methods available for the derivation of the equations. Either we may obtain
the three conditions for the equilibrium of an elementary volume of the
substance by considering the forces acting upon it, or we may calculate the
~ energy of strain correct to the third order of displacement co-ordinates, and
~ deduce the equations by variation of this function. The first method has
' heen used in one place here, as it would appear to be the simpler in the
S particular case of a plane plate, in which only one of the equations, and that
wthe simplest, is required. However, the stability equations for a cylindrical
gmhell are also obtained, and then all three equations are necessary. The
<Cderivation by the first method of each one of these is a laborious matter, while
%using the second method there is only one calculation, that of the strain
O energy funection, to be made. Consequently. for this purpose, as in general,
the second method seems to be preferable.
The equations that are obtained by either of the methods outlined above

1ng.0

a refer in the first instance to the co-ordinates of displacement of any point of

11s

= the shell.  Yet it is clearly desirable to have instead equations which connect
Sthe displacements of points only of the middle surface, for equations of this
S type will be simpler in so far as these displacements are functions of two

u

c1 ty

S variables only, while a knowledge of the behaviour of the middle surface is
S ovidently sufficient to decide a question of stability. What is wanted, in fact,

roy als

£ is a method of reduction of equations involving the displacements of all points
Quf the shell, to equations involving only the displacements of points of the
& middle surface,T precisely similar to that used in the Theory of Thin Shells.}
g'l‘he assumptions used in the reduction by this theory, however, are such that
= 1t is not clear how they can be used, or extended, to effect the reduction of
—“g’ second-order general equations that is required here.

S (onsequently, no use of them has been made. It is merely supposed that

n

B‘rhe displacement co-ordinates of any point of the shell can be expanded in
Q power series of the normal distance of the point from the middle surface.
Second-order shell equations can then be deduced from the general equations
“by using the boundary conditions at the two faces of the shell. The method
will in the same way reduce general equations of the first order to the corre-

* Loc. cit., p. 192

+ 1t will bo convenient in what follows to call equations of these two types ¢ general
ecquations and “ shell 7 equations respectively.

t Love, op. cil., chap. 24,
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sponding shell equaticns. The assumption, therefore fundamental, as to the
expansions of displacements may exclude some problems from the range of
the method, but it does not appear likely that in elastic stability, where
attention is of necessity confined to a consideration of the simplest types of
stress, there will be any difficulty on this score. Moreover, the equations in
their final form contain no explicit reference to the assumption, so that they
may be, and certainly in first order problems often are, valid beyond the limits
that might appear to be imposed. The equations thus obtained are not
here applied to any new problem, but as it appeared desirable to check the
results of a new method by a comparison with known formulw, the stability
of a tubular strut has been briefly considered. The condition for instability
in a symmetrical mode of distortion has been deduced by Southwell from
general theory, and in other modes from the Theory of Thin Shells*
Equivalent results are obtained in each case by the methods of this paper.

The Strain Energy Function.

2. We proceed to develop a method of finding in a suitable form the strain
energy function of a thin cylindrical shell. The energy of strain is a quadratie
function of the components of strain, which ordinarily need only be evaluated
correctly to the second order of displacement co-ordinates. This accuracy is
not sufficient if problems of stability are to be considered, and a more exact
determination demands a complete revision of the usual processes of evalua-
tion. In the first place an extended statement of Hooke’s Law is necessary,
as in its usual form it is not framed precisely enough if squares and products
of displacements are to be included. We take that statement given by
Southwell. f

In a distortion of any magnitude of an elastic body there are associated with
each point of the body three linear elements orthogonal both before and after
strain,{ and these elements undergo stationary extension, as defined below.
If a parallelopiped is constructed with these elements as coterminous edges,
only normal stresses will act on its faces after strain, and if relations are
assumed between these stresses and the corresponding strains, called respec-
tively principal stresses and principal strains, they are sufficient to determine
stress in terms of displacement completely. The extended form of Hooke’s
Law is that principal stresses and strains in a distortion of any magnitude are

* Loc. cil., pp. 227-236.

T Loc. cit., p. 193,
i Love, op. cit., Appendix to chap. 1.
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connected by the usual equations : that is to say, if the principal strains are
extensions ¢,, €, e, and the corresponding principal stresses are S, S,, S,
then
S;=2ue, + Ay +e+6), ete., . . . . . (1)
with Lamé’s notation for the elastic constants.
Extension is defined as the ratio of the increase in length of an element to its
length before strain, and stress as the total action over an element of surface
gdivided by the area of the element before strain. The energy of strain per
Sunit volume of unstrained material, W, is then given by the equation
A28 ;
W=t (ey + €+ €3)> — 21 (eg€s + €361 +€9¢3). . . (2)

B)

With these assumptions and definitions the strain energy function of any
Jastic body can be calculated to any degree of accuracy that is required.

We confine attention to a thin shell of uniform thickness of which the middle
surface is generated by parallel straight lines. The position of any point P,

g/ on 08 August

or

g

of the middle surface is specified by o, the
distance of Py, measured along a generator, from

ublishin

an arbitrary line of curvature; and by B, the

typ

listance of P, measured along a line of curvature,

Cl1€

from an arbitrary gemerator. p, the radius of
curvature of the normal section of this surface

yalso

) perpendicular to the generator at any point, is
Ea function of % only.* The position of any point
8P of the shell is specified by drawing PP, normal to the middle surface ; then

'; if the length PyP is 2, the position of P is given by the orthogonal curvilinear

&£ co-ordinates «, {3, 2, as in the accompanying figure.

