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A unified theory of homogeneous and electrochemical electron-transfer rates is developed using statistical 
mechanics. The treatment is a generalization of earlier papers of this series and is concerned with seeking a 
fairly broad basis for the quantitative correlations among chemical and electrochemical rate constants 
predicted in these earlier papers. The atomic motions inside the inner coordination shell of each reactant are 
treated as vibrations. The motions outside are treated by the "particle description," which emphasizes 
the functional dependence of potential energy and free energy on molecular properties and which avoids, 
thereby, some unnecessary assumptions about the molecular interactions. 

1. INTRODUCTION 

A
THEORETICAL calculation of the rates of 
homogeneous electron-transfer reactions was de

scribed in Part I of this series1 and the method was 
subsequently extended to electrochemical electron
transfer rates.2 The calculation was made for reactions 

involving no rupture or formation of chemical bonds 
in the elementary electron-transfer step. In this sense 
these electron transfers are quite different from other 
types of reactions in the literature. This property, 
together with the assumed weak electronic interaction 

of the reactants, introduced several unusual features: 
"nonequilibrium dielectric polarization" of the solvent 
medium,3 possible nonadiabaticity, unusual reaction 

coordinate, and an approximate calculation of the 
reaction rate without use of arbitrary adjustable 

parameters. 
Applications of the theoretical equations were made 

in several subsequent papers.2
•
4 The mechanism of 

electron transfer was later examined in more detail 

in Part IV using potential-energy surfaces and statisti
cal mechanics.5 (In Part I the solvent medium outside 
the inner coordination shell of each reactant had been 
treated as a dielectric continuum. The free energy of 

reorganization of the medium, accompanying the for
mation of an activated complex having nonequilibrium 

* This research was performed in part under the auspices of the 
U. S. Atomic Energy Commission while the author was a visiting 
Senior Scientist at Brookhaven National Laboratory. It was also 
supported by a fellowship from the Alfred P. Sloan Foundation 
and by a grant from the National Science Foundation. A portion 
of the work was performed while the author was a member of the 
faculty of the Polytechnic Institute of Brooklyn, and was pre
sented in part at the 146th Meeting of the American Chemical 
Society held in Denver in January 1964. 

t Present address: Noyes Chemical Laboratory. 
1 R. A. Marcus, J. Chern. Phys. 24, 966 (1956). 
2 R. A. Marcus, ONR Tech. Rept. No. 12, Project NR 051-331 

(1957); cf Can. J. Chern. 37, 155 (1959) and Trans. Symp. Elec
trode Processes, Phila., Pa., 1959, 239-245 (1961). 

a R. A. Marcus, J. Chern. Phys. 24, 979 (1956). 
• R. A. Marcus, J. Chern. Phys. 26, 867, 872 (1957); Trans. 

N.Y. Acad. Sci.19, 423 (1957). 
& R. A. Marcus, Discussions Faraday Soc. 29, 21 (1960). 

dielectric polarization, was computed by a continuum 
method.) In Part IV, changes in bond lengths in the 
inner coordination shell of each reactant were also 
included, and the statistical-mechanical term for the 
free energy change in the medium outside was replaced 
only in the final step by its dielectric continuum 
equivalent. 

A number of predicted quantitative correlations 
among the data were made on the basis of Part IV. 
They have received some measure of experimental 
support, described in Part V and in a recent review 

article.6•7 A more general basis for these correlations is 
described in the present paper, which also presents a 
unified treatment of chemical and electrochemical 
transfers. 

The form of the final equations for the rate constants 
is comparatively simple, a circumstance which leads 
almost at once to the above correlations. (It permits 
extensive cancellation in computed ratios of rate 
constants.) This simplicity has resulted from several 
factors: ( 1) Some of the more complex aspects of the 
rate problem are rephrased so that they affect only a 
pre-exponential factor (p) appearing in the rate con

stant, a factor that appears to be close to unity. 
(2) Little error is found to be introduced when the 
force constants of reactants and products are replaced 
by symmetrical reduced force constants. (3) An 
important term (X) in the free energy of activation 
is essentially an additive function of the properties of 
the two redox systems in the reaction. 

The electron transfer rate constants can vary by 
many orders of magnitude: For example, known 
homogeneous electron-exchange rate constants vary 

by factors of more than 1015 from system to system, 
and electrochemical rate constants derived from elec
trochemical exchange currents vary by about 108 at 
any given temperature.6 (An electron-exchange reac
tion is one between ions differing in their valence 

6 R. A. Marcus,]. Phys. Chern. 67, 853, 2889 (1963). 
7 R. A. Marcus, Ann. Rev. Phys. Chern. 15, 155 (1964). 
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state but otherwise similar.) Thus, small factors of 
2 or 3 are of relatively minor importance in any theory 
which is intended to cover this wide range of values. 

Some approximations in this paper are made with this 
viewpoint in mind. 

In the present paper classical statistical mechanics 
is employed for those coordinates which vary appre

ciably during the course of the reaction. This classical 
approximation is a reasonable one for orientational and 
translational coordinates at the usual reaction tempera

tures and, in virtue of the above remark, for the usual 
low-frequency vibrations in inner coordination shells. 

Because of cancellations which occur in computations 
of ratios of rate constants this approximation could be 
weakened for deriving the predicted correlations, even 
when the quantum corrections would not be small. 

In calculations of absolute values of the electron
transfer rate constants a classical approximation will 
introduce some error when the necessary changes in 
bond lengths to effect electron transfer are so small as 

to be comparable with zero-point fluctuations. How
ever, in this latter case, the vibrational contribution to 

the free energy of activation is itself small and does 
not account for any large differences in reaction rates 
in redox reactions which have been investigated experi

mentally. Hence, for our present purpose and, in the 
interests of simplicity, this particular possible quantum 

effect may be ignored. 

2. ORGANIZATION OF THE PAPER 

The paper is organized in the following way: 

Individual and over-all rate constants are distin
guished in Sec. 3, potential-energy surfaces for weak

overlap electron transfers are discussed in Sec. 4, and 
formal expressions for the rate constants are given in 
Sec. 5. The latter expressions arise from a generalization 

of activated complex theory.8 The approximate relation 
of certain surface integrals appearing in Sec. 5 to more 
readily evaluated volume integrals is described in 
Sec. 6, where certain complicating features are re
phrased so as to cast some of the difficulties into an 
evaluation of one of the pre-exponential factors p. 

In Sec. 6 a linear dependence of an effective potential 
energy function (governing the configurational distri
butions in the activated complex) on the potential 
energies of reactants and products is established 
[Eq. ( 13) ]. The rate constants are expressed in Sec. 7 
in terms of the contribution of the coordinates of the 
solvent molecules in the medium and of the vibrations 
in the inner coordination shell of each reactant to the 
free energy of formation of the activated complex. 

To deduce from Eq. (13) a simple dependence of 
the free energy of activation on differences in molecular 

s R. A. Marcus, J. Chern. Phys. 41, 2624 ( 1964). The U in the 
present Eqs. (1) to (3) was denoted there by ut. 

parameters, the contributions of the above two sets of 
coordinates are treated differently (Sec. 8), since one 
set already has a desired property while the other does 
not. Changes in bond force constants accompanying 
electron transfer are responsible for this difference in 
behavior. However, it is shown later in Appendix IV 
that the introduction of certain "reduced force con

stants" circumvents the difficulty, with negligible error 
in typical cases. The contributions of the two sets of 
coordinates are computed in Sees. 9 and 10. The 

medium outside the inner coordination shell of each 
reactant is treated by a "particle description." 9

•
10 The 

latter is a considerable generalization over the custom

ary permanent-dipole-induced-dipole treatment of polar 
media and serves to emphasize the functional depend
ence of the free energy of activation on various 
properties and to facilitate thereby the analysis leading 
to the predicted correlations. 

The standard free energy of reaction and the cell 
potentials are introduced in Sees. 11 and 12, and are 

used in Sec. 13 to evaluate a quantity (m) closely 
related to the electrochemical and chemical transfer 
coefficients. The final rate equations are summarized 

in Sec. 14. 
The additive property of X, mentioned in the previous 

section, is discussed in Sec. 15 and further established 
in Sec. 16. The significance of the characteristic scalar 
quantity (m) appearing in the potential-energy func
tion of the activated complex is deduced in Sec. 17. 
Deductions from the final equations are made in Sec.18. 

In Sec. 19 the present paper is compared with earlier 
papers of this series, and the specific generalizations 
made here are described. Detailed proofs are given in 
various appendices. In Appendix VIII it is established 
that under certain conditions the correlations derived 

above should apply not only for rate constants of 
elementary steps but also for the over-all rate constant 
of a reaction occurring via number of complexes of the 

reactants with other ions in the electrolyte. 

3. INDIVIDUAL AND OVER-ALL RATE 

CONSTANTS 

Many chemical and electrochemical redox reagents 
are ions which possess inner coordination shells and 

which may form complexes with ions of opposite sign. 
Any such complex is "inner" or "outer" according as 
the latter ions do or do not enter the inner coordination 
or shell of the reactant. To a greater or lesser extent, 
all such complexes normally contribute to the measured 
rate of the redox process. For this reason both a rate 

9 R. A. Marcus, J. Chern. Phys. 38, 1335 ( 1963) . 
toR. A. Marcus, J. Chern. Phys. 39, 1734 (1963). The notation 

differs somewhat from the rresent paper: r, U, Ul, and p,
0 there 

become V.', U., U;, and Pa here. A typographical error occurs in 
Eq. (13): The fs should be deleted. No equations deduced from 
(13) need correction. 
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constant for the over-all reaction, involving all com

plexes, and a rate constant for each individual step, 
involving a specific complex with a given inner coordi
nation shell or involving a specific pair of complexes in 
a bimolecular step, have been defined in the literature. 
They equal the over-all reaction rate divided by the 

stoichiometric concentration (or product of such con
centrations in the bimolecular case), in the case of an 
over-all rate constant, and the reaction rate divided 
by the concentration of the particular complex (or 
product of such concentrations in the bimolecular case), 
in the case of an individual rate constant. Often the 
individual rate constants are measured experimentally. 
Frequently, however, only the over-all rate constant 
is determined in the experiment. 

The derivation up to and including Sec. 6 applies to 
over-all as well as to individual rate constants. The 

Sees. 7 to 17 apply only to the individual rate constants. 
To calculate the over-all rate constant from the expres
sion derived for the individual one in these latter 

sections, one must take cognizance of any reactions 
leading to the formation and destruction of the com
plexes and must average over the behavior of all 

complexes, as in Appendix VIII. 

4. POTENTIAL-ENERGY SURFACES 

The potential energy of the system is a function of 
the translational, rotational, and vibrational coordi
nates of the reacting species and of the molecules in 

the surrounding medium. A profile of the potential
energy surface is given in Fig. 1 in the case of homoge

neous reactions. (The related electrochemical plot is 
considered later.) The abscissa, a line drawn in the 
above many-dimensional coordinate space, represents 
any concerted motion of the above types leading from 

any spatial configuration (of all atoms) that is suited 
to the electronic structure of the reactants to one 
suited to that of the products. Surface R denotes the 
potential-energy profile when the reacting species have 
the electronic structure of the reactants, and Surface 
P corresponds to their having the electronic structure 
of the products. If the distance between the reacting 
species is sufficiently small there is the usual splitting 
of the two surfaces in the vicinity of this intersection 
of R and P. If the electronic interaction causing the 
splitting is sufficient, the system will always remain 
on the lowest surface as it moves from left to right in 

Fig. 1. Thus, the system has moved from surface R to 
surface P adiabatically, in the usual sense that the 
corresponding motion of the atoms in the system is 
treated by a quantum-mechanical adiabatic method. 
On the other hand, if the electronic interaction causing 
the splitting is very weak, a system initially on Curve R 
will tend to stay on R as it passes to the right across 

the intersection. The probability that as a result of 

FIG. 1. Profile of potential-energy surface of reactants (R) 
and that of products (P) plotted versus configuration of all the 
atoms in the system. The dotted lines refer to a system having 
zero electronic interaction of the reacting species. The adiabatic 
surface is indicated by a solid line. 

this nuclear motion the system ends up on Curve 

P is then calculated by treating this motion non
adiabatically.11 

It should be noted that the system can undergo this 
electron transfer either by surmounting the barrier if 
it has enough energy or by tunneling of the atoms of 
the system through it if it has not. We confine our 
attention to the case where the systems surmount the 
barrier. Some atom tunneling calculations have been 

made, however.I2 

Since the abscissa in Fig. 1 is some combination of 

translational, rotational, and vibrational coordinates, 
this "reaction coordinate" is rather complex: The sur
faces R and P intersect, and the set of configurations 

describing this intersection form a hypersurface in 
configuration space. The exact motion normal to this 
hypersurface depends on the part being crossed. In 
some parts it involves changes in bond distances in 
the inner coordination shells of the reactants, in other 
parts it involves a change of separation distance of the 

11 See, for example, L. Landau, Physik. Z. Sowjetunion 1, 88 
(1932); 2, 46 (1932); C. Zener, Proc. Roy. Soc. (London) A137, 
696 (1932); A140, 660 (1933); C. A. Coulson and K. Zalewski, 
ibid. A268, 437 (1962). The present situation has been summarized 
in Ref. 7, where the definition of nonadiabaticity was also dis
cussed. Reference should also have been made there to the work 
of. E. C. G. Stueckelberg, Helv. Phys. Acta. 5, 369 (1932); cf., 
H. S. W. Massey, in Encyclopedia of Physics, edited by S. Fliigge 
(Springer-Verlag, Berlin, 1956), Vol. 36, p. 297. 

