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In this paper we first construct the theory of Fourier transformation of the
hyperfunctions on D", which is the radial compactification of R" (see Definition
1.1.1), and, as one of its applications, we develop the theory of partial differential
operators with constant coefficients, including the convolution operators Sx, where
S is a hyperfunction with compact support.

The theory of hyperfunctions is developed by Sato [33], [34], [35] and studied
by Martineau {30}, Harvey [10], Komatsu [23], [24] and others.

QOur theory is indicated by Sato [33].

The main results of this paper are the following:

(I) We construct a sheaf 22 over D", which coincides with <& (the sheaf
of hyperfunction) on R™ and whose global sections are stable under Fourier
transformation.

(IT) We treat the following problems:

(i) Problem of ellipticity
(ii) Propagation of regularity
(iii) Problem of hyperbolicity.

The remarkable points of our theory are; (i) we have obtained a sheaf
(compare the space &’ (Schwartz [41]). This fact turns out to be very useful
in the treatment of real-analyticity (see §5). (ii) The sheaf .SZ constitutes a
flabby sheaf over D", so that any hyperfunction # on R™ can be extended to
D" and we can consider its Fourier transform. This fact is used in the treat-
ment of hyperbolicity. (see §6) (We also use this fact to treat the problem of
existence of the solutions of division problems in our forthcoming paper [18].)
(iii) When S is a distribution with compact support (which is a special case of
our theory), the theory of convolution operators becomes very transparent. Cf.
Ehrenpreis [4], [6], Garding {7]. This is because we consider in the framework
of hyperfunctions not in that of distributions.

In the forthcoming paper {18] we develop the theory of modified Fourier
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hyperfunctions, which is useful in the treatment of division problems.

The author expresses his sincere gratitude to Prof. Sato and Prof. Komatsu,
whose constant encouragements and guidances made me write this paper. They
also kindly gave me invaluable suggestions. Without their suggestions this

paper would remain more complicated.

Part I. FOURIER HYPERFUNCTIONS

§1. Formulations and main resulis

In this section we give the definition of Fourier hyperfunctions and mention

their main properties, which are proved in later sections.

1.1. Definitions

DEFINITION 1.1.1. We denote by D" the compactification R"LIS*' of R",
where S»7' in an (n—1)-dimensional sphere at infinity. When z is a veector in
R"—{0}, we denote by zco the point on S*! which is represented by 2z, where
we identify S*! with R"-{0}/R*. The space D" is given the natural topology,
that is: (i) If a point z of D™ belongs to R”, a fundamental system of neigh-
bourhoods of # is the set of all open balls containing the point z. (ii) If a point
x of D" belongs to S, a fundamental system of neighbourhoods of « (=yoo)
is given by {(C+a)UC.IC.,9yx} where C is an open cone generated by some
open neighbourhood y with its vertex at the origin, @ is some vector in R,
namely C--a is a cone with its vertex at a, and C. denotes the points at infinity
of that cone.

We mainly consider the space D" <+~ —1R" in what follows.

Now we give the definitions of sheaves ¢ and & over D" x+/~1R".

DErFINITION 1.1.2. (The sheaf of slowly increasing holomorphic functions.)
We denote by 5 the sheaf whose section modules 5’(.@) over an open set
2(c D"X~/—1R")is the set of all holomorphic functions flz)(€ (20 C™) such that
for any positive ¢ and any compact set K in 2, the estimate sup [ fR)e™# | < oo
holds. It is clear that the presheaf {5’(9)} constitutes a she;;.zxgwfer D"~/ —1R".

REMARK. By the above definition 2, is equal to the germ of the sheaf
of the holomorphic functions ¢7; if 2z is a point in C(=R"x~=1R").

DEFINITION 1.1.3. (The sheaf of rapidly decreasing holomorphic functions.)
We denote by g the sheaf whose section modules {g’(.Q)} over an open set
c D"~ —1R") is the set of all holomorphic funetions fz)(€ &N C™) such
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that for any compact set K in £ there exists some positive constant d; and the
estimate _sup | fz)e?k ' < co holds.

REMARK: By the above definition ¢7. coincides with . if z is a point in
Ccn.

DEFINITION 1.1.4 (Topology of 7(K)). If K is a compact set in D" “~ ~1R",
then we give g(K) the inductive limit topology lir_fr)l O ™MUn), where U, is a

fundamental system of neighbourhoods of K satisfying Uan®Uwma and &2 (Un)
is the Banach space of all holomorphic functions f(z)(€ Z(Ux1C")) which are
continuous in U.NC™ and there exists some A such that |f(z)|<Ade-W/™1:1 with
the norm !!fi!zzegur;‘)m | flmyety™12tl (We have used the symbol UnDUnm.t to

denote Un.: has a compact neighbourhood in U, with respect to the topology
of D"~/ —1R")

The topology of g(K) is well-defined and it becomes DFS-space. (About
the notion of DFS-space, see Komatsu [21]).) Especially when K=D", then we
denote #£7(D") as Px.

We’\;;o on to the definition of the space of Fourier hyperfunctions over &
which is a subset of D",

DEFINITION 1.1.5. We choose an open set V in D"x+/—1R" which contains
2 as a relatively closed set and define <2(2), the space of Fourier hyperfunc-
tions over £2, by H*(V, 5’). (By the excision theorem the space <Z2(#) is in-
dependent of V.)

1.2. Properties of Z(Q)

(i) The presheaf { <2 (2)} constitutes a flabby sheaf over D", whose restric-
tion to R" coincides with the sheaf of hyperfunctions.

(ii) When K is a compact set in D"HZ(V, 5):(’4(]{))', especially &#(D") =
(F4). "

(iii) If ¢ is an element of <SZ(D"), then we decompose s as ._%/«l_,‘, with
supp #; contained in the closure of j-th quadrant, which we denote:Kj. After
this decomposition we define &# 1, Fourier transform of s, as the cohomology
class which is defined by {{g;, e*-O>}, here {y,, !> is defined by the duality
given above, as far as e"<z»5>eg(1{j). On the other hand &2 is stable under
the classical Fourier transformation. From this fact we can define the Fourier
transformation &, by J{( F ., go>§;</,z, F o> (pe F(D"), o€ FPy). As for
the two definitions we can assert the relation #,¢=_% p holds.

About the notation and the proof of the above statements, see §3 of this
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§2. Theorems about ﬁ and g’

In this section we prove a vanishing theorem of cohomology groups whose
coefficient sheaf is 5 and an approximation theorem for g(K) (K; compact
set in D"), which are used in §3.

The essential tools of this section are Hérmander’s L’-estimate (Hormander
[14]) and Komatsu’s theory of DFS*-space (Komatsu [21]). We constantly quotate
these two papers so we denote [14] by [H] and [21] by [K].

2.1. A cohomology vanishing theorem
Let 2 be a pscudononnex domain in C" which satisfies S:lelgllm 2l=M < oo,
and ¢(z) be a plurisubharmonic function in 2. We denote by X;, Y; and Z; the
spaces
L%, o0 (2; (UDHzl+H4 log (141219 +¢(2)

.0 (2; (Dl +2log (1+121%)+¢(2)
and
L%, (@ (1Dl +¢(2))
respectively.

(Here we follow the notation of [H] and we mean by the symbol |iz] the
modification of ﬁ} |z;) near {z;=0 for some j} so as to become C* and convex.
This modiﬁcatiori_}lmas no essential significance.)

We also define Xr:ljir_x X;, Yzlirlx Y;, Z:I‘i_g Z;.

3 ; i

LEMMA 2.1.1. Let 0 be the Cauchy-Riemann operator defined in the dis-
tribution sense, then the sequence X——q—+ Y—-a—>Z 18 exact.

ProorF. When we represent (X;) ete. by L%p.q.0{2; —(1/5) 2l —4 log (1-+121%)
--¢i(2)} ete., then the adjoint operator of 9 is represented by 9, where
If=(--1)r* E' “ af1.ixl02;.

Now, as 1s easxly checked, 2 it (8%/02;0%:) log (1- Hz|2)>(1+Izl”')'zltl2 forte C",

so by a theorem of Hérmander ({H] p. 105, Th. 2.2.1) X,—————~>Y a Z; is exact.
Therefore X/ 2, Y! 2, Z! is also exact.

On the other hand X’ ete. which is an injective limit of Hilbert space X/
ete. turns out-to be a DFS*-space (See [K] p. 368).  Therefore the theorem is

trivially true if ¢>1 by the so-called Serre-Komatsu duality theorem. (See [K]
p. 381, Th.19.)
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We consider the case ¢=1. By the well-known Krein-Shmulian theorem
Fréchet space is fully complete, so we need to prove only Im 9N V*° is closed.
(Here V is a neighbourhood of 0 in X and V° is the polar set of V.) Now by
the theory DFS*-space, there exists some j such that Im 9N V°=u,(B,), where
B; is a bounded set in X} and %; is a weak homeomorphism. (See {K] p. 3873,
Th.6.) If we assume Ju,— f€ V°, then Ju, converges weakly to fin some X/{.
Here we need the following lemma.

LeEMMA 2.1.2. Ifue Y] and Ju€ X[ (7>k), then there exists some v in Y
and Ju=3Iv holds.

ProoF OF LEMMA 2.1.2. If we define ¢.(z)=exp(—1/n7%), then He,u}=—0,9u
by the definition of J.

Since we have assumed §25 HIm z]<co, ¢,u belongs to Y/.

On the other hand ¢.9%u converges to Ju in X/ by Lebesgue’s theorem be-
cause ¢, converges to 1 pointwise in £. As is remarked above ¥ is a closed
range operator from Y/ to X}, so from the two facts just proved follows
Hue-9Y]). This means there exists some v in Y/ such that 9v==0u. Q.E.D.

We return to the proof of Lemma 2.1.1. By Lemma 2.1.2 we may assume
not only Ju,€ X/ but also u,€ Y/. Since HY)) is closed in X/, 9(Y}) is weakly
closed because 9(Y/) is convex. Therefore there exists some v such that f=J9v.

This proves that Im 9N V° is closed, hence Im 9 is closed.

Therefore Im @ is closed because DFS*-space is reflexive, and we can apply
Serre-Komatsu duality theorem again. This completes the proof of the theorem
for g=1.

DEFINITION 2.1.3. We call an open set 2 in D"x~—1R" to be -pseudo-
convex domain if it satisfies following conditions:

(i) sup Im z|, where V=02NnC",

(i) There exists a plurisubharmonic function #(z) on V which satisfies
{zlo(z)<c}€ V for any ¢ and sup 0(z)= M, for any Le£.

REMARK 1. We prove thzenrie exist sufficiently many 5’-pseudo convex domains
later. The easiest but most important example is D*x~—1I", where I"=
(-1, )% -+ x(=1,1).

REMARK 2. Considering #4(z)+log (1-+121%), we find V=2nNC" is a pseudo-
convex domain. V

THEOREM 2.1.4. For any & -pseudoconvex domain 2 in D"x~=1R" we
have H'Q, 2)=0 (s=1).

Proor. We prove the vanishing of Cech cohomology group. It is sufficient
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to prove lim H°({2.}, 5)?30, where {2,} satisfies

('{)1’}
(i) 2=uU%Q, (locally finite open covering)

(i) Qvﬂ%": V. is convex.

Now we prove the following Lemma 2.1.5, the theorem follows from the
special case of that lemma for p=¢=:0, because we can use Cauchy’s integral
formula to change the L*norm to the sup-norm for holomorphic functions.
Before showing Lemma 2.1.5, we define CY(Z'S ,,({V.}; infraexponential)) to be
the set of all cochains ¢={ec.} which satisfy

(i) Ge.==0in V.,

(ii) For any ¢ positive and any finite subset M of N %}MSV le.]2e~2vid V< oo

v

where dV is the Lebesgue measure on R",

LEMMA 2.1.5. Let ¢ belong to CHZ'E o)) ({V.); infraexzponential)) and satisfy
dc==0, then we can find some ¢’ which satisfies

(i) d¢'=c.

() e C*YZ% ,({V.}, infraexponential)) (6 means the coboundary opera-
tor).

REMARK. This lemma is essentially due to Hérmander. See [H] p.114. Th.
2.4.1.

ProoF OF THE LEMMA. We denote by {X.} the partition of unity subordinate
to {V.} and define b,= %_‘.X,'c,-_.,. Since d¢=0, we have db=c. So 80b=0 because

d¢=0. By Cauchy’s inequality S Ibalge“*’"’dVéES Yile;alte®dV for any
@ J v

a

¥
continuous ¢(z).

By the assumption of the existence of #{z), we can find some plurisub-
harmonic function ¢{z) on V which satisfies

(i) Sloni<en,

(i) sup P(@)Scx for YKe 2 (Cf. [H] p.117. Theorem 2.2.4).

Kncen

Thus it follows from the conditions on ¢ that 3} Slgbalﬁe“"’“d V<o (Ve, VM).
«EM

We consider the case s=1. By the fact §(6b)=0, b defines a global section
S in this case. Lemma 2.1.1 and the existence of ¢(z) prove the existence of

some % such that du=f and S lulPe " (1412192 d V<o (Vs, YEERQ).

Encn
If we define ¢/=ba—uly, then d¢/=0 and dc’=db=c. Clearly ¢’€

C* 2% o, ({V.}, infraexponential})).
We go on to the case s>1. In this case we use the induction on s, follow-
ing Hoérmander.
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By the induction hypothesis there exists b’ such that b’ =3b and belongs to
C*3Z"% ., ({V.}, infraexponential)). Applying Lemma 2.1.1 as above we can find

{(p.<)

{b”} which satisfies b,=2b? and zg B2e= 114 212 d V<o (Ve, VM),

cEM jy .
Therefore ¢/=b—db’’ satisfies all conditions required.

The following theorem shows any open set in D" has a fundamental system
of neighbourhood of Z’-pseudoconvex domain.

THEOREM 2.1.6 (Cf. Grauert [9] §3). Let S be an open set in D™ and U be
an open neighbourhood of S in D" x~/—1R", then there exists V which satisfies

(i) V satisfies the conditions of the theorem.

(ity VcU and S=VnD".