3. We have first to find an expression for the extension of a linear element
under strain. Let the displacements of P, (2, £, 2), be , v, w with regard to
S o, P, z axes at P ; these axes being the normal to the middle surface through
S P, (2), aline through P parallel to the generators, (), and a third perpendicular,
3 (8); w, v, ware then functions of «, j, 2. Taking a neighbouring point P,

(o 4 B, P+ 3B, z -+ 82), let the length PP’ be 7, and let its direction cosines

with regard to «, [, » axes at P be I, m, n. The displacements of P’ are

wnloaded

- ” )
cu du ou
w + 5O + == 3B - = 9%, etc,,
O op 0z
* Although the only application in this paper is to a problem wherein is constant,
other applications are meditated in which s a function of B. The simplification in
the work if p is supposed constant is very slight.
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along =, , z axes at P’, while to the first order of »
do = Ir, 3B = i i oz = nr.
p—2
The angle between the z axes of P and P'is to the same order mr/(p —2). Thus
the co-ordinates of P’ after strain with regard to «, 8, z axes at P are

oot ) 220 2]
00 P Ov w dv
v+r‘la—l_m(l—{_p—z8{3_—9——2,)%“&}’
and 5
0w, [ p Ow 9 Ny oy 0w
w+rul$+m(9_—_:@+_p—z,)+n\.l+-8—z)]°

The co-ordinates of P after strain are w, v, w, so that denoting by r (1 -+ ¢)
the length of PP’ after strain, there results

o : P av_ w ov ?
+[la +m(&1+p—z5@ p—z)+naj

g )1+ 5] @

This expression gives e, the extension of a linear element, and shows that
(1 - e), the ratio of the length of the element after strain to that before, is
inversely proportional to the central radius vector of a quadric in the direction
of the element before strain. The equation to this quadric can be written

F (&, 0, §) = const., (4)
if F (I, m, n) denotes the right-hand side of (3), and the £, %, { axes coincide with

the o, B, z axes at P. But if e, e,, e, are the principal extensions at P we can
also write the equation

(14 €)% X2 4 (1 4-€5)2 Y2 4- (1 + ¢3)® 2% = const., (5)

the X, Y, Z axes being through P and in the directions before strain of the
linear elements that undergo principal extension. A comparison of equations
(4) and (5) gives relations starting from which the expression (2) can be put
in terms of w, v, w correctly to the third order of displacement co-ordinates.

b

In the first place £ (1 4 ¢,)® is equal to the sum of the coefficients of £% %*

* With a proper choice of the sign of p.
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~ and @in F (¢, 7, ). Subtracting 3 from each of these expressions and
squaring,

4 (291)3 44 (231) (Zey?)

b s R

U N Y
+(ff%—pfﬁz) (S’—Z)E(%ﬂy_)g
+<ap":%~:-?jz)z+(%—‘z"2

on each side terms of order higher than the third in e;, e,, e, or in u, v, w
& have been ignored. The equation puts (Ze,)® in terms of w, v, w, but for some
terms of the third order in e,, e, ¢;. To evaluate the latter to our approxima-
tion it is clear that only relations of the first order in u, v, w are required. Thus

we may use
e O P O @ | Ow
Ll—.aa—i_p——z B = % (6)
and
Se —(‘ p v _w )a“+?_wi F_i‘(_." o _w )
U p—20p e—2/ 0z 020z Oa\p—zdf p—
p Ow v . [Ou , Ow\® | (Ov o du\¥l
it( + —*8(3+p—2) T(az+aa) +(aa+ —*33. ()

two of the invariants of the ordinary theory of elasticity. Hence finally

du p v w , owp
#icl LA b
(Ze) [aa+p—-z 0 p—2z Oz
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3 e, ¢4 is similarly expressed in terms of u, v, w. Evidently X [(1 + eg)t
(1 -+ ey)?], the second invariant of quadrics (4) and (5), can be expressed in
terms of «, v, w, while to our approximation

4%eses =3 + (1 1 €)* (1 + eg)’] — 25 (L + e;)* — 2 (Zey) (Zegey) + 6e,eqey.
Thus we have Ze.e, in terms of u, v, w, but for some terms of the third

order in the principal extensions. As above these may be evaluated by
(6) and (7) together with the third invariant of the ordinary theory, I

G‘””‘“:%(pizgﬂ—piz)%
R T ) () (G 5
PR e ) i e - ) )
ARt
There results
Se =[S ) S 2 L’)
—H(@ = 3]

+@w93@w%1%ﬁaﬂ%+—ﬂ

(s B3 + G + () + &)

P"‘ZO@ p—z

.3w [°] '\u ! a »awz ; 0 aw ” 3
w35 + 6+ @) + (55 55

: 0 . p Oudu, [ p Ov__w\Ov
J %*ﬁ%rpifp——_z_@a—ﬁ(p—zaﬂ — =1

o ow , v \ow]?

+<—28{3+ il
o, G, Qo Qoo D]
9 Co.  Ox Oz  OwOz ' Ox Oz

Ju p Ou Ov/ p Ov_ _w
[E"v o—«o@+au(p—oaﬁ p—z\
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S R (S
+HEta) HE e
H[G 5 a ) E ) s
= ~%+ =

(e %  w \(Ou K ow?® Ow(dv P au""] :
(=225 SletnlT (5 e 8‘{3‘ .9

Using equations (8) and (9) we have from (2) an expression for the strain
energy function correct to the third order of w, v, w. By variation three
conditions of equilibrium correct to the second-order of the co-ordinates of

w

displacement can be derived. These are, of course, general equations ; they
are not needed in the deduction of shell equations, so that as they are compli-
cated they are not set down here.

The Boundary Conditions.

4. The reduction of general equations to shell equations is effected by means
of the boundary conditions at the faces, z = - &, of the shell.

