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ABSTRACT

We consider torsional oscillations of magnetars. This problem features rich dynamics due to

the strong interaction between the normal modes of a magnetar’s crust and a continuum of

magnetohydrodynamic (MHD) modes in its fluid core. We study the dynamics using a simple

model of a magnetar possessing a uniform magnetic field and a thin spherical crust. First, we

show that global torsional modes only exist when one introduces unphysically large dissipative

terms into the equations of motion; thus global modes are not helpful for understanding the

magnetar quasi-periodic oscillations (QPOs). Secondly, we solve the initial-value problem

by simulating the sudden release of an initially strained crust and monitoring the subsequent

crustal motion. We find that the crustal torsional modes quickly exchange their energy with the

MHD continuum in the core, and decay by several orders of magnitude over the course of ∼10

oscillation periods. After the initial rapid decay, the crustal motion is stabilized and several

time-varying QPOs are observed. The dynamical spectrum of the simulated crustal motion

is in qualitative agreement with that of the X-ray light curve in the tail of a giant magnetar

flare. The asymptotic frequencies of some of the QPOs are associated with the special spectral

points – the turning points or edges – of the MHD continuum, and are not related to those of

the crust. The observed steady low-frequency QPO at 18 Hz is almost certainly associated with

the lowest frequency of the MHD continuum, or its first overtone. We also find that drifting

QPOs get amplified when they come near the frequencies of the crustal modes. This explains

why some of the observed QPOs have frequencies close to the expected crustal frequencies,

and why these QPOs are highly variable with time.

Key words: MHD – stars: neutron.

1 I N T RO D U C T I O N

Magnetar oscillations have recently been the subject of intense the-

oretical interest. This interest is motivated by quasi-periodic X-ray

luminosity oscillations (QPOs), which were observed in the tails

of two giant soft gamma-ray repeaters’ (SGR) flares (Israel et al.

2005; Strohmayer & Watts 2005, 2006; Watts & Reddy 2006, see

also Barat et al. 1983). The QPOs typically last for ∼100 s, are de-

tected with high signal-to-noise ratios, and have frequencies which

range from 18 to 1800 Hz. The QPOs open an exciting possibil-

ity to directly explore the physics of magnetars, and their correct

interpretation is of great importance.

SGR QPOs have been commonly interpreted as pure crustal

shear modes (Duncan 1998; Piro 2005; Watts & Strohmayer 2006;

Lee 2007; Samuelsson & Andersson 2007; Sotani, Kokkotas &

⋆E-mail: yuri@strw.leidenuniv.nl

Stergioulas 2007). If this interpretation were correct, it would al-

low one to measure or strongly constrain the shear modulus and

depth of the crust, an unprecedented feat in the neutron star astro-

physics (Strohmayer & Watts 2006). However, the presence of the

strong magnetic field which exists inside a magnetar may present

difficulties for this interpretation. In particular, Levin (2006, L06)

has pointed out that magnetohydrodynamic (MHD) mechanical

coupling between the crust and the core occurs on the time-scale

<0.1 s, and should be taken into account. L06 made two basic points:

(1) MHD coupling ensures that pure crustal modes do not exist, and

global modes of the whole star must be considered and (2) long-term

survival of the global mode is in danger, since it is expected to cou-

ple to a continuum of MHD modes (the Alfven continuum) in the

core, and this coupling would act to damp the mode. More recently,

Glampedakis, Samuelsson & Andersson (2006) (hereafter GSA)

and Sotani, Kokkotas & Stergioulas (2006) (hereafter S06) have

found global MHD-elastic modes in simple toy magnetar models,

and have argued that the analogues of these modes produce QPOs
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160 Y. Levin

in real magnetars. However, both of the toy models have been con-

structed in a way which explicitly excludes the presence of an Alfven

continuum in the core.1

The coupling of hydrodynamical waves to Alfven continuum has

been extensively studied in the context of solar corona, and is well

understood (Ionson 1978; Hollweg 1987a,b). The absorption of the

waves by Alfven continuum is sometimes referred to as the resonant

absorption. In this paper we build on the work done by the solar

physics community and undertake a thorough investigation of the

influence of the Alfven continuum on the oscillatory behaviour of

the magnetar crust. The plan of the paper is as follows.

In the next section we describe our simplified, but topologically

correct magnetar model. We derive equations of torsional motion,

and search for normal modes of the system. We find the normal

modes only exist if one introduces sufficiently large frictional forces,

for example, the ones of the form −γ dr/dt, into the equations of mo-

tion. The eigenfrequencies are complex, and the modes decay with

the rate independent of γ , typically over several oscillation periods

(i.e. a fraction of a second). However, the normal-mode analysis is

inconclusive, since the real frictional forces in a magnetar may be

small and the normal modes likely do not exist. Thus in Section 3

we turn to the initial value problem. We model the continuum by

104 oscillators chosen to mimic closely the MHD dynamics of the

core (one can think of this idea as similar to the one behind spectral

codes in fluid dynamics, except that our equations are linear. The

true linear behaviour of the real magnetar is recovered when the

number of oscillators tends to infinity). We begin the simulations

by releasing an initially strained crust, and then monitor its motion.