Proor. If SNS2!'=4¢, then the above results of Grauert prove the theorem,
so we assume SNSZ 54,

Since U is open in D"X+~ —1 R", there exists 7(z)€ C*(UN C") which satisfies

(i) zeUnC"i@=eleU for any c.

(ii) If K is a compact set in B” or a closed convex cone, then sgpl;‘(z)l,
sup [V (2)| < My, e as far as L:»Kx«/-—_i(jlzll[—ej, ¢)cU. Here V2 means any of
0%/0x;01,, 0%/02;0Y,, or 0%/3Y;0y,.

We choose a suitable a(z)(€ C*(SN R*) which grows sufficiently rapidly as

x tends to the boundary of (D"—S) from the interior of SNR"® but sup a{z)<
KR

My’ for any KES, and define ¢(z)=a(Re 2) i}l(lm z;)" and p(2)=r(2)+q(2).
By the definition of the topology of .JD"’X«/ 1 R", suitable choice of a(z)
ensures the existence of a neighbourhood W of S in D*x+/—1 R", which satis-
fies that p,(2) is plurisubharmonic in Wn C».
For any z; in @0W—aS)NC" we define plurisubharmonic functions ¢/(z) as
follows;

#9(2)=max {0, (1/ };:}‘(Im 299 % (2}2 (Im zk)hkim:1 (Re (zx—2)? .

Since ¢/(z;)=2, by a suitable choice of z; p,(z)=sup ¢’(z) becomes a well-defined
plurisubharmonic funetion on WNC» (Remark th;.t the supremum is taken over
finite indices locally). And moreover we can assume {z€ Wn CHp,(2)s1}NoW=4¢.
After the above preparation we define V to be the interior of ({z€ WNC™p,(2)<
BBU(WNS2Y) with respect to the topology of D*x+—1R" and p(z) by
:01(2)+:_§0 P,(z)i. Then all conditions we need are satisfied by V and p(2).
REMARK 1. Up to this point we have assumed that zegl.{l%"llm z| < oo, but

this condition can be weakend. It will be used in our forthcoming paper [18].
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REMARK 2. A little more precise consideration gives us H{D"xv—1R", Z’)
=0 {s:21), and analogously we can prove the vanishing of cohomology with
bounds with respect to the standard covering of C”. This may be used to prove
an analogue of Palamodov’s Theorem 2 of Ch. 4 §5 (Palamodov [32], if we adopt
the notion of Nother operator. (About the Néther operator, see [32]). It will
be used in treating the overdetermined system in hyperfunctions. (See for e.g.
Kaneko [17].) But such a fact seems to have no novelties since it is essentially
the same as Ehrenpreis [5], Hérmander [15] and Palamodov [32] except for some

technicalities which are used above, so we omit the details.

2.2. Approximation theorem

Next we go on to the proof of an analogue of Runge’s theorem.

TuroreM 2.2.1. Let K be a compact set in D", then Py= &’(D") 13 dense
in g(K). (See Definition 1.1.4 about ﬁ, and ﬁ(K )

Proor. We define U;=D"»~ —1{y| 3‘ l4:12<1/9}. Using the condition about
K, we will prove the existence of {£;} whxch have the following properties. (The
construction of {2;} is done at the end of the proof of this theorem.)

() U;D9;3K and 2i's tend to K decreasingly.

(b) For any j and any T(€;) there exist an open set V and #(z) which is
strictly plurisubharmonic in Uj, and they satisfy the following conditions:

i TeVel;;

(i) 0(z)<0 on TNC";

(ili) 0(2)>>0 near dVNC";

(iv) For VL€ 2;, sup 0(z)<<IM; <o,

FARE A
Now we begin the proof of the theorem.

At first we define some spaces which we need.
For positive ¢ and open set £ we denote by % % 2(2) the set of all holo-
morphie funetions f(z) on 2N C" which satisfy S [ flteXtsid V< oo (VK& 2), by

Kner

LE:7(2) the set of all measurable functions f(z) which satisfy S [fl2est=idy
Encn

<co (VK€) and by X*(2) the closure of O }7*(2) in Li7(2). If we take

80 as to £<<d(< ), L 57%(2) is contained in X%(2). To prove this faet it is

sufficient to show 7L 2F0+9(Q) is dense in /3¢ —tlesa+1a (0) where

¥ <o and LIV UHED () i the set of all holomorphic functions f(z) on
ONnC" which satisfy S [ flReetettos e d Ve oo (VK ER) .

KENnes
2,—~5,~2log U+ |2|?
We also define Liz” ' *“*1*°(0) to be the set of all measurable functions
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fiz) which satisfy S | flzedtztos s iBd Vdco (VK@D

EnCn
Let # belong to (L™ 7% “*™(2)y and be orthogonal to &%

We want to prove g is orthogonal to &7 k™ 7' “*%(Q). We use the Hahn-

—3,=2 bog {1+ i:13>(())

o

Banach theorem to find some « whose support is compact in & with
3" l21)—2 : 7 2,8 ~2 dog (1% 1212
S:uize——a et —2 log {14 kzl—’vd V<o and \//,g, Q}}:: S i dV(V’v e Lx)ov 8%y ~2 Yoz (Lt i} )(.(..)))
n R

Using a theorem of Hormander ([H] p. 109, Proposition 2.3.2) and the existence

nno

6(z) whose properties are given above, we can find some F whose support is

compact in & with 9F=w and g!Fl‘Ze“éi’Z??w? log (41290 V< co, since /<4 and supp u

is compact in 2. If ¢ belongs to S 30 Hs 05N 0y then o(2) exp (+(1/n) 22)

belongs to 7 4752106 0+1:% 0y ynder the condition supcﬂllm z]<co. Therefore we
€GN

have 0={g, ¢(z) exp (—(1/n) 2*)>= X (9F)¢(z) exp (—(in) 29)dV S(SF)sde:-“<.!»!, e
by Lebesgue's theorem. Thus we have proved 7 572" 0 () is dense in
7 u-ilos A0y oo that we have proved ¥ 1 '(Q) is contained in X Q).

Now we use these spaces to prove &7, is dense in ¢7(K). Since li_rix X0

£,7

Q’(K) to prove the following statement (x).
() If an element g of [X7(%;)] is orthogonal to Bf::jlue Uz, CMY)
.

S Jud]edlizidV < oo, VLE Ujo} then s is zero. From now on we fix ¢ and 7y,
nen
so we denote by X the space X™*(%2;). By the Hahn-Banach theorem there

exists some % whose support is compact in £, Slulze“‘”:“dV<oo and {p, vo=

S v dV (Yve X).
grcn

Take suppu as T and fix V and #(z) which correspond to 7. We define
C=— _G,{‘vewa(U:20‘*’—5'I!zi|—-210g(1»+~~lzl2))lév:0} where ¢'(z)=max {0, 9(z)} and
25>A0"7>5. Then by the condition (iv) on #(2), C is contained in B. Since s is
zero on B and suppu€f, {y, v>:g . v deg 'nmi dV=0 for any v in C.
Moreover by the econdition (ii) on Qg(i'), u#{z) is Uzg;o where ¢(z)>0. Defining
g5 (z)==cosh (5’’z) we have SvﬁdV:Svgélf(z)(ﬂﬁde from the first we
choose ¢ so small as to secure g5 {%)#0 in U. (The assumption has no essential
significance). Taking W=u/g,(2) we have some F which satisfies the follwing
conditions (i)~(iii), by [H] p. 109, Proposition 2.3.2.

(i) ua=9F

(i) F=0 near 9V
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(i) Fe L3 U; —(3""—d)|zll+2log (L-+121%).

So we may consider f(z)=:F(2)g;(2) satisfies

(a) If=u

(b) suppfcVelU

(e) feLXU;d|zl-+2log 1-+]zl*).

Therefore by an integration by parts we can prove the following equality
for any v which belongs to % %7*(2), where 2:>6"">4".

ancen

0-= S (©@v)fdV= g o(vgs (@) (flgs2) dV
anen

anen

- S V52V IFTge @) dV = S wIFdV
anecn

= S vadV=_u,vy.
it

Thus we have proved u is zero on a dense subset of X, so we conclude /= is
Zero.
Now we complete the theorem by constructing {2;}. We agree to say £ is

of type (E) if 2= lﬁ V! where
=1
Viesiz] exp (— 3 (g—ab)i<e, 21 | Im 2;12<d,, where a’€ R} .
§e=1 i=

Since K is a compact set in D7, it is clear that K can be approximated by a
decreasing sequence of &;, where £; is of type (K).

We construct V and 6(z) which have the required properties for any T €%;.

From now on we abbreviate 2; to 2. By the definition of T we can find
Cj:fK,-Xx/:—IIj such that TC ‘"t;l C,, where K; is a relatively compact open set
in R" or open convex cone, Ij]i—s a direct product of open intervals of R, and
C;e . Then taking a suitable set S which is of type (E), we have TES and
Sn{lRezl>1}€2n{{Rez]>1}. On the other hand, recalling that =N V! by the
definition of £ we have Tn{|Rez|<2}€ VIE. " *N{|Rez|<2}€ V' for sufficiently
small ¢, where Vi* % is g translation of V! parallel to the coordinate axis by
+¢. Thus taking ¢ sufficiently small we have T& Vi*."".* g0 we define V=8N
(NViE*),

By the above construction V can be represented as NV, where V,={z|| fi(2)I <1,
éllm zi)*<d, where f(2)=¢, ex];)(—élL (z;—ab)?), a4 e R}, By the method of
construction of 2 and V, we can assume d,=d without loss of generality.

Defining a(z):sxlxp log | fi(z)| and ¢{2)=0(2)*p, (Wwhere p. is a mollifier in R*"),

we may consider ¢(z)<0 on T if ¢ is sufficiently small. Next we take suitable
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strietly plurisubharmonic function ¢(2)==¢(Imz2) and define %(z)==max (¢{2), ¢’(2))
so that %(z)<0 on T and #(z)>0 near dV. At long last we define #(2)=%(2)x0.+
e¢(z), which has the all properties required if = is sufficiently small.

Thus the proof of Theorem 2.2.1 is finished.

§3. Proofs of main properties of <% (2)

In this section we prove the main properties of &% (), which were announced
in §1.

3.1. Representation of H?(V, ﬁ) by differential forms and some extension
of Malgrange’s theorem on vanishing of n-th cohomology group.

At first we prepare some spaces of differential forms which we will use in
this section.

We use 2 to denote some open set in D*x+/—1R" from now on.

DEFINITION 8.1.1. We define .27,(2) to be the set of all (0, j)-forms % on
2N C" which satisfy the following conditions: for any compact set K in & and
any positive ¢

g Jultei:idV< oo and S loulte~I:idV<oo  hold.
Kncnr

Kncn
DEFINITION 3.1.2. We define %;j(Q) to be the set of all (0,7)-forms u on
2NC™ which satisfy the following conditions: for any compact set K in 2 we
have some positive 6 such that

S [ul2efk 28 gV << oo and S [Qulte?kisidV<oo  hold.
Engn

Kpncw

We denote by 2°; and Z/; the sheaves subordinate to the above presheaves
{272} and {Z/;(2)} respectively. For any compact set K in £ we can find
C;=K; %~ —11I; such that Kc 1—§1 C;€4, where Kj is a relatively compact open set
in R® or open convex cone, I; is an relatively compact open set in R". Hence
we can find a C* function ¢{z) on C" which is equal to 1 on some neighbour-
hood of KNC™ and vanishes outside £ with sup {¢(@)|, sup [Ve(z)]<M. Therefore
the sheaf 2, and &; are soft sheaves.

By the definitions of 5 and g and the existence theorem for du=f with
bounds (Lemma 2.1.1), we obtain the following soft resolutions of 5" and &
respectively. -

= 3 3
0— F — B 2~
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e L 0 (exact)

=
g

0— P — Y~

(,}'; A

g~ ——0  (exact) .

{As for the resolution of /7 we can use [H] p. 105, Theorem 2.2.17 directly.)
Therefore we obtain the following Dolbeault isomorphisms:

HYQ, P) > {u € 27(Q) | ou=0}/0,.275-(2) (8.1.3)
H? (2, ) 22{u€ D u(2))compl0u=0}/6(Z p-1(2))comp - (3.1.4)

(By HZ,.(2, ) we mean the p-th cohomology group with compact support.)
Now we intro’c\lluce the following auxiliary spaces for the sake of convenience.
DEFINITION 3.1.5. We define X;(?) to be the set of all (0, j)-forms % on
2nC" satisfying the following condition: for any compact set K in 2 and any
positive ¢ g lulPe120dV < co.
Kie®

DEFINITION 3.1.6. We define Y;(2) to be the set of all (0, j)-forms % with
compact support in £ satisfying g Ju)2e?i:ldV < oo for some 6>0.

on

It is obvious from the above definitions that X;(2) can be given the natural
FS*-space structure, Y;%) can be given the natural DFS*-space structure and
Yu i) =[X(2)). (For the notion of FS*-space and DFS*-space, see [K]l.) On
the other hand, the p-th cohomology group of the complex

{—"’ Xp_l(.Q)‘—'a““’Xp(Q)—a—*)XPVH(_Q)———«) e }

is isomorphie to the right side of (3.1.3) by the definition, and the p-th co-
homology group obtained from the complex

Yy sl =2 V@) s ¥y (@) s -+ -}

is isomorphic to the right side of (3.1.4). Therefore we obtain the following
theorem by the Serre-Komatsu duality for the FS*-spaces. (See [K] p. 381,
Theorem 19.) ‘

THEOREM 3.1.7. If H™Q, 2)=0 (p=1) then [H/(@, 5)}’%1‘1:0;9;,(!2, ). (We
remark this theorem is also true under a little weaker conditions dim H?Q, 5)<oo
{pz1) but we need not use this fact).

Moreover we can prove the following theorem which can be considered as
a generalization of Malgrange’s result (Malgrange [28]).
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THEOREM 3.1.8. Let 2 be any open set in D"~/ —1 R, then H"Q, &)=0.
Proor. From what have been stated, it is sufficient to prove

X, ()~ X, () —>0  (exact).