It happens that it is not necessary to calculate these conditions to the
second-order in full : with the strain energy method first-order boundary
conditions can be used, the extra terms of the more accurate conditions dis-
appearing on substitution, while with the other method it is only necessary
to know the form of the second-order conditions.

It is supposed in what follows that the faces are free from all external
surface forces.* We write o, BB, 22, {32, Zo, and 2B for stresses referred to
the actual (strained) elements of area upon which they act, and referred also
to («, B, 2) axes at the point (a.c E, 2), to which point («, . 2) is displaced
by the strain. Thus @z, for instance, is the stress acting in the direction
of the « axis of (z, B, 2) upon an element of area normal to this direction,

~ where by stress is meant action divided by strained clement of area. Second

order expressions for these stresses arve not needed : to the first order they

are of course known.
Suppose now that any point P of either face of the shell is displaced by the

#* This is done as no problem is considered here, or is contemplated, in which the contrary
is the case. It is pointed out below, §6, that no loss of generality is involved.
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strain to P,, which will be in the corresponding surface of the strained shell,
The direction cosines of three orthogonal elements through P,, two of which
are in the strained surface, are required to the first order. They must be
referred to o, B, z axes at P;. The linear elements through P, whose direction
cosines are (1, 0, 0) and (0, 1, 0) before strain, go through P, and lie in the
surface after strain. A common perpendicular to these elements after strain
gives the normal to the strained surface at P,. Hence we find that the direc-
tion cosines of an orthogonal set are given by the scheme

|
' P B z
I;,
o ow
' 1 0u o
e =
) ‘ o 1 p ow
i o p—20B
ow p Ow
3 o = ole
, p—20PB :

the element denoted by 3 being the normal to the strained surface at P,.
The conditions that there should be no action upon either face of the shell
may now be written down at once. These are

- 2 Ow— ow —
Ao—T=— A 2=
P—Zaﬁ - a oL O,

— 0O — . h— O

z—P_za-B(ﬁ[a—zz)——EZ' — 3z % =0, »z2=4h, (10)
and

-~  Ow — ov— p Ow—

% _a—u(? = ”)+é;(33 p——zéﬁa@ 0,

which are correct to the second order of w, v, .

. The Stability of a Plane Plate.

. Sufficient information has now been obtained to reduce the strain energy
function to terms of the co-ordinates of displacement of points of the middle
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surface of the shell, and hence to determine the shell equations. But it is
also possible to write down the conditions for the equilibrium of an element
of volume, and reduce them to shell equations, This is the first of the methods
mentioned above as available. The work with the cylindrical shell considered
hitherto is long, but in the case of a plane plate it is greatly simplified. The
equation for a plane plate is, therefore, deduced in this way, in part as an ex-
ample of the method, but more particularly becanse the process of approxima-
Ntnon is exactly the same as that in the general case of the cylindrical shell.
OConsequently, the work in the latter instance can be set down more con-
Geisely after an easier problem has been handled by a similar procedure.

We take the middle surface of the plane plate in its unstressed configuration
;to be the  y plane, and any normal as the z axis. All co-ordinates are referred
Céto these fixed axes. Suppose that any point (2, %, 2) of the shell is displaced
Chy the strain to (z, 7, ). Then the condition that the force in the direction

ugu

g : T
Sof the z axis on an element of volume should vanish* is

B R S (11)
0z

-

The stresses that occur in this equation are defined exactly as are those abave.
It is easy to see that to the first order of u, », w,

d [, ou\d dvd owc . (12)
-
oz/dx dzdy oOxoy’

ps://royalsocietypublishing.

After calculation of the stresses to the second order, the general equation
‘an be written down, but it need not be given here as the approximate shell
equation can be derived directly.

Suppose that u, », w can be expanded in power series of 2, so that

U=ty Uyz - U2® ...,

U=y V¥ Vo

and

Downloaded from lltt

W= Wy -+ w3z + W" + .o,

where w,, v, w,, and the various coeflicients of powers of z are all functions of
x and y. g v, and w, are evidently the co-ordinates of displacement of a
point of the middle surface of the plate. With these values of u, v, w, we may
reduce the left-hand side of (11) to a power series in z; the equation must be

* (f. Southwell, loc. cit., p. 196 ; also for equation (12) below.
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satisfied for all values of z, so that in particular the term independent of 2 iy
this expression must be zero. The resulting equation is '

2 Doy 0 =
(1- ) i @o— 7 aﬂ“’

—%a%(‘w( )a,,(ﬂo % ),

0 — = o~
—ty (22) — ©1 5 (22)g + (1 —wy) (22)1 =0,

awo (zz)l.

where, for instance, (zz), stands for the term independent of 2, and (zz),
for the coefficient of z, in the expansion of zz. Equation (13) is not yat.
shell equation, owing to the appearance of such terms as wu,, v), wy; to elim-
inate these the boundary conditions are used. For a plane plate equahong
(10) reduce to

~ ~
o ow — ow —,
:z—?.—ay z—2-—-az 20— 0, (14)

— ow— — Ov— w— (1,5)‘{

and
— W= = 0P O .
w— (o — 22) + 5o yz — Fray =0, (16)

each condition holding for z = 4 /.
Therefore there are six conditions of which

— u;u Oy —

i Qw, —
G0 — 3,2 (19— ) — 32 (@) — 7 @
= DNl ety w, oWy — —
-Jrhzt(yz)r(a—-t:f(zy—:« “ (yy ~Z)1—~(Ty"(y'—:2)z
P tal ovy —
— 52 (@) — 52 (), — 7 (s
Owy —. O, = — Dy == \
— % o — B2 9 — e @l |+ - =0 (00

derived from the two equations from (15), is typical. These equations need
only be used for the reduction of terms of the first order: for the others, ]
simplified forms of these conditions, obtained by ignoring the second-order
terms, are sufficiently accurate. Further, first of all we calculate a first
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| approximation to the equation (13) by ignoring A2 For the reduction of the
- second-order terms, then, we have the simple equations