12 N. Sutin and M. Wolfsberg, quoted by N. Sutin, Ann. Rev. 
Nucl. Sci. 12, 285 (1962). These authors discussed the possibil
ity of tunneling of the atoms in the inner coordination shell. 
Possible quantum effects which include atom tunneling in the 
medium outside this shell have been treated by V. G. Levich, 
and R. R. Dogonadze, Proc. Acad. Sci. USSR, Phys. Chern. 
Sec. [English trans!. 133, 591 (1960) ]; Collection Czechoslov. 
Chern. Comm. 26, 193 (1961) [trans!., 0. Boshko. University 
of Ottawa, Ontario.] Any conclusions concerning the contribution 
of atom tunneling depend in a sensitive way on the assumed 
values for the bond force constants and lengths in the inner coor
dination shell, properties on which data are now becoming avail
able, and on the assumed value for a mean polarization frequency 
for the medium. [Atom tunneling is different from electron 
tunneling_, the latter being a measure of the splitting in Fig. 1 
(Ref. 7) .J 
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FIG. 2. Same plot as Fig. 1 but for an electrode reaction. The 
finite spacing between the many-electron levels of a finite elec
trode is enormously magnified, and only three of them are indi
cated. The splitting differs from level to level. 

reactants, and in still others it involves reorientation 

of polar molecules in the medium. 

Analogous remarks apply to electrode reactions 

except that the intersection region is more complex 

because of the presence of many electronic energy levels 

in the metal. A blown-up portion of this region is indi

cated in Fig. 2. The diagram consists of many potential 

energy surfaces, each for a many-electron state of the 

entire macrosystem. All the surfaces are parallel since 

they differ only in the distribution of electrons among 

"single-electron quantum states" in the metal. (Only 

one distribution of the electrons among these single

electron quantum states correspond to each surface in 

Fig. 2 if the energy level of the entire macrosystem is 

nondegenerate. It corresponds to several distributions 

in the case of degeneracy.) There is a probability 

distribution of finding the macrosystem in any many

electron energy level indicated in Fig. 2. As a conse

quence of a Fermi-Dirac distribution of the electrons 

in the metal, most electrons which are transferred to or 

from the many-electron energy levels in the metal will 

behave as though they go into or from a level which 

is within k T of some mean energy level, and hence 

practically equal to it. Thus, except for the calculation 

of the transition probability associated with the transi

tion from Surface R to Surface P in the intersection 

region, the situation is in effect very similar to that in 

Fig. 1. We return to this point in the following section. 

In the present paper we confine our attention in 

electrode reactions, as in homogeneous reactions, to 

reaction paths involving a surmounting of the barrier. 

5. EXPRESSION FOR THE RATE CONSTANT 

We consider any particular pair of reactants (or a 

reactant, in the case of intramolecular electron trans
fer). These "labeled" reactants may be any two given 

molecules in solution or one molecule and the electrode, 
and each may form complexes to various extents with 
other ions and molecules. In effect, we need to calculate 
the probability that the vibrational-rotational-transla-

tional coordinates of the entire system are such that 

the system is in the vicinity of the many-dimensional 

intersection hypersurface in configuration space. 

It is assumed below that the distribution of systems 

in the vicinity of the intersection region of Figs. 1 or 2 

is an equilibrium one. The usual equilibrium-type 

derivation of the rate of a homogeneous or heteroge
neous reaction in the literature employs a special form 

for the kinetic energy, a form consistent with the set 

of configurations of the activated complex being de

scribable by a hyperplane in configuration space. A 

more general curvilinear formulation has been given 

recently.8 Upon integrating over a number of coordi

nates which leave the potential energy invariant one 

obtains (1), (2), and (3) for homogeneous bimolecular 

reactions, homogeneous unimolecular reactions, and 

heterogeneous reactions, respectively8•
13

: 

k ( kT)
'l exp(- U /kT) R2 (mt)-!dS 

bi= 87!" ' ' 
s Q 

(1) 

k ·=(kT)!l exp(- U /kT) (mt)-!dS 
Ufil 27!" S Q 1 

(2) 

-(kT)!l exp(- U /kT) (mt)-!dS 
khet- 27!" S Q . (3) 

In these equations mt is the effective mass for motion 

normal to the hypersurface S, R is the distance between 

the two reactants (normally between their centers of 

mass), Q is the configuration integral for the reactants, 
and dS is the area element in a many-dimensional 

internal coordinate space.l3 Both mt and R may vary 

over S. In (1) to (3) integration has already been 

performed over several coordinates, as follows: (i) in Q, 
the center of mass of each reactant; (ii) in the numera

tor of ( 1), the center of mass of one reactant and the 

orientation of the line of centers of the two reactants; 

(iii) in the numerator of (2), the center of mass of the 

reactant, and (iv) in the numerator of (3), the two 

coordinates of this center parallel to the solution-solid 

interface. Thus, these coordinates are to be held fixed 
in the internal coordinate space in (1) to (3). 

In adapting these equations to electron-transfer 

reactions one should consider the possibility of the 

reaction occurring nonadiabatically and, in the case of 
electrodes, should consider the existence of many levels 

which may accept or donate an electron to a reactant 
in solution. In the framework of a classical treatment 

of the motion of the nuclei in ( 1) to ( 3), a factor K 

13 In these equations S is an abbreviation for S;nt (made for 
brevity of notation), since several integrations over "external 
coordinates" have been performed and there remains only the 
integration over a hypersurface in internal coordinate space. s 
Similarly, the symbols S', V, and V' discussed later should bear 
a subscript int, which is omitted here for brevity. 
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ca~ be shown to appear in the integrand (Appendix I); 

K 1s a momentum-weighted average of the transition 

probability from the R to the P surface per passage 

through the intersection region. (It is momentum 

weighted since the transition probability depends on 

the momentum.) K can vary overS. Normally, we take 

K as approximately equal to unity when the reactants 

are near each other, introducing thereby the assump
tion that the reaction is adiabatic. 

In the case of (3) the situation is somewhat more 

complex because of the presence of the many electrode 

levels. At present there is, in the literature, no theoreti

cal calculation of the transfer probability from a level 

R to a continuum (essentially) of levels P, per passage 

through the intersection range, for the entire range of 

transfer probabilities from 0 to 1. Such a calculation 

would take into account the fact that in an unsuccessful 

passage through the intersection region the system can 

also revert to other R levels different from the original 

one. At present only the limiting case of very small 

transfer probability has been considered in the litera
ture.l4 In this case transfers to and from each of the 

levels have been treated independently using perturba

tion theory; they do not interfere at this limit. 

When the transfer probability in electrode reactions 

is fairly large when ion and electrode are close a 

different approach must be employed.15 Here, we t~ke 
advantage of the fact that for a metal electrode most 

of the electron transfers occur to and from levels near 

the Fermi leveP5 : In the terminology of a one-electron 

model, most of the levels several kT below the Fermi 

level are fully occupied and cannot accept more elec

trons. The Boltzmann factor discourages transfer to 

the rather unoccupied levels several k T above the 

Fermi level. Conversely, transfers from the occupied 

levels below the Fermi level are discouraged by a higher 

over-all energy barrier to reaction while transfer from 

a higher level is discouraged by the fact that most of 

the higher levels are unoccupied. To illustrate this point 

more precisely, let n(e) be the density of the "one

electron model levels" for the electrode and j( e) the 

Fermi-Dirac distribution, 

f(e) = jexp[(e-,a.)/kT]+l}-1, (4) 

where e is the energy of one of these levels and where 

,a. is the electrochemical potential of electrons in the 

metal. Both e and p,. depend on the electrostatic poten

tial of the metal cp: 

.a= p.-ecp, (5) 

t4 R. R. Dogonadze and Y. A. Chizmadzhev, Proc. Acad. Sci. 
USSR, Phys. Chern. Sec., English Trans!. 144, 463 (1962) 145, 
563 (1962); V. G. Levich and R. R. Dogonadze, Intern. C~mm. 
Electrochem. Thermodyn. Kinet., 14th Meeting, Moscow (1963) 
preprints. This work is reviewed in Ref. 7. ' 

16 This approximation was used but not discussed in Ref. 2. 

where e ( 0) is the value of e at cp = 0 and p. is the chemical 

potential.16 

The probability that electron transfer from the 

electrode to the ion or molecule in solution will occur 

from a "one-electron model" level of energy e would 

b_e expected to depend on e by a factor roughly propor
twnal to 

n(e)f(e) exp(e/2kT), (6) 

the third factor arising in the region where the "electro

chemical transfer coefficient" is 0.5, a common value.6 

Since n(e) is a weak function of e the last two factors 
in (6) largely determine the most probable value of e. 

The maximum of (6) is then easily shown to occur at 

e= ,a •. Similarly, contribution to electron transfer from 

an ion in solution to a particular level e would be 
expected to vary with e as in 

n(e)[l-j(e)] exp( -e/2kT), (7) 

which also has a maximum at e= ,a., of course. 

Because of this circumstance (that most contribu
tions arise from levels e near p,.), we approximate the 

situation in Fig. 2 by replacing the set of Surfaces R by 

one surface and P by another surface, corresponding 

to an electronic energy in the electrode given by p,. as 

above.15 If electron transfer accompanies each passage 

~hrough the intersection region in Fig. 2 the reaction 

1s referred_ to as "adiabatic," purely by analogy with 

the term m the homogeneous reaction. The reaction 

rate is given by (3), where the equation of S depends 

on the electrostatic potential. On the other hand when 

the transfer probability per passage is very ~eak a 

term K. shoul? be introduced in the integral, K being 
a velonty-we1ghted transition probability appropriately 

s1._1mmed over all energy levels in the electrode (Appen

dix I). A value for K in this weak interaction limit 

has ~een discussed elsewhere.7 When a complete cal

cula~wn for the transfer probability from and to a 
contmuum of electrode levels becomes available it can 

be used to estimate K. Normally, however, we assume 

the electrode reaction to be "adiabatic" and so take 
K"'l on the average. 

6. RELATION OF THE SURFACE INTEGRALS 

(1) TO (3) TO VOLUME INTEGRALS 

Although some deductions can be made from the 

surf~ce integ:als in (1) to (3) when the equation of 
the mtersectwn surface S is simple, we find it con

venient to express the surface integral in terms of 

volume one. The same aim was followed in Part IV 
but. in a less precise way. The principal equation 
denved in this section is (26), which is later used in 

conjunction with Eqs. (1) to (3) to obtain an expres
sion for krate• 

16 For example, C. Herring, and M. H. Nichols Rev Mod 
Phys. 21, 185 (1949). ' · · 
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Let Ur be the potential-energy function for the 
reactant and UP be that for the products. As mentioned 
earlier the intersection of the R and P surfaces in Fig. 
1 (and 2) forms a hypersurface in configuration space. 
This hypersurface is called the "reaction hypersurface." 
Its equation is given by (8). It is a hypersurface in 

the entire coordinate space and also in the internal 
coordinate space since (8) is independent of the 

external coordinates8 

ur- UP=O (for points on reaction hypersurface). (8) 

This surface is a member of a family of hypersurfaces 
in configuration space, represented by (9), where cis a 

constant: 

(9) 

The surface (8) can be obtained from the surface (9) 
by lowering the P surface in Figs. 1 or 2 by an amount c. 

We employ a coordinate system q1 to qn used in the 
derivation of (1) to (3) and recall that one coordinate, 

qN, in the internal coordinate space was chosen to be a 
coordinate constant on the hypersurface (8). Let qN 
be zero there. In fact, each member of the family of 
hypersurfaces (9) is made a coordinate hypersurface 

for qN. 
We consider any of the integrals in ( 1) to ( 3), 

include the factor K in the integrand, and write dS as 
dS' dRP The factor K depends primarily on R. In the 

following expression the same symbol K is used to 
denote this K, averaged over S'.l8 Each of the integrals 

in (1) to (3) can be rewritten as 

L KR{l, exp(- k~ )(mt)-ldS'}R, (10) 

where a is 2, 0, or 0 according to whether (1), (2), or 

(3) is the equation involved. 
We wish to relate the above integral over S' to a 

volume integral (11) over the internal coordinate 
space at fixed R, as in (18) and finally as in (26) 19 : 

[, exp(- ~;)dv', (11) 

where U* is a function to be determined; RadV' is an 

element of volume of this internal coordinate space 
at fixed R.8 

17 This factoring of dS (or as it was called there dS intl was 
described in Ref. 8. 

1s The K appearing in (10) is now a symbol representing 

r(mt)-texp(~~}s' 1 fcmt)-lexp(~f)as', 
where K is the original kappa. 

19 These "internal coordinates" were defined8 as those coor
dinates for which integration was not performed in obtaining 
(1) to (3). 

To establish (18), we first note from Appendix II 
that the distribution in volume which is centered on S' 

(but not confined to S', of course) isj*, given by (12) 20 

f*= exp(- ~;)I J exp(- ~;)dv', (12) 

where 

(13) 

and m is a parameter which varies with the coordinate 
R and which is determined in Sec. 13. On S', one sees 
from (8), U* equals Ur for any given R. 

We then recall from Ref. 8 that dV' and dS' are 

related by (14), and we introduce a quantity 1(qN, R) 
defined by (15): 

(14) 

where aNN is conjugate to an element aNN in the line 

element of the many-dimensional configuration space. 
On recalling from Ref. 8 that mt equals aNNjgNN, 

where gNN is conjugate to an element gNN in the line 

element of the corresponding mass-weighted configura
tion space, the S' integral in (10) can then be rewritten 
as in (16), where ((gNN) i) is a suitable average over S'21 

J exp(- k~)(mt)-!dS'= ((gNN)!) exp[ -1(0, R)]. 