The result of one such simulation is shown in Fig. 9. We find that

the crustal deformation energy is quickly converted into the energy

of MHD continuum in the core, as was predicted in L06 and as is

suggested by the large imaginary components of the normal-mode

frequencies obtained in Section 2. The amplitude of crustal motion

is reduced by 102 over several oscillation periods, but is then stabi-

lized as the crust reacts to the vigorously moving core. In this second

time interval we find QPOs in the crustal motion, see Fig. 10. The

asymptotic frequencies of some of the QPOs are associated with the

special spectral points of the continuum. Both turning points and

edges of the continuum produce QPOs (see Section 3 and Fig. 4

for an explanation of what these are). We also find that when the

frequency of a drifting QPO approaches that of a crustal mode, the

QPOs amplitude gets significantly amplified. Thus crustal frequen-

cies feature intermittently enhanced power, in agreement with the

observations.

In Section 4 we present an outlook on the outstanding theoretical

questions related to magnetar QPOs.

1 GSA make use of the rectangular geometry with a uniform magnetic field,

which ensures that all of the Alfven modes with the same quantum number

have the same frequency. S06 consider dipole magnetic field in the spheri-

cal magnetar, but explicitly exclude l ± 2 coupling in their equations. This

enforces the spherical symmetry in the physical problem described by their

equations of motion. In fact, their equations are identical to those that de-

scribe oscillation of the star with a purely radial spherically symmetric mag-

netic field, and thus, just as in GSA, the local Alfven waves with the same

quantum numbers have the same frequency. We note that Rincon & Rieu-

tord (2003) and Reese, Rincon & Rieutord (2004) have previously found a

continuum of torsional modes in the MHD configuration identical to that in

S06 (they have not used any simplifying approximations in their analysis).

To sum up, in both GSA and S06 the symmetry of their toy models collapses

the Alfven continuum on to the discrete set of frequencies.

2 BA S I C M O D E L A N D I T S N O R M A L M O D E S

Finding oscillatory modes of magnetic stars presents a formidable

computational and conceptual problem. Rincon & Rieutord (2003)

and Reese et al. (2004) in a tour-de-force calculation have com-

puted normal modes of an incompressible fluid shell threaded

with a dipole magnetic field. Partly motivated by their work, we

choose a simple magnetar model, with several basic assumptions.

(1) We take the elastic crust to be thin compared to the core size.

This is an excellent approximation for mode frequencies less than

∼600 Hz. (2) We assume that the fluid core has uniform density

and is threaded by a homogeneous internal magnetic field directed

along the z-axis. This assumption does not change the physics of the

problem, but does simplify the calculations and makes them more

transparent.

We also consider oscillations with purely azimuthal, φ-

independent displacements ξ and ξ̄ of the core and the crust, re-

spectively:

ξr = ξθ = ξ̄r = ξ̄θ = 0,

ξφ = ξφ(r , θ ),

ξ̄φ = ξ̄φ(θ ).

(1)

Here r, θ , φ are the spherical coordinates. We have made use of the

thin-crust assumption in writing the last equation.

We are now in the position to write down equations of motion for

small displacements of the crust and the core:

∂
2ξ̄φ

∂t2
= Lel(ξ̄φ) + L B, (2)

∂
2ξφ

∂t2
= c2

a

(

∂
2ξφ

∂z2

)

r sin θ

− γ
∂ξφ

∂t
, (3)

where the partial derivative on the right-hand side of equation (3)

is evaluated along the z-direction. Here ca is the Alfven velocity,

Lel(ξ̄φ) and LB is the acceleration of the crust due to the elastic and

magnetic stresses, respectively. We have introduced the frictional

term −γ∂ξφ/∂t into equation (3); we will show shortly that this

term is needed to regularize the resonant response of the core to

the periodic motion of the crust and is crucial for the existence of

a normal mode. The expression for LB is derived below, while that

for Lel is derived in the appendices:

Lel(ξ̄φ) = ω2
el

[

∂
2ξ̄φ

∂θ2
+ cot(θ )

∂ξ̄φ

∂θ
− (cot2(θ ) − 1)ξ̄φ

]

, (4)

where ωel is the frequency given by

ωel =
√

μ̄/ρ̄

R
, (5)

where μ̄ and ρ̄ are the vertically averaged shear modulus and density

of the crust, respectively, and R is the radius of the star.

2.1 Dynamics of the core: continuum of modes and response

to periodic forcing

It is instructive to consider the motion of the core fluid, with the

assumption of a fixed or periodically moving crust as an external

boundary condition. The former will elucidate the structure of the

Alfven continuum, while the latter is instrumental in the normal-

mode analysis.