Onet 20 s + 20+ S) o, (18)
(A 2u) 2w, + A@%-}-%%‘) il (19)
nt g =0, (20)
2v,+%‘;_1 =0 1)
u1+%ﬂ;ﬁ =0, (22)
il
2u2+% —o0. (23)

These equations can also be used to simplify the more accurate boundary
conditions (14), (15) and (16). For example, in (17) the terms %o(z;)o and

(2z), can both be ignored, by reason of equations (18) and (22) ; the other

boundary conditions can be similarly dealt with.
In finding the first approximation, then, even for the reduction of terms of
the first order, we have only to use the relatively simple equations

(2”,—2)0 = (22)1 == 0)

e B S PR Wy ,—

¥2)o — 3, o — 7 (@) =0,

and A -

— D s RO

(@)o — 52 @0 — . E)o =05

the other two conditions are not needed.

Again, what has been said as to the reduction of second-order terms shows

that the first approximation to (13) is to be obtained from

Downloaded from https://royalsocietypublishing.org/ on 08 August 2022
%) Bo2
&ls

Q= g ,— —
o (22) + a—y (y2)o + (22)1 =10,
which by the conditions above is reduced to

2 20 )0+ 38 @l + 5 N+ T2 e | = 0

VOL. CVIL.—A. 3F
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All terms in this equation are of the second-_order, so that the final reduction
to terms of u,, v,, w, can be effected by equations (18) to (23). The resulting
expression 1s ;

owy 4 (A + 4. _2ud Oy) ,  Ow
azlam{“-k2uuag )\V’ af qu( +a_“9)]

0 [Qwy [ 2u) Ou @ (A4 p)o } Aw, /O, au,,):l
9 | ot Oty ) Oty (O% 4 O%) | —
+8;1/Lay A+ 2p i’w+ A+ 2 Oz = <8y+8y 9 e

If a second approximation were required with complete accuracy it would
present some difficulty, but it is possible to justify a posteriori in practical
problems of elastic stability the neglect of terms of the second-order of displace-
ments when multiplied by #2. Hence, what must be added to the left-hand
side of (24) is merely the term in A% which appears in the Theory of Thin Shells,*
that is to say :

_ A (A1) jag g,
B+ 2w L

The shell equation is finally

2( A+ p) 3 [ow Sug | . gl , A+ 2u Owy[Ony | O
e[ n g g+ AR R

ozl oz 2
) aw[ cu oY,
'—a—y[‘éjll'a—l?'!"z()\-{“t’-)‘éj}
A+ 20 Ow, (Ovy | Oup\]_
Rl

or

O [Cwy/ Ouy , Cvp\ , 1 — o 0wy [Ovp , Oup\] _
kG % e ?f(‘a;’+7?fyg>]_0’ a

o denoting Poisson’s ratio. ‘

The equation of stability follows immediately from (25). Let the plate be
stretched by external forces acting in its plane, so that the displacement of
any point of the middle surface is (ug, v, 0). If the equilibrium of this con-
figuration, called the equilibrium configuration,” is * neutral,” there will
be a neighbouring configuration of equilibrium, the “ distorted configuration,”

* This expression can be obtained by the general method of this section without trouble ,
or it comes immediately from equation (32) below.
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in which the displacement of a point of the middle surface is (g, v, #'). Then
w' must satisfy the stability equation

h? p_ O [0w (Quy , g\ , 1—0ow

3V — 5[5 (G +o aJ) & (5’”“ ay/]

) a ’ ;1 == ’

and certain boundary conditions which need not be considered here. The
condition that there should be a non-zero solution w' with these properties
determines the  critical ” values of the external forces ; if these are exceeded
the plate will collapse.

The equation (26) can be written*
where T,, T,, and S are stress resultantsT in the equilibrium confignration.

In the general case the stability of an equilibrium configuration (ug, v, w,)
is examined, and three shell equations must be considered. The equilibrium
of this configuration is neutral if there is a neighbouring configuration (i, - «',
vy + v', wy + w') which will satisfy the equilibrium and boundary conditions.

By subtracting the shell equations for the two configurations we have three
equations containing terms of the types u’, wu', and w™ The latter terms
can be neglected, for, from the nature of the case, the absolute magnitudes of
w', o', and ' can never be obtained ; these quantities can therefore be supposed

Dvl‘w’

so small that their squares and products are negligible. Consequently, in
general the stability equations are linear in «', v" and w', the coefficients being
functions of u,, v, and w,.

The simplification in the case of a plane plate comes from the fact that the
question of stability arises only in connection with equilibrium configurations
in which the middle surface is plane. It is then found that one stability
equation contains only ', if we take as the distorted configuration
(uy + ', vy + v, w'), while the other two contain only " and +". There are
therefore two distinct modes of collapse, and only one of these—that which
is determined by the stability equation found here, and which is accom-
panied by the familiar buckling of the middle surface—is of physical interest.}

* Special cases of this equation have recently been considered by Southwell and Slmn.‘
* Roy. Soc. Proc.,” A, vol. 105, p. 582, and by the writer, * Roy. Soc. Proc.,” A, vol. 106,
p. 268.

T The notation is that used in Love, op. cil., chap. 22,

1 Sece §8.

3r2
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The Reduction of the Strain Energy Function.

6. Returning to the general case, we have now to express the strain energy,
given by equations (2), (8) and (9), in terms of u,, vy and w, by means of the
boundary conditions (10). Supposing, as in §5, that u, » and w are expanded in
power series in z, an expression for W can be found of the form

, W=WO+WIZ+W232+...;
the energy of the whole plate is then

HMBLQ—E) (Wo+ Wyz 4 We2? o+ ...) da.