(16) 

In deriving (16) we have also used the fact that U* 
equals U• on S'. 

Finally, the integral in (11) can be rewritten as 

f exp[ -1(qN, R)]dqN, in virtue of (14) and (15). On 
the basis of a Gaussian expansion Eq. (17) can be 
derived (post). 

J exp[ -1(qN, R)]dqN 

=[211"1"(0, R)]i exp[ -1(0, R)], (17) 

where 1"(0, R) is d21(qN, R)/dqN2, evaluated on S' 
(and hence at qN=O). One then obtains, from (10), 

2o If, for any R, a distribution function!* is stated to be centered 
on S', we mean that it is centered on the set of configurations 
which lie at the intersection of the hypersurface S and of the 
hypersurface R=constant. Occasionally, in some part of the 
internal coordinate space the two hypersurfaces may be "cotan
gential," but this circumstance does not alter the argument. At 
these parts of space the value of U• equals UP and (12) becomes 
"exact" for computing relative probabilities of various configura
tions, rather than approximate. 

21 {(gNN)i) in (16) is defined as 

j (gNN)l(aNN)-t exp( ~i)ds' I j (aNN)-l exp( ~i)as'. 



Downloaded 08 Mar 2006 to 131.215.225.174. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

ELECTRON-TRANSFER REACTIONS. VI 685 

(16), and (17), 

L KR{L exp( -k~)(mt)-ids'}R 

=f. KRa((gNN)i) exp[ -F*(R)/kT]dR 

R [21Tl"(O, R)]l ' 
(18) 

where F*(R) is the configurational free energy of a 
system having the potential-energy function U* for 
this separation distance R 

( 
F*(R)) f ( U*) exp -----:;;y:- = exp - kT dV'. 

To complete the proof of ( 18) we must verify ( 17). 
We recall from the definition of qN that u•- UP depends 
only on qN on any hypersurface (9). To ensure centering 
of the system on S', i.e., at qN = 0, m(R) is to be 
selected so that (20) is satisfied: 

(20) 

where ( ) denotes average with respect to the distri
bution function f*. On using (12), (14), and (15), 
Eq. (20) becomes 

f exp[-I(qN, R)J(U•-UP)dqN=O. (21) 

Because of the centering of j*, expansion of I(qN, R) 
about qN = 0 is permissible, as is one of u•- UP 

I(qN, R) =I(O, R)+qNI'(O, R) 

+[(qN)2/2 !]/"(0, R)+· • ·, (22) 

U•-UP=O+qN(U•-UP)'+···, (23) 

where ' indicates a derivative with respect to qN, 
evaluated at qN = 0. We retain only leading terms in 
each case. Insertion of (22) and (23) into (21) followed 
by integration reveals that I'(O, R) vanishes. Intro
duction of ( 22) into the left-hand side of ( 17) then 
establishes (17). 

Some of the terms in (18) can be expressed in terms 
of quantities of more immediate physical significance. 
It may be shown from (12), (14), (15), (22) and the 
vanishing of I' (0, R) that 

for small s's: 

((os)2)= ((aNN)-1(oqN)2)= ((aNN)-! )((oq_N)2), (25) 

where ((aNN)-1 ) is a suitable average of (aNN)-1.23 
We make use of the fact that ((gNN)!)((aNN)-I)! 

has units of (mass)-!, and denote it by (m*)-1, and 
that the integrand in (18) has a maximum at some 
value of R, denoted in (26) by R. [When R becomes 
large K tends to zero and when R is small the van der 
Waals' repulsion makes F*(R) large.] On treating the 
integrand as a Gaussian function of R, (18) becomes 

= KpRa(m*)-! exp[- F*(R) /kT], (26) 

where K is evaluated at this value of R and where p is 
a ratio (27) whose value should be of the order of 
magnitude of unity: 

p= [ ((oR)2)/ ((os)2)]t, (27) 

where ( (oR) 2) is the mean square deviation in the 
value of R; p and K can be calculated from more specific 
models when the various integrals defining them can 
be evaluated. 

7. RATE CONSTANT IN TERMS OF !:lF* 

Let pr be the configurational free energy associated 
~ith the Q of Eqs. (1) to (3) as in (28). Thereby, it 
IS the free-energy contribution for an equilibrium dis
tribution of "V' coordinates" when the reactants are 
very far apart but fixed in position, 

F•=kT lnQ. (28) 

Let F'(R) be the corresponding quantity when the 
reactants are a distance R apart. We then have 

w•= F'(R)- F•, (29) 

where w• can be called the reversible work to bring 
the reactants from fixed positions infinitely far apart 
to the cited separation distance. 

We also introduce !:lF*(R): 

!:lF*(R)=F*(R)-F•(R). (30) 

Equations (1) to (3) for krate now yield (31) to (33), 
when (26) and (28) to (30) are used, 

kbi= KpZbi exp( -w•jkT) exp[ -!:lF*(R) jkT], (31) 

(24) kuni= Kp(kT /21Tm*)! exp( -!:lF*/kT), (32) 

where ((q_N) 2) is the mean-square deviation of qN.22 

The mean-square deviation of the perpendicular dis
tances from the reaction hypersurface is given by (25) 

22 This average, ( (oqlV) 2), is defined as f (oq1V) 2 f*dV'. It is 
readily shown that (qN) vanishes. 

khet=KpZhetexp(-w•/kT) exp[-!:lF*(R)/kT], (33) 

2a This average is defined here as 

j (alVN)-
1
(oqN)

2 
exp( ~~)dV' / J (oqN)2 exp( ~~*)av'. 

For the proof that ds2 equals (aNN)-1(dqN) 2, see Ref. 32 Appen-
dix III. ' 
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where Zbi and Zhet are given by 

(34) 

[In Eq. (32) t:.F* is simply F*-F', there being only 
one reactant.] Zbi is in fact the collision number of 
two uncharged species in solution when they have unit 
concentration, when their reduced mass ism*, and when 
their collision diameter is R. Zhet is the collision number 
of an uncharged species with unit area of an interface 

(here, the electrode), when it has unit concentration 
and when its mass is m*. 

F* and pr in (31) to (33) involve an integration 

over the orientation of each reactant. The integrand 
in pr is independent of these coordinates and, in the 

case of the "outer-sphere electron-transfer mechanism" 
discussed here, the integrand in F* is assumed to be 
independent of them also. (For purposes of deriving 
many of the correlations in Sec. 16, this assumption 

could be weakened because of cancellations.) Integra
tion over these coordinates is regarded as having been 
performed in (31) to (34), since the orientational 

factors now cancel in t:.F*(R). Thus, in the subsequent 
calculation of F* and pr each reactant may be regarded 
as fixed not only in position, as before, but in orienta
tion also. 

8. DISTRIBUTION FUNCTION AND THE 
FREE ENERGY 

The main purpose of this section is the derivation 
of Eqs. ( 47) to ( 49). 

Equation (19) for F*(R) can be rewritten as in (35), 
with the aid of (12), (13), and (20): 

F*(R) = (U')+kT(lnj*), (35) 

where 

(U')= f U1*dV', (lnj*)= J (lnj*)f*dV'. (36) 

Since - k (lnf*) is the configurational entropy of a 
system having the distribution function j* and since 
(U') is the mean potential energy of a nonequilibrium 
system having a potential-energy function ur but a 
distribution function of J* inappropriate to this ur, we 
see that F*(R) is also equal to the configurational free 
energy of this nonequilibrium system. 

In obtaining an expression for F*(R) it is convenient 
to divide, as one usually does in related problems, the 
internal coordinates at the given R into two groups: 
V'; coordinates describing the positions of the atoms in 
the inner coordination shells of the reactants, and 
V'o coordinates describing the positions of the atoms of 
the medium relative to each other and to those in the 
inner coordination shells. It is also convenient to write 
U as the sum of two terms, U; and Uo, one describing 
the intramolecular interactions of the atoms in each 
coordination shell, the other describing the interactions 
of the atoms of the medium with each other and with 

those of the inner coordination shells. Thus, U; depends 
only on the V'; coordinates; Uo depends primarily on 
the V'o coordinates, but also depends on the V'i ones, 

(37) 

The quantities U;* and Uo* are defined in terms of 
U{, etc., to be given by (13), with i and o subscripts, 
respectively. Then, U* is the sum of U;* and Uo *. 

The volume element dV' is written as 

dV'=dV';dV'o, (38) 

where dV'; is defined as the product of the differentials 

(ll;dqi) of the V'; coordinates. Thereby, dV'o con
tains the Jacobian appearing in dV'. It may vary, 
therefore, with the V'; coordinates. 

In calculating F* and pr we may evaluate the 
integrals appearing in them by first integrating over 
the V'o coordinates and then over the V'; ones. This 
procedure is convenient since the V'; ones perform 
small oscillations while the others can undergo con
siderable fluctuations. With this procedure in mind, 
we define new quantities f;* and fo *, the former de
pending only on the V'; coordinates, the latter depend
ing on the V'o coordinates and parametrically on the 
V'; ones: 

fo*= exp[(xo*- Uo*)/kT], (39) 

f;*= exp(- ~;) / J exp(- ~;)dV';, (40) 

where 

U;*= U;*+xo*, (41) 

exp( -~~)= J exp(- ~~)dV'o· (42) 

One then obtains 

J*=Jo*J;*. (43) 

Quantities jo', j;", U;", and xo' can be defined, by 
replacing the * by an r superscript in ( 39) to ( 42). 
However, xo' is simply Fo', the V'o contribution to the 
configurational free energy of the reactants for the 
given value of the V'; coordinates 

We also introduce Fo*, defined by 

Fo*= (Uo')•o+kT(lnJo*)•o, (45) 

where the average ( )•o is computed with respect to fo *. 
Fo * is the V'o contribution to the free energy of the 
nonequilibrium system having the potential energy 
function U' and the distribution function fo *. The 
first and second terms in ( 45) are the energy and 
entropy contributions, respectively. 

To obtain an expression for U;*, the function largely 
controlling the V'; coordinate distribution, we first 
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obtain (46) by introduction of (39) into (45) and by 

use of ( 13) with subscript o's added. Equations ( 41), 

(46), (37) and, with subscript i's added, (13) then 

yield (47), since Ut and U;P are independent of the 

V' o coordinates: 

On multiplying numerator and denominator of (40) 

by exp[U;*(Q •) /kT], introducing this expression for 

f;* into (48b), then using (50), integrating,24 and 

finally introducing an expression for U;(Q*) [Eq. (47) 

evaluated at Q= Q*], Eq. (51) follows: 

Xo *=Fa *+m(Uo'- UoP)•o, 

U;*= Ut+Fa*+m(Ur- UP)•o· 

(46) F*(R)=Ut(Q•)+Fa*(Q.)-m(Ur(Q.)-UP(Q.) )•o 

(47) -!kT ln[(27rkT)n;JIJ;k* IJ, (51) 

Equations (35), (37), (43), and (45) yield (48a), 

when one notes that Ut and f;* are independent of 

the value of the V' o coordinates. Equation ( 48b) then 

follows from (20), (47), and (48a): 

F*(R) = (Ut+Fa*)•;+kT(lnf>*)•;, (48a) 

(48b) 

where the average( )•; is computed with respect to 

the distribution function f;*. 
The free energy F'(R), given by 

-kT ln J exp(- k~)av' 

evaluated at R, can also be shown to be given by 

expressions similar to ( 48) but with the asterisks 

replaced by r's 

F' ( R) = ( U /+For )ri+ k T (lnjt )ri• (49) 

To evaluate krate, we compute !:J.F* from (30), ( 48), 

and (49), and use (47). 

The similarity of (48) and (49) and later of (51) 

and (52) is an example of the fact that properties of the 

[r J system can be obtained from those of the [*] 

system by setting m= 0. The origin of this behavior is 

seen in the original Eq. (13) defining the[*] system. 

9. VIBRATIONAL CONTRffiUTION TO !:J.F*(R) 

While it is not necessary to introduce the harmonic 

approximation, the expressions are appreciably simpli

fied by it. There is evidence that the approximation is 

adequate for many reactions of interest. 

It is recalled that the generalized coordinates were 

denoted by qi. Let the first n; of these be vibrational 

coordinates of the reacting species, i.e., the V/ coordi

nates, and let q .; denote the value of the jth vibra

tional qi occurring at the minimum of U;*. We have 

u. *= O,*(Q.) +! 'f:J1" *(qi-q .;) (qk-q .k) 
j,k=l 

where Q-Q. denotes a column vector whose elements 

are qi-q.i. F* denotes a square matrix whose elements 

are f;;*. The superscript T denotes a transpose (a row 

vector here), and the dot indicates the scalar product 

of this row vector with the column vector F*(Q-Q.). 

where I /;k * I is the determinant of the /;k *'s. 