In particuler it is sufficient to show
X, (=2 X)) —0 .
To prove this fact we need some auxiliary spaces.
Let K; be an increasing sequence of compact sets which are contained in £

and exhaust 2, and define

Xi(Ky) = {ue LE&'(C™)] X Iuige"‘/ﬁ”f“dV<c\:}

Kjnen

then lim X{(K)=X/(2) and lim (X{(K;))’ =Y, (). we represent (Xi(K;) by

7 M

{ue L3 (Clsuppuc K;nC™ and S IuPe“/J’”"“dV<OO}

o |
and obtain (8Y=49. (Here we have used the natural identification of (0,!)-form
with (0, n—I)-form.) We want to prove 9 is injective and of closed range.
Since 9 becomes elliptic operator from Y.(2) to Y,.,(2), the injectivity is trivially
true by the unique continuation property. We prove f is in the range of ¥
when Ju. converges weakly to fin (Xi_(K;)). Then the proof is finished by
the usual DFS*/—\space argument. (Cf. the proof of Lemma 2.1.1.)

We define Kj., to be the closure in D"x~/—1R" of the union of K;,,NC"
and the connected component of (C"—K;,,) which is relatively compact with
respect to the topology of R?, then we can find v, €(Xi(K;.y)) such that
Su,mva/\In fact it follows from Jue[Xi_ Ky and ue[X4(K)) (7<k) that
suppuC K4, because 9 is elliptie.

Now we remark that sup |Imz|<eo by the definition of the topology

2EKp p NCR

of D"~ ~<1R". Therefore it follows from Lebesgue’s theorem that
0-= S (0 u)dg dV= S Hoauwg dV= Sgo,,(f)u)g qV— X GwgdV
where
N .
on=exp{—1/m)z%, 29L3K,,, and ge Xi(L),

satisfying_ég:O. (g€ Xi(L) means X |gize—t/lisid V< oo,y Applying {H] p. 109,

Loc»
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Proposition 2.3.2, we are allowed to consider Ju € 9[X’(L)}, so using the ellipticity
of J again we can find we[X;(K;)Y such that Ju=9w. Thus we can consider

Ju, e[ XKV, w e[ X(K)Y and Ju,——f in (XIKHY

VAN o -
from the beginning. Choosing L so that K;eLe&f®, Oxgz()uyng——-)gfng

for any g€ X#L), so f=9v, by [H] Proposition 2.3.2 again. This means that f
is in the range of 9, and the proof is completed.

3.2. Proof of the pure-codimensionality of D" with respect to 5

In this seetion we prove the vanishing of relative cohomology whose coef-
ficient sheaf is 2’ . (See theorems below.) This implies { <2 (2)} is a flabby sheaf
over D*. The method of the proof is only a modification of Martineau’s theory.
(Martineau [30], see also Harvey [10] and Komatsu [23], [24].)

THEOREM 3.2.1. Let K be a compact set in D* and V be an open neighbour-
hood of K. Then we have Hi(V, 5):“-0 (p=£n) and H;(g’)%[ﬁ(K)]’.

~

ProoF. By the excision theorem we can assume H”(V, 5)-’:0 (p=1). (The
results of §2 assures the existence of such V; for example we can take D"X
~TI1I" as V). We begin the proof by considering the following exact sequence:

0~ HY(V, &) — HY(V, ) —> H(V—K, &) —
— HY(V, P)— H(V, 2)——> H(V—K, &)—> -+~
— > HNV, &)— HY(V, &) — H(V—K, &)—0.

Here Ho(V, &)=0 (p=1) by the assumption on V, and HE(V,&)=0 by the
unique continuation theorem. Thus we obtain the following isomorphisms;

[ HiV, &) =H VK, Z)H\V, &)
{ Hp(V, )= H* VK, &) (p22)
On the other hand we have the following exact sequence;
O_m-)Hgomp(V““Ky g)—_)HgOmp(V; g)_—“ﬁ)Ho(K) g) 0
—""’Héomp(v‘“‘K; g)‘—""Héoxnp(V;g)—"’Hl(K, g) ctte

——’Hn’:’on}p(VwK: g)—"H:omp(V; g)____,HP(K' g)—_" e,

Here H*’(K,g’)mo {(p=21). In fact K is a compact set in D", so K has a funda-
mental system of neighbourhoods composed of 5’-pseudoconvex domains £2;
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(Theorem 2.1.6). Hence it is sufficient to prove I_i_rg H?2;, )==0 (p=1). On the

other hand given any cocycle {c.} in H"(2,, ﬁ; we can assume that d={d.=
cosh (e2) X¢.12;,,} defines a cocycle in H”(-m, ﬁ) for some positive e. There-
fore Theorem 2.1.3 asserts that {d.} is a coboundary in H?(Q;,,, 59’), that is d=
od’. Defining ¢’ by {d] Xcosh (—¢z)} we have ¢|2;,,==6¢’, hence the image of
H?(Q,, g) in H"(.Q,q,l,g’) is zero. Therefore hm H*2,, (?):‘:H”(K. g)rzO
Thus we have the isomorphisms:

H"(K,g")?_’:Héomp(VwK, )
Hfomp(V—K,g)eéHfomp(V, &) (p=2)
Using Theorem 3.1.7 we also have the following isomorphisms:
( Hiwmp(V-K, 2)=0 (p#1,n)
| B (V-K, ) =150 .

As is done in p. 478. we consider the following dual complexes:

go (4] 511»2 g'n—l
0_‘) Xo( V”“‘K)"“_'>X1( V"'K)“">’ LR —“>Xng1( V*‘K)-—-*)Xn( V—«K)——)O

T T B

0<———Y(V——K)<———Y,L (V— K)<-—~ <——Y1(V~K)<——Y0(V- ye—0.

Taking into account of the fact Hcomp(V—K,g):O, the range of (—d;) is
closed except for j==0, n—1. Since 0..1 is of closed range by Theorem 3.1.8,
-3 is of closed range by the closed range theorem. {(Remark the fact DFS*-
space is reflexive. See [K).) To prove the closed rangeness of (—d,.,), we
consider the following commutative diagram:

— BV K

0e—— Y (V—K)——Y, (V—K)

i . r}
VY (V) —2—Y,l(V).

n-1

(The map ¢ is the natural injection.)

We conclude that aY is of closed range since HY(V, 5)20, thus (—o%_,) is of
closed range by the Serre-Komatsu duality theorem. ([K] p. 381, Theorem 19.)
Therefore Im (—o%=K)=4"1(Imd%_,) is closed by the continuity of the map 7. Thus
we have proved (»af.,-’"‘) are all of closed range, so we can apply the Serre-
Komatsu duality theorem and obtain
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[HYV--K, P)Y =HE(V-K, 2).
Therefore
[H(V--K, P =Hiowl VK, )2 Houf V, @) =(HV, PV
Taking into account of the fact H( If’:K, Z) and I{‘j( V, &) are FS-spaces (a
posteriori reflexive), we have HYV, &)= HYV-K, ). Thus
Hy(V, &)= H(V-K, P)HV, 5)=0.

If p=2, p#n, then

0= HLl MV, @) Hial VK, &) =[H* VK, PV =[HLV, PV .
Hence H(V, &)=0.

At last we consider the case p=mn.

(Hi(V, PV = H"(V—K, PV =Hlof VK, 2) = H'K, 2)=(K)

and since fé"’(K) is a DFS-space, a posteriori bornologic, Komatsu’s theorem
asserts the above isomorphism is the topological isomorphism, and we obtain
HY(V, )= K)). Q.E.D.

As is well-known, this theorem combined with Theorem 3.1.8, concludes the
pure-codimensionality of 5 with respect to D", that is,

THEOREM 3.2.2. Let 2 be in D", then H2(V, &)=0 (p£n), where V=(D"X
vV —1I"~apn®). (The symbol 3,2 means the boundary of Q in D,, we abbre-
viate it to 32 in the proof.)

Proor. Consider the following exact sequence:

» HS(V, &)~ H%lV, &)~ HYV, ) — Hi(V, &)
—— i H WV, &) HE(V, &) — HalV, &)
—— HyV, &) — H3NV, &) —> -

0

(£* means the closure of ). Theorem 8.2.1 concludes HZ4(V, é’*’)xo, H(V,

3.2.1 also gives us HE(V, 5)“—“0 (0=p=n—2). Theorem 2.2.1 combined with
Theorem 3.2.1 the injectivity of j:[ﬁ(fr‘.@)]'——“‘*[g(g“)]'.

Since
0— Hi™(V, P)— 26y —— (@)

is exact, we have H2 YV, 5)20. Q.E.D.
COROLLARY 3.2.3. {#(Q)} constitutes a flabby sheaf over D".
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Proor. Direct consequence of the theorem. (Cf. Harvey [10] or Komatsu
(23], [24]).

We end this section by giving the explicit pairing between &7, and (D"
which is given in Theorem 3.2.1 in an abstract way. In the sequel of the proof
we also give the notion of the Fourier transformation of the elements of S&Z(D").

If we define Vo=D"x~—11I", V;=D"x~—1{yeI"|y;#0} (where [-={-1<
y<1)), ¥ ={Vilizo. ---.n and ¥/ ={V;};-1.....s, we obtain the isomorphism

HipnD* <~/ =11, PV H™"(7", 7, &)

by Leray’s theorem. (See for example Komatsu [24].)

Thus we can represent any element s of Hp«(D"x+/—1I", &) by some
element in Z(Vin --- N Va), which we write by {ey, -+ -, ¢on)=[o].

Using this isomorphism the pairing between SZ(D") and P« is given by

"
2 I sgneg

gl fr= 2 (1=
X S e S ‘;Dj(xl+?:51y Tty $7;+i5n)f(m1+i€1, Tty xrz“*'i€1z)dxl e dxn

where |¢;] is sufficiently small but not zero and sgne; is ¢j/le;l. In fact it is
clear any [¢] defines an element of (&P,)’ by the above well-defined integration.
We denote the map 7.
We want to construct the inverse map % of j. For that purpose we must
do some preliminaries. (The definition of k is given in Definition 3.2.8.)
PROPOSITION 8.2.4. If we define F o byge‘“'”ga(a:)dx for ve P, them F

gives a topological isomorphism from Py to FPx.

Proor. This is obvious from the definition of <P, and the closed graph
theorem for the DFS-space.

DEFINITION 3.2.5. Let © be an element of (<ZP,)’, then we define & ¢t by
the formula { F g, o>={pt, F ¢> (V€ FPy).

We also define <._§7—'4;z, o=, ﬁ"rp} where .;f?f“:ge“‘“'f’f(m)dx.

Denoting the closure of j-th quadrant in D" by K, we obtain the following
theorem.

THEOREM 3.2.6. Every element p€(Py) can be decomposed as ;zr":_gj/jj
where /tje(g’(Kj))'. =

Proor. This is a direct consequence of Theorem 3.2.1 and Corollary 3.2.3.

REMARK. Theorem 2.2.1 gives a direct proof of this theorem if we proceed
as in Martineau [30].
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DEFINITION 3.2.7. Using the above decomposition of #, we define Fpu=
{F;(£)}, which is an element of H"( ¥, 7/, 5). Here F({)=(—1)7"1p;e'>">
(Im { belongs to the j-th open quadrant).

This definition makes sense, because the vanishing of H'(K;UK,, g) con-
cludes the ambiguity of the decomposition of g belongs to [g(anKk)],; so it
is transformed into the coboundary element under the above mapping.

Now we define the map k.

DEFINITION 3.2.8. Let s belong to (&7), then we define k(x)= _F (F 4p).

THEOREM 3.2.9. The composed map jok : () —(Px) is the identity map
and 7 18 injective, so j and k are bijective. This proves the statement given
wn p. 484.

ProoF. At first we prove jok=id. In fact we have the following identity
for any f which belongs to Fs.

Goklp), fre= 3 S - §<»,~, F00) FOE = 5 vy S . Se"“'<>>f(5)dc:
<o, |- e fOdE=o, TP T, F = >

This proves jok=id.

Next we prove the injectivity of 5. For the sake of simplicity we assume
n==1. (The following arguments succeed in 722 in the same way.)

Define f.(z)=exp (—(t—2)%)/27v/ —1(t—2) and consider the following path of
integration 'y and ..

Figure

D D

Nt ry w I

If we assume j({¢])=0, then X ©(2) fi(z)dz=0. On the other hand we have

'y

|, @@z o r@a=o

by Cauchy’s formula. Therefore ga(t):g ¢(z) fi(z)dz. But the right side is holo-
r
morphic even when Imit=0, so we exte;d () to the real axis by the right

side, and estimate ¢(f) there. Now we have the estimate |¢(2)|<A.s.5¢"'* on
{6<|Im 2] <é’<1} for every ¢, d, &, by the definition of HY 9" 9, 5). This
means
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le@)] =

S e(2) filz)dz

< V (leu+t)lexp (—u?)/2xu)du < Bt

as far as |Im ¢| is sufficiently small. This proves that [¢]is zero as a cohomology
class, that is j is injective.

3.3. Fourier transformation and the Paley-Wiener theorem.

In this section we treat the Fourier transformation from the view point of
holomorphic functions in tublar domains.

The treatment turns out to be useful in treating the problem of hyper-
bolicity (§ 6).

THEOREM 3.3.1. Let I be a closed and strictly convex cone in R and K be
its closure in D",

For the sake of simplicity we assume the vertex of the cone I be at the
origin and I'€{z,=—:}. (If A and B are cones, then we denote ACB when
the closure of A has a compact neighbourhood in the closure of B with respect
to the topology of D*.) Then every it in [g’(K)]’ has the following properties:
L, €990 45 holomorphic in R~/ —1(I) and satisfies following estimate (+).
(x) For every I'’€l™ and ¢ >0 we have

(p, @< Coexp (s|Re & +%r,(Im &), (e R"x~/ 11",
where
L dg)= sup O)(—<x, +elzl) .

TE—2(1,0,%°"

{In the above motation I'® means the polar set of I, that is {£|(z, £>20 Vo el'}.)

Proor. In view of the topology of g’(K) the proof is immediate.

We go on to the proof of the inverse of the above theorem.

