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On the theory of energy distributions of products of molecular 
beam reactions involving transient complexes* 
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Theoretical energy distributions of reaction products in molecular beam systems are described for 
reactions proceeding via transient complexes. Loose and tight transition states are considered for the 
exit channel. For a loose transition state and the case of I > j, the result is the same as of Safron 
et al. For the case of a tight transition state exit channel effects are included analogous to steric 
effects for the reverse reaction. It is shown how, via one mechanism, bending vibrational energy of 
that transition state can contribute to the translational energy of the reaction products. Expressions 
are derived for the energy distributions of the products when I > j and j > I. 

I. INTRODUCTION 

In recent years illuminating experiments on the be­
havior of long-lived collision complexes have been per­
formed in molecular beam systems .1 •2 The overall re.­
action can be represented as 

A +BC-ABC*, 

ABC*-ABC1 -AB+C, 

(1. 1) 

(1. 2) 

where ABC* is the long-lived collision complex and 
ABet is the transition state for the "exit" channel form­
ing AB +C. [The transition state for Eq. (1. 1) has been 
omitted for brevity.] In these experiments the transla­
tional energy distribution of the reaction products was 
measured. In related experiments on some of these 
systems vibrational3 and rotational4 energy distributions 
of the reaction products have also been measured. 

Comparison with the data has been made with an adap­
tation of RRKM theory for both "loose" and "tight" 
transition states, as well as with phase space theory .1-4 

In chemical kinetics, loose transition state theory is ap­
propriate for reactions not having steric factors, while 
tight transition state theory is needed for reactions 
having steric effects.5 Phase space theory6 is the same 
as transition state theory when the transition states for 
both (1.1) and (1.2) are loose and when angular momen­
tum restrictions on the latter are fully taken into ac­
count (e. g., Sec. V). 

It has been suggested that the molecular beam results 
can be used to test the energy randomization assump­
tion of RRKM theory, 7 although the latter theory was de­
signed for calculating rates 8

•
9 rather than for calculat­

ing energy distributions of reactions products. When 
the transition states are loose, no added assumptions 
are indeed needed: In a loose transition state AB and 
C rotate freely, and so their vibrational-rotational mo­
tion is uncoupled from the radial-orbital motions in 
ABet and a fortiori in the motion from ABet to the 
products AB +C. Thus, in this case RRKM theory can 
be used without further approximation for discussing 
energy distributions. 

In the case of a tight transition state, only by adding 
additional assumptions to it can one adapt it to yield ex­
pressions for these distributions. Thus, only when the 
latter assumptions are valid do the beam data test RRKM 

theory itself. 

In a recent stimulating theoretical study using transi­
tion state theory to obtain the energy distribution of re­
action products, it was assumed that the distribution of 
vibrational and rotational energies in the products of 
(1. 2) was the same as that in the transition state ABet .10 

The translational energy distribution of relative motion 
of the products was assumed to be greater than that in 
ABet by a centrifugal plus potential energy term, and 
an appropriate distribution function for this term was 
included. The case of relatively large orbital angular 
momentum quantum numbers l in (1.2) and large ones 
l 0 in (1. 1) was treated. 10 

Given the above energy distribution in ABC t, what is 
of particular interest now is an examination of possible 
dynamical (or statistical and dynamical) effects in the 
evolution of the degrees of freedom of a tight ABet into 
those of AB +C. Such effects would further influence 
the internal and translational energy distributions of 
the reaction products, both for the case of large and 
small l. For example, some of the bending vibrational 
energy of ABet may be converted into translational en­
ergy of AB + C in (1.2), as follows.U 

When the transition state in (1.2) is tight, there are 
bending vibrations in ABet which tend to become rota­
tions of the products. Because the spacing of bending 
vibration levels is wider than that of rotational levels, 
an extra energy is released into translational energy 
Ep of the products if the conversion of the bending to ro­
tational motion is "statistically adiabatic" (adiabatic on 
the average). This effect, when it occurs, would cause 
the translational energy of the products AB + C to be 
shifted to higher values. 

In the present paper an expression is derived for the 
energy distribution of the reaction products, taking this 
effect into account for a tight transition state. The re­
lation between loose transition state theory and phase 
space theory is first summarized, so as to set a back­
ground for analysis of the tight transition state theory. 

The organization of the paper is as follows. In Sec. 
II the transition states for some reactions are discussed, 
differentiating between loose and tight. In Sec. III the 
distribution of total angular momenta in (1. 1) for a 
loose transition state for that reaction is given. In Sec. 
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IV the assumptions used in treating (1.2) are listed. 
State-selected cross sections are derived for the case 
of a loose transition state for (1.2) in Sec. V and com­
pared with those of phase space theory. Approxima­
tions are then given for the cases of l » j and j » l, 
where l and j refer to the orbital and rotational angular 
momenta of the products of (1.2). The corresponding 
cases (l » j and j » l) when ABCt is a tight transition 
state for (1.2} are treated in Sec. VI, and the former 
is illustrated with several examples in Sec. VII. 

The distribution of translational energies of reaction 
products for the four limiting cases in Sees. V and VI 
is deduced in Sec. VIII from the state-selected product 
distributions given in those sections. Rotational and 
vibrational distributions are derived in Sec. IX. The 
paper concludes with some further comments in Sec. X. 

II. TRANSITION STATES FOR SOME REACTIONS 

When the reaction cross section for the forward step 
in (1.1) leading to the formation of an ABC* is large, 
steric effects in that step are small and so the transi­
tion state of (1.1} can be regarded as loose. Because 
of detector sensitivity limitations the reactions studied 
have had relatively large cross sections and so the 
transition state has typically been regarded as loose for 
this first step. 

The transition state for the second step, ABC*- AB 
+ C, Eq. (1.2), however, is probably loose for some re­
actions but tight for others: Typically, one might ex­
pect that when the energy barrier for the reverse step 
AB + C- ABC* is large, the barrier will depend on the 
relative orientation of AB and C, steric effects will 
therefore be present and the transition state will be 
tight. When the barrier is negligible for the more fa­
vorable directions of mutual approach, it might be non­
negligible for other directions, and some steric effects 
might still occur. 

An example of a chemical activation whose exit chan­
nel (1.2) appears to involve no significant potential en­
ergy barrier for the reverse step, AB+C-ABC*, is 

F+CRCZ=CR'R"- FRCZ-CR'R" -FCR=CR'R" +Cl, 
(2.1) 

where the R's are alkyl or other groups.2 •12a Treatment 
of such reactions by a loose transition state statistical 
theory in which all internal coordinates of ABC* partici­
pated in sharing the excess energy yielded reasonable 
agreement with the data.2•7 

Two other examples of chemical activation, the sec­
ond of which has a large potential energy barrier12b•2 

for the reverse step of AB+C-ABc•, involve H atom2•7 

or methyl radical2•7 elimination instead of Cl elimina­
tion: 

F + CHR = CR'R"- CHRF- CR'R"*- FCR = CR'R" + H, 

F + CH3CR = CR'R"- CH3CRF- CR'R"*- FCR 

=CR'R" +CH3 • 

(2. 2) 

(2. 3} 

Thus, tight transition states would be expected for the 
dissociation step, at least in (2.3). On the basis of re-

cent beam data, one could infer either that all vibrations 
of ABC* do not participate in the energy sharing during 
the short life of the vibrationally hot molecule, 2.7 or 
that the added assumptions used to calculate the energy 
distribution of AB + C were in error, 3 or possibly both~3• 13 

The added assumptions did not, for example, allow for 
any possible statistical-adiabatic effect described in the 
previous section. The effect is such that it would quali­
tatively reduce the discrepancy. Thus, numerical tests 
of the present or other models is needed for systems 
involving tight transition states, before more definite 
conclusions can be drawn regarding the number of vi­
brations of ABC* participating in the energy sharing, 
where ABc• is tight. 