If q,i denotes the value of a vibrational qi occurring 

at the minimum of Ut, it can be shown that F' is 

given by (52) after a quadratic expansion of Ut(Q) 

about Q,, 

F'(R) = Ut(Q,)+Fo"(Qr) -!kT ln[(27rkT)n•/lf;"' IJ, 

(52) 

where 

/;kr= (a2Utjaqiaqk) at Q=Or· (53) 

Equation (54) is then obtained from (51) and (52) 

by noting that (U'(Q.)-UP(Q•) )•a vanishes (Appen

dix V), that Ut equals Ut-For at any Q, and that 

Ut(Q.) can be expanded about the value of Ut at Or: 

F*(R) -F'(R) =!(Q•T-Q,T) • Fr(Q•-Qr) 

+11Fo*(Q•) +!kT ln(l /;k * 1/l/;kr \), (54) 

where 

11Fo*(Q)=Fo*(Q)-Fo'(Q) (atanygivenR). (55) 

It is shown later that at any given R and Q !:J.F o * ( Q) 

equals m2A,(Q), where Xo(Q) is given by (69), and 

that I:J.Fo*P(Q), which is Fo*P(Q)-Fo'(Q), equals 

(m+1) 2A,(Q). We then obtain (56) from (47) 26 

U;*= Ut+m(Ul- U;P) -m(m+ 1)A,(Q). (56) 

Since U;* is a minimum at Q= Q ., the first variation 

in U;* vanishes for any arbitrary infinitesimal oQ. In 

Appendix VI it is found that Xo may be neglected in 

obtaining 

Since the oqi are selected to be independent, the 

coefficient of oQT vanishes. Hence, 

Q •= [ (m+ 1) Fr- mFP]-1
[ ( m+ 1) FrQ,-mFPQp], 

(58) 

and the first term in (54) becomes 

!(Q.T -Ql) ·F"(Q•-Qr) =!m2!:J.QT·F!:J.Q, (59) 

24 We use Eq. (2) in R. Bellman, Introduction to Matrix An
alysis (McGraw-Hill Book Company, Inc., New York, 1960), 
p. 96, to obtain the last term of (51). 

25 On recalling the definition of U;r and _(J;P, and adding and 
subtracting mkT(lnfo)•o it follows that U;* in (47) can be 
written as (m+l)U,r-mU;P plus /1Fo*+m(11F0*-/1F0*P). 
Equation (56) then follows. 
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where 

(60) 

F= FP[ (m+ 1) Fr-mFPj1Fr[ (m+ 1) Fr-mFPj1FP, 

(61) 

and the equality of Fr, FP, and [(m+l)Fr-mFP]-1 
with their transposes have been used. 

On differentiating (56) twice and noting that an 

a posteriori calculation shows that the last term in (56) 

may be ignored in the differentiation we find (62), for 

use in the In term in (51) 

hk*=a2U;*jaqiaqk= (m+1)hkr-mhkP· (62) 

Later it is shown that Eqs. (54) and (59) can be 

simplified considerably to a good approximation by 

introduction of symmetrical and antisymmetrical func

tions of the force constants and then neglecting terms 

involving the antisymmetrical ones 

kik= 2!Jk1ikp /(fikr+fikP), ( 63) 

ljk= (fjkr-!JkP)j(fjkr+!JkP). (64) 

The first of these quantities was chosen so as to have 

dimensions of a force constant and the second of these 

so as to be dimensionless. 

10. ORIENTATION AND OTHER 

CONTRIBUTIONS TO t.F* 

For purposes of generality we employ the particle 

description of the potential energy in a macrosystem.9 •
10 

It introduces fewer assumptions than those normally 

used in condensed polar media. Because of its compara

tive generality it also permits a simultaneous formula

tion of the theory of homogeneous intermolecular 

electron transfers, electron transfers at electrodes, and 
intramolecular electron transfers. In this description 

the system consists of particles each of which is a 

reacting molecule or any electrode present, the latter 

including as part of it any strongly bound layer of ions 

or solvent. The remainder of the system, the medium, 

can then be regarded as one giant particle. 

The potential energy is the sum of an intraparticle 

term (the energy when the particles are isolated, each 

having the given intraparticle coordinates) and an 
interparticle term (the energy change when the particles 
are brought together for the given values of the intra

particle coordinates). The solvent particle possesses a 
"cavity" for each reactant particle, which the latter 

fills when they are brought together. 
The intraparticle terms below contain the electronic 

and potential energy of the reactants and of the medium. 
The interparticle term is, in the first approximation, 
the sum of interparticle polar terms and of interparticle 
electron correlation (i.e., exchange repulsion and 

London dispersion) energies.9 It can then be expanded 

in powers of the permanent charge density Pa 0 of the 

reactants. The usual approximations in the literature 

correspond to neglect of powers higher than the second, 

together with the assumption of specific forms for these 
terms.9 

In terms of the symbols U; and Uo introduced earlier, 
we have 

where 

Uo= U(O)+U(1)+U(2). 

(37) 

(65) 

In (37) U; is the intraparticle term for the reactants 
and Uo is the sum of the intraparticle term for the 

medium and of the interparticle term. U ( 0), U ( 1), 

and U(2) depend functionally on zeroth, first, and 

second powers of Pa 0 and, respectively, on second, 

first, and zeroth powers of PM
0

, the permanent charge 
density of the medium.9 U(O) also contains the intra

particle term for the medium and the electron correla

tion interparticle term. U; and Pa o depend only on the 

intraparticle coordinates, V';, of the reactants, and PM
0 

depends only on those of the medium, V'0 •
9 

The distribution function fo * defined in (39) can be 

shown to be similar to that which occurs when the 

permanent charge distribution on a reactant A is Pa 0 *, 
given by ( 66) for all A: 

0*- 0+ ( 0 0) Pa -Par m Par -pap , (66) 

where Par 0 is the permanent charge distribution of 

Molecule A when it is actually a reactant and Pap 0 is 

that when it is a product. The proof is given in Appendix 

III and utilizes the facts that U ( 1) is a linear functional 

of Pa o and that U (2) is insensitive to the usual transla

tional-rotational fluctuations in condensed media, for 

reasons noted there, unlike the U(O) and U(1). 
Normally, as will be seen later, m will be close to -!. 

The V'o contribution to the free energy of formation 

of a system with a nonequilibrium V'o distribution, 

t.Po *, at any given R and at any given Q, has been 

evaluated elsewhere on the basis of the particle descrip

tion described above and of an assumption of (at most) 

partial electric saturation10
: 

flP o *=pop m(r-p)- P m(r-p) • (67) 

In (67) poP and P denote the polar contributions to the 

free energies of two hypothetical equilibrium and di

electrically unsaturated systems, each having a Pa 0 

equal to m (Par 
0

- Pap 0 ) on each reactant. The first 
system is an "optical polarization" system,9 i.e., a 

system whose medium responds to these Pa 0 's only via 
an electronic polarization. The second system responds 
via all polarization terms. Both pop and P are quadratic 

functions of the m (Par 0 - Pap 0 ) 's. 
It can be shown26 that pop_ P depends on the square 

26 According to Eqs. (10) and (11) of Ref. 10 F 0 P-F equals 
[(U(l) 2)- (U(l) )2]/2kT. The latter depends only on the second 
power of the charge distribution, since U (1) is a linear functional 
of the first power. 
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of the permanent charge distribution on the reactants, temperature, and pressure. Hence, 
in this case m(pa/-pap 0 ). We may then describe the 
dependence of !l.F

0 
* by FP- Fr= !l.F

01

• (72) 

(68) 

where 

and the averaging function is27: 

ex(- (U.r+U.P))av' /Jex (- (U.r+U.P))av' 
p 2k T " p 2k T •· 

(70) 

To use Eq. (68) and those derived earlier, an expres
sion is needed for m. It is derived below after some 
preliminary analysis involving the standard free energy 

of reaction, the electrochemical cell potential, and the 
activation overpotential. 

11. STANDARD FREE ENERGY OF REACTION 

The configurational free energy of the system when 
the reacting species are labeled reactant molecules, 
fixed in position but far apart, was denoted by Fr. The 

corresponding quantity when the pair refers to labeled 
product molecules was denoted by FP. The momentum 
and translational contributions of each member of the 
reacting pair to the free energy of the initial state 
cancels that in the final state in these reactions in

volving no change in total number of moles of redox 
species. Thus, the difference FP- pr is equal to the free 

energy of reaction when a pair of labeled reactants 
form a pair of labeled products in the prevailing 
medium. 

This free energy of reaction in the prevailing medium 
can be expressed in terms of "standard" chemical 

potentials. The chemical potential J.t; can be written as 
J.t;

0 '+kT ln c;, where J.t;
01 is the "standard" chemical 

potential, defined here as the value of J.li at c;= 1. 
Because of the labeling, FP- pr does not contain a con

tribution from entropy of mixing of the reactants. 
Since it is these mixing terms which contribute the 

k T ln c; to J.ti, we therefore have 

(71) 
p 

where LP and Lr denote summation over products 
and reactants. There are one or two terms in each sum, 
according as the reaction is unimolecular or bimolecular. 

The right-hand side of (71) is !l.F 0
', the "standard" 

free energy of reaction for the prevailing medium, 

27 If the dielectric unsaturation approximation is used, one can 
showto that (UJ+U.v)/2 would be replaced by U(O) in Eq. (70). 
Within the range of validity of the partial dielectric saturation 
approximation, the average of the fluctuation term (69) would 
be the same if (U.r+U.v)/2 were replaced by U.*, by UJ or by 
U .v. We have simply selected some mean value for the exponent, 
symmetrical in r and p. 

It equals -kT ln K, where K is the equilibrium 
"constant" measured under these conditions. Both !l.F01 

and K can vary with electrolyte concentration, with 
temperature, and with pressure. 

12. ACTIVATION OVERPOTENTIAL AND 

ELECTRODE-SOLUTION POTENTIAL 

DIFFERENCE 

For electrode systems, the counterpart of (72) is 
obtained by considering the free energy of Reaction 
(73) for a labeled molecule at any fixed position in the 
body of the solution, but far from the electrode, M 

Red+M= Ox+M(ne), (73) 

where Ox and Red denote the oxidized and reduced 
forms of the labeled molecule in the body of the solution. 
This free energy change, which accompanies the transfer 

of n electrons from the ion or molecule to the electrode 
at a mean energy level discussed in Sec. 5, has a number 
of contributions, such as one from the change in elec
tronic energy, one from the change in ion-solvent 
interactions in the vicinity of the ion, and one from 
the change in vibrational energy. Let pr now denote 
the configurational free energy of the system containing 
the electrode and a labeled reactant, the latter fixed 
in a position far outside the electrode double layer. 
Let FP denote the corresponding quantity when labeled 

molecule is a product, the electrode having gained n 
electrodes as in (73). 

The term FP- pr is linear in the metal-solution 

potential difference, as may be seen from the discussion 
in Sec. 5, and thereby in the half-cell potential E. (E 

is defined to be the half-cell potential corrected for any 
ohmic drop and concentration polarization.) We have 

then 
(74) 

where A is independent of E, and where we have used 
a standard convention regarding the sign of E. [This 
convention is one which makes Reaction (73) increas
ingly spontaneous with increasing positive Eo', a 
quantity defined later.] 

Because of the labeling the entropy-of-mixing term 

of the oxidized molecules and that of the reduced 
molecules are again absent in pr and FP. When the 
system is at electrochemical equilibrium and when the 
probability of finding the labeled species as a reactant 
is the same as that for finding it as a product, FP- pr 
must vanish. Also, E then has its equilibrium value, 
which is Eo' for the case of equal concentrations of the 
labeled species. [Eo' is the "standard" oxidation poten
tial or, as it is sometimes called, the formal oxidation 
potential of the half-cell; Eo' is defined in terms of the 
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equilibrium half-cell potential Ee by (75) for any 

ratio of concentrations (Red)/(Ox)] 

Ee=Eo'+(kT/ne) ln[(Red)/(Ox)]. (75) 

One then obtains, from (74), 

O=t::J.+neEo'. 

Hence, 
FP- P= ne(E- Eo'). 

(76) 

(77) 

We observe from (77) that E- Eo', rather than the 
activation overpotential E- Ee, plays the role of the 

"driving force" in these reactions. The same role is 

played by !::J.F 0
' in the homogeneous reaction. 

In terms of formal electrochemical potentials of the 

product and reactant ions and in terms of the electro

chemical potential of the electrons in the electrode we 

have, incidentally, for Reaction (73), 

FP- Fr= jlp 
01

- ilr 
01 

+nile· (78) 

13. EQUATION FOR m 

We first note that !::J.F 01 can be written as the alge

braic sum of the following terms: The free energy 

change when the reactants are brought together to the 

separation distance R, wr; the free energy of reorganiza

tion of the reacting system at this R, !::J.F*; the free 

energy difference of reactants and products in this 

reorganized state, which equals 

( (UP+kT lnj*)- (Ur+kT lnj*)) 

because of cancellation of momentum and of transla

tional contributions; minus the free energy of reorgani

zation of the product system at this R to the above 

state, -!::J.F*P; and minus the free energy change when 

the products are brought together to the separation 
distance R, -wP. Thus, (79) is obtained when (20) is 

used, 

(Homogeneous) 

!::J.F 0 '=wr+t::J.F*(R) -!::J.F*P(R) -wP. (79) 

The electrochemical equation corresponding to (79) 

is (80), as one may show from (77), 

(Electrochemical) 

ne(E-Eo') =w'+!::J.F*(R) -wP-!::J.F*P(R). (80) 

Here, !::J.F*P is obtained from !::J.F*, and wP from wr by 

interchanging r and p superscripts and, at the same 

time, interchanging - m and m+ 1. To establish this 
result it suffices to note from ( 13) that U* and all its 
associated properties are unaffected by such a trans

formation, but the properties of the reactants become 
those of the products. 

Upon introducing Eqs. (54) and (60) for !::J.F*(R), 

using ( 68) for !::J.F o * ( Q •), and upon introducing the 

counterpart of this equation for !::J.F*P(R), the equation 

for m is obtained. The final equations for the reaction 

rate become quite simple when one notes that to an 

excellent approximation terms involving the lik's de

fined in ( 64) can be neglected. The proof is given in 

Appendix IV. 