It is proposed to evaluate this, neglecting terms in 2%, terms of the fourth and
higher orders of displacement co-ordinates, and terms of the third and higher
orders when multiplied by A2 This accuracy is sufficient for most stability
problems.

We have, then, to find W' given by

W' = Wyt 5 (W, — Wifo) (29

terms of the third order being neglected in W, and W,. The calculation is
divided into two parts. First are obtained the terms not multiplied by 4*;

‘the deduction of the others is a problem in the ordinary theory of elasticity,
~and does not demand the special accuracy of the results given above. It may
‘be remarked that there is no a priori reason to suppose that Wy, does not contain
terms in A2 as it will involve, for instance, terms in u;, v; and w,, and for the

reduction of these to wu,, v, and w,, conditions similar in form to (17) must be
used. As pointed out below, however, W, does not in fact contain such terms,
and this circumstance simplifies the reduction considerably.

W, is calculated exactly as is equation (24) above. For the reduction of the
third-order terms we have the simple boundary conditions

(3—3)0 = ("'—3)1 =10,
(‘B_Z)o = (18—:)1 =0,
(Z‘)o = (5’;)1 =0,

the stresses being reckoned to the first order only ; and these equations can be
used to reduce the more accurate boundary conditions (10) to

(Z_Z)o = (;%)l = 01

and

e 4 B gyt
(B2)g — 5“’5’ (BB)o— %—'ﬁﬂ (%B)y = 0, ete.
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The only one actually required is the first, which can be written

(0 -+ 20) w, + x(%nug—‘(’;—“’fhho, (29)

where F is an unknown function of the second-order in u,, %, ete. -
Simplifying the third-order terms of equations (8) and (9) by the simple
boundary conditions, we have

[ze,] = (B2t 1,)

%
B e[ (e
+ (%%@Jr %)’ —4(Fo+ %‘{f .
i[85 B
+ 2%9[(_%)2 +uf ol (%"g + ‘;’3)2]
() fur+ (3] + ot ()]
+ 20, G (G G+ ()]
a2+ %%, (G2 S

Using (29) to put w, in terms of wu, v, w, in the expression for W, it is found
that the unknown function F disappears; there is therefore no need for the
complete second-order boundary condition, a circumstance that reduces
considerably the algebra that would otherwise be necessary.

The final result is

o 2u(n ) [ Ou dvg  wo\' . @ (B, we\ ?_q;“ a_uoa
“°=_—_—{—9;0+8—[-}Q—J> 2;;.[}(.4» =¢)— 1 D}'aﬂ>l
©)

A2 P ot
Qwy 2 2 (A + 1) Quy AL [Ovy )
('a_a”)[ A+ 2u acx+>\+2p(,8@ p']
dwy vy Aw uy 2u(A+p) (On 1wy
+<ag = J[)\-{-L’p.aoc-l_ *+ 2 (g p)]
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This represents in the first instance a first approximation to W, obtained
by neglecting terms multiplied by 4% It remains to find the terms in /2,
The result in this case is known, so that only an indication is given of the method
of reaching it by the processes of this paper. The terms of the third-order can
be ignored throughout, and we have merely to express in terms of u,, v, and w,
the coefficient of A% in

Wo+ 2 ( - Wi/e),

by means of six boundary condltlons such as
(a-u 8»0 w0>
0B o
Oy rv2 100 10y, wy w w
i A ——2——1—_12)}:0.
( TR TEE o & @

This can be done by successive approximation, the process being simple because

(2 + 2p) wy +

s kzli(k + 2p) 3w; +

it is found that upon combining the various terms none of the functions w. v, w
appear with suffix greater than 2.

Were this not the case (as it is not if the alternative method of §5 is used for
a second approximation), it would be necessary to use the relations that can be
derived from general equations by equating to zero the coefficients of the various
powers of z, to reduce the suffixes.

The final expression* is

5 A Ou  dv w\® _Ou/dv ov , ou\?
Wih= £+§:)( o i 287.('8?3 9)+%<8a p)

Qw\B[2 (A4 ) du A Oy w
”a—a) [ A+2y. % x+2g(@";”

2 du , : B _ wy
Hagth im et S e Al

ow /0w , v\[dv , Ju 3A+2u [Ou, Ov w\(dv__ Ou\’
aoc\a{il )(ax—i—a{s)—l ()\-{—2(1.)(31 op p\kav )
20 A
= [)\j__; (kg + #9)* + 7* — Kyty
= A L2 (et )
+2(x+2u){e‘+x+2 (et edfaalets
A o
+2(x+2g){€2+A+2p(e‘+e‘-’)}aaa(€‘+32)
M 0* @*

2()\_}_ 2“') aaaﬁ(el_‘*_eZ)—l_&_P_z

* From this point onwards the suffix 0 has been dropped ; all co-ordinates of displacement
are of points of the middle surface, :
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3242 | con)® 3Ky (gtey)
+2(A—}—2p.)2l +)\—|-2p.( Te“)l A42m y P ;

_ (5A+4p) (¢, +«,) A @t
2(A+2u)p )\—}—2;1.(8‘—*_52)} _Eg;:l

In the A* terms is used the notation of the Theory of Thin Shells,

{et

d - ; X ;
s 3: % gl;} %’ = g; gg
o*w 00w, v\ __ 00w, v
m=gh a=glptd) =gty

The result (except for the third-order terms) is equivalent to one given by
Basset. *

The discussion has been limited for simplicity to the case in which there is no
action on either face of the shell, but were such actions to exist no essential
alteration in the procedure would be required. The expressions in equations
(10) would then be equal to functions of the surface tractions, and therefore of
« and B, and of the displacements of points of the surface.t The successive
approximations could be made in exactly the same way, and the only difference
would be that in the equations obtained by the method of §5, and in the strain
energy of the present method, terms depending on the surface tractions would
appear. It is true, as pointed out by the late Lord Rayleigh, that if there are
surface tractions no form for the strain energy entirely in terms of the displace-
ments of the middle surface is possible, but for most purposes this does not
constitute a difficulty, as the equilibrium or stability of configurations under
given systems of external force is considered.