Let F(2) be holomorphic in R*x+~/—1(I™)* for some closed and strictly con-
vex cone I” and satisfies the growth conditions (*) given in the preceding theorem,
then we can consider F($) to define some cohomology class ¢ in H™(D"x~/ —11", ﬁ)
{see p.483.) in a natural way as “boundary value”. Then p can be considered as
an element of (7))’ and we can find some v uniquely such that # ,1=v, by the
results of the last parts of 3.2, Then we have the following theorem.

THEOREM 2.8.2. The element v can be extended to the linear functional over
g(K) where K is the closure of I in D", that 18 v can be regarded as an ele-
ment of [g(K)]'.

Proor. The convexity of 7" reduces the situation to the case n=1. (The
reduction is given at the end of the proof.) At first we give the proof of the
theorem when n=1.
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By the approximation theorem (Theorem. 2.2.1) and the definition of the
topology of <7(K), it is sufficient to prove the following estimate; Let f()
belong to &Z7"(D), that is” %up/ [f(Q)e'/m12l) ) then for any positive ¢ there exists

Land mil<i/m
some C. such that
fatis
jg FQAQIE| S C.sup [(F @] 0<5<1)
—wo4id 2€1l e
where
Ie=fpdiylaz —¢, |yl <e) assuming [M={x=0} .
Then v belongs to [g(K)]’. Since F : P,— P, is an isomorphism, it is
sufficient to prove

I S PO S o-g(a)dads

=C sup |g(z)e*'*!|

where g(z)==(5 f)(z). To prove this inequality we denote the integral in the
left side by I. Moreover we define

I, = S F() S e-itg(2)dzds
443,820 XY

s S F( S oi%5g(2)dadt
£+45 T+i§
§s0
T\ PO ewg@
i’ =l
I § F() g etg(2)dadl
Ei—id r—i«!
o E20 rs—8
oy S FQ) S e~ ig(zydzdl
E4€5 z4 48
50 g3
J__.:S F(Q S e g(2)dzdl , where 0<d'<1.
EN ] Z4-1d
b TS5

Trivially we have I=I,+I_ and I,=J,, +J,_, [.=J_,+J_.. Since the values
IJ++] and |J.4| are smaller than the right side of the required inequality by
their definitions, it is enough to prove the following statement to obtain the
desired inequality; For every >0 and ¢'>0, |J,_+J__|<0 if § is sufficiently
small.

We denote J,_ by J(I, A) and J__ as J(II, B) respectively, where the paths
of integration are as below. Just in the same way we denote by J(I, 4’) ete.
the integral over the path of integration Ix A4’ ete.
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By the condition (¥) we can easily conclude that J(I, A) and JI, B’) tend
to zero as 7: tends to infinity. While we have

(J -+ )—JU, A)-+JUI, BY)=J, a)+JUI, p=J(I~II), a)=—JUII, )

since JU+III—II, )=0 by the Cauchy’s integral theorem. So it is sufficient to
prove |JUII, «)| tends to zero as 7 tends to infinity.
Using the condition () again we have the following estimate for every o’>0:

r F(ic) Sa exp (—i20)g(R)dyds
%y -8

=C;. S Sexp (07/27 )& exp (—d't¥dyd:£26Cs S exp (—0'/27)dr=K; -0

K o
Thus we have the desired result.
When the case n=>2, we consider as follows. Since I’ is a closed convex
cone, we can represent I'=0 He, where H:={zKz, £>>0}. Then we can prove
¢

the following estimate just as in the case of n=1;
HXF«:&:)SS e (e, -+, m)dey - daadly o dE,

is dominated by C. Slzlp lg(z)et's!| for every ¢>0 when g(z) belongs to & .(Un),
Ix —a ~

ly] s
after some affine transformation if necessary.

This concludes that v can be regarded as an element of [ﬂ(H o)¥. On the
other hand [ﬁ’(Hs)]' is isomorphic to Hj a(D"‘x«/ i, &’) by Theorem 3.2.1,
thus v can be considered to belong to

Hyg(D*xv/ 11" F)=H (D" </ =1T", )

since { <P (D)} constitutes a sheaf on D*. This proves that v belongs to
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HuD,»~V=1I", P =K,

completing the proof.

At last we remark that we can define the Fourier transform of the elements
of (D" via “boundary values” of holomorphic funections. In fact Definition
3.2.7 gives the method. We eall this Fourier-Carleman-Leray-Sato-transforma-
tion, and denote by & . We have seen this is the same as &% 4 defined by
the duality. (Cf. Definition 3.2.5.)

Thus the above theorem can be regarded as an analogue of the Paley-Wiener
theorem for the Fourier-Carleman-Leray-Sato transformation.

Part II. GENERAL THEORY OF LINEAR PARTIAL DIFFERENTIAL
OPERATORS WITH CONSTANT COEFFICIENTS

§4. Elipticity

4.1. Ellipticily and partial ellipticity for local operators

In general when S is a hyperfunetion with compact support in R” and when
¢ belongs to G2 (D"), we define S*; by the following formula {Sxu, o>={z, S’*¢>
(¢ € ), where we denote S(—2x) by S’(a;). It is obvious that the above definition
coincides with the definition of convolution given in Martineau [30], Schapira
[40] or Sato [35] when ¢ is a hyperfunction with compact support in R". There-
fore if 1 is a hyperfunction on R we have Sxi|z»=S#pr where i is some
extention of p over D™ which is obtained using the flabbiness of <#&. In this
section we treat the special class of convolution operators S#, where S is a
hyperfunction with support {0}. This operator can be considered the most natural
generalization of the usual partial differential operator in the theory of hyper-
function, because this operator preserves the support, or equivalently gives a
sheaf homomorphism from <& to &&. We call such an operator a local operator
(with constant coefficients.) (Cf. Sato [36].)

DEFINITION 4.1.1. A local operator S* is said to be elliptic if any hyper-
function solution u of S#u=7f is real analytic where f is real analytic.

In this section we constantly use the notation J() to denote the inverse
Fourier transform of S, that is, <S, e~@>, and singsupp # to denote the minimal
closed set outside of which « is real analytic.

THEOREM 4.1.2. Let V be the set {{cC"J()=0} and (&) be the distance
Jrom § to V. Suppose that there exists some positive comstant ¢ such that
p(Syzclél if & belongs to R" and |£| ¢s sufficiently large. Then S« is elliptic.



Fourier hyperfunctions 489

REMARK. There are many elliptic local operators which are not usual elliptic
partial differential operators. (Cf. Ehrenpreis [4].) Of course our theorem in-
cludes the regularity theorems which are obtained by Bengel [2], Harvey [10]
and Komatsu [22], and it seems more constructive than those.

Proor. It is sufficient to prove the existence of a good parametrix P. Here

where W is real analytic and singsupp P=={0}. In fact if Sxue . (2) then we
cut off u outside some compact set K in £ by the flabbiness of <& and write
it %. Therefore we have S*i=g where suppgCK and singsuppg<éK. Then
we have U=u+d=ux(SkP— W)=SxiisxP—iix W=g«P--uxW. Therefore u is real
analytic in the interior of K if a good parametrix P exists. Thus % is real
analytic in 2 since K is arbitrary. Here we have used the relation singsupp uxv C
singsupp % +singsupp v. More refined version of this fact is given in Lemma 4.1.6.

Now we go on to the proof of the existence of a good parametrix for S*.
(The following proof shows W can be taken entire.)

At first we prove the theorem in case n=1. We define Q(), which is an
element of (ZP4)’ by the following formula:
QUO), FOy= S FOUTOME (f)e Py .
IHETS
Here K is fixed so large that J(£)#0 in .Q::{’;eCiIIm {<eRel—K-+1) or [Im Z|<
—c¢(Re {+K—1)}.

Then we can assert that 1/J({) has the following estimate in Q’:{:IiIm <
¢/(Re{~—K) or {Im&|<—c'(Re{+K)(c’<c)}: for every >0 there exists some C
such that [J({)[=C.e i<, It seems that this statement is essentially well-known
but we cannot find any literature to quote, so we give a proof of this proposi-
tion in Lemma 4.1.3. This proposition makes the integral on the right side
well-defined. Thus Q) e(Py)’ is well-defined. Next we define P{x) as the
Fourier transform of Q({), and we obtain the representation of P(2) by

{{ oo et er oy, &),
>K £

<=
that is the Cech cohomology of covering. (See the notation of 3.2.)
Now we prove the relation SxP==6— W holds on R*. In fact we have

(S¥P, [>=(P, Sx fr>=( F P, F (Sx>=<Q, FSFf>
:S _TOKS, e“"¢>5~"fd5=§ ﬁ"fdczzgﬁ“fdi~s Tl
1&]>

HI>K 11549

=4, f>--~<§ ei=dz, f>

I5F-1.9
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for every fe€ .. Thus we have S*P:B-—S e*‘dx on D, so restricting
IHE2Y
this relation to R we have SxP:==6— W{x) where W(x) is a real analytic function
over R.
Thus what remains to be proved is singsupp P={0}. For that purpose it is

sufficient to prove g e J(O)dL, which is defined and holomorphic in {Im z2>0},
> 4

is analytically continued across the real axis as far as Rez#0. In fact it is
easily proved by the change of path of integration. Let us denote Rez by =z,
Imz by v, Re{ by &€ and Im < by 7. By the estimate of {1/J(£)] and Cauchy’s
theorem we have

S ez'z:/J(c)d:-fS e¥/J(0)ds
{>K

-
where "= {{|r--k(£--K), £>K), with 0<k<c/2. On the other hand S e** [J($)ds
converges absolutely in {2ly> —~(k/2x+-(14-k/2)¢} for every positive e, "i‘his means
X 'ei‘i/’J(i)d"; is real analytie if 2>0, since k is a fixed constant.

' Just in the same way, changing the path of integration to [/={{|p=
—k(2—K), k==¢/2} we have the real analyticity of S eSS in {&<0}. This
ends the proof when n=1. i

If n22, then we define {Q(D)}i-1.....2n by

@@ pn=| - fawensods - di, re
GQEJ;—LI\ quadrant

and Q)= ﬁl Q0. Define P(x) by F (Q()). To prove singsupp P={0}, we need
only to chégk the regularity of P(x), but the proof given in the case of n=1
shows singsupp P(x) _Ql{xjt:O}. Since P(z) is an element of Hj»(D"xv —11",
&‘) we conclude sings’\;pp P=:{0}, because affine transformations do not change
singsupp P. The proof of the relation SxP=5—W (We 7 (R") is just the same
as in the case n==1. This ends the proof of the theorem except for the estimate
of [1/J()1, which is given in the next lemma.

LeMMA 4.1.3. Let " be an open cone in C*(=R*) with its vertex at 0.
Suppose that J() is an entire function which is of order 1 and of minimum
type (that s, |JEN<A,e, Ve>0) and that J(O)#0 in I, then we have the fol-
lowing estimate: let IV be a cone in C*=R* with I"€l", then for every ¢>0
there exists some C. such that |JI=Ce s in I,

Before giving the proof of this lemma we quote the following two lemmas
which are well known in the theory of functions of one complex variable.
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Lemma 4.1.4. Suppose f(2) is holomorphic and never vanishes in {z)|2|< R}.
Then we have the following inequality for every r (r<R):

(1) log lf2)lz—27/(R—7)log sup Lf@)+(RB4+mi(R—7)log i fO} in lz|<7.

LEMMA 4.1.5. Suppose f(z) is holomorphic in {z|2=2eR} with f(0)=1. (e=
2.7---) Let 7 be an arbitrary positive number not exceeding 3¢/2. Then inside
the circle 1z|=< R, but outside a family of excluded circles the sum of whose
radii 18 not greater than 4AnR, we have

2y logifz)l>—H(p log sup | f(2)| where H(y)==2-log 3e/2r.

See Levin {27] p. 19. Theorem 9 and p.21. Theorem 11 as for the proofs.

Now we begin to prove Lemma 4.1.3. We can assume J(0)=1 without loss
of generality. Let S, be {{eC"|{{[=1}). For every €SNI, we find some
constant ¢ such that {tZ||{Imt|<cRet}c!" since I' is open. Therefore Cusli:
{(t|1Im tj<cRet} is an open cone which satisfies cynS,el’'ns,, if U@I’OS;
and c¢ is sufficiently small.

Since /7€', we can cover /” by a finite number of such open cones as Cj,.
According to this fact the proof of the lemma is reduced to the following;
f(t)~J(t~,1, -+, t£,) has the following estimate:

lf(t )= Ce™'t in {t||Im tI<(c/2)|Re tl} for every &, where C. depends only
on ¢ but not on {. We prove this estimate using the lemmas gquoted above.
By the assumption of the growth rate of [J({)| we have |f.o(t)| < Ae®'", where
A. does not depend on °. For any t satisfying |t|=R, and |Im t|<{(¢/2) Ret we
can find £, such that |t—t <8R and |f,o(t"=—H(;) log (A.¢***®) by the above
estimate and Lemma 4.1.5. (The constant % will be fixed later.) By the assump-
tion of the destribution of zeros of J() we can assume fio(c)2:0 in {z|[r—¢0|<
(c/4)(1-87)K}, so we have log|f:(s)i=—~2log sup [ f(z)] 43 log | fr ot

[r 0= (c/8) (1~8m) R

n {z}]c—1%<(c/8)(1—87)R} by Lemma 4.1.4. Taking 7 so small that the in-
equality (1+(¢/8)(1—(5/8))R>R holds, we have [t—#°]<(¢/8)(1—84)R. Of course
we can assume {réIrwtol:(c/4)(1~87y)R}C {z]l7] <2eR} without loss of generality,
we have the following estimate by the above inequalities:

log | fro(t)l = —2log (A.e****)—3H(y) log (A.e*") .

Since the constant 7 depends only on ¢ and A. depends only on ¢, we have
the estimate |fi(t)|zCie 2@H3fimatt in {t1|Im ¢|<c¢Ret}, where C. depends only
on ¢ and c.

Because ¢ can be chosen arbitrarily, we have [ @12Ce " in {t[|Im tI<
¢ Re t}.