14. SUMMARY OF FINAL EQUATIONS 

On using the results of Appendix IV and referring 

to Eqs. (31) to (33), it is found that the rate constant 

for a bimolecular homogeneous reaction or a uni

molecular electrochemical reaction is given by 

krate= KpZ exp( -!::J.F*/kT)' (31)' (33) 

where Z is given by (34), !::J.F* by (81) and (82), and 

p by (27). 

The rate constant of an intramolecular electron 

transfer reaction, on the other hand, is given by Eq. 

(32), with !::J.F* given by (81) but with the work terms 
wr and wP omitted: 

Homogeneous: 

wr+wP A !::J.F 01 (!::J.F 0 '+wP-wr) 2 

!::J.F*=-2-+4:+-2-+ 4A ' (81 ) 

Electrochemical: 

wr+wP A ne(E-E ') 
!::J.F*=--+-+ o 

2 4 2 

(neE- neEo' + wP- wr) 2 

+ 4A (82) 

In (81) and (82) A is given by 

(83) 

where Ai is given by (84) and Ao is given by ( 69) at 

Q = Q *· On introducing the symmetrical force constants 
one finds Q.=Q,+m(Qr-Qp). Since Ao depends but 

weakly on Q. and since m is usually close to -!, it 
suffices to evaluate Ao at O•=!(Or+OP) in the typical 
case. This result is used in deriving Eq. (88a), 

(84) 

The reduced force constants kik are defined in ( 63) 
and the flq/s are differences in equilibrium values of 

bond coordinates (e.g., independent bond lengths and 
angles), q{-qp. 

It is expected that typically p should be about unity. 
As noted earlier, Z is essentially the collision number, 
being about 1011 liter mole-1·sec1 and 104 em sec-1 for 
homogeneous and electrochemical reactions, respec
tively. 

In Ref. 6 the above equations were written in an 
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equivalent form 

(85) 

Homogeneous:- (2m+l)X=t!.F
0
'+wv-wz, l 

Electrochemical: - (2m+1)X =ne(E-E.') +wP-w'. 

(86) 

The value of m defined by (86) can be shown to 
differ very slightly from that in the preceding sections, 

due to the approximation of neglect of the lik's, but 
the final equations obtained when (86) is introduced 
into (85) are identical with (81) and (82). 

According to Eqs. (81) and (82) t!.F* depends on 
t!.F 01 or on neE according to (87a) and (87b) when 
w' and wv are held constant. 

(iMF*jatJ.F 0 ')w=H1/2X) (t!.F 0 '+wP-w'), (87a) 

(atJ.F*janeE)w=!+ (1/2>.) (neE-neE.'+wP-w'). 

(87b) 

We refer to these slopes as "transfer coefficients at 
constant work terms." The second term in (87a) and 
(87b) can be calculated when X is known, and this in 
turn can be estimated from the experimental value of 

t!.F* at t!.F 01 =0, or at E=E.' using (81) or (82), 
when the work terms can be estimated or are negligible. 
Typically, this second term is found to be small, so 
that these "transfer coefficients" are then 0.5. 

Equations (87a) and (87b) are based on the neglect 

of the antisymmetrical functions lik defined in ( 64). 
When these functions are not neglected, the transfer 

coefficient is not exactly 0.5 for zero (t!.F 0 '+wP-w') /X 

or zero (neE-neE.'+wP-w")/X, but is given instead 
by Eq. (A14) in Appendix IV. When these two sources 
of deviation from a 0.5 value are small, we may add 
them and so obtain (87c) and (87d) instead of (87a) 

and (87b): 

(atJ.F*jat!.F 0 ')w=!+ (1/2X) (t!.F
0
'+wP-w"+!X;(l.)), 

(87c) 

(atJ.F*janeE)w=!+ (1/2X) 

X (neE-neE.'+wP-w'+!X;(l.)). (87d) 

As noted in Appendix IV the (l.) term could cause 

a deviation from the 0.5 value by 0.04 when the force 
constants in the products are all twice as large (or all 
twice as small) as the corresponding ones in the re
actants and when X;/X is about ! . Smaller differences 
in force constants would lead to even smaller deviations 
than 0.04. This source of deviations would be difficult 
to detect experimentally, since there are other sources 
of deviation as well. In the case of homogeneous 
reactions, force constants on one reactant may stiffen 
and those in the other weaken, so that the average 
value of (l.) may be even less than that for the above 

case, and the deviation from the 0.5 value arising from 

this source correspondingly smaller. 
In summary, the transfer coefficient at constant w's 

is expected to be close to ! , reflecting a type of sym
metry of the R and P surfaces in the vicinity of the 
reaction hypersurface (compare also Sec. 17). A source 
of deviation from this symmetry arises from a difference 

in corresponding force constants in reactants and 
products. It appears as an (l.) term in (87) and has 
been shown to be small. A second source of deviation 
arises when the R or P surface is appreciably lower 
than the other, and is reflected in the presence of the 
t!.F 0

' and ne(E- E.') terms in (87). This source of 

deviation, too, is normally small. The leading term in 
(87), !, arises from the quadratic nature of both the 
V' o and the V'; contributions to t!.F*. 

15. PROPERTIES OF THE REORGANIZATION 

TERM X 

For use in subsequent correlations, we examine an 
additivity property of A and the relation between the 

values of X in related homogeneous and electrochemical 
systems. We consider first the (hypothetical) situation 
when R is very large, so large that the force field from 
one reactant does not influence the other. On noting 
that Ao is given by (69) and that the fluctuations 
around each reactant are now independent (largeR), Ao 

can be written as the sum of two independent terms, 
one per reactant. It then follows that when R is large 
the value of Ao for a reaction between reactants from 
two different redox systems A and B, Aoab, is the arith
metic mean of the values Aoaa and Aobb of the respective 

systems: 

(R large). (88a) 

Furthermore, in the electrochemical case there is only 
a contribution from one ion (assuming that any dis
tortion of atomic structure of the electrode yields only 
a relatively minor contribution to t!.Fo *). Denoting the 
values of Xo for the electrochemical redox system A 
and for the homogeneous redox system A by A0°1 and 
Xoex. respectively, we have 

(R large). (88b) 

Relations similar to (88a) and (88b) also hold for A;, 
independent of R, as may be seen from (84): Part of 
the sum for A; is over the bonds of the first reactant 
and the remainder is over those of the second one. 
While the kik's of one reactant in the activated complex 
depends slightly on the fact that there is a neighboring 
reactant, this influence is taken to be weak. 

In the absence of specific interactions, Eqs. (88a) 
and ( 88b) would also hold for smaller R, since in the 
equation for Ao each ion would merely see another 
charge, -mt!.e, and the surrounding medium, in both 
the homogeneous and electrode cases. In the homo-
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geneous case, the -m!:J.e is centered on the other ion. 
In the electrode case it is an image charge on the 
electrode.28 To obtain some estimate of deviations from 

(88a) due to differences in ion size (one type of "specific 
effects") we examine in the next section the evaluation 
of Ao in the dielectric continuum approximation. 

16. DIELECTRIC CONTINUM ESTIMATE AT l:i.Fo* 

The present section on a continuum estimate of !:J.F0* 
is included partly for what it can reveal approximately 

about certain aspects of the statistical mechanical value 
for !:i.Fo * and partly for making some approximate 
numerical calculations. It does not form a necessary 

part of the present electron-transfer theory itself, of 
course, for the latter rests on statistical mechanics. 

We note that !:i.Fo * can be regarded as the sum of 
two contributions, !:J.F*sol and !:J.F*atm · !:J.F*aol is defined 
as the contribution if the atmospheric ions have not 
adapted themselves to the change m (pa.O- Pap 

0
), and 

!:J.F* atm is defined as the contribution due to their 
adaptation ("reorganization"). !:J.F*.a1 in an electrolyte 
medium will not have exactly the same value it has at 
infinite solution, since the local dielectric properties 
near the reactants will be altered somewhat by the 

presence of salt. 
These two contributions are estimated in Appendix 

VII by treating the medium as a dielectric continuum, 

the ion atmosphere as a continuum, and the reactants 
as spheres, and by neglecting dielectric image effects.29 

We obtain (89) and (90) for the value of !:J.F*soi for a 
medium treated as dielectrically unsaturated continuum 
outside the inner coordination shell of each reactant. 
If partial saturation occurs, Eq. ( 67) still applies.9 If 
one then introduces "differential" rather than "integral" 
dielectric constants, as defined in the Appendix, and 
treats them approximately as constants Eqs. (89) and 
(90) again apply but now Dop and D. are mean values 
of these differential constants 

Homogeneous: 

( 
1 1 1)( 1 1) !:J.F*sol=m2(ne) 2 -+--- ---, 

2at 2az R Dop D. 
(89) 

2s Quantum-mechanical calculations in support of the classical 
image law are given by R. G. Sachs and D. L. Dexter, J. Appl. 
Phys. 21, 1304 (1950). At a distance of 5 A from the electrode the 
computed energy of an ion in vacuum may be estimated from their 
results to be about 8% higher than that estimated from the image 
law. Experimental evidence for the validity of the image law at 
distances of 5 A has been offered by L. W. Swanson and R. Gomer, 
J. Chern. Phys. 39, 2813 (1963) (cf. p. 2835). 

29 The dielectric image contribution to tJ.F 801* is estimated to be 
negligible: It makes essentially no contribution to the value of 
Fmcr-pJ 0

" since this hypothetical system has a low diectric con
stant equal to the optical dielectric constant throughout. Its 
contribution to Fm(r-p) is only about 8% of the value of the 
term containing 1/D. in (90). Since this term is only a negligible 
fraction of the 1/ Do, term in (90), the dielectric image contri
bution to tl.Fsol* can be neglected. We note later that tl.Fatm* is 
apparently much smaller than tl.Fsol*· Dielectric image effects 
may be estimated from electrostatic calculations to contribute 
about 8% to w• when two charges of equal magnitude meet. 

where ne is !:i.e, the charge transferred from one reactant 
to the other; a1 and a2 are the radii of the two reactants 
computed at intramolecular coordinates qi= q .i (the 

radii are of spheres each of which includes any inner 
coordination shell); R is taken to be the sum a1+az; 
Dop is the square of the refractive index of the medium; 

and D. is the static dielectric constant of the medium 

Electrochemical: 

!:J.F*aol= m2(ne)2(~-~)(-1 _ __!__), (90) 
2 a1 R Dop D. 

where R is twice the distance from the center of the 
ion to the electrode surface and a1 is the radius of the 
reactant (and hence of the product) computed at qi= q.i. 

The value obtained in Appendix VII for !:J.F* atm in 
the electrically unsaturated region (i.e., in the Debye
Hiickel region for the atmosphere around the ion and, 

in electrode systems, for the diffuse part of the double 
layer) is given by Eq. (91) for homogeneous systems 
for the case of a1 = a2 (=a) , and by ( 92) for electrode 
systems. The value for !:J.F*atm for partially electrically 
saturated systems can also be obtained from ( 67). 

Once again, one introduces "differential" quantities. If 
the latter are replaced by "mean" values near the 
central species Eqs. (91) and (92) are again obtained, 
but with D. and ~e reinterpreted; ~e is given by (A23) 
in Appendix VII. A more reliable procedure, however, 
would be to use the position-dependent value of x in 

solving this particular linearized Poisson-Boltzmann 
equation, since the electric fields in electrolyte media 
die out fairly rapidly, namely as r-1 exp( -ter). Equa
tions (91) and (92) are based on the solution of a 
linearized Poisson-Boltzmann equation with a local 

meanx 

Homogeneous: 

m2(ne) 2 

!:J.F*atm= D.R 

x[xR+ exp[ -~e(R-a) J(l+~e 2 a 2 /2) 

1+~ea+ exp[ -x(R-a)]x2a8/3R 

Electrode: 

!:J.F*atm=![rhs of (91)]. 

1]. (91) 

(92) 

Calculated as above, !:J.F* atm is much smaller than 
!:J.F*sol and is also expected to be less than the salt 
effects on w• and wP. Even at high x it is only m2(ne) 2 

(R-a)/D.aR. Since R"'"'2a, its value there is about 
m2(ne) 2/D.R, which is only about 2% of !:J.F*sol· 
Parenthetically, we note that this term arising from 
(91) and (92) just cancels the D, term in (89) and (90), 
respectively. 

Added electrolyte can influence the rate constant, we 
conclude, principally by affecting w', wP, and (by affect
ing dielectric properties) !:J.F*sol· 

Comparison of (89) with (90) reveals that Ao for an 
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isotopic exchange reaction has twice the value of Xo for 

an electrode reaction involving this redox couple when 

the value of R is the same in each case. It is recalled 
that R is the value for which Kp exp( -!:iF*jkT) had a 
maximum. If one presumes this R to be the distance of 
closest approach of the "hard spheres" and assumes 
the reactant to just touch the electrode, then R is the 
same in each case. In Eq. ( 89) a1 = a2 for an isotopic 
exchange reaction since these are the radii evaluated 

for q= q ., it is recalled, and since typically the transi
tion state should be symmetrical in this respect. (From 
the equation cited the actual q.i's can be computed 
and the presumed symmetry verified for typical 

conditions.) 
It may be seen from (89) that Xo is essentially equal 

to the sum of two terms, one per reactant, and that 
for the same R the value of Xo for the homogeneous 
reaction in any redox system A equals twice its value 
for the electrochemical case. While the presence of the 
R term makes Xo not quite additive, the deviation from 

additivity can be shown to be small: On denoting the 
radii for ions of the two systems by a and b we obtain 

(93). 

ab_.l aa bb - [1- (bja) ]2 2(_!__ _ _!__) 
Xo 2 (Xo +Xo )- 4b[1+(b/a)](ne) Dop D •. (93) 

Even if bja is!, a fairly extreme case, the ratio of the 
above difference to Xobb is 

(1-b/a) 2 

2(1+b/a) ' 

i.e., -fi. In virtue of this result, Xo has been treated as 
an additive function in applications6.7 of the equations 

of this paper. 