The Shell Equations.
7. In a position of equilibrium

H W' dadf

taken over the middle surface of the whole shell must be a minimum, so
that
”SW'dud@ =

¥ ¢ Phil, Trans.,” A, vol. 181.
+ Of. Southwell, loc. cit., p. 213.
t ¢ London Math. Soc. Proc.,” vol. 20, p. 372.
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where 8 denotes an arbitrary variation of w, v and w. This equation can be

written in the form

j.J'(ASu—{—BSv—i-CSw) dodf -+ [I(8M+21;

where A, B, C are functions of u, v, and w, by such relations as*

>dad(3—0

%8 02X oX
—_é aa28¢ aa( _:/.é 8¢)
a 02X oX 08 aX
”‘aé% aaw“( i RS 0% i -LOE
and
x8%_ Ry L (xay)

The second mtegral can be transformed into line integrals along the edge
of the middle surface, from which the boundary conditions at the edges can
be obtained. These are not usually of importance for a theory of elastic
stability, and need not be considered here.}

The shell equations are given correctly to the second-order of u, v, w by

A=B=C=0.
Written in full these equations are

aa\\auﬁ_“ ) {QQ_J 7: 2(aw+ )\_*_l-i—a(gg_@ﬂ)z

p P 8 9B
T ot s + s 0w
g a2+ g + o At

rusog-gigas)]
ol e et ot oeg o)
_}_ko ey B +e)+1;”(§:’2—§>}]=° (30)

312(1 —0) Qa0p !

* See Love, ‘ Phil. Trans.,” A, vol. 179, p. 514,

t For instance, in the problem of the tubular strut examined below, it is impracticable
to find the condition for the collapse of a strut of length ! under given end conditions.
What is done is to find the condition that a distortion of wave-length 1 may be maintained
in an indefinitely long tube.
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."’{Z(—li_j)aao( +ae,)+—(—"—)aﬁz(ez+osl)

e Ot S ae T T

K 240 &+ k)

o

~iop

N
&
3
o))
< NEPLE
&8 2(1—a) ¢
E 171 — g 0w dv aw \@2 ou
B ——[ 2 aa(am+ p)+<ap p/<8{3 p+ 3:7)
8
i k(3 _ (2224
%D 3 lap(xl'*""z)’i‘(l O‘ ()ay 8{5)
= 2+0 a(ez—i-oel) (1—
3 ~2(1—0)3B\ 2
Band
8 e/ e [, O O, O
% 5llaatom et T -9z )
=
£ 9302 o 240 O
E +2(1——o‘)9312(1+£2) 2(1_6)9872(52—{-051)
= 240 02 (82—}—05\ 1—0 02 (@
g T30 —a) o\ p /) 2 oudB'e
= 0 [Ow [Ou dv _w\| 1l—0 ow /0y , Ou
3 _%[cﬂ{a+“(,é'é 5)l+ (ap+ H +ag)]
S
= o [(ow , »\[dv W au 1 —odw [0y , Ou
5 “éﬁ[(—g+§)‘xaﬁ 5 aoc( +ap>]
A 1[ov w ow , v\2 v|8_ (ow\*] , 140 ov
—E[ﬁ_;—%*(‘g{;'{") ’“’taa.”(a )J+ <31
h? o o2 o
+§ {2(1_0)3‘@(314‘032)'*‘2(1 )3{3 (2+ 0¢y)
o 0z g 0@ 140 e+og
+2(1—o)—8?2(€1+e2)+§8133+(l—or)‘l' p?
K 240 x+

+(1+0)-;—§(T_—55

P

Kyl

.‘)2

o]

ou\2

)

/]
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—0. (32)
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o as usual denotes Poisson’s ratio ; it has been found convenient to use the
elastic constants 2, p in the intermediate stages, though the equations them-
selves are simpler in terms of o.

From these equations as in §5 the equations of stability of any known

configuration can be immediately set down.
It will be seen that the complexity of the equations is not due to the second-

order terms, which are comparatively few and in the main symmetrical, but

to the terms in A%. The theory of thin shells simplifies the latter considerably
by physical assumptions, but it does not appear possible to simplify the equations
above on mathematical grounds in the general case. However, in a definite
problem it is probable that it would be possible to see without difficulty which
of these terms were important, and avoid unnecessary labour as is done in the
problem considered below. It is not, therefore, thought worth while to abandon
a process of approximation which, though unnecessarily accurate in some
cases, is at least definite, in favour of one which it is legitimate to describe in
the words of Rayleigh® as of ““ill-defined significance.”

Ezamples of General Theory.