Thus we have proved [J({)|=2Ce ' in [, Q.E.D.
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We can formulate Theorem 4.1.2 in 2 more precise form using the notion
of the sheaf %, which is recently developed by Sato [36], [37], [38].

For the reader’s convenience we explain here the notion of the sheaf %
briefly, since Sato’s new theory is only available in Japanese. We refer the
reader to Sato [37}], [38] for the complete theory of the sheaf &°. As for the
algebraic aspect of the theory Morimoto [31] is also available.

The sheaf & is constructed on S*M, the cosphere bundle of a real analytic
manifold M. It satisfies 0— 8/ — F — 7, &~ 0 (exact) where = is the
projection map from S*M to M and 74 % means the direct image of the sheaf
%  under =. We denote by § the mapping from < (U) to & (="'(U)). Then
we can consider the supp 5(u) for any hyperfunction w on M.

Fixing some local coordinate we consider S* '« U instead of S*M where
U< M, and give the rough notion about supp 5(x). By supp Su)N({(1,0 --- 0)} x
U)=¢ we mean the hyperfunction % can be locally represented only using the
boundary values of holomorphic functions f;(£), 1<j<l, on Vx~—1I; re-
spectively where /'; is an open cone in R" and EJ I'S does not contain the
direction (1,0, ---,0). See Morimoto [31] about the;glfacts.

Now we have the following Lemma 4.1.6 due to Sato. Before stating it we
do some preliminaries. Let M and M’ be real analytic manifolds of dimension
m-+r and m respectively, and ¢ be a real analytic mapping from M to M’ with
rank m. For any hyperfunction valued (m+7)-form ¢ on M we can consider
S o g(z) as far as ¢ is proper on suppg. This integration is called the integra-
ti?)ntré)long fibre and obviously the convolution operation wxv, where v is of com-
pact support, is a special type of this integration. (Take R?™ and R™ as M and
M’ respectively, the projection map from R*™ to R™ as ¢, and w(e—y)v{y)dady
as g, where we denote the point in R*™ by (z, ) and the point in R™ by z.)
{See Sato [35] p. 434.) We can also define the integration along fibre of & -valued
forms for which the relation

5( S 9) = S Bge—1sm
yliz”) =)

holds, where ¢7'S*M'={(z, Nelx)=a', =¢*7/, (&', 7'} € S*M}. (See Sato [37], [38]
for these facts.) Now we state the lemma.

LEMMA 4.1.6 (Sato). There is the following relation between supp 5lg) and

supp ﬁ(g » ’)g>; supp S(Sﬂ( X g) Ce(supp A@) N e~ iS*MY) .
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Proor. It is sufficient to prove that S 1 ¢ is a real analytic function on
M’ provided that suppSg)N o IS*M’ =g, ;inzé the sheaf & is decomposable.
(See Sato [38]). But this is immediate by the definition of 3.

Now we return to our problems.

DEFINITION 4.1.7. (Characteristic set of the operator Sx.) We define the
characteristic set V(J) to be the intersection of N with S*' where N is the
closure of {{€ C"=R¥|J()==0} in D™,

It is obvious that if J({) is a polynomial then 7c0€N is equivalent to
Pa(y)=0 where Pn is the principal symbol of P.

THEOREM 4.1.8. Suppose that V(J) does not contain (1,0, ---,0). Then the
Jollowing statement holds: If Swu=fin 2 and supp A(HHNYQ,0, ---, O} Q=5
then supp Su) N ({(1, 0, - -, O} x D) =4¢.

Proor. We define Q) e (<?,) by

Q) )= S . S OO - d2
K

C, &>
where C is {6€ R"||2]<¢&i} and K is sufficiently large, and we also define P(x)
by & Q). We denote by I the intersection CN{|¢|=1}, by T its closure, and
by oI its boundary in {|¢|=1}. Then by the condition of V(J) we have SxP=
6—W where

supp A(P(x)) C(@Ix R™) U (L x{0}), supp S(W(x)) NI x R")= o,

(We regard P(x) as a hyperfunction over R" by restriction.) From the above
relation we have @ =ux6==0*(SxP-+ W)=(S*u)xP+4i+W where 4 is obtained from
% by cutting it off outside some compact set K in 2 by the flabbiness of <#.
Since supp S(S*)N{(1,0, - -, 0)} X (interior of K)=¢, supp f(P)c(@IxR"*)U(Ix {oh
and supp A W)N{IXR")=¢, we have suppf(#)N{1,0,---,0)}xKi=¢ by Lemma
4.1.6. Since K is arbitrary we conclude supp f(u)N{(1,0, -+, 0)} x 2=,

COROLLARY. If V(J) does mot contain (£1,0,---,0), then w depends real
analytically on z; as far as S*u does.

Proor. This is the immediate consequence of the theorem and the definition
of the real analytic dependence. (See Sato {35] Ch. 8, §8 and [38)]).

We next prove that the converse of the theorem holds.

THEOREM 4.1.9. If S does not satisfy the condition of the theorem, them
there exists a hyperfunction w whick satisfies Sxu=0 and supp fw)N{(1,0, ---,
0)} x Q)= 9.

(The following method of construction of u was kindly suggested by Prof.
Komatsu.)
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PrRoOF. By the assumption on S, we can choose a sequence of {™=&m+iy™
(&, yme R") which satisfies the following conditions (i) — (iv):

i JE™=0

(i) &rzmep!

(i) |671=enll™ (=2, -, 0)

(iv) lyTiSenll™ (=1, - -, n), where en=1/2nm.

Using this sequence ™, we define Fl(z)= i‘,lexp (<™, 20y, then it is easily
checked that F(z) is holomorphic in {Im z,>0} z;d satisfies SxF(z)=0 there. We
want to prove lim Re F(z,)==co for a suitable sequence of z" with Im2}>0. We
take z™: :(iy{",ﬂ(;;m---,O) where y7=(")"'. Then we have cos{(y»)>1/2 for
m=p, because we have

YTl < epllPIET) T S(287) HepdY
P

S@pHDEM MM s - SQ2p+D) s mET) P epfl
by the condition on ¢”. (Remark that we can assume |{?|<(1/2)§7 without loss
of generality.) Therefore we have

P P
> exp (—yPE™) cos (yPy™) = (1/2) glexp(wyl"f’?)?;@e)“‘p

m=}1

since YV =(EN 1= (per ) '<y!~!. On the other hand we have

| X exp(—y"&™) cos (™) = 2* exp (—pm P2
mgzp+l

meptl

Therefore we have Re F(z")=(2¢ ")p~—2, that is, lim Re F(2*)=co. Taking the
boundary value of F(z) as u we find the requireé)*;ingular solution of Sxu=0
by the definition since S*F'=:0 in {Im 2:>0}.

REMARK. A weak converse of Theorem 4.1.2 can be easily obtained in the
following form.

THEOREM 4.1.9°. If S does not satisfy the condition of Theorem 4.1.2, then
S has no parametriz. (Here we mean by parametriz P a hyperfunction which
satisfies S=P=0—W where We N (R") and whose singular support is compact
(not necessarily {0}.)

Proor. First we define a sheaf g on D™ giving its section module rg’;(!))
over 2 as follows. ‘g’(f.)) consists of all holomorphic functions f{z) on 2NC"
which satisfy the following conditions: for any compact set K in & there exists
some dx such that sup|flz)elkiz!{<co holds.

We also denote g the inverse image ofg’ to D" (=zclosure of R"x%{0} in
Dy,
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We consider the following exact sequence of sheaves on D"=R"Sr

0— P — B 1 B P —0
~

/R
We denote by [#] the image of s under the map j.
We have HYD", ¢7)=0 as in Part I §3 (cf. 5-41), so we have

~

0—— Z(D") —— FD")— (P HD")— 0 -+ (1).
~ ~4

On the other hand L%”/’g::.%’/t% on R" by their definitions, so the existence
of the parametrix P(x) and the above exact sequence (1) conclude the existence
of some Pe (D" with supp [P]=singsupp P such that S¥P=:4+¢ where ¢
belongs to g(D"). (Remark that supp{Plg» is compact in B* where supp[Pli
is the support of the equivalence class of P in <#/.%7, that is the singsupp P.)
Since supp [15] is compact in R*, # P is holomorphic in some neighbourhood
of D" in D* and % ¢ tends to zero there as || —> co. (We prove these facts
in the later section (56.1). The above facts are the most trivial part of that
section.)

On the other hand J() tends to zero along some ray in that domain by as-
sumption, so S*P=d+¢, that is J({) & P=1+ . ¢ gives a contradiction.

Q.E.D.

REMARK. The sheaf £7, which is used above, will play an essential role in
our forthecoming paper [18? Full study of the nature of this sheaf will be given
there.

Theorem 4.1.8 gives the most complete results about partial ellipticity. At
first we shall give the definition of partial ellipticity and conditional ellipticity
as follows after Garding-Malgrange [8].

DEFINITION 4.1.10. If supp flu)C{&,== - - - =£,,:=0} X & then we say u depends
weakly complex holomorphically on (z;, -+, Zu).
DEFINITION 4.1.11. Sx is partially elliptic with respect to (x,, - - -, Zn) if any

hyperfunction solution of S+u==0 depends weakly complex holomorphically on
(@4, =y 2.

DEFINITION 4.1.12. S% is conditionally elliptic with respect to (z, -+, T.) if
% is a real analytic function whenever S*u==0 and u depends weakly complex
holomorphically on (Zm41, ** ) Zu).

REMARK. If Sx is a usual partical differential operator of finite order then
those operators which are partially elliptic in (x;, - -+, #.) in the sense of Garding-
Malgrange are partially elliptic in the above sense. Of course this is a corollary
of the following theorem, but one can prove it directly using the Garding-
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Malgrange estimate, and Komatsu's method [22], but we omit the details since
it seems to have no essential novelties. (In this case u depends complex holo-
morphically in (x,, -+, z,): see Sato [35] about the notion of the complex holo-
morphic dependence. We remark here that complex holomorphic dependence
trivially implies the weak complex holomorphic dependence, but the converse is
not true in general.

THEOREM 4.1.13. Sx is partially elliptic in (xy, - - -, x..) if and only if V(J)
{G19s - or == En==0}

THEOREM 4.1.14. S=x is conditionally elliptic in (xy, -+, Tn) &f and only if
{Emegms e =8, =00 V(J)=: 0.

These are the immediate consequences of Theorem 4.1.8, Theorem 4.1.9 and
the definition of weak complex holomorphic dependence.

REMARK 1. The method of the proof of Theorem 4.1.9 implies that we can
also prove Theorem 4.1.14 if we define conditional ellipticity using the notion of
complex holomorphic dependence instead of the notion of weak complex holo-
morphic dependence.

REMARK 2. It seems that Theorem 4.1.13 and Theorem 4.1.14 have not known
even for usual partial differential operators. A remarkable fact in that case is
that partial ellipticity and conditional ellipticity of an operator are determined
by its principal part only.

Sato’s recent theory has essentially extended this fact even to the variable
coefficient case. (Sato [36], [37], {38].)

Remark the fact that Schriédinger operator is not partially elliptic with
respect to space variables though the heat equation is in the framework of
distributions (Garding-Malgrange [8].)

We end this section by showing the following theorem which is an extension
of Bengel's duality theorem, following the Komatsu method. (Cf. Bengel [1],
Komatsu [22], [25].)

THEOREM 4.1.15. Let K be a compact set in R and W be an open neigh-
bourhood of K. If Sx is a local operator, we can consider the solution sheaf
GB* and 5%, Assuming Sx is an elliptic local operator, we have the fol-
lowing duality theorem:

[ 5B = Hy (W, 7 5%) = o7 SHW—K)/.S7 S*(W) .

PROOF. We have the regularity theorem (Theorem 4.1.2) and it is essential-
ly well known Sx <7 ()= <Z(2) for every open set 2 (see for example Schapira
{40}; we give the more general existence theorem for convolution operators; see
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Theorem 4.2.3.) These two facts combined with the Serre-Komatsu duality
theorem ([H] Theorem 19) give the theorem. In fact we have the flabby
resolution

v

v Sx
0 B Z —0

and the ellipticity of S« means 3= 075 Just in the same way as above
we have

v

S«
0 S Y — 7 —— (.

These two exact sequences give the following dual complexes:

Sx
0— Fx(W)—— B (W)—0
‘ I
! Sk
0e— ¥ (K) «—— ' (K) <0

Regularity theorem and existence theorem prove Sx is of closed range.
Thus Serre-Komatsu duality theorem gives us S *(K)=[HW(W, o7 Y.
{Remark that .97 (K) is a DFS-space.) Thus the first part of the isomorphism
is proved.

Now we prove the second isomorphism. Since

.@(W)it@(W)—QO (exact)

and the real analyticity of S+u implies the real analyticity of u, we have

S
.,SE/(W)——*’JV(W)——~>O (exact).
Thus we have HYW, o7 %%)=0, so

0—— I (W, 57 s*%) — ['(W, 7 %) — '(W—-K, &7 5*%) —
—— Hi(W, o7 5%) —— HYW, o7 5)=0.

Therefore we have
KW, sty =(W—K, 7%/ I(W, 975 .
{Remark that I'x(W, &7 5%)=0 by the unique continuation property.)
4.2. Ellipticity and partial ellipticity for convolution operators

We treat the problem of ellipticity for convolution operators in this section.
The method of the proof is just the same as in the preceding section, but to
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obtain the result we must assume some additional condition, which we call
condition (S), as well as the conditions about the distribution of zeros of
<S, e*‘i<z,:>>.

We also show condition (S) implies Sx<Z (R")==<# (R"); it will be shown
in our forthcoming paper [18] that the condition (S) is not only natural but also
best possible one to assure the existence of solutions in a sense.

DEFINITION 4.2.1. Condition (S): For every positive ¢ there exists some N,
which satisfies the following condition:

For every £e¢ R" with |£/>N. we can find some 7€ C” satisfying [¢—#|<elf]
and [J(p)lze e,

RemarK. This notion is indicated by Ehrenpreis [4].

THEOREM 4.2.2. Let S be a hyperfunction with compact support. Suppose
that J(Z)=<8S, e 9> satisfies the above condition (S) and V(J)=¢. (The defini-
tion of V(J) is given in Definition 4.1.10.) Then u€ o7 (R") whenever Stue€
&7 (R*") and uwe ZZ(R").