17. SIGNIFICANCE OF m 

The parameter m was chosen in Sec. 13 so as to 
satisfy the centering condition (20), a condition which 
led to the vanishing of I' (0). On differentiating 
I(qN, R) given in (15) and setting qN=O one finds: 

m=-<aU')/(_!_(U'-UP)> (94) 
aqN aqN ' 

where the average ( ) is over the distribution function 
on the reaction hypersurface S' at the given R, 

From (94), -m is seen to be the mean slope at the 
reaction hypersurface S', (aUrjaqN), of the R surface, 
for the given separation distance R, divided by the sum 
of the mean slopes, (aU•jaqN) and (-aUPjaqN) of the 
Rand P surfaces at S'. If the intersection surface S' at 
this R passed through the stable configurations of the 
reactants, on the average, then (aUr jaqN) would be 
zero. If it passed through those of the products instead 

(aUPjaqN) would be zero. In these two cases one sees 

from Eq. (94) that m would be 0 and -1, respectively. 

When in the vicinity of S' the R and P surfaces are, 
on the average, mirror images of each other about S', 
(aUrjaqN) equals (-aUPjaqN) and one sees that 

m= -!. Values of m close to -! are typical6·7 and are 
to be expected, one sees from (86), when /1F 0

' is near 
zero or when E is close to Eo' (typically of the order 
of or less than 10 kcal mole-1 or 0.25 V, respectively). 

18. DEDUCTIONS FROM THE FINAL EQUATIONS 

Equations (31) to (33), together with the additivity 

property of X (Sec. 15), and the relation between 
the electrochemical and chemical X's described earlier 
lead to the following deductions, if K and p are about 
unity, or if they satisfy milder conditions in some 

cases.30 

(a) The rate constant of a homogeneous "cross 
reaction," k12, is related to that of the two electron
exchange reactions, k11 and k12, and to the equilibrium 
constant K12, in the prevailing medium by Eq. (96), 
when the work terms are small or cancel, 

kl2 

Ox1+ Red2~ Red1+ Ox2, (95) 

k12= (knk22K1d)i, (96) 

where 

lnj= (lnKI2)2 

4ln(knk22/Z2) 
(97) 

Frequently, f is close to unity. 
(b) The electrochemical transfer coefficient at metal 

electrodes is 0.5 for small activation overpotentials318 

(i.e., if I nFTJ I < l!:iFo * I, where 11Fo *is the free energy 
of activation for the exchange current) ,31h when the 
work terms are negligible. 

(c) When a substituent in the coordination shell of 
a reactant is remote from the central metal atom and is 
varied in a series, a plot of the free energy of activation 
!:iF* versus the "standard" free energy of reaction in 
the prevailing medium !:iF01 will have a slope of 0.5, if 

f1po' is not too large (i.e., if I11F 0
' I is less than the 

intercept in this plot at I1F
01 = 0) . In this series, for a 

sufficiently remote substituent, X and the work terms 
are constant but I1F

01 varies, as in (87a). The slope of 
the /1F*-versus-/1F 0

' plot has been termed the chemical 
transfer coefficient,6 by analogy with the electrochemical 

terminology. 
(d) When a series of reactants is oxidized (reduced) 

by two different reagents the ratio of the two rate 
constants is the same for all members of the series in 

ao For example, it suffices for some of the deductions that KP be 
constant in a given series of reaction or that it have a geometric 
mean property. 

31 (a) We have phrased this condition for the case that (Ox)= 
(Red). For any other case, 7J should be replaced byE-Eo'. (b) 
The exchange current cited refers to the value observed when 
(Ox)= (Red). 
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the region of chemical transfer coefficients equal to 0.5 

[i.e., in the region where I !1F
01 I < (11F*) AFo o,=o in each 

case]. 

(e) When the series of reactants in (d) is oxidized 

(reduced) electrochemically at a given metal-solution 

potential difference the ratio of the electrochemical rate 

constant to either of the chemical rate constants in (d) 

is the same for all members of the series, in the region 

where the chemical and (work-corrected) electro

chemical transfer coefficient is 0.5. 

(f) The rate constant of a (chemical) electron

exchange reaction, kex, is related to the electrochemical 

rate constant at zero activation overpotential,31 a k.1, for 

this redox system, according to Eq. (98) when the work 

terms are negligible: 

(98) 

where Zsoln and z., are collision frequencies, namely 

about 1011 mole-1
• sec1 and 104 em sec1

• 

When the work terms are not negligible, or do not 

cancel in the comparison, the deductions which depend 

on this condition refer to rate constants, to K 12 and to 

an electrochemical transfer coefficient corrected for 
these terms. Again, a minor modification of the transfer 

coefficients from the value oft in (b) or (c) can also 

arise from the antisymmetrical force constant term (l.) 
in Eqs. (87) and (A14). 

It is shown in Appendix VII that under certain 

conditions these expected correlations apply to over-all 

rate constants as well as to those involving only one 

pair of reactants. 

19. GENERALIZATION AND OTHER 

IMPROVEMENTS 

Some of the extensions or improvements in the 

present paper, compared with the earlier ones in this 

series, are the following: 

(1) Use is made of a more general expression for the 
reaction rate as the starting point. 

(2) A more detailed picture of the mechanism of 

electrode transfer is given for the electrochemical case. 
(3) The derivation is now given for both electrode 

and homogeneous reactions, and in a single treatment. 

( 4) The statistical-mechanical treatment of polar 

interactions, based in Part IV on the interactions of 
permanent and induced dipolar molecules in the 

medium, was replaced by a more general particle 
description of polar interactions, through the use of 
the potential-energy function (37) and (65). 

(5) The equivalent equilibrium distribution made 
plausible in Part IV was proved more rigorously here. 

(6) The functional form (68) for !1F0 *, obtained in 
Part IV only by subsequently treating the medium as 
a dielectric continuum, was derived here using a 
statistical-mechanical treatment of nonequilibrium 
polarization systems. 

(7) The basic equation for krau. has been converted 

to a simple form [e.g., (31) and (81) ], a form used in 
Part V, by neglecting the antisymmetrical function of 

the force constants, a neglect which has only a minor 

effect numerically. 
(8) The symmetry arguments used in Part IV to 

convert the kT/h and a portion of a !1F* term to the 

Z factor in (31) have now been given more rigorously. 

(9) The ion atmospheric reorganization term was 

but mentioned in Part IV. It is now incorporated into 

11Fo *. The nonpolar contribution to w" and wP is also 

formally included. 
(10) The contribution of a range of separation 

distances to the rate constant is included. 

The results in the present paper may be compared 

with earlier papers in this series. In Part I, 11Fo * was 
computed for homogeneous reactions at zero ionic 

strength, and dielectric continuum theory was used. 

Equation (89) was obtained. The actual mechanism 

of electron transfer was discussed there, but without 

the detailed description which the use of many-dimen

sional potential energy surfaces provides. The latter 

was used in later papers of this series, a use which 

added to the physical picture. The counterpart of 

Part I for electrode systems was also derived and 

applied to the data in a subsequent paper.2 

In the earliest papers, the dielectric continuum 

equivalent of the equivalent equilibrium distribution 

was derived by a method apparently different from 

that used in the present paper. The distribution 

selected was the one which minimized the free energy 

subject to the constraint embodied in Eq. (20), or 

really embodied in the dielectric continuum counter

part of (20). In Appendix IX this method is in fact 

shown to yield the same result for the equivalent 

equilibrium distribution as the functional analytic one 

used in Appendix II. It is entirely equivalent. 

APPENDIX I. NONADIABATIC ELECTRON 

TRANSFERS 

Several estimates are available for the probability of 

nonadiabatic reactions, per passage through the inter
section region of two potential energy surfaces, and 

have been referred to and discussed in Ref. 7. In each 

case the motion along the reaction coordinate was 

assumed to be dynamically separable from the remain
ing motions. (For conditions on separability see, for 

example, Ref. 32 and references cited therein.) The 

probability of electron transfer per passage through 
the intersection region in Fig. 1 will depend in the first 

approximation on the momentum PN conjugate to the 
reaction coordinate qN, as, for example, in the Landau

Zener11 equation. While the value of K is not so simply 
represented in more rigorous treatments, we simply 

write it as K(PN). In the above treatments the reaction 
coordinate was assumed to be orthogonal to the others 

il2 R. A. Marcus, J. Chern. Phys. 41, 603 (1964). 
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in mass-weighted configuration space, so that gN; van

ishes for i~N (and so, therefore, does gNi) in the 

kinetic energy. On recalling the derivation of Equations 

(1) and (2) 8 and on introducing the above assumptions, 

the rate constant is given, one can show, by Eqs. (1) 

or (2), but with the integrand multiplied by K: 

K=-------------

This K can depend on all the other coordinates, qi(i~N) 

at the given value of qN characterizing the intersection 

surface S. The denominator in the above equation is 

easily shown to equal kT, and so to be independent of 

the qi. In the discussions of K(PN) in the literature, the 

derivation of the Landau-Zener equation, for example, 

the reaction coordinate has been assumed to be recti

linear; gNN is then a constant and the integral in the 

numerator then becomes independent of the qi and may 

be removed from the integral in Eqs. ( 1) and ( 2). 

There appears to be no treatment in the literature for 

nonadiabatic reactions involving many closely spaced 

energy surfaces as in Fig. 2, covering the range of K(PN) 

from 0 to 1. If K (PN) is sufficiently small, the transition 

to each P surface from the initial R surface may be 

assumed to be independent, as mentioned earlier, and 

the reverse transition to the initial R surface during 

this passage may also be neglected. In this case only 

does the method of Levich and co-workers in this 

connection become appropriate. (For references see 

Ref. 7 .) In this case the above K appears in the inte

grand of Eq. (3) and care is taken to sum over all levels 

in an appropriate fashion, as done by Levich et al. 

(see Ref. 7 for bibliography). One can then evaluate 

the K appearing in Eq. (33) and defined earlier. Usually, 

however, we assume that K(PN) is close to unity (within 

some small numerical factor, say) for the PN's of 

interest. 

APPENDIX II. PROOF OF EQ. (13) FOR 

THE CENTERED DISTRIBUTION 

The centering is of both a horizontal type (horizontal 

in terms of Fig. 1 or 2) and of a vertical type, repre

sented by Eqs. (A1) and (A2), respectively: 

jJ*UrdV'= jJ*UPdV', (A1) 

jJ*U*dV'= jJ*UrdV'. (A2) 

Suppose, for possibly more general applications, that 

there are n linear equations of constraint of the type 

represented by (A3). Here, we are especially interested 

in the case n= 1, 

jJ*y;dV' = 0, j=1, ···, n. (A3) 

For any temperature and U*, this integral is a linear 

functional of y;. Although one can find functions, u, 
other than y; (and other than linear combinations of y;) 

for which ff*udV' vanishes at some temperature T, 

the y/s are the only ones for which this integral is 

specified to vanish for all T. That is, there are only 

the n equations of constraint (A3) on the U* in j*. 
The space functions Y for which fj* Y dV' is real and 

finite form a linear vector space over the field of real 

scalars. Moreover, the integral, denoted by J ( Y), is a 

linear functional on this space. For some subspace M 
of it, the integral vanishes. The functions y;( j = 1 to n) 

form a basis forM. If there exists some function w for 

which J ( w) does not vanish, then an elementary 

theorem33 of functional analysis shows that any func

tion x can be written as 

x=w[J(x)/ J(w)J+y, (A4) 

where y belongs toM. In the present instance w= 1 is 

such a function. On applying (A4) to the function 

x= U*- ur and using (A2) one sees that x=y, i.e., 

that x belongs to M and can so be written as a linear 

combination of the functions Yi· In the present case, 

M is one dimensional, the only Yi being ur- UP, since 

(A1) is the only equation of constraint. Thus, x, i.e., 

U*- ur, equals ur- UP multiplied by a real scalar, 

and Eq. (13) is established. 

APPENDIX III. DISTRIBUTION OF Vo' COORDI

NATES IN THE ACTIVATED COMPLEX 

We first note that U(2) in Eq. (6S) does not depend 

on PM
0

, the p
0 of the "medium," and so is insensitive 

to the usual rotational and translational fluctuations of 

the solvent molecules, unlike U(O) and U(1). Since 

Uo *is given by (13), with o subscripts added, one term 

in Uo * is ur(2) +m[Ur(2)- UP(2)]. Since this can be 

extracted from the integral in the denominator of the 

above distribution function because of this insensitivity 

to the V'o coordinates, it cancels a corresponding term 

extracted from the numerator. The distribution func

tion fo * then becomes (AS) : 

exp(- { U(O) +Ur(1) +m[Ur(l)- UP(1) ]}/kT} 

J exp(- { U(O)+Ur(1)+m[Ur(1)- UP(1)]}/kT}dV'o 

(AS) 

Since U(1) is linearly dependent on the Pa
0 

of each 

reactant, U7 (1) +m[U7 (1)- UP(1) J equals the U(l) 

for a system in which each reactant has a Pa 
0

, Pa 
0
*, 

33 A. E. Taylor, Introduction to Functional Analysis (John 
Wiley & Sons, Inc. New York, 1958), p. 138. 
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given by ( 66). Next, on multiplying the numerator 
and denominator of (AS) by the exponential of the 
-U(2)/kT corresponding to these Pa

0 *'s and placing 
it under the integral sign, we see that the distribution 
function ]o * is the same as that corresponding to the 
Pa 

0 *'s given by (66). 