Ill. DISTRIBUTION OF ANGULAR MOMENTA OF 
ABel 

We consider the case where the transition state of 
(1.1) is loose. The final results for this aspect of prob­
lem can be altered when this step has instead a tight 
transition state, by utilizing arguments analogous to 
those employed for (1.2} in Sec. VI. All previous work 
appears to have used a loose transition state for 
(1.1).1,2,7,10,14 . 

Let 10 and j 0 denote the orbital and the total rotational 
angular momentum quantum numbers for (1.1 ). The 
total angular momentum quantum number K lies in the 
interval ( IZ0 - j 0 I, 10 + j 0}, by the usual rule for addition 
of angular momenta. 

The loose transition state occurs at the maximum of 
the effective potential energy for the radial motion r of 
AB and C: If U0(r) is the actual potential energy for 
motion from r =co to an r in the vicinity of the loose 
transition state, the effective potential for the radial 
motion d/(r) contains a centrifugal term 

(3.1) 

J.lo is the reduced mass of A and BC. The transition 
state occurs at an r, do, where B~(r) has its maximum. 
(U0 contains a long-range attractive term.) That is, 

dd/(r )/ dr = 0 at r = d , (3. 2) 
0 

and d 2 d/(r )/ dr 2 is negative at r ~0 • 

The reaction cross section for A +BC to form ini­
tially an ABC* in (1.1} is a0• The cross section is given 
by a standard relation15 

ao= k1T2 L (2l0 +1)w~ v , 
0 lifO 0 0 

(3. 3) 

where w~0v0 is the reaction probability for a colliding 
pair A and BC having an initial orbital angular momen­
tum quantum number l0 and an initial relative velocity 
v0 • w0 is independent of the internal states of A and 
BC, in the case of a loose transition state. ko is the 
wavenumber P0 /1i (= J.Lov0 /1i}. w0 is a step function of 
the energy excess EPo- dl(r j

0
}, where E,

0
, the initial 

translational energy, is ! J.Lovfi: 

w~ovo = 1 if E,0 > ~(r!0} 
= 0 if E,

0 
< ~(d0) • (3. 4} 
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For a given Ep
0

, therefore, w0 is unity for alll0's 
up to some maximum value lam, defined by 

B~(r!0) < Ep
0 

for 10 <lam • (3. 5) 

Using (3.4) and (3. 5) the sum in (3.3) now yields 

ao= 1r(lom + 1)2/k~ • (3. 6) 

Differences such as those between lam and lam+ 1 will 
later be ignored. 

The distribution of total angular momentum quantum 
number Kin the ABC*'s formed in (1.1) will be needed. 
In the case of a loose transition state for (1.1) the prob­
ability of obtaining a particular K for ABC* depends only 
on a statistical factor: The probability of forming a 
particular K in step (1.1) equals the ratio of number of K 

states to total number of j 0 and l0 states, namely, (2K 
+1)/(2j0 +1)(2l0 +1), where K lies in (lj0 -l0 l,j0 +l0). 

Thus, the probability that a pair A +BC of a given l0 and 
v0 not only reacts but forms a state of given K is 

•• JJ • 2K + 1 0 (I . l I . l ) 
w1'v =(2" 1)(2l 1)w10v0 Jo- o ~K""Jo+ o • 0 0 Jo + o + ' (3. 7) 

The distribution function of ABC*'s formed in (1.1) 
with a given K, P0(K), is obtained by multiplying (3. 7) 
by the weighting factor 2l0 + 1, summing over all l0' s 
consistent with the given K and j 0 , and dividing by a 
normalizing factor: 

L:;~~•-iol (2lo + 1)w~g.';o 
L~o= 0(2lo + 1 )w~0v0 

(3. 8) 

Further, w~ovo equals unity when l0 ~ lam and zero when 
l0 > l

0
m, according to (3. 4) and (3. 5). Also, l0 cannot 

exceed K + j 0 • Thus, Eqs. (3. 7), (3. 8), and (3. 3) yield 

(3. 9) 

The upper limit l~ on the l0 sum is either the energy­
limited value lom defined by (3. 5) or the angular momen­
tum-limited value K + j 0 , whichever is the smaller. That 
is, 

l ~=smaller{ lam, K + j 0} • (3. 1 0) 

The maximum value of K, Km, for the given j 0 , is the 
maximum value of fo+j 0 , i.e., 

(3.11) 

One may verify by interchanging the order of summa­
tions over K and Z0 thatl 6 

K=Km 

L P0(K)=1, (3. 12) 
••0 

as indeed it should. The limits in the reordered sums 
are given below by (3.13) since, for a given j 0 and l0, K 

lies in the interval ( lj0 - lo I, j 0 + 10 ), and since l 0 itself 
must lie in the interval (0, lom): 

(3.13) 

A useful simplification of (3. 9) arises, one which will 
not be used until Sec. VB, when l 0 » j 0 • In this case, 

since the l0's are clustered around K, we may set in 
(3.9)and (3.10) (a) IK-j0 I=K-j0 and (b) l~=K+j0 for 
the large majority of K's. The sum over l0 in (3. 9) 
then becomes 2j0 + 1. Further, we may set P0(K) equal 
to zero for K greater than lam, since K cannot exceed 
lam+ j 0 , and this quantity is essentially lam • Thus, Eqs. 
(3. 9) and (3. 6) yield 

(3. 14a) 

(3. 14b) 

ignoring the difference in l ~m and (lom + 1 )2
, for notational 

brevity. 

IV. ASSUMPTIONS 

It will be assumed that 

(i) the transition state for (1. 1) is loose, as already 
noted, 

(ii) s vibrations of ABC* participate in the energy 
sharing process, i.e., are active (the remaining, if 
any, are adiabatic throughout (1. 1) and (1. 2)17); 

(iii) transition state theory is valid for (1. 2); 

(iv) in the case of a tight transition state, an addi­
tional assumption given later. 

Assumption (iii) can be rephrased as 

(iii) a quasiequilibrium approximation for (1. 2) 
("microcanonical activated complex theory"), 18 namely, 
Eq. (4. 3) below, is valid. 

Assumption (i) can be replaced, as noted in the pre­
vious section; the transition state for (i) could be tight 
and other reaction probabilities w~~vo could be introduced. 

When the transition state ABc• for Eq. (1. 2), is loose 
the assumptions (i)-(iii) permit an immediate calcula­
tion of the energy distribution of the reaction products. 
The results are given in Sec. V, and are the same as 
those of phase space theory, as already noted. They 
reduce to those of a recently formulated loose transi­
tion state theory10 for the reaction (1.2) when one intro­
duces the approximations, K "=: l 0 and ["=: K, l being the 
orbital angular momentum quantum number of the prod­
ucts. That transition state theory employed these use­
ful approximations, and so this last result, too, is the 
expected one. Another limiting case, l 0"' K "'j, is also 
given in Sec. V. 