8. It has been remarked in §5 that a plane plate in a configuration of
equilibrium in which the middle surface is plane, can collapse in either of two
independent modes, of which one only is of physical interest.} The result of
this is, as has been seen, considerably to reduce the work necessary in a problem
of stability. It is of interest to show that this is the case from equations
(30), (31), and (32). From them the corresponding equations for a plane plate
can be deduced at once. They are

a5+ GG+ @ -5

Y.
d[l—a(0 8u Sw 0w o/0v Ou\ Ou , Ov)
+8y[ 2 ( ay+8xay) 4 (ért—“ﬁg)(ax—kay/]

RS, (u,0) =0, (33)

O0[l—og(0v  Ou, dwdw\, 14-o/0v Ou\/ou ,k v
;‘r[ 2 (81 E%R—D_y')"*' 4 (\é;, ay)(az+ay>]

d [v dw)\? dw 1+o(dv _Ou\?
r_a'/|:a.l—+.1’ dy. AR 1ax+é(8—.>}+ 8 (83: 8y>]
RS =0, (39

* Loc. cil., p. 374,
T This was first pointed out by Southwell, loc. cit., p. 202.
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-

i;! " 0 [Qw/Cu ov\  1—oow/ av ou)

E“?vlw oz [am(\ar+ ay>+ 2 ay(aa, ay)]

: _O[Ow/dv , du\, 6 1—gow/ av du
ay[ay‘.ay“m’* 300 e )|=0. 69

In equations (33) and (34), f; (4, v) and f, (u, v) are functions linear in u
(.\?nd v. (35) is in agreement with equation (25) obtained by the alternative
Hnethod. It is easy to see that if in these equations we substitute first (u, v, 0)
?gnd then (u -+ ', v+, '), the displacements of the equilibrium and
Blistorted configurations respectively, and then subtract the two sets of equations

gnoring terms above the first-order in «', »" and w’, the first two equations
Sontain only «’ and o', and the third only »". Consequently two independent
anodes of collapse are possible.
oo There is one point of importance. The condition that there should be a
o*}on zero solution of the third equation will evidently require in general the
étra.ms such as du/dz in the equilibrium configuration to be of the order of 2%
.__ﬁ.[f instability in this mode is to appear before the breakdown of the material
Atself, if, that is to say, a theory of stability is to have practical value, the
%trains in the equilibrium configuration, and consequently A%, must be very
'%mall But these are precisely the conditions that the approximations used
'%ln reaching (35) should be justifiable, for in this equation we have neglected
Oterms similar to those that appear when multiplied either by a displacement
r,,or by k. Consequently the condition that this instability should be possible
::a'l'n practice, is the condition that equation (35) should be competent to determine
gwhen it will take place.
é The position in regard to instability of the other type is entlrely
Sdifferent. From equations (33) and (34) it is clear that in general a
%non-zero solution in #’ and ¥ cannot be obtained with small strains ; the
"= strains must be of the order of the coefficients of the terms in «’ and v’
Salone. This result regarded as a first approximation shows, however. that
there is no ground for neglecting any order of displacement co-ordinates, and
there is no reason to suppose that further approximations would alter this
conclusion as to the order of magnitude of the strains. This type of instability
is then of no practical interest, and it is therefore a matter of indifference that
sufficiently accurate equations would, in the general case. be impossible to
obtain.* The theory of the stability of plane plates is, therefore, in the

* With the simplest types of stress there is, however, no difficulty.



Downloaded from https://royalsocietypublishing.org/ on 08 August 2022

756 W. R. Dean.

fortunate position that it is only adequate to deal with problems that are o
practical significance.

The Stability of a Tulbrdar Strut.
9. As a more interesting example the stability of a tubular strut is briefls
considered. This problem has been solved by Southwell,* using in the cas
of distortions of axial symmetry his general theory of stability ; but in the cas
of distortions of any type, the theory of thin shells. The general case, then, it
here considered for the first time without the latter theory. A
The equilibrium configuration of a long circular cylindrical shell in com-
pression due to end thrust is given by

u = O, v=20, w = obp.
0 is a constant and so, in this problem, is p. These displacements will evi-
dently satisfy the shell equations. If the equilibrium of this configuration is
neutral and a symmetrical distortion of the shell is liable to take place, the
shell equations can also be satisfied by the displacements

u= 0 + o, v=20, w = obp + w',
where % and o are independent of 8. Subtracting the shell equations for the
two configurations, and ignoring terms of order above the first in »’ and ',
we have the two stability equationst

d[ow ow B[ o o2 (0w ouw
‘a;[ L2 (3

a  p 3[2( cr)ao'2 am——’

@
o a-<au H‘ a!l—{—a) Qf) [

2(1—o0) 002\00. o)2p (oaa_p,

9 2 — 302 e\ .
+ e, sl ool

+

and

B[ow | 2—30% & (3 w\ 240 0%/ Ou_w
[aaﬂ‘z(l_a)p‘aoce(a—a_Ef—z(l—o)r»aﬁ(”aa p)]

—da= a;;g’

-1 [“au’ w B[ o a2 (a'u’ awl‘)

— — .

% b 5 \BO—oed ok b

l+e (au w) o (1 + 20) azw'[]=0_ (37)

+( 067—-? T 31 —oa)p Oaf.

1—og)2p2)\
* Loc, cil., pp. 227-236.
t Equation (31) is satisfied identically by both sets of displacements.
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?' Writing
W =TUsinLE,
o]
r‘&nd ‘

w = W cos &,
P

when U and W are constants, the condition for a non-zero solution of the
Nequations can be written down at once in determinant form. As a first approxi-
Shation ignore the terms in A2in (36) and (37) ; then

Q

7 1 — [ =0,
& P p
Z

1
® —%g, 5-2—5-9(1—02)%
8o that
) 1
5] =
S &
EA.S a result, ¢ must be large if the stress is to be one of practical interest. The
-énext pproximation, in which the terms in A* are included, is therefore written
3n the form
2 g.8.— 72 2,2 2
o SI.+A’12_?+B’L‘1, _f+c}_‘__‘1_+Dé.
2 P g p* P p* e’
2 =0
= _oq h2 i h2 1 2 h2qt h2a2 h2 %
e e Al s R T
Siwhere A, B, C, are non-dimensional constants independent of ¢.
§Further, let

1 h2

g 0= — 0 -+ o0r )
£ ¢ P

2 and evaluate the determinant to order A2

F§ Then 01q2 = — (Lg* -+ Mg® + N),
'S where L, M, N are further constants independent of ¢.
The final form for 6 is then

=k Wy 1_\1_\
0= — 5 (Le* + M + )

and the minimum value of 6* for all values of ¢ is given to a first approxi-

Dow

mation by
0= —2WE,

* This corresponds to the minimum thrust that will cause collapse in the mode con-

sidered ; only this minimum value is of practical importance,
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where

H 1
1—0® 3(1 —o?)"