APPENDIX IV. SIMPLIFICATION OF EQ. (54) AND 

THE EQUATION FOR krate 

We introduce the quantities kik and lik defined in 
( 63) and ( 64) . The first was chosen so as to have 
dimensions of a force constant, and the second so as to 
be dimensionless. 

Principally, it is the diagonal stretching contributions 
which are usually important. Purely for simplicity of 
argument we confine our attention to the diagonal 
terms. We denote the new force constants by j;, j.P, 
and their symmetric and antisymmetric combinations 
cited above by k8 and l,. In terms of k8 and l,, j; equals 

k,/ ( 1-l.) and j.P equals k8 / (1 + l8 ) • To make use of 
the symmetry of the resulting equations we use the 
parameter e, equal to (m+t). 

We obtain (A6) from (54) and (60): 

.1F;*= t( e-!) 2l:)8(.1q. 0 ) 
2(1-l.) (1 +2el.)-2 

+ikTL ln[(1+2el8)/(1+l.)], (A6) 
8 

where LlF;* is defined as LlF*(R)- LlFo *(R). Similarly, 
we find (A7) by noting that it is obtained from (A6) 
by replacing -m by m+1 and interchanging rand p 
subscripts (see Sec. 13) 

.1F/P=t(e+i) 2Lk.(Llq. 0 )
2(1 +l.) (1 +2el.)-2 

• 

+ikTL ln[(1+2el8)/(1-l8)], (A7) 

where LlF;*P is .1F*P(R)- LlFo *P(R). 

In terms of e, Eq. (79) can be written as (AS), upon 
introducing Eq. (6S) for LlFo* and its counterpart for 
LlFo*P[ = (m+1) 2A,J 

where 

(A9) 

Most of the data are obtained in the vicinity of 
.1FR01=0.6 •

1 We consider this region first. Near the 
point (l.=O, .1FR01=0) one readily verifies from the 
equations below that e is close to zero and that it 
vanishes at that point. We let 1J denote e or l., and 0 
denote the "order of." (TJ is a small quantity in the 
vicinity of this point.) One then finds from (A6) to (AS) 

-2eA-!A;(l.)+O(TJ3
) = .1FR0 '+kTL:t., (A10) 

• 

where 

A;= t l:k.(Llq. 
0

) 
2
, 

8 

Furthermore, according to (79) .1F* equals LlF*P+ 

.1FR01
• Hence, 

.1F*= t(LlF*+LlF*) = t(LlF*+LlF*P) +!LlFR 01
• 

On introducing (A6) and (A7) one finds 

LlF*= !.1FR
01

+A(e2+t) +A;0(TJ4
) +tkTL( 4el8+l82

). 

8 

(A12) 

On introducing (A10) for e one finds that (A12) 

becomes 

.1F*= !.1FR 01+!A+ (1/4A) (.1FR
0
'+!A;(l8 )) 2 

+tkT[l:l82_ (kT/A) CL:l.) 2J+O(TJ4
). (A13) 

The same expression obtains for electrode processes, 

with the .1F01 in .1FR01 replaced by ne(E-E•'). 
In an isotopic exchange reaction which involves mere 

interchange of charges in the electron transfer step, the 
term (l.) vanishes by symmetry. In other reactions 
there will be some tendency for it to vanish, for while l. 
increases on one reactant on going from State R to 
State P (due to an increase of charge), it will tend to 
decrease on the other. As a somewhat extreme case 

involving no compensation, consider two reactants 
one of which has vanishing 18 and also vanishing con
tribution to A;. (Hence, we include the possibility that 
this "reactant" is an electrode.) For the other molecule 
let the force constants k; and k.P differ by as much as 

a factor of 2. Then one finds (l. )rvt. If A;/A"-'i then 

A/(l8)2/16A is only about 1% of A/4, the main term at 
.1FR 0 '=0. When A/4 has its usual value of 10 to 20 
kcal mole-r, say 10, and when the reactant has a 
coordination number of six, then the kT term in (A13), 
is estimated to be about 4% of the A/4 term at room 

temperature. 
We consider next the effect of non vanishing (l.) on 

the derivative (iJ.1F'/iJLlF
0'h •. x, at .1FR01=0, the 

region of greatest interest. This derivative equals 

(A14) 

In the case cited above the A;(l.)/4A term is about 
+0.04. Thus, the derivative differs by only S% for 
this case. Hence, the (l.) term may be neglected when 

e (and hence ILlFR
01

/A I) is small. When I.1FR
01

/A I is 
not small, one finds that (A13) should be replaced by 
(A14a), to terms correct to first order in the z. 

LlF*= !LlFR o'+tA+t(LlFR 01
)

2 
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The term containing (l.) is still small: A fairly extreme 

case is one where the activated complex resembles the 
reactants (m=O) or the products (m=1). At each 

extreme I t!,.Fn°1/A. I is about unity, since the expression 
for e( =- t!,.Fn °1 /2X) is but slightly affected and since 

I E I equals ! when m is 0 or 1. In the interval 

0~ I t!,.Fn°'/A. J ~1 

the last term in (A14a) has a maximum at 

I t!,.Fn°'/X I = (!)!. 

At this point it equals about 1 kcal mole-1 for the values 

of (l. ), A.;/X, and X/ 4 cited above. When one does not 
neglect second and higher-order terms in !,, and solves 
(A6) to (A8) numerically in this region one obtains 
the same result: The l. terms may be neglected. 

APPENDIX V. SMALLNESS OF (U•(Q*)- UP(Q*) )*o 

If (U•-UP)•o at any Q is expanded about its value 
at Q. and if it can be shown that the linear term 
suffices, it follows that (U•-UP) •• averaged over f;* 
equals the value at Q • plus the average of the linear 
term. In virtue of (SO) the averaged linear term vanishes 
and, in virtue of (20), the average of (U•-UP)•o 
over f;* vanishes. Hence, ( U• ( Q •) - UP ( Q •) ) •• also 
vanishes. 

To show by a posteriori calculation that the linear 
term in the expansion suffices we make use of some 
notation introduced after (54). After use of (37), of 

the equality of (Uo"-U.P) •• with F.*-F.*P, of (68), 
of the definition of Ot and U;P, and of their quadratic 
expansions about Q. and Qp, respectively, of the essen

tial equality of the vibrational entropy of reactants 
and products, and of the justifiable neglect of the 
antisymmetrical functions (64) (Appendix IV) one 
finds (A15) for any given Q. 

(U•- UP) •• =- (2m+1)X.(Q) -t!,.F 0
' 

+! L);;(qLq.i) (qi-q.i) 
i,i 

-!L:k;;(qLqpi) (qi-q/). (A15) 
i,i 

The quadratic term, k;;qiqi, is seen to cancel. A linear 
expansion of X.(Q) about A.(Q*) is sufficient, for even 
the linear term is small (compare Appendix VI). Hence, 
he linear term in an expansion of ( u• ( Q) - UP ( Q) ) •o 

suffices. The vanishing of (U•(Q.)- UP(Q•) )•o then 

follows. 

APPENDIX VI. JUSTIFICATION OF NEGLECT OF 

aXo/aq; IN THE DERIVATION OF EQ. (58) 

It is shown here that the error in neglecting the 
dependence of A0 on Q in deducing (58) from (56) is 

minor. 
Since the arguments in Appendix IV reveal that the 

error in neglecting the antisymmetrical functions ( 64) 
is minor, we may simplify the present analysis by 

neglecting them. To this purpose all force constants 
may be replaced by the symmetrical ones, k;k, defined 
by Eq. (63). 

Let A. be a column matrix whose components are 
ax.;aqi: 

A.(Q) =>-.(0·) + L:cax.;aqi) (qLq.i) + ... 
i 

=X.(Q•)+A.r· (Q-Q.)+ .. ·. (A16) 

The first variation in an expansion of U;*(Q) about 
Q. is found from (56) 

oU,*= oQT{(m+1)K(Q.-Q.) 

-mK(Q.-QP) -m(m+1)A.], (A17) 

where the elements of K are the k;k's. 
On setting oU;* equal to zero, one obtains, instead 

of (58); 

Q.=m(m+1)K-1A.+(m+1)Q.-mQp. (A18) 

Equation (54) for t!,.F* then becomes 

t!,.F*= (m2/2)[t!,.QT+(m+1) (K-IA.)T] 

·K[t!,.QT + ( m+ l)K -IA.] 

+m2X.(Q•)+!kTln IJ;k* 1/1 k;k I· (A19) 

For present purposes it suffices to consider the case 
where t!,.F 0

' is small. An expression for t!,.F*P can be 
obtained from (A19) by replacing m by - (m+l) 
and t!,.Q by -t!,.Q. On letting t!,.F*-t!,.F*P equal zero 

(since t!,.F01 is zero) the resulting equation is solved 
for m, which is thereby found to be -!. A simple 
numerical estimate then shows that the presence of the 
K-1Ao terms have negligible effect: Other than the ln 
term the rhs of (A19) is given by 

iX(Q•)+!t!,.Xo+~A.T(KT)- 1 ·Ao, (A20) 

where t!,.A.o is the total change in Ao when Or is changed 
to QP. Typically Ao/ 4 is of the order of 5 kcal mole-1 

and is inversely proportional to ion size. When the 
mean bond length changes by as much as 0.15 A 

(compare the probable Fe-0 bond length difference in 
Fe2+ and Fea+ hydrates) and when the radius of the 

reactant including inner coordination shell is 3 A, t!,.X./4 

is about !(0.15/3), i.e., about 0.25 kcal mole-1
• The 

third term in (A20) is even less. For example, if one 
considers the stretching of bonds only, and if the 
stretching k;/s for metal-oxygen bonds in a hydrated 
cation are taken to be the same one finds 

i7XA.T(KT)-1Ao= (t!,.A../A.;)2tA.;. (A21) 

(Similar remarks apply to other coordination com
plexes.) Since A.;/4 is of the order of 10 kcal mole-1 for 
the cited case (A21) is about 0.006 kcal mole-1

• 

APPENDIX VII. CALCULATION OF t!,.F.* IN 

CONTINUUM APPROXIMATION 

When dielectric unsaturation and electric unsatura
tion prevail there is, respectively, a linear response of 
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the solvent polarization and of the charge density of 
ions in an ion atmosphere to the charging of the central 
ion (or ions), and not merely to a small change in its 
charge. In real systems, some partial dielectric satura
tion outside of the coordination shells may occur and, 
at appreciable concentration of added electrolyte, the 
response of the atmospheric ions is certainly nonlinear. 
(The region of linear response of an ion atmosphere to 

a charging of the "central ion" is confined to the 
Debye-Htickel region.) 

We introduce the partial saturation approximation, 
wherein only a linear response to a small change in 

charge of the central ion (ions) is assumed. The special 
case of unsaturation is automatically included, there
fore. We are interested, typically, in changes of magni

tude, mt.e, i.e., about t an electronic charge unit. 
Equation (67) was derived for both the partially 
saturated and for unsaturated systems, but in the 
former case the definition of popm(r-p) and Pm(r-p) has 
to be interpreted carefully. 

To calculate Pm(r-p) appearing in (67) and to take 
partial saturation into account, one considers two 
charge distributions: (i) The original charge distribu
tion of the reactants and the medium for the cited R. 
(ii) A hypothetical charge distribution in which the 

reactants' charge distribution is altered from (i) by 

an amount m (Par 
0

- Pap 
0
), in a hypothetical system 

which has responded linearly to this change. To obtain 

the properties of the hypothetical system in Pm(r-p) one 
substracts the above two charge distributions on the 
reactants and also substracts the portions of the re
maining charge distributions, induced or otherwise, 
which did not respond. One now has in this hypothetical 
[m(r-p)] system reactants which have permanent 
charges given by the distribution m (Par 

0
- Pap 

0
) and 

are imbedded in a medium of solvent and atmospheric 
ions which has linear "response functions" describing 
the above response. For example, if we use a continuum 

model, then the effective dielectric susceptibility of the 
solvent is the proportionality constant x( r) in3

4 

oP(r) = -x(r) oE(r), (A22) 

where oP and oE are the change in polarization and in 
electric field at r. The effective dielectric constant 
describing the response to this oE is D. ( r) equal to 

1+411-x(r). The quantities x(r) and D.(r) can be 
tensors. 

Then, again, if p ( r) is the charge distribution in the 
ion atmosphere and, if one wishes, in the electrical 
double layer at the electrode-solution interface, and if 
p(r) is approximated by a continuum expression 

p(r) = Lc;'"e; exp( -e;if;/kT), 
i 

where e; is the charge of Species i in this atmosphere, 

34 R. A. Marcus, J. Chern. Phys. 38, 1858 (1963). 

c;'.o is its concentration at infinity, andy; is the potential 
at r relative to the value at infinity, then 

op(r) =- (Lc; 00e;2e-•;>IJkTjkT)OV;(r). 
i 

On recalling that the Debye kappa is defined as the 
square root of the proportionality constant of p(r) 
and -1/;(r) in linear systems, the quantity which plays 
the same role in this hypothetical system is x' ( r). 

x'(r) = [Lc;00e;2 exp( -e;l/1/kT) ]!. 
i 

(A23) 

To calculate popm(r-p) we recall that this system 
responds only via the electronic polarization of the 
medium, and so K

1 vanishes for this system and x'(r) 
becomes x'.(r), the proportionality constant replacing 
x(r) in (A22). The medium in this hypothetical 
system behaves as though it had a dielectric constant 

D'op(r) equal to 1+4?TXe· 

If we take D'op to be approximately a constant, for 
simplicity, then popm(r-p) is easily calculated. We 

neglect dielectric image effects.29 
PPm<r-p) is the sum of 

the free energy of solvation of the central species when 
they are far apart, plus the free energy change when 
they are brought together in this "op" medium. The 

former is given by the Born formula (it is not the free 
energy of solvation of the bare ion, but of the coordi
nated ion) and the latter by the Coulombic term. 