There may be several sets of reaction products from 
ABC* in reaction (1.1)-(1.2), I;Jesides AB+C and A +BC. 
We denote by 01 the ath set of products, and introduce 
the following additional symbols for reaction probabili­
ties and cross sections: ajn;JonoE is the cross section 
for forming the ath set of products in a rotational-vi­
brational state jn from reactants in a state j 0n0 when the 
total energy is E; a;p;JonoE dEp is the cross section for 
forming the ath set of products with a translational en­
ergy (Ep ,Ep + dEp); wj~18 is the probability of forming an 
ABC* from a collision of the ath set of products having 
a given .i , n, l , K , and E • 

The second a is related to the first by 
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a~P :JonoE dEp = LaJn;JonoE, (E- Ep- dEp <;: Ejn.,: E- Ep), 
in 

(4.1) 
where the sum is such that the rotational-vibrational 
energy E'fn of the ath set of products satisfies the condi­
tion in parentheses. 

Throughout, j 0 and j denote the total rotational angu­
lar momentum of the reactants and of the ath set of 
products, respectively. The remaining rotational quan­
tum numbers and the vibrational quantum numbers are 
included in n0 and n, which are discussed more fully in 
Sec. IX. 

Assumption (iii) for a given K and E can be written 
as19 

L W J~IE = L 1 = N!"' , (I K - j I <;: l <;: K + j 1 0 <;: Ejn <;: E) 1 
jnl nl 

(4. 2) 

where the first sum is over all j, n, and l consistent 
with the given K, E, and a, namely, over j, n, and l 
satisfying the conditions in parentheses. The sum over 
nt in (4.2) is over all quantum states of the ABC 1 for 
the ath set of products, consistent with the given E and 
K • N!"' denotes the number of such states, apart from 
a degeneracy factor 2K + 1, which is absent from both 
sides of (4.2). 

To simplify the notation the subscript a present above 
will be omitted in the future from all symbols, apart 
from N!a. 

The total cross section for producing the a th set of 
products, aJonoE, for the given j 0 , n0 , and E is, in the 
present statistical-type theory, 

Km 

- ~ p () N!a aJ n E- ao L.... o K '<:' Nt 
0 ° K"0 L..a •a 

(4. 3) 

since N!a /~aN!,. is the probability that a transition 
state of a given K will be of the ath type, and aoP0(K) is 
the contribution of a given K to a 0 • 

When (4.2) is introduced for N!a into the numerator 
of (4.3), we have 

(4. 4) 

where the conditions in (4. 2) on the jnl sum apply. The 
sums on the right-hand side can be reordered, without 
any change in limits, to read ~in L,. ~1 • 

The right-hand side of (4.4) is now seen to be the sum 
of disjoint terms, since the reaction probability for AB 
+C-ABC* starting from any Kjn state of AB+C, 'k1wjniB• 
is independent of that starting from another Kjn state at 
the same E and a . Thus, terms of the same j and n on 
both sides of the second half of (4.4) may be equated, 
yielding 

(4. 5) 

where Km is given by (3. 11 ). 

Assumption (iv) will be taken to be: w}niE is a function 
of the energy excess for overcoming the barrier for the 
reverse of (1.2), AB+C-ABC*. There is some mini­
mum barrier, denoted by B~, in addition to the extra 
component, present statistically, from the conversion 
of rotations of AB+C into bending vibrations of a tight 
ABet. The energy excess is taken to be Ep- B}. Thus, 

w'.fnzE = w"(Ep- B:) . (4. 6) 

By using microcanonical activated complex theory 
[assumption (iii)] one introduces an effect arising from 
the difference of densities of states of bending vibrations 
in a tight ABet and of rotations inAB+C, duetothedif­
ference in energy spacing of quantum states. Assump­
tion (iv) permits the translational energy to help over­
come this mean difference in bending vibrational and ro­
tational energy. 

The simplest value for B: would be 

B:=u1+EL (4.7) 

where ut and E l denote the potential energy of the tight 
transition state ABet, relative to the ath set of prod­
ucts, and a centrifugal-type barrier, respectively: 

E:=Z(l+1)n 2/2It. (4.8) 

Here, 1t is a relevant moment of inertia of ABC . The 
assumption of ut + El as the minimal barrier provides 
a simple way for assuring that appropriate impact pa­
rameters for the reverse step in (1.2) occur, via a suit­
able I 1• More complex expressions for BJ could be 
tried instead. Some of the above symbols are illustrated 
in Fig. 1. 

Equations (4. 6)-(4. 8) automatically apply to a loose 
transition state, with It replaced by JJ.R}2, where R~ is 
defined in Sec. V, and with w" being the simple step 
function given in Sec. V by Eq. (5.4). For a tight tran­
sition state the moments of inertia could depend slightly 
on the quantum numbers, but usually in chemical kinet­
ics any such dependence is ignored when the transition 
state is tight. 

The use of several additional symbols will prove 
helpful. We denote by Zm the upper limit of the l 's satis-

ABC ABC41 
AB+C 

FIG. 1. Properties in the exit channel. Ul may be positive, 
as indicated, or negative. 
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.i= l<+j 

FIG. 2. Plot of (l, K) quantum states's space available (shaded 
area) for forming products of a given j and Ep. The line K = K,. 

is drawn for the case that j + l,.2: K,. > j. 

fying the condition B: < Ep • That is, 

B! < Ep for l < l,.(Ep) • 

l,. thus depends only on Ep • 

(4. 9) 

Since l can exceed neither l,. nor K + j and since K can 
exceed neither K,. nor l,. + j, Eq. (4. 5) can be rewritten 
as 

(4. 10) 

where 

(4. 11) 

K< = smaller{j + l,., K,.} , (4. 12) 

and K,. is given by (3.11). Thus, the upper limit of l is 
either an angular-momentum-limited value j + K or an 
energy-limited value l,.. Similarly, the upper limit of 
K is either j + l,. or K,., (both are energy-limited plus 
angular-momentum-limited values). 

In two of the cases (Sees. V C and VI C) it will be con­
venient to interchange the order of the sums in (4. 10). 
The new limits are seen from Fig. 2 to be 

(4.13) 

where 

< = smaller{j + l, K,.} . (4. 14) 

In Sec. VI we shall need the following densities of 
states of the ath set of products. 

The number of active vibrational-rotational jn states 
of the ath products when their energy E1n lies in the in­
terval (E- Ep- dEp, E- El>) will be denoted by p(E- Ep) 
x dEl> and equals 

p(E- El>)dEJ>=L(2j+ 1), (E- EJ>- dEp ~ E," ~ E- Ep). 
Jn 

(4. 15) 
Depending on the approximation used for p, p can con­
sist wholly of a sum of delta functions, or of delta func­
tions (for the vibrational eigenvalues) superimposed on 
a continuous function, or of a continuous function. 