Proor. If we can prove the estimate (1) below, then the existence of
parametrix P can be proved just in the same way as in the proof of Theorem
4.1.2. (Of course we cannot expect singsupp P is equal to {0} but only it is
compact in R", so we have used the terminology “parametrix”, not “good
parametrix”.)

The desired estimate is:

(1) There exists some neighbourhood U of Sz~ in D®* for which the fol-
lowing inequality holds; |J{)!=Cei1{¥Ve>0) in UNC™.

To obtain this estimate we need the following lemma due to Hormander-
Malgrange. (Hérmander [12] p. 154, Lemma 3.1.)

LeEMMA 4.2.2. Suppose that f(z), g(2), f(2)/g(z) are holomorphic in {z€ C"|lz|<
R} with lslu;z2 I f@I<A and Islugz lg()| < B, then we have

| fl2)/g(2)| = AB2=1/(B-12D g (Q)| = (RHI/R=120 4 2] <R

(Of course we can use the minimum modulus theorem of Ehrenpreis (Ehren-
preis [3]), but here we prefer to use the above lemma because it is much more
elementary.) ‘

Now we go on to the proof of estimate (1). Using the condition that
V{J)==¢, we can assume J(&)#0 in {{|3c/RelI>Im{l, IReZI>K} for some
constants ¢ and K. We want to estimate |J({)! from below in {{lcIRe&I>{Im ],
[ReI>2K}. It is sufficient to estimate |J()| from below in {{|cIRe{i>{Im{],
IReI>N.,} for any e.
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Using the condition (S) we can choose some ¢’ with {ReZ—{’|<<:|Re{| and
IJEY>eiRett, Consider a ball with redius 2(s[Re¢|+1Im {l) with its center at
Z/. Applying Lemma 4.2.2 we have the following inequality:

11/J()1 < (A. exp (e(2<|Re 2]+ 1Im £+ 1Z7]) +a(<|Re &] +2(c|Re |
+1Tm ZD)2x (exp (—=12D3,

since [J($)| S Aeefls!*etiml holds for some a.

Thus we can conclude [1/J()1< By exp (0%} +4a|Im {l) for any 0>0. This is
the desired estimate and the existence of parametrix follows from this. So the
proof is complete.

REMARK 1. It can be easily proved as in Theorem 4.1.9’ that not only the
condition V{J)=¢ but also the condition (8) is necessary for the existence of a
parametrix.

REMARK 2. It is trivial that Theorem 4.1.8, Theorem 4.1.9, Theorem 4.1.13
and Theorem 4.1.14 hold with some due modifications for the convolution opera-
tor Sx with the condition (8). We omit the details,

REMARK 3. We can treat more general convolution operator Sx, that is only
agsuming singsupp S compact, using the theory of modified Fourier hyperfunec-
tions. The theory will be given in our forthcoming paper [18].

To show the naturality of the condition (S8) we exhibit the following exis-
tence theorem. More direct proof of this theorem will be given in our forth-
coming paper [18]. Further we remark that if S is a distribution with compact
support, then the condition (8) is easily seen to hold. Since this fact seems
essentially well known, we omit the details. (See for example the argument
of Ehrenpreis [4] p.544. Perhaps we will treat the topies around this problem
in some paper which treats the problem of the relation between singular sup-
ports and convolutions.)

THEOREM 4.2.4. Suppose S, e7**%> satisfies the condition (S), then we have
SxZ (R")=<Z (R").

PROOF. Define 2==R"xX~ —1{y|y,>0, ---, ¥»>0}. If we can prove Sx7(%)--
(), then the theorem easily follows. The condition (S) combined with Lemma
4.2.3 proves Sx¢P(8)= 7(2) or equivalently é‘*:[g?(.@)]’ » [ 22 is of closed
range by the theorem of Ehrenpreis-Martineau. (About the Ehrenpreis-Martineau
theorem, see for example Hormander [15] Ch. 4, §4. 5.) For the sake of simpli-
city of the notation, we assume n=2. We want to prove S« [P — 1 (DY
is of closed range. Using the Fourier transform of the analytic functionals, it
is sufficient to prove the following statement; if F({)/J(L) is entire and {F(O|<
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A exp (£x(£)) holds for some compact convex set K in 2 then we have |F(O)/J(O)l<
Cexp(%.(0)) where L is a compact convex set in 2 which depends only J(2) and
K. (In the above we denote :ngg(wlm <z,8>) by %x(0).) Let &; be Re{; and »;
be ImZ,. In {£20, £2=0} the above condition on |F()] implies that the estimate
[F(Q)1 = Aexp (K[| —0d5,—d%,) holds for some positive K and 6. First we consider
the case & >¢0f and £,>¢0lfl. Then we have the following estimate on
[F(Q)/JE)] there for any positive ¢ and ¢ using the condition (8) and Lemma
4.2.3:
LRI {A exp (K(3el£]-+17]) —8(—8e|&] —215] -+ 1)}
X { By exp (01¢]+a(Be|&] -+ 512 x{C. exp (] &)}
£ C..pexp ((20-+3K+20+2a) 9]+ (—38+3e(K+ 8-+ 2a+-1)--20)|2]) ,
where « depends only on J({). Thus fixing ¢ and ¢ so small that 3¢(K +6-+2a-+1)
+20<d/2 we have the desired estimate on |F()/J(0)] in {&,>¢l2] and &> ¢,l2]).
Secondly we consider the case {0<#,<¢lél, £,20). Noting that &>e¢l2| holds
for some positive ¢ in this case and |F()|< Aexp (K|y|~K&,—6%,) holds in {£,<0
and $;=0} we have the following estimate just in the same way as above:
IF(OIJO < {Aexp (K(B¢ ||+ 9] — K(--3e] 2] —2]p|+ £1)

—0(—3el§] 27|+ E))} X { By exp (O1C] + a(Be €]+ [51)))2 % {C.e 161}

= Ce.p exp (205K 20+ 2a) ]+ (3c(2K+ 5+ 2a -+ 1) +20) 2|

—K§,—08,)=C, o exp ((26+5K -+ 20+ 2a) 1y — K&,

+(Bce(2K+61-2a +-1)42¢0—0)&,)

holds for any positive ¢ and ¢. Therefore taking ¢ and ¢ so small as to ensure
Bce(2K +-G-1-2a1-1)-1-2e0< /2, we have the desired estimate. In other quadrants
the situations are essentially the same, so we omit the details. Thus the proof
is completed.

§5. Propagation of regularity

5.1. Propagation of regularity for local operators

We treat the problem of propagation of regularity for local operators in this
section. The method of the proof seems to be of some interest. (Cf. Malgrange
[291)

THEOREM 5.1.1. Let S be a hyperfunction with its support at {0). Suppose
A is a convex closed set and x is an extreme point of A. Then there exists a
Sunndamental system of open meighbourhoods {U;} satisfying the Jollowing con-
dition: Sxu belongs to both <ZF(U,) and .7 (U;—A) then u necessarily belongs
to 7 (Uj). (See the following figure.)
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Figure

U;= B;n{z; <a;l

Proor. Let B; be a ball with radius 57! and with its center at z. The
condition on A and = permits us to conclude U; (= B;N{x:1<a;}) has the following
property (x) after a suitable choice of coordinate system and of a;.

(*) For every ¢ with e¢=a;, AN{z,=c} is compact in U;N{z;==c}.

As Sato remarked the sheaf <# /.57 is flabby. (This follows easily from
the flabbiness of the sheaf <& and the vanishing of H (@2, &) for every open
set 2.) Therefore we can find some P € (Z/ 7 }R" with suppbc(U;N A)* and
t=v in U; where v={ule(#/ " )(U;). (The symbol {u] denote the image of u
under the map from £Z to <#/.97). The choice of U; permits us to conclude
Sx=0 in U; and in z,<a;. As is remarked in 4.1. <&Z/ ¥ = %/g on R*,
we can consider ¥ is an element of (ggﬁ/g)(m) since supp?v is compact in R".
Thus we can find some ¢», which belongs to both <Z(D") and g’(l)”msuppz‘?)
satisfying [¢]==¥ by the vanishing of H’(D“,g). Defining 08+, we also have
some ¢ which belongs to both & (D") and 1g(lD”‘wsupp o) with [¢]==0. Thus the
relation Sx¥=:0 implies Sx¢—¢ eg’(m) by the definition. Next we define

F(:)f:gg’l(x)ei<”‘:>dx, G(C):Sgc(x)e"“")dx. (This integration means that F() is

a sum of two hyperfunctions; one is the integration of hyperfunction with
compact support and the other is an integration in the sense of Riemann. Thus
F() is easily seen to be holomorphic in a conical neighbourhood of R™ in C"az
R*. (More precice estimate is given in Lemma 5.1.2 below.) Then we have
JOFO -G e g(D”) since g’(l)”) is stable under the Fourier transformation.

On the other hand we can decide the convex hull of supp[¢] from the growth
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order of Sc;’/(:n)e“”’“dm as is shown in Lemma 5.1.2. Since supp S is equal to {0},
we have the following estimate: For any ¢ and £ we can find some ' with
JWJENz Ce st and 10| <elg) (Cf. 4.1.). So Lemma 4.2.3 combined with Lemma
5.1.2 concludes that convex hull of suppl¢] is equal to that of [¢], that is
supp ¢} Anizy==a;}. Since [¢]=[u] in U, by their definitions, we have [u]=0
in Uj, that is we o7 {(U;). Thus what remains is to prove the following lemma.

LEMMA 5.1.2. Let 1:(z) belong to both B (D") and 7 (D"—K) where K 15 a
compact convex set in R*. Suppose F(&) is defined by NF(’;)-% S mlxye’ = dx, then
F() satisfies the following condition (x):

() For any >0 there exist some C. and A. such that F() is holomorphic
in o= CURe £+ 1) > 1Im &} and 1F(OIS Acexp (el +2x(Im {)) where Zyly)=
sup (<&, 70).

Conversely if F(2) satisfies the above condition (), we can obtain a hyper-
function p(x) by SF(P)«Q““‘c odé and this belongs to ﬁ(D” - K).

Proor. Fix an arbitrary ¢>0. Let K. be a convex e-neighbourhood of K.
Taking an rectangle inIl(x‘}, 2%) so as to include K we have

S;g(a;)ei@&)dx: X 'u(?)ei(z.C)dz

r

where /"= lIl %29 s which is taken to be included in the union of the domain
where ;t(z) is holomorphlc and the rectangle 1[(:0,, %). Here I 2.2 is the

path of integration as below.

Figure

zs-plane
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Then we have | F(O)I<Adexp (Zm,g__,gf) (Im Q) in {£|C(ReI4+1D>Im ], Re =
0}, where C. depends only on the decrease rate of n:(z} and the angle a formed
by I’ @%.2%) and the real axis. Reflecting I 2%.2%) with respeect to real axis we
obtain the above estimate in {CICa(iReCI+1)>IIm ¢l}. Thus the convexity of K
permits us to conclude [F()|S A exp(Xx(Im&)) in some conical neighbourhood
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of R* in R*™. Therefore we have proved the first part of the theorem.

To prove the second part of the theorem we first remark that SF(S)e‘“"\”"”dS
can be defined by the inverse Fourier transform of the Fourier hyperfunction
F(0), that is defined by <F, f,>:XF(;) FQdL (VAQ e GP,). Therefore what we
must do is to investigate the singular support of /!:’ISF(S)e““"">dS.

Now let L be f[ L; where L;j=[-l;,l;] and K be contained in L. Define 2; .

J=1
to be {lem zi>—d(Rez;—1;)-+:}. If we assume that z belongs to ;. then
S FQesrodc= FQeeodz
r«:o:,'go Im Cjwdﬂcij,
Re:jsu

holds for sufficiently small positive 0. Since ﬁi)Jo.Qs,;:{Im z;>0} and the condition
(x) proves the above integral defines an ele;;(;nt of g(01i“j§l{f€j<zj"§“$0}) for
any positive c. If we define 2% .={z{Im z;>d(Re z;--1;)-- ¢} we can change the
path of integration {Im {;==d Re{;, Re{;<0} to {Im{;=—5Re{;, ReZ;<0} as long
as z belongs to the intersection of 2s. and £’;., thus the above integral defines
an element of g(D"*“,EIl{“"50’5j<$j<lj‘+' co}). Since £#/. % is a sheaf and K

is convex this completes the proof.

5.2. Propagation of regularity for overdetermined systems

In the preceding section we gave a theorem about propagation of regularity
for local operators. In this section we want to generalize the theorem to the
overdetermined systems under the very restrictive assumption that they are
usual partial differential operators.

THEOREM 5.2.1. Let P(D) be a pariial differential operator form <& to
B, (The symbol D denotes 19/0x;.) Define M by A"'P(X)A™ where A is
the polynomial ring C[ X, ---, Xu).

Then Ext®(M, A)=0 1s equivalent to ["W(R", (7|57 )")==0 (Here the sym-
bol I’y means the section whose support is compact.)

Proor. If Ext°(M, A)+#0, then we can find some s which belongs to
I'y(R", &%) by the definition of Ext°(M, A), so we prove the converse. The
symbol [u] denote the equivalence class of u in (#/.¥) or ((,/?/g’) as usual.

Assume P(Dj)u belongs to .o (R")™ and supp|u] is compact in R". Since
H‘(D“,g’):(), we can find some ¢ which belongs to ZZ(D") with supp[¢]:=
supp [u] and P(D)gbeg”(l)"). Then we have P()$(()==0(c) where ¢(7) and 8(5)
are the Fourier transforms of ¢ and ¢ respectively, so (0} e 1g""(l)") and J(©) is
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holomorphic in V, which is the intersection of some open neighbourhood of D"
in D* and C". Then the well-known Hérmander-Malgrange inequality for
polynomials assures the existence of some ¥'(¢) which belong to g”O(D”). (See
Hérmander [15] Proposition 7.6.5.) Since we have assumed Ext® (M, A)=0,¥()
must coincide with ¢(2). Therefore we conclude ¢(x) belongs to g*"(l)n). This
means [¢]=:0, that is, {]=0. Thus we have proved I'«(R",(&F/.o7)")==0 under
the condition that Ext® (M, A)=0.