Hence, 

pop m(r-p) = _ [ ( mt.e) 
2
(1- ~)+ ( mt.e) 2(1- ~)] 

Za1 D op la2 D op 

(mt.e) 2 

- D'opR • (A24) 

The Pm<r-p) term is the sum of its value when the ion 
atmosphere does not respond 

[
(mt.e)

2
( 1 ) mt.e( 1 )] (mt.e)2 

- ~ 1
- D's + la2 

1- D'. - D'.R ' (AZS) 

and the contribution due to their response via K' ( r), 
t.P*atm· On taking K

1 to be approximately a constant 
near the central series the leading terms of the second 
contribution are36 

_ (mAe) 2[K'R+ exp[ -x'(R-a)J(l+K'2a2/2) J 
D',R 1+K'a+ exp[ -x'(R-a)]x'2a3j3R 

1 
' 

(A26) 

when a1=a2. 

The difference of (A24) and (A25) is the value of 
pop_ P when the atmosphere does not respond, and 

35 Since dielectric image effects are being neglected one may 
m~rely use the ~xpressions obtained by G. Scatchard and J. G. 
Kirkwood, Physik. Z. 33, 297 (1932), for the contribution to the 
free energy of interaction of a pair of ions with their atmosphere 
due to a response described by >e. We may merely replace >e by 
>e' and D, by D.' under the approximations stated. 
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was called !1F*sol· In (89) to (92) we have omitted 
the prime superscripts for brevity. 

In the case of electrode systems, there is only one ion, 
but there is also the image charge of opposite sign in 
the electrode.2s 

Instead of (A24) to (A26) one finds, 

(electrode) pop < _ l = - ( m!1e) 
2

( 1- -
1
-)- ( m!1e) 

2 

m r P 2a D'op 2D1opR 

(A27) 

and that Fm<r-vl is the sum of (A28) and of one-half 
(A26), 

_ (m!1e)
2
(

1 
_ _2_)- (ml1e)

2 

2a D'. 2D',R . 
(A28) 

In this way (90) and (92) of the text were obtained. 

APPENDIX VIII. CORRELATIONS OF OVER-ALL 

RATE CONSTANTS 

Equations ( 31) , ( 33), ( 81), and ( 82) describe the 

rate constant for any reactants with intact, specified 
inner coordination shells. !1F01 there refers to the change 

for those species. Consider now the rate constants ex
pressed in terms of the stoichiometric concentration of 
each redox reagent. The region of (81) linear in !1F 01 

is the most important one in terms of the correlations 
made in Part V, and we restrict our attention here to 
such cases for each elementary redox step (A29) below. 
We consider only the case where the dissociation or 

formation of any important complex does not contribute 
appreciably to the reaction coordinate near the inter

section surface: We make use of (81) and note that its 
derivation was based on intact coordination shells in a 
system near the intersection surface; the properties of 
the "reactants" or "products" appearing in Eq. (81) 

refer to those with such shells, even though they might 
be unstable. 

We consider the homogeneous case first. Let m 
denote the totality of any ligands xl, x2, . . . in a 

reacting member of the A redox system having m; 

ligands of Type X;, 

m= (m1, m2, • • ·, m;, • • • ). 

Let n play the same role for the B system 

n= (n1, n2, • ··, n;, • •• ). 

Let the reactants and products be denoted by rand p 
superscripts, respectively. A typical contribution to 
the over-all redox reaction is (A29). Let it have a 
bimolecular rate constant kmn for the forward step 

kmnr 

Am'+ Bn'~AmP+ BnP• (A29) 

The over-all second-order rate constant kab then in
volves a weighted sum over the rates of all bimolecular 

mn contributions, per unit stoichiometric concentra
tions of A r and of B': 

kab= L)mn•(Am') (Bn')/L(Am•) L(Bn•), 
m,n m n 

where ( ) denotes concentration. If 'Trmr and 'Trnr denote 
the probabilities that an A r species exists as Am' and 
that a B• one exists as Bn•, respectively, i.e., if 

m n 

then ( A23) becomes 

kab= Lkmnr'Trm''Trn'· (A30) 
m,n 

Let F m' + F n' denote the free energy of the system 
containing a labeled Am• and a labeled Bn• molecule 
far from each other, fixed in the medium, under the 
prevailing conditions. Let the corresponding property 
be Fmv+Fnv when the two labeled molecules are AmP 

and BnP· We subdivide Fm•+Fn' such that Fm• depends 
on the properties of Am• and its environment alone. It 
is therefore independent of the nature of Bn•. We note 
that the 1r's can be expressed in terms of these F's, if 
we assume, as we do, that the complexes Am' and Bn• 
have an equilibrium population, 

exp(- Fm'/kT) 

'Trm•= L exp(- Fm•/kT) ' etc. 
(A31) 

In virtue of their definition these F's depend on the 
concentration of X;'s. The free energy of any reaction 
(A32) in the prevailing medium is in fact Fm,•-Fm•: 

Am'+ L(m';-m;)X,~Am,r· 
i 

(A32) 

Each kmn is given by a pair of equations of the type 
(31), (81), where for A we write Amn and recall the 
additivity of A 

(A33) 

On using (A32) the !1F01 for Step (A29) is seen to be 

(A34) 

On neglecting 11Fmn °12/4Amn in (81) as discussed 
earlier one obtains (A35), using (A30) to (A34) : 

kab=ZKab!L exp{ -[wmn'+wmnv+!(Am+An) ]/2kTl 
m,n 

X (7rmp'Trm'1rnp1rnr)i, (A35) 

where Kab is given by (A36) and is, in fact, easily 
demonstrated to be the formal equilibrium constant of 
the reaction in the given medium, expressed in terms 
of the stoichiometric concentrations 

m n 
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This equilibrium constant is, by definition, 

L(AmP) L(BnP)/L(Am') L(Bn'). 
m n m n 

From (A35) one can at once derive an expression 
for the isotopic exchange rate constant. On considering 
the A redox system a typical contribution to the 
exchange will be (A37) when m and m' describe any 
two complexes. The over-all rate constant, kaa, is then 

obtained by multiplying kmm'' by 'lrm''lrm'P and summing 
over all m and m'. The result is given by (A38), and 
is then counterpart of (A35): 

kmm'r 

Am'+ Am,P~AmP+ Am''• 

kaa= L kmm'''lrm''lrm'P, 
m,ml 

(A37) 

(A38) 

kaa is obtained from (A35) by noting that Kaa is unity 

kaa=Z L exp{ -[Wmm''+wmm'p+HXm+A.n,)]/kT} 
m,mf 

X (7rmp'lrm''lrm'P'lrm'r)i, (A39) 

When the work terms can be neglected one finds 

kab=ZKah!L exp( -Xm/4kT) (7rmp'lrm')i 
m 

n 

(A41) 
m 

linearly onE, as in (74). F MP and F M' are independent 
of the properties of A. They depend only on those of 
the electrode and the electrical double-layer region 

(A43) 

where Am is independent of E. 
When electrochemical equilibrium exists ( E equals E. 

then), it does so for each m. Adding to the free energy 
difference (A43) the mixing term, kT ln(AmP)/(Am'), 
the result must equal zero at equilibrium. We thereby 

obtain from (A43) the value of each Am, 

(A44) 

Equation (A45) is finally obtained for the free-energy 

difference 

FmP+FMP- Fm'- FMr=ne(E- E.) 

-kTln(AmP)j(Am'). (A45) 

Utilizing the fact that E. is related to Eo' according 
to (75), where (Ox) now equals Lm(AmP) and (Red) 

equals Lm(Am'), (A45) can be rewritten as 

FmP+FMP- Fm'-FM'=ne(E-E.') -kT ln1rmP/1rm'· 

(A46) 

From (A31) and (A46) one obtains: 

exp[ -ne(E-E.')/kT)= exp[ -(FMP-FM')/kT] 

Lm exp(- FmP/kT) 

X L:exp(- Fmr /kT) (A
47

) 
m 

From (A40) and (A41) one then obtains 

kab= (kaakbbKah)l, 

For the over-all electrochemical rate constant of the 

(A42) forward reaction in (73), k.1, we have 

On considering next the electrochemical case, let M 
denote the electrode, M' describing its state before 
electron transfer and MP after. As in the text we assume 
that the acquisition or loss of an electron by the elec

trode has essentially no effect on the force constants 
or equilibrium bond distances in any adsorbed layer of 
ions or molecules. (To be sure, one or more electrons 
on the electrode may be fairly localized when the 
reacting species is near it, and this number changes 
when the species gains or loses electrons.) We regard 
different compositions of the adsorbed layer as corre
sponding to different domains of the coordinates in 
many-dimensional space. 

The free energy of a system having a labeled Am' 
molecule far from the electrode and fixed in position is 
written as Fm'+FM', the corresponding term when the 
molecule is AmP (and the electrode has lost n electrons 
thereby) is FmP+FMP· The free energy of Reaction (73) 
for the case where the reactant is Am' is then given by 
(A43), since the translational contribution for Am 
cancels in computing FmP- Fm'· The change depends 

(A48) 

where kmr is the rate constant for (Am') going to (AmP) 
at the given E. For each m, the km' is given by an 
equation analogous to (82), with ne(E- Eo') replaced 
by ne(E-E.') -kT ln1rmP/1rmr [compare Eqs. (77) and 

(A46)]. One then obtains 

ke1=Ze1 exp[ -ne(E-E.')/2kT] 

XL exp[- (wm'+wmP+!Xm)/2kT](7rmP1rm')l. 
m 

(A49) 

The work terms naturally depend on E. When they 
can be neglected one has 

k.1 = z.1 exp[ -ne(E- Eo') /2kT] 

XL exp( -Xm/4kT) (7rmp1rmr)l. (ASO) 
m 

In the light of Eqs. (A40) to (A42), (A49), and 
(ASO), we see that the correlations (a) to (f) in Sec. 18 



Downloaded 08 Mar 2006 to 131.215.225.174. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

ELECTRON-TRANSFER REACTIONS. VI 701 

still hold, even when applied to over-all rate constants 
but, as one sees from (A42), (a) is now restricted to 
the region of chemical transfer coefficient equal to ! 
[i.e., tof··..,l in (96)]. 

APPENDIX IX. ALTERNATIVE DERIVATION 

OF (13) 

As we have seen in the text, the configurational 
distribution of the V'i and V'o coordinates in the 
activated complex is not one which is appropriate to 
SurfaceR nor one appropriate to Surface P. That is, 
it is appropriate to neither electronic structure (the 
initial or final one) of a reacting species. Cognizance 
of this nonequilibrium distribution of solvent molecules 
was taken in Part I, using a dielectric continuum 
treatment of systems possessing nonequilibrium dielec
tric polarization. An expression for the free energy of 
a system with arbitrary polarization was minimized, 
subject to an energy equation of constraint, the di
electric continuum counterpart of (20). In this Appen
dix we show that this method, formulated now in terms 
of statistical mechanics yields the same result as the 
method used in Appendix II. 

The configurational contribution to free energy of a 
nonequilibrium system described by a potential energy 
ur and a distribution function j*, where!* is to be 
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determined, is given by (A51) to an additive constant 

pnon= JrurdV'+kT jf* lnj*dV'. (A51) 

Minimizing (A51) subject to the energy equation of 
constraint (A52) and to (A53), 

Jcur-up)f*dV*=O, (A52) 

jf*dV*=l, (A53) 

we obtain (A54), where a and m are Lagrangian 
multipliers: 

J (Ur+m(Ur- UP) +kTlnJ*+a)of*dV'=O. (A54) 

Setting the coefficient of of* equal to zero, and 
evaluating a from (A52) we find 

f*= exp(- ~;) / J exp(- ~;)dv', 
where U* equals Ur+m(Ur-UP). This equation was 
also obtained by the method in Appendix II. Once 
again, m is determined by the energy condition (A52). 
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Application of a de voltage across a plate of polystyrene gives rise to oscillatory currents which reach 
considerably high negative values. The dependence of current intensity (maximum, minimum, and plateau 
values) on various parameters (voltage, dimensions of samples and electrodes, nature of dissolved solute, 
etc., as well as repetitive use) is treated. The pattern of oscillation is found to depend on all these parameters, 
too. The length of the oscillation period decreases very quickly with increasing voltage. It depends also very 
strongly on the nature and pressure of the surrounding gas. 

1. INTRODUCTION 

I N trying to measure the extremely low dark con
ductivity of polystyrene we found a prohibitively 

strong influence of air on the measured intensities of the 
currents. The variation in current intensity which 
usually follows any mechanical handling of a plastic 
was also found to be strongly influenced by the presence 
of air. In order to avoid the effect of air the "chamber" 

* Performed under the auspices of the U. S. Atomic Energy 
Commission, Contract NY0-2949-6. 

which houses the investigated specimen was evacuated. 
Upon evacuation the following effect was observed: 
The current oscillates with a definite pattern reaching 
high negative values although a de voltage is applied.1 

The period of oscillation as well as its pattern depends 
strongly on the voltage. It depends also strongly on 
the nature and pressure of the surrounding gas. These 
oscillations present a serious obstacle in measuring 

1 A. Weinreb, N. Ohana, and A. A. Braner, Phys. Letters 10, 
278 (1964). 