A second density of states needed in Sec. VI involves 

the sum of all n states in an energy range for systems 
with a given j: 

p J (E - E/>)dE/> = L 1 , (E- E/>- dEp ~ E1 n <;: E - Ep) • 

n (4.16) 

V. LOOSE TRANSITION STATE FOR ABCt 

A. Loose transition state for any Q and i 
If U(R) denotes the potential energy for the radial 

motion R in (1.2) in the vicinity of the transition state 
and for larger R's, the effective potential for theRmo­
tion B 1(R) is 

B 1(R)=U(R)+l(l+1)ti2/2JJ.R2
• (5.1) 

The transition state occurs at an R = R: where B 1(R) has 
its maximum. R: depends only on l, the orbital angu­
lar momentum quantum number of the products AB +C. 
The value of B1 at R = R: is denoted by B:. 

The quantum numbers for ABC l are K, j, l, and n 
when ABC* is a loose transition state, and all states of 
this loose ABC l are equally probable a priori, for the 
given K and E. The total number of such states avail­
able is La N! .. , where 

'< 
N!a=LL L 1,(0~EJn-o;E), (5. 2) 

J n I=IK-jl 

and l< is given by (4.11). 

Since j, n, and l are good quantum numbers along the 
reaction coordinate R from ABC* to AB+C, the distri­
bution of j and n in AB +C is the same as that in ABC*. 
All states of ABC* contributing to (5.2) are equally prob­
able. Thus, the probability of finding a transition state 
in any one of these states is 1/L:"' N!"', for the given K 

and E. Since the probability of finding an ABC* with 
any given K is P0(K), and since the total cross section 
for forming an ABC* in (1.1) is a0 , the cross section 
for forming any j and n is obtained by summing over all 
l consistent with this j, K, and n, and then summing 
over K: 

(5. 3) 

where l< and K< are given by (4.11) and (4.12). 

Equations (5. 3) and (3. 9) are equivalent to the phase 
space theory result.20 

For later comparison we note parenthetically that the 
reaction probabilities w~niE for the reverse of (1.2), de­
fined in Sec. IV, is given by the following equation, in 
the case of a loose transition state: 

w'JnrE = 1, (E, > B:) 

= 0 , (EI> < Bf ) • (5. 4) 

Equation (5.3) could also have been obtained from (4.10) 
using (5.4). 

B. Loose transition state whenQ0 » i0 and Q» j 

A useful simplification of (5.3) arises when 10 » j 0 and 
l » j for the more important 10' s and l' s contributing to 
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-,_1= tc+j 

l=j-K 1=~<:-j 

lm- ----------------

0 

FIG. 3. Plot of (J,, K) quantum states's space available (shaded 
area) for forming products of a given j and EIJ for the case of 
j » l. The line K = K,. is drawn for the case that K,. > j + l,.. 

(5. 3). It has already been seen that when 10 » j 0 , Eq. 
(3.9) for P0(K) reduces to {3.14). 

When l » j the values of l in (5.3) are largely clustered 
around the given value of K being considered. Thereby, 
in the sum over l in {5.3), since j is so small, we can 
set {a) 1< = K + j, for the large majority of the K' s, and 
{b) 1 K- j I= K- j. Thus, the sum over l in (5.3) equals 
2j+l. 

The upper limit K < in the sum over K in (5.3) is seen 
from (4.12) to be the smaller of the l,. and 10 ,., since 
j + l,. ~ l,. and K,. ~ l0 ,.. Equations (5. 3) and (3. 14) now 
yield the following equation, since the sum of 2K + 1 from 
K = 0 to K,. is K~ (neglecting unity relative to K,.): 

_(2j+1)a0 ( ) 
O"Jn;J n E - '\' Nl A Ep , 

Q 0 Uot Kot 

where 

A(Ep) = 1, (l,.:;. lom) 

= (l,. /lom)2
, (l,.,: lom) • 

(5. 5) 

(5. 6a) 

(5. 6b) 

[If unity had not been neglected relative to l,. and to l0 ,. , 

the (l,. /lom)2 in (5. 6b) would have been (l,. + 1)2/(10 ,. + 1 )2
• 

The same remark applies later in (5. 8b).] We have re­
placed the K in ~aN!a by some mean value, an approxi­
mation which is a convenience rather than a necessity, 
and have introduced a notation A(EIJ) to facilitate com­
parison with Ref. 10.21 

C. Loose transition state when Q0 » i 0 and i » Q 

It will be convenient to use (4. 13) for O"Jn:JonoE, with 
w~nlE being replaced by unity for this case of a loose 
transition state [since l,: l,. in (4.13)]. The K in~"' N!a 
in (4.13) will be replaced by some averaged value, and 
the P0(K) in (4.13) is given by (3.14). 

Figure 3 shows that in evaluating the sums over K and 
l in (4.13) it is convenient to consider four cases which 
differ in the value of K,.: (1) K,. 3 j + l,., (2) j + l,. 3 K,. > j, 
(3) j:;. K,. > j- l,., and (4) j- l,. > K,. • In the present case 
j » l,. and so in practice one need consider mainly cases 
(1) and (4), with (2) and (3) only providing some small 
trartsition region. 

For the case of K,. :;. j + l,. the K~ in {4.14) becomes j + l, 
the lj -ll in (4.13) is j- l {since j > l), and so in (4.13) 

the sum over K becomes a sum of 2K + 1 from j- l to j + l. 
The value of this sum is (2j + 1)(21 + 1). The sum of 21 + 1 
from 0 to l,. then yields l~ (neglecting unity relative to 
l,.). 

Considering next the case K,. <j -1,., we note that K 

cannot simultaneously satisfy the angular momentum 
addition rule, j- 1,. <:: K,: j + 1,., and the condition K ~ K,. 

<j -l,.. Thus, the corresponding O"Jn;JonoE vanishes. 

These two cases can be written as l 0 ,. > j and 10 ,. < j, 
noting that K,. ~ lom and lm «j. Equations (4.13), (5.4), 
and (3. 14) thus yield 

,,,.(2j+1)a0 '( ) 
O"Jn;ionoE- '\' Nf A Ep ' 

Ua. Ka 

where 

(5. 7) 

A'(EIJ)=O forj>l0 ,. (5.8a) 

= (l,./1
0
,.)

2 , for j < 10 ,. • (5. 8b) 

Equation (5. 7) plus (5. 8b) is identical with the (5. 5) 
plus (5. 6b) apart from the condition j < 10 ,., which re­
places z,. :5 z_. 

VI. TIGHT TRANSITION STATE FOR ABet 

A. General 

Equations (4. 2) and (4. 6) yield 

L uf = N!a ' (II( - j I :5 l :5 10 0 :5 E1n S E) , (6.1) 
Jnl 

where l< is given by (4. 12) and where wK and N!a denote 

WK~ wK(Ep- Bn' (6. 2) 

N!a ~ N!a(E- BfK) , (6. 3) 

and Bf and Ef are given by (4. 7) and (4. 8). A new quan­
tity BfK has been introduced: BfK is the energy of ABC' 
"fixed" as potential energy ut and as the part of the ro­
tational energy associated with the total angular momen­
tum quantum number K, and so it cannot be distributed 
among the states nt of ABet. While Bf can contribute 
only to EIJ, during the formation of the products from 
ABC', BfK can contribute both to the EIJ and E1n energies 
of the products. 

When K a! l, the moment of inertia appearing in BfK [ cf. 
Eq. (6. 14) later] will be the same as that appearing in 
the exit channel barrier Bf, as in case (b) below. When 
K a! j, these two moments of inertia may differ, as in 
case (c) below. 