Theorem 5.2.1 shows that we cannot expect any analogue of the theorem
in the preceding section without the assumption that Ext® (M, A)=0. But the
method of the proof of Theorem 5.2.1 applies without any essential modifications
using Hoérmander-Malgrange's inequality quoted above if we assume the con-
dition that Ext® (M, 4)—0 (See the method of the proof of Theorem 5.2.1.) Thus
we have the following theorem.

THEOREM 5.2.2. Let the system of partial differential equations M salisfy
the condition Ext® (M, A)==0. Then the conclusion of Theorem 5.1.1 holds.

ReEMARK. For the overdetermined system M we have stronger results under
the vanishing of higher extension group Ext/ (M, 4), but it requires more
algebraic preparations, though they are given in Palamodov [32], so we shall
discuss that problem in our separate paper [19]. (As for the analytical tools we
have given in this paper almost all needed to treat this problem.)

§6. Problem of hyperbolicity

6.1. Hyperbolicity for local operators

We treat the problem of hyperbolicity for local operators from the view
point of the nature of the elementary solutions. We begin our theory by giving
the definition of hyperbolicity for local operators.

DEFINITION 6.1.1. Let Sx be a local operator. (That is, suppS is equal to
{0}.) Then S« is called hyperbolic in the direction of (1,0, ---,0) if and only if
there exists some hyperfunction E such that

(i) SxE-=0 in R".

(ii) supp Fc!I' where I" is a closed convex cone with its vertex at the origin
and I'eé{z;> 0} (6>0). (See 3.3 about the definition of the symbol €.)

REMARK 1. When Sx is a usual partial differential operator, then the above
definition coincides with the usual one except for the fact we admit E to be a
hyperfunction. (See for example Hormander [13] Ch. 5) Further our theory has
some interesting results even for the usual partial differential operators. We
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treat it in 6.3 below.

REMARK 2. In the above definition of hyperbolicity we distinguish the two
directions (1,0, ---,0) and (—1,0,---,0). In fact the following theorems show
that the hyperbolicity in the direction of (1,0, ---,0) does not imply that of
(—1,0,---,0) in general even when n=1, except for the case of usual partial
differential operators.

THEOREM 6.1.2. Suppose that a local operator S+ ts hyperbolic in the direc-
tion of (1,0, ---,0). Then J), the Fourter transform of S, satisfies the fol-
lowing condition (H.).

(H;) There exists some positive ¢ for which the condition (I) implies condi-
tion (II).

Condition (I): JO)=0 and [ImZi<eIm,.

Condition (II): For any positive ¢ we can find some C. for which the
inequality Im ¢;<<|Rell+C. holds.

REMARK 1. We use J(&)={S, ¢:*> for the sake of simplicity, not S, g~ 0>,

REMARK 2. It is easy to check the uniqueness of the elementary solution
E which satisfies the required properties. In fact if we assume S*E, =S« =0
and supp E,, supp E.C I’ for some properly convex cone we have K, =F 6=
E\x(SxEy)=(S+E)xE,=ixE,=E,,

Proor. By the assumption we can find some E which is an element of
“Z(R™ with its support in some convex cone I’ which satisfies the conditions
in Definition 6.1.1. Here we use the theory of Fourier hyperfunction. Since we
have proved that {ZZ(2)} constitutes a flabby sheaf over D"(Corollary (3.2.3) and
by the definition ZZ(2)=#(Q) if 2c R", we find some E which equals to £ on
R™ and belongs to <Z(D") with its support in K, which is the closure of /" in
D*. This means SxE=6+p where supp #CKnNS2-1. We define F(©) by <E, ¢i*<>
and M(2) by {u, e¢%», Then Theorem 3.3.1 assures F({) and M({) are holomor-
phic in {¢|iIm ¢I<¢’ Im {1} for some positive ¢’ and JIOF()=1-+M(,) there, since
supp E and supp#CK. Moreover M(Z) satisfies following estimate with some
¢<c¢’. For any positive ¢ and K there exists some A. x for which the inequality
1M A, get'R0-KImty holds in {¢|IImEl<cIm&,}. Fixing K to 1 we denote
A.1 by A.. Suppose { satisfy J({)=0 and {Im {|<¢Im  then we have —1=M({).
Therefore we have O=log |M({)l. From these relations we conclude log 4.+
elRe&l—Im £,=20. Thus we have Im{,£C.+¢|Rel| for any . Therefore the
condition (I) implies the condition (II).

REMARK. We have reduced the situation to “infinity” to obtain the condi-
tion (Hi) in the above proof. On the other hand one can also reduce the problem
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to the “origin” using only the flabbiness of <# (not <2) after Girding. In fact,
if S is hyperbolic in the direction of (1,0, ---, 0), then we can find some hyper-
function F' which coincides with E in {{z{<1} and whose support is contained in
I'n{lzl=1}. Then we have SxF=:d4v where suppvc I Nilzl=1}. Then the
usual Fourier transformation of a hyperfunction with compaet support in R"
gives the condition (H,), as is easily checked. We omit the details.

But we preferred a little more sophisticated proof, which we gave above,
because it seems to give the interpretation for the nature of hyperbolicity, that
is, the esgential part is due to the condition about the support of the elementary
solution I and some additional condition must appear because we do not impose
any growth conditions on E at infinity.

Now we prove the converse of the above theorem by constructing an ele-
mentary solution with the required properties under the condition (H)).

THEOREM 6.1.3. Suppose a local operator S= satisfies the condition (Hi).
Then Sx is hyperbolic in the direction of (1,0, ---, Q).

Proor. What we want to do is to construct an elementary solution of Sx
with the properties required in Definition 6.1.1.

We first treat the case m=1, because the essential part of our procedure of
constructing the elementary solution is shown most clearly in that case. (In
fact, as for the analytical aspect, nothing is needed even in the higher dimen-
sional case except for those used in the case of n=1.)

Now the condition (H,) and Lemma 4.2.8 assure that the estimate |J(J)I=
Age 0% (VU>0) holds in {{lIm =z c|Rel|+C.). We can assume C, is larger than
some fixed C as far as ¢ is smaller than 1. We define E¥(2) by gﬁe“’*:;J(Z)dZ
when z belongs 2.5, where 2.5 is {z]Im2<—c¢Rez--4d} and /! is {(Oi:'fivi)iCéﬂ’é
CHU{E (24 CHIE=20}.  (See the figures below.)

Figure 1 Figure 11

{-plane Yy
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z-plane

6
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On the other hand the Cauchy theorem asserts E{z)==E}(z) if z belongs to
Q.54 5. Thus we have obtained E*(2) which is holomorphic in {Imz<0} by
the analytic continuation. Just in the same way we can obtain £ (2) which is
holomorphic in {Im2>0} using S e J(0dl where ' is {04+ iiCsr =Gy
{(t—i(z2+C)izs0). '

Now we assert that the hyperfunction E(z), which the pair of holomorphic
functions (—F (z), E.(z)) define, is the required elementary solution (except for
the multiplicative constant (--22)). (We remark here the isomorphisms <Z(R)=¢

#C, )= P(C—R)/”(C) hold by the definition.) Since suppS=:{0}, S=
operates on #7(9.;) and we have

r

(SKE)('“) ) e S

€S, ¢ DII0S
ri

C, Yd
o euiw:d;:_ji eu'édt,; (1,{,1'5) e*'iwilcq‘i}é:i(,',;kd;;:fﬁe('w;/?:w
rf ¢ ¢

way we have (SxE ) (w)=-—e"%/tw in {w{Im w<0}. Therefore we have proved
S#E=x 274,

Next we want to prove supp EC{x>>0}. To prove it is suffices to prove
Efx)=—E.(z) in {x=a<0} fixing arbitrarily. For that purpose it is sufficient
to prove

| ervverseneon ] e a0 cconas|
4_“0

tends to zero as & tends to infinity by Cauchy's integral formula. Now the
estimate of |J({)| from below gives us the following estimates:

o N ) .
lg ewm;:_uce'nfofs/(f,‘x,l(ci f"afg))d;‘:
;

—3p

¢0 et v -, . -
= S elCetioe | J(£4-4(Ce 1 eEo))IdE
¢y

1) .
< Agelfereige S eI g e A petlet i v (g0t —1/f))
EU

for any 0>0. Then fixing ¢ so that #< —ae, we can conclude

3
S i) [J(3 1 4(Cot e0)ds
&
tends to zero as &, tends to infinity. This means supp EC{eSx}. Since @ in an
arbitrary negative number we conclude supp E is contained in {0=x}. Thus we
have proved the theorem in the case n=1. Even if n=2, we can go just in the

same way since the theorem follows by the convexity of /" if we only prove it
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assuming /’ is a direet product of half lines. But we give here a little more
sophisticated proof. (Essentially the same.)

The proof is as follows: we want to obtain some element E{(x) of H}C", &)
= H»YC"—1I", ##), which satisfies SxE=6. For that purpose we represent
H»Y(C"-I", £7) by some Cech cohomology of covering, that is H"Y{ %, &)
where %7 =:{U.,} denotes some family of convex sets determined below for which
,U U.==C"—1" holds. (Of course we can treat the problem representing H XC", &)
k;y the Cech cohomology of covering. In fact it is just the same thing except
for some change of indices.) Now we define U. as follows. For every « that

:

belongs to {r€C"{|z|=<1 and Im r;>¢|Im 7|} we choose some . so that J(tc+
number 4. We consider (v, J) as the index and take {U:s} as 4. By the above
condition on = we can find some [” for which UU:s=C"—I" holds. (In fact we
can take the dual cone of the base of the tubular domain where {tz} runs, that
is {7€ R"|7:>¢lyl} in this case. This remark gives the precise information about
the convex hull of the support of the elementary solution which we are construct-

ing.) Then for any (r;, ---, 7,) we assign the integral

S Se”‘“"’/J(Z)le oo dln

Bepivriicy
where the K ... ., is some (real) n-dimensional eell whose essential part is the
(real) m-dimensional cone which is generated by (z,, ---, 7,) with its vertex at
(v/ =1k, 0,---,0). (We choose j so that max ko =#-;.) The cell K. ... -, is given

Isksn

as follows. For the sake of simplicity we assume n=2, and «: Zx-,. (We only
repeat the procedure in the higher dimensional case.) Then consider the fol-
lowing two cells: K, is {{|¢=(av/ =1, 0)--tr,, where Ko, 20,5k, 120} and K, is
{C|€==(r:;v —1, 0)+ tr1-+- 872, where t,520}. Denoting the above integral by
¢, ....(2), which is defined in ﬁ U:,.s; a suitable choice of orientation of
K. . ..., gives a cocycle {Q:l,....r-:‘;‘in H*' (%, ) by the estimate of [J(Z)]
from below, which we have remarked at the beginning of the proof. Therefore
if we define E(x) by the element defined by ¢-,. ..., we obtain the required
elementary solution, since supp E(x) is contained in I” by the definition. (The
proof of S*xE=(2x)" is just the same as in the case of n=1.) Thus the proof
is complete.

6.2. Hyperbolicity for general convolution operators
We treat the problem of hyperbolicity for the convolution operator S, not
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assuming suppS=1{0}. At first we treat the case suppS is compact. To treat
this problem we must modify Definition 6.1.1 a little, that is,

DEFINITION 6.2.1. Let S be a hyperfunction with compact support. Then
we say the operator Sx is hyperbolic in the direction of (1,0, ---,0) if and only
if S* has some elementary solution E whose support is contained in some closed
and properly convex cone I', with its vertex at a(1,0, ---,0) and /;—a(l, 0, ---, 0)
€{x, =z ~o}.

Under the above definition of {generalized) hyperbolicity we easily conclude
the condition (H,) (see Theorem 6.1.2) is necessary for the hyperbolicity of S*.
(In fact just the same proof holds in this case.) But only the condition (H,)
cannot assure the existence of elementary solutions with the required properties
since |1/J(2)| may become too large at finity. The proof of Theorem 6.1.2
indicates us that we should impose some growth conditions on [L/J()| at infinity
to obtain an elementary solution E. (As is shown later, the estimate is
automatically satisfied for local operators and this makes the situation so simple
when S« is a lacal operator.) The growth condition required is as follows.

THEOREM 6.2.2. Suppose S+ is hyperbolic in the direction of (1,0, ---,0).
Then we have the following condition (EH,):

(EH,) There exist some constants ¢ end a for which the Jollowing estimate
(E) holds in {Z|IIm&l<eIml}: (E) For any positive ¢ we can find some C:
such that for any positive 0 the estimate |J(0)|Z Age 05218 holds in {Im {i>
¢|Re |+ C..

ProoF. Using the notation of Theorem 6.1.2 we obtain 14 M(£)=J()F()
in {Clllm Zi<eIm&,) from the condition on hyperbolicity. Moreover we have
the following estimate in {{}|Im {|<¢’Im &} for any o <er 1M S Begtttett-Eimgy
(Ve>0, K>0) and |F(O)|< Byetitetitelms, (¥9>0). Therefore we can assume
IM©I<1/2 in {{|Im{>¢e|Rell+C} for suitable C. This means |J)l=
(12 F(©)7 2 Coe0'Reti-elm iy must hold there. Thus we obtain the condition (EH,).

On the other hand it is easy to construct an elementary solution with the
required property. In fact the proof of Theorem 6.1.3 holds without any es-
sential change. (It is sufficient to make only two amendments. The first one
is as for the definition of £.s (Cf. 6.1): We must take {z|Im 2<e(Rez-4-a)—0d}
there, and this is the reason why supp £ must extend over some cone with its
vertex translated from the origin. (As for U. s (Cf. Theorem 6.1.3) the situation
is the same.) The second is that Sx does not operate on £7(f.s) but it sends
the element of Z°(@.5 to that of Z7(2.s+suppS). But it does not give any
difficulties since supp S is compact.) Thus we have the following theorem:
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THEOREM 6.2.3. If the convolution operator S+ satisfies the condition (EH,),
then Sx is hyperbolic in the direction of (1,0, ---, 0).