L=

With this value of 0 we arrive at the known formula for the minimum total
thrust, S, that in a strut of any radius will cause this type of collapse,

1 1
S = 8rEh? —_—
To consider any type of distortion, the configuration adjacent to the equili--!
brium configuration must be taken to be
U= B 4+ o, v=1v, w=obp + w';
', o', w' are now functions of « and p.
Forming the stability equations in the usual way, the only terms in 6 are

1—o02),/0% O (1 —o02),/0% 0%
found to be . (L—ot (ot _ O\
Fide Yo ; i 9 ( ope aaag>’ 1 °<aa2 aaap>
— (1 —0%) 6 =, in the first, second and third equations respectively.
Ou2

Setting in these equations
u= U sin & sin ]—CE,
P P
v ="V cos & cos A—@

PP
and

w= W cos I sin E-E
e e

a first approximation to 0 (ignoring 42) is found from the determinant

1—670 o 1—0%p,, l1+o0, 1 —g%sy

l—a._l—ﬁ

— = 7 ”

g2, —k

—oq ; k , L (l=ot)tgt
Expanding and ignoring 0%, we have

(1 — 0)2(1 —0?) [qa + ¢20 {1.2 (k2 1) + 2k3g2 2 E%g2 4 9‘]] =0

It is assumed that % is not zero,* as this case has been already discussed.

* The forms assumed for «/, v/, w’ are not valid if £ = 0.



Theory of Elastic Stability. 759

Accordingly, ¢* must now be small if a stress of practical interest is to cause
collapse. As a first result then
e SR
k2 (k24 1)

It is next necessary to find the various types of terms in the expansion of
the determinant to order A*; the coefficients are not in the first instance
required. It then appears that the minimum value of 6 for given %k (which
must be integral) corresponds with a value of ¢ which is such that 6, ¢*> and %
are small quantities of the same order. The determinant contains no terms
independent of, or linear in, these three quantities. A first approximation to
f is therefore obtained from an evaluation of the determinant to the second
order of these quantities. The terms in ¢* and 04 are known, none in 6% or
¢*h can appear, so that only terms in 6% and 2% remain to be evaluated. There

are physical grounds for ignoring the terms in 6%, and some mathematical
grounds. Completely to determine them would of course require a revision
of the preceding work, so that the shell equations should contain the relevant
terms of the third-order. However, some of the terms in 6 already appear
and are multiplied in every case by the square or higher power of ¢ ; this is
also the case with those that arise in third-order shell equations which have
been found in a special case for another purpose. It has therefore appeared
impossible that these terms could affect the result, and they have not been
calculated in full. The %2 term is readily obtained. Writing the determinant

alsocietypublishing.org/ on

alSo

I>\i o 2 9
ge-0,, o 1—0%q, h? it+e,  1—0q BIL- C}r
%i_/' I 4 el" +Apg’ 2 q 4 ’I+ Pg ’ 0‘1+ p‘*’
o, _l—a'-"o_ D@ __/(.zﬁl—or 2——1_626'2—4~B‘{'—2 SR Glf

o

E S i , Tl s 14 (1—o) 02 +I%
o] 1 2 2 >
S e P p? |
©  where A, B, C, ... are constants, the term in %? is seen to be

£ (1 — o) k2 A2

2 LB F — kG + K — k).

a & &

In this expression only that part of F, for instance, independent of ¢ is
required, and this must come from the terms in o' not differentiated with
regard to « in the second stability equation.

The final result is

L—0[(1 %) gt + (1 — 0% O (4 1)+

kA (ks —1)2 E] —
3 p* '
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The minimum value of 0 is given by
pe BBk
Vi(l—o?e’
the corresponding minimum total thrust, S, that will cause instability in the
mode defined by % is
S = 8nEA?

—1 A
B41 3(1—o02)
verifying the result given by the ‘ Theory of Thin Shells.’*

On the Fluorescence and Channelled Absorption of Bismuth
at High Temperatures.

By K. Rancapsama Rao, M.A., Madras University Research
Scholar.

(Communicated by Lord Rayleigh, F.R.8.—Received January 2, 1925.)
[PraTe 12.]

In a paper recently communicated to the Royal Society, experiments dealing
with the absorption spectra of several metals were described, in which it was
found that bismuth vapour shows both lines and bands in absorption. The
banded spectrum consists of three groups of bands, each group consisting of
a number of bands degraded towards the red, the group of bands in the visible
region appearing at high temperatures.

In the above experiments it was hoped that by raising the temperature of
the absorption chamber sufficiently high, and raising the absorption in the
lines of the several bands, it might be possible to detect a fine structure in
some of these bands. Accordingly, the author modified the furnace pre-
viously used so as to blow through it a larger quantity of compressed air, and
succeeded finally by using coke and this furnace to obtain a temperature of
about 1500°C. to 1600°C. At this temperature the vapour emitted &
fluorescent radiation orange yellow in colour.

In these experiments the spectra were photographed by a Hilger glass
spectrometer of the constant deviation type. To obtain the fluorescence and
absorption spectra in juxtaposition, the slit of the collimator is provided with

* Southwell, loc. cit., p. 235.