. The summation over j, n, l is bounded by the limits in 
(6. 1). N!a(E- Bf«) does not include a degeneracy factor 
2K + 1, it will be recalled, which is absent from both 
sides. N!01 (E- Bf«) is the number of active vibrational­
rotational states of ABC', for given E and K, having an 
internal energy equal to or less than E- Bf«. Equation 
(6. 1) is to be solved for the unknown function uf. 

B. Tight transition state when Q0 » j 0 and Q» i 
As in the corresponding case Sec. VB for the loose 

transition state the values of l are clustered around the 
value of K. The lin Bf in (6. 2) is replaced by K. Since 
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[9! K, the moment of inertia in Bf. is the same one as 
that in B:, and so Bf. in (6. 3) is replaced by B~. 

The sum over lin (6. 1) is from I K- j I to l<, where Z< 
is, as in Sec. VB, set equal to K+j for almost all K's, 
because of the clustering of l values. Since I K- j I 
equals K- j, the sum over l once again yields 2j + 1. 
The sum of 2 j + 1 over j and n, for Ep in a range (Ep, 
Ep + dEp) yields by (4.15) p(E- Ep)dEp, the number of 
rotation-vibration states for the products Ql in the range 
E- Ep- dEp S E;n SE-Ep. (It does not include the 2K + 1 
degeneracy factor. ) 

Equation (6. 1) then becomes 

E 

1 p(E- Ep)w"(Ep- B!)dEp = N!ac(E- B!) . (6. 4) 
Ep=B! 

This equation is next solved for w" by Laplace trans­
forms: Multiplying both sides of (6. 4) by exp[- s(E 
- B!)jdE, integrating from E = B! to oo, using the convo­
lution theorem, and noting that the Laplace transform of 
the right- hand side of (6. 4) is Q!(s)/ s, where Q! is de­
fined below, we have 

w"(s) = Q!(s )/ sQ(s) ' 

where 

w"(s)= r w"(x)exp(-sx)dx' 

Q(s)= r p(x)exp(- sx)dx' 

(~ dNl (x) 
Q!(s)=J

0 
d~ exp(-sx)dx. 

(6. 5) 

(6. 6) 

(6. 7) 

(6. 8) 

Inversion of (6. 5) yields w"(x). Setting x equal to Ep 

- B! we have 

w;nlE = w"(Ep - BL) 

1 ic+i~ Q!{s) 
=-2 . . -Q( )exp[s(Ep- BD]ds, 

rr: c-•~ s s 
(6. 9) 

and with Ze~ K. 

To obtain an expression for the cross section a1n;JonoE 
using (4. 13), it is first noted that since K » j, the values 
of l in the sum over l are clustered around l= K. Setting 
the l in w7nrE equal to some mean value K in this small 
interval of l' s, the sum over lin (4.10) is from K- j to 
K+j and equals (2j +1)w7nlE with le!K. We now have 

"< 
aJn;J " E = (2j + 1)o-0 ~ :o(Kl w}niE (with [9! K). (6.10) 

o o •=O u.,.N.a 

The upper limit K< in (6. 10) is seen from (4. 12) to be the 
smaller of j + z,. and K,., i.e., of l,. and lam in this case 
of l » j and 10 » j 0• Introducing Eq. (3. 14) for P0(K), Eq. 
(6. 10) thus becomes 

lam 

-( . )~"' 2K+1 K 

aJn;JonoE- 2} + 1 z2 LJ '\' N* WjnlE 
om K=O Lia Ka 

. 0" ~ 2K+1 K 

= (2} + l) f ~ L.,.N].,. W;niE 

where w}nlE is given by (6. 9). 

(6. lla) 

(6. llb) 

In Eq. (6. 11) the sum over K can be replaced by an in­
tegral over 2KdK, i.e., over d(K2

). Thus, 

(6. 12) 

where the t denotes "tight" and 

(6. 13a) 

(6. 13b) 

Here, the dependence of LaN!a on K has been presumed 
small, and the K inN!.,. represents some averaged value. 
(Otherwise, it can be placed in the integrand. ) 

From Eqs. (4. 7) and (4. 8), one sees that B! is the sum 
U*+[K(K+l)n2/2I']. It, it will be recalled from sec. IV, 
is usually taken to be a constant in the case of a tight 
transition state. 

Equation (6. 12) also applies to a loose transition state. 
For a loose transition state Q! equals Q in (6. 9), and so 
(6. 9) reduces22 to the step function value for w" given by 
(5. 4), namely, unity if Ep > B! and zero if Ep < B!. With 
this value for w" Eq. (6.12) yields (5. 5). 

C. Tight transition state when £0 » j 
0 

and i » Q 

In this case the I 1 associated with the centrifugal con­
tribution in B: is expected to differ from the I 1 associ­
ated with the principal rotational quantum number of 
ABet, K. We shall denote the latter by IL so that ut 
plus the part of the rotational energy of ABet associated 
with K will be denoted by B[,, where 

BL = ut + El. = ut + K(K + 1)n2/2II . (6. 14) 

As before, we shall suppose that Ep has to exceed a 
barrier Bf, where Bf is given by (4. 7}. 

In the sum over j in Eq. (6.1), the j's are now clus­
tered around the given value of K. In fact, j ranges 
from K- l to K + l, and l «j. Summing over j in this 
cluster and neglecting the variation in w"(Ep- Bl) over 
this j interval, the sum over j equals 2l + 1. The sum of 
21+1 over lis from 0 to l,.. At any j we may, in sum­
ming over n, introduce p1, the density of the states de­
fined by (4.16). Equation (6.1) becomes 

(6. 15) 

where K 9! j and where w• is defined by 

,a 
W"(Ep)= ( m w"(Ep-B:)dl 2 • (6.16) 

J,a.o 
The integrand in (6.16) depends only on Ep and B:. The 
upper limit l~ depends only on Ep [cf. Eq. (4.9)]. Thus, 
the right-hand side of (6.16) depends only on Ep, a re­
sult explicitly indicated by the argument in W"(Ep). 

Equation (6.15) is solved by a Laplace transformation. 
Both sides are multiplied by exp(- sE) dE and integrated 
from E=O to oo. The convolution theorem yields, as in 
(6.4) and (6. 5), 

W•(s)=[Q!(s)/sQ"(s)], (6.17) 

where 
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W"(s)= £"' W"(y)exp{- s)dy, 

Q1(s)= l"' p 1(y)exp(- sy)dy. 
0 

Inversion of (6.17) yields 

• _ 1 Jc+ioo Q.(s) 
W (y)--2 . -Q () expsydy. 