But we are not psychologically satisfied completely with the condition (EH,)
though it is complete from the logical view point, so we give another sufficient
condition for the hyperbolicity using the very deep result of Ehrenpreis, that is
the minimum modulus theorem. (See Ehrenpreis [3] p. 317, Theorem 5.)

THEOREM 6.2.4. Suppose that the convolution operator S* satisfies the con-
dition (8) as well as (H)) then the condition (EH,) holds with some a. (See 4.2
about the definition of condition (S). See also the remarks given before Theorem
4.2.4.,)

REMARK. Since condition (S) is always satisfied for a distribution with eom-
pact support, only the condition (H,) assures the hyperbolicity of S« if S is a
distribution with compact support. This fact seems to deserve to be remarked
(Cf. Ehrenpreis [6], Garding [7].)

ProoF OF THEOREM 6.2.4. We only give the case m=:1, since the estimate
in the higher dimensional case is a routine repetition of that procedure. Using
the condition (8) for any positive ¢ and any ¢ with Im £>0 we can find some
C with 15 -Re {i<#Re £} and |J(€)1 = Che 21, On the other hand the minimum
modulus theorem assures the existence of some £, with Im ¢<Im {,<30|Re |+
2Im{ and |J(C)I =Ky exp (—B#(14-0)|Re {|—Ca(3pIRe {]+2Im £)—119/Re Z}) for
any ¢’>0. (Here « is the exponential type of J(&) and B and C are some
constants.) Thus applying Lemma 4.2.3 to the circle with radius 3(Im £-+¢/Re &)
and its center at £, we obtain the following estimate from the condition (H,),

W= Corlexp ((31m £+ (14-30)|Re &} +-a(5 Im S+ 6¢|Re £1))
x{exp (— BY'(1+0)IRe | —Ca(3p Re £+2 Im &)~ 119|Re £))2
=Cy exp (50’ +70)|Re {|~6Im &) .

Here the constants 8, 7 and J depend neither on ¢ nor on ¢/, we have the esti-
mate (EH,). Q.E.D.

Thus we have a complete characterization on the hyperbolicity as far as
supp S is compact. However Prof. Garding kindly suggested me that I should
investigate the case where suppS is contained in some properly convex cone, as
he had investigated using distributions in his unpublished paper {7}. The author
expresses his sincere gratitude to Prof. Garding for his kindness.

PRrOBLEM (Garding). Let S be a hyperfunction with its support in some prop-
erly convex closed cone /" for which I"€{z12 ¢} holds for some ¢. Investigate
the conditions on S under which there exists some hyperfunction E with its
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support in another properly convex closed cone which is compactly contained in
{zi1= —¢'} for some ¢’ with respect to the topology of D".

The following gives an answer to this problem.

Let S be a Fourier hyperfunction which coincides with S on R" and with
its support in K, where K is the closure of /" in D". {(We have used here the
flabiness of &&.) If S* has an elementary solution E indicated above, we have
some F' which belongs to .Z2(D") with its support in L, where L is a properly
convex cone C, if restricted to R”, and SxF=4+v holds, where supprvC L1182
{Here we assume LK where L is the closure of C: without loss of generality.)
Thus we have the condition (EH,) again using Theorem 3.3.1. But we must
check whether the above condition remains unchanged if we use another exten-
sion of S or not. In this case the answer is affirmative, that is for another
choice of § we have also the condition (EH,). It is obvious from the result of
Theorem 3.3.2 and the fact that supp (S._§) is contained in K1 S"~! and supp £
is eontained in properly convex cone in R”.

Thus we have the necessary condition for the “hyperbolicity” of S. Next
we prove the sufficiency of the realization of (EH,) for some (& posteriori for
any) extension of S. In faet we can construet E{z) just in the same way as in
Theorem 6.2.3; only we remark that S cannot operate on 7(..s), since suppS
is not compact.

This fact makes it difficult to prove SxE:==(2z)"d directly. To avoid this
difficulty we use the following trick: We first decompose S into the sum of S,
and T, where suppS,. is contained in {x€ R"|x:<m!}, and denote the restriction
of T, to R® by TZ Obviously S=8.-+T2. The conditions on the suppS and
supp £ make T,*E well-defined. Now we fix some domain £.{z€ Rz <e}
and prove S+«E=(27)*6 holds there. Since ¢ is an arbitrary number we can ob-
viously coneclude that S#E-=(27)*6 holds on R" from this fact. Remark first it
is clear that TZxE—0 in 2. for sufficiently large m. Now let J,(l) be the
Fourier transform of S,: Then S,*E can be represented by the cochain de-
fined by

{ S T(©)e=<eL T () dZy - df:,,} .
Kgl, ooy Ty

(See the proof of Theorem 6.1.3. We must use the covering translated accord-
ing to the size of suppS, as in the proof of Theorem 6.2.2.) Just in the same
way S»xE—(27)"6 can be represented by the cochain

{ SK (Il =TT () diy - - - dcﬂ} .

‘n
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On the other hand supp(S—S,.)=supp T, is contained in {z|{z;=m}. Therefore
we have the estimate |J,(0)--J)Ise ™ ™4 in {{|{Im&iz¢/Rell+C. and
{Im £)<¢Im &1}, where a is a fixed constant determined by S only. This estimate
proves as usual that supp(S.*E-(2z)%d) is contained in {z:=m-a}. Therefore
we have S,*E==(27)"6 in 2. for sufficiently large m. Thus we have SxE=:(S,+
T2 F-=S, B+ TExE=:(20)" in 2, for sufficiently large m. This ends the proof.

We summarize the above statements as a theorem.

THEOREM 6.2.5. Let S be a hyperfunction with its support in some prop-
erly convex closed cone I'. Then the operator Sx= 18 “hyperbolic” in the sense
given in the problem of Garding, if and only if some (o posteriori any) ex-
tension of S to D" with its support in K satisfies the condition (EH,). (Here
K denotes the closure of I in D".)

REMARK. We can treat the above problem by reducing it to Theorem 6.2.3.
It is the idea of Prof. Garding [7). In fact if we find some hyperfunction F
with its support in some properly convex closed cone satisfying S,*F==d, then
supp T2« F does not contain 0 for sufficiently large m, so there exists some G
with (64 T2#F)xG=4. Therefore F*G satisfies the required properties. See the
paper (7] for details.

6.3. Remarks on hyperbolic polynomials

In this section we analyze the condition (H:) obtained in 6.1, when Sx is a
usual partial differential operator.

THEOREM 6.3.1. P(D) is hyperbolic in the direction of (1,0, ---,0) ¢f and
only if P.(D) is hyperbolic in the sense of Garding with respect to (1,0, ---,0)
where P, (D) is the principal part of P(D).

REMARK. Those operators which are hyperbolic in the sense of Garding (see
for example Hérmander [138] Ch.5.) are hyperbolic in the sense of our definition,
so “strong hyperbolicity” is equivalent to “hyperbolicity” in our formulation.

Prof. Schapira informed me that he had recently obtained this result also
(Schapira [40°%]).

PrOOF. We first prove that the hyperbolicity of P(D) implies that of P,(D).
We begin the proof by showing P,(1,0, ---,0)%0. We use the technics used in
Hérmander [13] Ch.5 and Larsson [26] Theorem 9, that is the Puiseux expansion.
Assume P,(1,0, ---,0)==0. Of course we can choose real numbers a; (=2, ---, n)
which satisfy P.(1, aj, ---, a,)=0. Let Q(2, ) be P(2, ipa,, ---, ipa,) and we

k]
rearrange Q(4, ¢) as %R”R,(ﬂ). Since R, (1)=P,1, pra,, ---, na,)#0, we can
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write Q(2, #)=R,.(1) fll(f‘.-—).j(/z)) where 2;(/1) can be expanded as 2 _az(!t‘/”)k in
0<lpl<6 for some (;, (See the appendix of Hoérmander [13].) ’i\?g\ir condition
(H,) assures the existence of v, for which R.,(0):£0. In fact if all R.(0) should
reduce to zero, P(4,0, ---, 0)==Q(2, 0) would become zero by the definition. Taking
2=+~'—17, where 7 is positive, we would have P(+v—17,0, ---,0)=0. Obviously
it contradicts the condition (H;). Thus we have some v, for which R, (0)+0
holds. On the other hand the assumption P,(1,0, ---,0)==0 implies R,(0)==0.
Therefore if we choose a sequence {¢;} which converges to 0 with R,.(x,)==0 then
we would have |R. (1)/R.(1)| tends to infinity. Since R.,(#)/R.(r1) can be re-
presented by the fundamental symmetric function of {4j(y1,)}, we should have
some j, for which 12;,(¢)] tends to infinity. Considering the Puiseux expansion
of 2;,(z), we have 2;,(s)~ax(g/?)"No with N, positive. Assume Imax,>0. Then
the condition (H)) gives (Imayg)p—Nop<ep' NPo-1-C, for sufficiently small p.
From this we have Imay,<zp+CNo/?. This is a contradiction.

Even when Imay,=0 or Imay,<0, the same method of arguments gives a
contradiction. (When Imay,=0, then we take the element of the type
eMo/2=V=1y (1>0), and when Imay,<0, we use e¥o/»"¥~1u (£2>0). Thus we con-
clude P,(1,0, ---, 0)%0.

Next we prove P, (£+17(1,0, ---,0))=0 ((€ R") implies Re r=0. By the homo-
geneity of P, we can assume Rec=(. On the other hand we have 0=P, (¢
17(1,0, -+, 0)= VEgn@a‘"'P(oé+iar(1, 0, ---,0). Since Pn(1,0.---,0)#0, as we have
proved above, the zeros ¢ of ¢ ™P{o¢t+107(1,0, ---, 0)) depend continuously on o7!
for sufficiently large o. Therefore the condition (H;) implies Rer<¢ for any
positive ¢. This means Re v=0. Thus we have proved that the hyperbolicity of
P(D) implies that of P,(D).

REMARK. To prove that P,(1,0, --+,0)+0 we can also use the null-solution
of Hormander {13]. In fact if P,(1,0, ---,0)==0 then there exists some % with
its support in {x;=0} ([13] Theorem 5.3.2.) If P(D) is hyperbolic with respect to
1,0, ---,0) then u=(P(D)Ey=u=P(D)uxE=0; this is a contradiction.

Now we prove the converse. Using the results which are obtained in the
framework of the generalized distributions (see Larsson [26] and Schapira {39])
we can prove this indireetly, but we prefer to prove directly, since it is much
easier. In fact the next lemma gives a proof when combined with Theorem
6.1.3.

LEMMA 6.3.2. Let an m-th order homogeneous differential operator P,(D) be
hyperbolic with respect to (1,0, ---,0), and Q(D) be a differential operator of
order at most (m—1). We set P(D)=P,(D)+@(D). Then P{{+i:N)=0 (€ R"
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implies |Rer{< Cyl&)+ 1)V Y™ where N is sufficiently near to (1,0, ---,0) and
Cy depends continuously on N.

The proof of this lemma can be obtained just in the same way as in Hor-
mander [13] p. 148, Lemma 5.7.3, so we omit the details.

Thus we have completed the proof of Theorem 6.3.1.

EXAMPLE. Theorem 6.3.1 states that the operator §%0z%--8/6x, is hyper-
bolic in the direction of (1,0), though it is not so in the sense of Garding,
namely in the sense of distribution. Here we give an expileit form of its
elementary solution with its support in {(z;, %,) 2,20 and z,=0}. We represent
Hi:zoixiz,-0(C% ) by the Cech cohomology of covering H Y, %', &)
where 27 ={Uj)iwo, ‘@’ ={U,, U,} are given by Us= —Cz, Ui={(z,, %) € C*|z1=0} and
U:=={(zy, 2,) € C?| £0). We define G(zy, 2,)== —1/4=2 z (k1/(2k+1)1) 23+ 25+ Log 2,,
where Logz, is the principal value of logz, and uniform and holomorphic in
{zi€ Clz, 20}, then it is easy to check that G(z,, z) is well-defined and holo-
morphic in U, NU,. We define the cohomology class defined by G{z,,z) as
E(x,, x.,), then we easily prove (0% 0x24- 0/0m,) B2y, 25) =0(zy, 2,). (The proof of
these facts needs only calculations, so we omit the details.) We also express
the above series \’ (k'/(2k+ Y25+ 2441 =S hy the following integral {(see Hitotu-
matu et al [11] p 58 3°%):

w/2

S=(1/2)2:+(1vz,) (1-+w?/2) exp (w?/4) S " etds
0

where w=2/~2;. (The right side is uniform and holomorphic in {(z;, 2:)2,20}.)
It seems a little worthwhile to remark that the elementary solution of
(0%/dxi +-2/dx,), whose support is just {(=0}x{x,=0} is given by the “boundary
values” of a rather simple function given above, so we spend half a page on
this example.

REMARK. In the proof of Theorem 6.3.1 we obtained Pn(1,0, ---, 0)%0 if
P (D) is hyperbolic in the direction of (1,0, ---,0). In view of Theorem 4.1.8 or
its corollary this proves every hyperfunction % which satisfies P(D)u=0 depends
real analytically on x; especially we can consider its specialization to z,=x%. This
remark permits us to treat the initial value problem from a very general view
point. From this view point we will treat in our forthcoming paper such prob-
lems as (i) Cauchy problems for hyperbolic partial differential operators with
constant coefficients, (ii) the problem of non-admissible data (Cf. John [16}) (iii)
Holmgren’s uniqueness theorem, and (iv) generalized Cauchy problems.

In that paper we develop the theory of the Fourier-Borel transformation
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with parameters to solve (i), we use Theorem 4.1.8 to solve (ii) (without using
the technics of regularization (Cf. Hérmander [138]); in fact it is impossible to
regularize a hyperfunction in view of Theorem 4.2.3), to solve (iii) we use Sato’s

fundamental theorem about the regularity of the solutions of a partial differential
operator with variable coefficients (Sato [36], [37], [38]), and to solve (iv) we use
some duality theorem analogous to that of Bengel [1] using the technics of
Komatsu [25]. (See Kawai {20], [20°*] and Komatsu and Kawai [25*"].
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