1TZ c-ioo S j S 

(6.18) 

(6.19) 

(6. 20) 

(6. 21) 

Q!(s) d~fined by (6.19) does not include the degener­
acy 2K + 1, but the y in (6.19) does include the energy 
Bl.. The integrand in (6.19) does not become apprecia­
ble until y exceeds Bf.. The p 1(y) in (6. 20) is also es­
sentially zero until y, which is E1n, has some minimal 
value E1 for the rotational energy of the products con­
sistent with the given j. When E1 and the rotational en­
ergy in B~. (with K ~ j} are approximately equal, they tend 
to cancel in the ratio Q!(s)/Q1(s), and then w• tends to 
be independent of or only weakly dependent on j • 

The cross section is obtained from the reaction prob­
ability using Eq. (4.13). When l0 .,, and hence K.,, ex­
ceeds j + l.,, the K~ in (4.13) and (4.14) is j + l. Since 
j > l, K varies from j- l to j + l. If the variation of w• 
over this small K range is neglected, the sum of (2K 
+ 1)w" from K = j -l to j +lis (2j + 1)(2l + 1)w1 • Thus, 
Eqs. (4.13) and (3.14) yield for this case of l 0 ., > j + l.,, 
i.e., of lom>j, 

• 2 
_ (2J + 1)a 11

"' 1 * 2 
aJn;J 0n0E- (L; N* )l~ w (Ep- B 1) dl 

"' ""' om 12=o 

_ (2j+1)a0 W1(E,.) (l > .) 
- L; Nt z2 • om J , 

« I(~ om 
(6. 22) 

where the K in La N!a is a suitably averaged value and 
W 1 (Ep) is given by (6. 21) with K ~ j. 

As in the loose case of Sec. VC, the cross section is 
zero when lom and hence K., is less than j- l., . 

From these results we have 

(6. 23) 

where 

A;(Ep) = 0' (j > lom) 

1 c+i .. Q*( ) 
= ~2 ·z f . Q

1 
(s ) (expsEp) ds, (j < l 0 .,) • 

1TJ om c-s«> S J S 
(6. 24) 

As in Sec. VC, the conditions l0 ,..,;; j -l., and l0 ,. "j + l,. 
were written as lom < j and lom > j, since l., « j . The 
A;(Ep) in (6. 24) does not become appreciable until E" ex­
ceeds .Bf1 -E1• 

Equation (6. 23) reduces to Eq. (5. 7) for the loose 
transition state when the assumptions appropriate to the 
latter are introduced." For a loose transition state QJ 
can be written as 

(6. 25) 

Introduction of this result into the integral in {6. 24) and 
integrating over s first we have22 

1 lc+ioo Q*(s) "' 
27T,. . ~Q () exp(sEp)ds=l 2ldlh(Ep-B~), 

C•J«> S J S 0 

(6. 26) 
where h(Ep - B~) is the unit step function, which is the 
same as the w}niE in Eq. {5. 4). Thereby, his unity if 
l < l., and zero if l> l., [cf. Eq. (4.9)]. The right-hand 
side of (6. 26) thus equals f 21 dl integrated from 0 to l 

d 2 "'' an so equals l.,. Thereby, Eq. (6. 23) reduces to {5. 7). 

For a tight transition state the deviation of Q
1
'(s)/Q (s) 

f . ( I j rom the value m 6. 25} causes At(Ep) to deviate from 
the value (5. B) for the loose transition state. 

VII. APPLICATIONS OF THE EQUATIONS IN SEC. VI B 

For purposes of illustration and further discussion, 
Eq. (6. 9) for the tight transition state l » j is evaluated 
for several examples. It will be recalled that the equa­
tions of Sees. VI B and VIC applied not only to a tight 
transition state for assumptions made, but also to a 
loose transition state, when the assumptions appropriate 
to the latter were introduced. Equations (5. 5) and (5. 7) 
were obtained. 

Since QJ /Q in (6. 9) was unity for a loose transition 
state, the deviation of QJ(s)/Q(s) from a value of unity 
in (6. 9) represented the contribution of the steric effects 
to w" for the reverse step AB + C- ABC*. (A loose 
transition state occurs for a reaction having no steric 
effects.) Q(s) is known from the properties of AB+C. 
If Q!{s) is calculated from the properties of the transi­
tion state and introduced into (6. 9), the w• 's can be 
evaluated. The various cross sections can then be cal­
culated from (6.12). With l»j, the K can be replaced by 
l in the various equations. 

For concreteness, two illustrations are given below 
for the case where l » j and where the transition state is 
tight, i.e., for the case Sec. VI B. 

Example 1 

We first consider an example where the high frequency 
vibrations contribute little (close to a factor of unity) to 
Q !<s) and to Q(s) for the s' s of interest. Their contribu­
tion to the ratio Q!{s)/Q(s) is even closer to unity. We 
also replace, as previously noted, K by l since l » j. 
If the contributions of the lower frequency motions to 
these partition functions are represented by 

Q!(s)~A*/s"'1 , Q(s);:A/s"', 

then 

Q!(s)/ Q(s) =(A*/ A)sm-ml 

Equation (6. 9) is then readily evaluated to yield 

W JniE"' w 1(Ep- B:) 

A 1 (E - B*)'"t.,. 
=- f) I (E >B1) 

A r(mt - m + 1) ' f) I 

= 0 , (Ep < B!) , 

(7. 1) 

(7. 2) 

(7. 3) 
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where r(y) is the r function of the argument y • When 
(7.1) is a sensible approximation, the right-hand side 
of (7. 3) will not exceed unity, 23 as indeed it should not. 
Equation (7. 3) also reduces to Eq. (5. 4) for a loose 
transition state, when the properties of the latter (mt 
= m ,At =A) are imposed. 

When AB and Care a polyatomic molecule and an 
atom, respectively, two rotations of AB have become 
two bending vibrations of ABC*, in the reverse step of 
(1. 2). When these bending vibrations are classical 
each contributes unity to m*. Each rotation contributes 
t to m . Thus, m t - m in this case equals unity. 

When AB and C are both polyatomic molecules four 
rotations of AB and of C have become bending vibrations, 
yielding a classical contribution of 2 to m*- m. Of the 
two remaining rotations one may become a vibration or 
restricted rotation in the transition states contributing 
perhaps t to m*- m. The sixth rotation remains as a 
rotation. Thus, in this case m*- m has a value of 2-
2.5. 

The value of A 1(E11 ) is calculated from (6.13) and (7.3). 
If one neglects any dependence of I* and u* on l, as one 
typically does in the case of a tight transition state but 
not in the case of a loose one, Eqs. (6.13) and (7. 3) 
yield, 24 noting that K ~ l, 

-A* (z;n2_)m*-m(~)2 
At(Ep)- A 21* l 

om 

X 1- [1- Vom/Zm)2]m'-m+1 

r(m1-m+2) ,(lm>lom) (7.4a) 

A* (l~li2 )m*-m( (lm/l0m)
2 

\ =A u• r(mt -m+2)J'<tm<Zom). (7.4b) 

Although (7. 4) was explicitly derived for a tight transi­
tion state it also reduces to A(E11 ), given by (5. 6), for 
a loose one. 25 

Example2 

For a second example we shall suppose that there is 
much cancellation of Q! and Q in (6. 9), apart from those 
contributions which are bending vibrations in ABC* and 
rotations in AB+C. Let the number of these rotations 
be mr. The rotations can be treated as classical. We 
let their contribution to Q(s) be Qr(s), and write 

(7. 5) 

since each rotation contributes ..fS to smr 12 • The con­
tribution of the bending vibrations to Q!(s) is denoted by 
Q~(s). Equation (6.9) now becomes, with K~l, 

1 c+i<e~ 

w '(E~~- B!) = --.- ( s'mr12>-1 
21TiAr Jc-i«> 

x Q:(s) exp[s(E11 - B!)J ds (7. 6) 

i.e., 

1 amr 12 t l 
dEmr/2 Nr(E~~- B,)' 

Ar ~ 
(7. 7) 

Eq. (7. 7) applying to the case that mr is an even integer. 
When AB is a linear molecule and C is an atom mr is 2. 
When AB and C are both polyatomic molecules and when 

the four of the six rotations become bending vibrations 
while the other two remain as rotations, mr is 4. N~ 
can be evaluated by a direct counting technique as well 
as by more approximate methods. 9 •26 When m,. is an odd 
integer (7.6) can be evaluated by a variety of methods. 
For example, s-112 Q:(s) can be treated as a product of 
partition functions, the s-112 being, apart from a pro­
portionality constant, the partition function of a plane 
rotor. The corresponding "number of states" function 
will be denoted by N;1(E11 - B!). The latter could be 
evaluated by direct counting or by approximate methods. 
Equation (7. 6) then applies, with N* replaced by N'* and 
with mr/2 replaced by mr+L an even integer. 

For the model in this example, A 1 (E11 ) is obtained 
from (6, 13) and (7. 7). For the case where mr /2 is an 
integer we have, for a tight transition state, 

1 dNtMr-1(£2 _ £2) 1.C=O 
At(E9 )=A."£2 a(- £2),:;:r-u _ 

r om .C-..C0 m 
(7.8a) 

1 dN~Mr-1(£~ _ £2)1.C=O 
=A £2 d(- £2)(Mr-O .C=.C 

r om m 
(7. 8b) 

where the right-hand side indicates a difference of the 
values derivative at the upper and lower limits, and 
where 

£2=l21i2/2I'' Mr=mr/2. (7. 9) 

£om is given by (7. 9) with l replaced by lom. 

VIII. TRANSLATIONAL ENERGY DISTRIBUTION OF 
REACTION PRODUCTS 

We shall consider the cases of Sees. VB, VC, VIB, 
and VIC in that order. In all cases Eq. (4.1) is used 

to relate aEp;JonoE to CJJnUo•oE • 

(i) Case of Sec. VB (loose transition state, Q » j) 

Equation (5. 5) is introduced into (4. 1), noting that 
A(EJ>) does not depend on j or n, for a given E 11 • The 
sum 2:1• (2j + 1) over the energy range E- Ep- dEp ~ E 1• 

- Ep is the number of vibrational-rotational states, 
p(E- E~) dEp, given by (4. 15) for the ath set of products. 
Equations (4.1) and (5. 5) then yield 

(8. 1) 

where A(Ep) is given by (5. 6). lm depends only on Ep; 

lom depends only on Ep
0 

• 

Equations (8.1) is equivalent to that derived by Safron 
et al. 10 •27 Thus, the latter equation yields the same re­
sult as phase space theory for the (highly useful) simpli­
fying assumptions of l » j and l0 » j 0 • The latter assump­
tions were explicitly made in Ref. 10. 

(ii) Case of Sec. VC (loose transition state i»R) 

In Eq. (5. 7), A' (Ep) depends only on Ep, for a given 
Ep

0 
since lm in (5. 8) depends only on Ep. Summing (5. 7) 

over j and n in the energy range (E- Ep - dE11 ~ E1• ~ E 
- E 11 ) yields the sum '2:1 n (2j + 1), which can again be writ­
ten as p(E- E 11 ) dEp . Equation (5. 7) then yields 
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(8. 2) 

where A' (Ep) is given by (5. 8). 

(iii) Case of Sec. VI B (tight transition state,£» j) 

In Eq. (6.12), At(Ep) depends only on Ep. On summing 
(6.12) over i and n in the energy range E- Ep- dEp ~ Ein 
~ E- Ep, one obtains 2:in(2i + 1), i.e., the p(E- Ep)dEp 
in (4.15). Equations (4.1) and (6.12) yield 

aEp;i
0
n
0
E=2; ~l p(E- Ep)At(Ep), 

a Ka 

(8. 3) 

where At(Ep) is given by (6. 13). 

(iv) Case of Sec. VIC (tight transition state j»Q) 

When the i dependence of Q](s)/ Q1(s) in (6. 24) is weak, 
for the reason discussed in Sec. VI, the dependence of 
A;(Ep) oni there is weak also. The summation of 
(6. 23) over i and n in the energy interval E- Ep- dE" 
~ E1n ~ E- Ep yields 2:1n(2i + 1), which is again the p(E 
- Ep) dEp in (4.15). Equations (4.1) and (6. 23) then 
yield 

a E ;i onoE ="' aNo t p(E- Ep)A; (Ep) , 
I> i.la ~ea 

where A;(Ep) is given by (6. 24). 

IX. ROTATIONAL AND VIBRATIONAL ENERGY 
DISTRIBUTION OF REACTION PRODUCTS 

(8. 4) 

It is useful to first describe more fully in Eq. (9.1) 
below the quantum number n appearing in Sees. ill­
VIII. (Similar remarks apply to n0 .) The collision pair 
in the reverse of step (1. 2) is specified by the quantum 
numbers i, n, l (and by the momentum p). The quan­
tum numbers for a pair of molecules 1 and 2 in an un­
coupled basis would be iu mit, kt, i 2 , m12 , ka, l, m1 , 

and v, where v denotes the vibrational quantum numbers 
for all vibrational degrees of freedom of both molecules, 
it and i 2 denote the rotational angular momentum quan­
tum numbers of the molecules, mit and mi

2 
the z com­

ponents, and kt and k2 are the extra rotational quantum 
numbers needed to specify the· eigenvalues if the mole­
cules are nonlinear. For example, kt is absent when 
molecule 1 is linear, and it and mt are absent28 if 
molecule 1 is an atom. In a coupled basis, the quantum 
numbersarei, l, K, m., andit> kt,iz, k2 , v, the 
same number of them as before, of course. m. has al­
ready been included by the 2K + 1 factor present in Eq. 
(3. 9) for P0(K). Thus, the quantum number n denotes 

(9.1) 

of which some of these may be absent if one of the prod­
uct molecules is an atom or a linear molecule. 

Thus, if the distribution of only certain of the quan­
tum numbers of molecule 1, nt say, is measured, the 
relevant cross section describing the distribution is 

(9. 2) 

where the notation is intended to indicate that the sum­
mation over n is made at fixed nt. 

Regardless of whether 1 or 2 are linear or nonlinear, 
or whether 2 is an atom, the only dependence of ain;i "rP 
on i lies in the 2i + 1 factor in the case of cases of Se~s. 
VB and VI B. In V C the only other dependence on i is 
in the existence of a cutoff fori> l

0
,. [Eq. (5. 8)]. In 

Sec. VIC there is a similar cutoff in (6. 24), and an ad­
ditional weak i dependence. 

We consider cases of Sees. VB and VI B first. Here, 
the sum over i in (9. 2), using (5. 5) or (6. 12), involves 
a sum of 2i + 1 from i = lit - i 2 1 to it+ i 2 • This sum 
equals (2it +1H2i2 +1). In the subsequent sum in (9.2) 
over nat fixed n1 we note that A(Ep) in Eq. (5. 5) and 
At(Ep) in Eq. (6. 12) for ain;JonoE do not depend on n for a 
given Ep • The sum of 2i2 + 1 over i 2 and the other con­
trirutors ton is next written as the sum (integral) of 
contributions from various dEp intervals. The contribu­
tion to this n sum from the Ein' s in the range indicated 
in (9. 3), at the given nt, is denoted by p<nt> (E- Ep) dEp. 
That is, 

where En
1 

is the energy of the degrees of freedom con­
tributing to the specified n1 and E- En

1
- Ep is the ener­

gy distriruted among the remaining rotations and vibra­
tions of AB and C. 

Equations (9. 2), (9. 3), and (5. 5) or (6.12) yield 

C(Ep) =A(Ep) (Sec. VB) 

=At(Ep) (Sec. VIB), 

(9. 5) 

(9. 6) 

and A(Ep) and At(Ep) are given by (5. 6) and (6.13), re­
spectively. 

When it» i 2 , so that the condition i > l0 ,. or < l0 ,. in 
(5. B) and (6. 24) becomes it> l0 ,. or < l

0
,., and so does 

not depend on i 2 , and when it is one of the nt 's, (9. 4) 
applies to the other cases (in the case of Sec. VIC if the 
cited weak i dependence is neglected), but now 

C(Ep) =A'(Ep) (Sec. VC) 

=A:(Ep) (Sec. VIC), 

(9. 7) 

(9. 8) 

where A' and A; are given by (5. 8) and (6. 24), respec­
tively, withi replaced by it· 

To illustrate (9. 3) and (9. 4), we note that if molecule 
1 is a diatomic molecule and molecule 2 is an atom, and 
if nt denotes it and Vt. the vibrational quantum number 
of molecule 1, p<"ll(E-Ep-En

1
) equals (2jt +1)6(E-E11 

-Ev -Ep)andEq. (9.4)withj1 =jreducesto(5.5), 
(5. 7t (6.12), or (6. 23), depending on the case being 
studied. 

If, instead, in this last example nt denotes only it. 
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p<n1>(E- Ep- En
1

) equals (2j 1 + 1) times the density of vi­
brational states of molecule 1, pv1 (E- Ep - E1 1

). Or 
again, if molecule 1 is a linear molecule and if molecule 
2 is linear or nonlinear, and if n1 denotes the rotational­
vibrational state (j 1v1) of molecule 1, p<n1>(E-Ep-En1) 
equals (2j 1 +1) times the degeneracy, if any, associated 
with vt. and times the density of rotational-vibrational 
states of molecule 2. If, in this last example, n 1 de­
notes only it. p<"t>(E- Ep- E"

1
) is the convolution of the 

vibrational state density of molecule 1 and the rotation­
al-vibrational state density of molecule 2. 

X. CONCLUDING DISCUSSION 

Expressions for the various state-selected and energy 
distributions of products are given in Sees. V -IX. The 
distributions are seen to depend on the relevant degen­
eracies or densities of the active modes 17 of the reac­
tion products AB +C and on the reaction probabilities 
for the reverse step in (1. 2), AB +C -ABC*. This re­
sult is expected, because of the assumption regarding 
the role of active modes in ABC* and because of micro­
scopic reversibility. Assumption (iv) makes a particu­
lar assumption about these reaction probabilities, and, 
in conjunction with assumption (iii) yields an expression 
for them. 

There is a considerable indirect body of data on the 
behavior of state-selected reaction probabilities for the 
case of direct reactions. However, little is known yet 
about those probabilities for reactions which may pro­
ceed via transient species, and there could be substan­
tial differences. 29 

The expressions for loose and tight transition states 
have in common the presence of degeneracy or state 
density factors for the active modes, e. g., for the case 
of l»j, they have inEqs. (8.1) and (8.3) p(E-Ep) with 
p(E- Ep) defined in (4.15). They differ in the reaction 
probabilities for the reverse step of (1. 2), and so A(Ep) 
in the former [Eq. (8.1)] is replaced by At(Ep) in the 
latter [Eq. (8. 3) ]. Comparison of A(Ep) with At(Ep) 
shows that at higher Ep's (where lm >lam in exothermic 
reactions) At(Ep) results in a predicted shift in Ep dis­
tribution toward higher Ep's, compared with A(Ep) [cf. 
(5. 6a) with (6 .13a) ]. The origin of this predicted shift 
is discussed in Sec. I. 

We have already noted that translational energy dis­
tribution of products of the loose transition state for the 
case of l » j was treated earlier10 and that the present 
result [Eqs. (8.1) and (5. 6)] agrees with that in Ref. 10. 
The case of a tight transition state was also discussed 
in Ref. 10 for the case of l »j, using a different model 
for the exit channel behavior. They assumed that the 
translational energy Ep in the products of (1. 2) was the 
same as that in ABC •, plus an amount B~. In the pres­
ent paper we assume that some conversion of bending 
vibrational to translational energy can occur, resulting 
in the tight transition state case (Sec. VIB) in Ep being 
larger than the sum of the translational energy in ABC' 
plus Bf. 

It is useful to compare the two results by considering 
an approximate model such as that involved in Sec. VII, 

Example 1. However, we shall take all coordinates to 
be classical now, for purposes of the illustration. Each 
vibration in ABC* (apart from the adiabatic ones17

) con­
tributes 1 to the ml in the classical expression (7. 1). 
Each active rotation in ABC' contributes ~. Thus, the 
value of m l is 

(10.1) 

where r is the number of "nonadiabatic" rotations in 
ABC' and sl is the number of active vibrations in 
ABC'. 30,3t 

The expression in Ref. 10 for the relative translation­
al energy distribution is30 

O'Ep;JonoE =canst. (E- Ep)' 12···-!' lm ?:_ lom (10. 2a) 

=canst. (lm/lom)Z(E- Ep)' 12
+s

1
-1 , lm < lom . 

(10. 2b) 

The dependence of lm on Ep when a potential - c/r" is 
used for U is given in Ref. 10. 

For a loose transition state the density of states of 
the products p(E- Ep) in (8.1) is the same as that for 
these coordinates inABC1, namely, canst. (E- Ep)'12••

1
- 1• 

Thus, Eq. (8.1) in this case is the same as Eq. (10. 2), 
which was taken from Ref. 10. 

For a tight transition state Eq. (8. 3) gives 

O'Ep;JonoE=const. A 1(Ep)(E-Ep)m-! , 

where 

m =rp/2 +Sp 

(10. 3) 

(10.4) 

The p subscript refers to products, rp being the number 
of active rotations of the products and sp the number of 
their active vibrations. [For a loose transition state 
rp =rand sp = s•.] In (10. 3) At(Ep) is given by (7. 4). At 
high enough translational energies where l0 m « lm, the 
latter equation for At(Ep) yields 

(1 0. 5) 

For the model used in Ref. 10, l~ is roughly proportion­
al to Ep. For this case one would then write 

O'Ep;JonoE ~ const. E;'
1
-m(E- Ep)m-1 '(lm » lom) ' (10. 6) 

which compares with (10. 2a), i.e., with 

O'Ep;JonoE ~canst. (E- Ep)ml-t' (lm > lom) . (10. 7) 

For a tight transition state, ml is larger than m by 
an amount equal to one-half the number of bending vi­
brations which have become rotations. 32 Thus, both 
because the factor Er'-m> in (10. 6) increases with Ep 
and because the factor (E- Ep)m·l decreases less rapidly 
with increasing Ep than does (E- Ep)m1

- 1
, the Ep distri­

bution predicted by (10.6) is shifted toward higher Ep's, 
in the case of a tight transition state, than that predicted 
by the Eq. (10. 7) based on Ref. 10. The physical ex~ 
planation was given earlier in Sec. I. 
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