Hydromagnetic stress enforces a no-slip boundary condition at

the crust–core interface:
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Magnetar QPOs 161

ξφ(R, θ ) = ξ̄φ . (6)

Let us consider the dynamics of the core, with the assumption of

a fixed crust and zero friction. The core displays a continuum of

singular oscillatory solutions to the pair of equations (3) and (6).

These solutions are localized on cylinders of radius η0, with 0 <

η0 < R, and their mathematical form is expressed most easily in

cylindrical coordinates η, z, φ:

ξφ(η, z, φ, t) = δ(η − η0) sin[nπz/h(η0)]

× exp[iπncat/h(η0)] (7)

or

ξφ(η, z, φ, t) = δ(η − η0) cos[(n + 1/2)πz/h(η0)]

× exp[iπncat/h(η0)]; (8)

compare with section 3 of L06. Here h(η0) =
√

R2 − η2
0 is the

height of each cylinder, and n is an integer. While this continuum of

MHD modes was derived for a simple magnetic field geometry, it

must exist in other field geometries which can be obtained by contin-

uous deformation of the uniform field. Moreover, since a continuous

deformation of the field changes the mode frequencies continuously,

the topology of the spectrum remains unchanged. This means that

the modes will form a countable set of one-dimensional continua;

in other words, even for a complicated magnetic field configuration

the mode is parametrized by a pair of real and integer numbers. The

latter consideration will become important when we discuss general

properties of QPOs in Section 3.

Now consider the core’s response to a periodic motion of the crust,

ξ̄ (θ ) = g(θ ) exp(iωt), where ω could, in general, be complex. First,

we note that the geometry of our problem possesses the reflection

symmetry with respect to the z = 0 plane. Therefore the normal

modes will be either even or odd with respect to z, and we restrict

the crustal motion to that with g(θ ) =± g(π− θ ). From equations (3)

and (6), we see that in the ‘odd’ case the core motion is given in

cylindrical coordinates by

ξφ(η, z) =
sin(kz)

sin[kh(η)]
ξ̄φ[θ (η)], (9)

while in the ‘even’ case

ξφ(η, z) =
cos(kz)

cos[kh(η)]
ξ̄φ[θ (η)], (10)

where θ (η) = arcsin(η/R), h(η) =
√

R2 − η2 and k =
√

ω2 − iωγ /ca.

2.2 Normal modes

Now we are ready to derive the acceleration of the crust due to the

hydromagnetic stress at the crust–core interface:

L B = −
ρcc

2
a

�
cos θ

(

∂ξ

∂z

)

z=h

, (11)

where ρc is the density of the fraction of the core fluid which par-

ticipates in the Alfven motion, � is the column density of the crust,

and the partial derivative is evaluated at (η, z) = (R sin θ , R cos θ ).

By substituting equations (9) or (10) into equation (11), we get the

following expressions for magnetically driven acceleration of the

crust:

L B(θ ) = −νaω1

ρc R

�
cot(ω1 cos θ/νa) cos θ ξ̄φ(θ ) (12)

for the odd modes, and

L B(θ ) = νaω1

ρc R

�
tan(ω1 cos θ/νa) cos θ ξ̄φ(θ ) (13)

for the even modes. Here νa = ca/R, and ω1 =
√

ω2 − iωγ .

We can now see that the equation (2), together with equations (4)

and (12/13), form an ordinary second-order differential equation for

ξ̄φ(θ ). The values of ω get selected by requiring that the solution

of equation (2) satisfies the boundary conditions2 at the poles θ =
0, π:

ξ̄φ(θ ) =
∂

2ξ̄φ(θ )

∂θ2
= 0. (14)

We found it practical to solve equation (2) in the upper hemisphere,

but require that at the equator either ξ̄φ(θ ) = 0 for the odd modes,

or ∂ξ̄φ(θ )/∂θ = 0 for the even modes. We also found it useful to

make the substitution

q(θ ) = ξ̄φ(θ )/θ, (15)

and rewrite the equations in terms of q(θ ). The new equations do not

have a singularity at the pole θ = 0, and are very easy to integrate on

the computer. We have checked the code by solving both analytically

and numerically the case with LB = 0. We find analytically that the

wavefunctions of the free-crust vibrational modes are given by

ξ̄φ(θ ) = ∂Yl0(θ )/∂θ, (16)

with the eigenfrequencies

ωl =
√

(l − 1)(l + 2)ωel. (17)

This l-scaling is in full agreement with that of Samuelsson &

Andersson (2007). Our numerical results give excellent agreement

with these results.

Before we discuss our numerical results for the case of a non-

zero LB , one qualitative remark is due. From equations (12) and

(13), we see that if ω is real and the friction coefficient γ = 0, then

LB diverges for the values of θ which correspond to the location of

the Alfven continuum mode in resonance with ω. It is these resonant

interactions that are largely responsible for the exchange of energy

between the global vibration and the Alfven continuum, and that are

thus responsible for determining the imaginary part of ω (hence the

name ‘resonant absorption’ in the solar literature). In our Runge–

Kutta routine, we enforce small θ -steps which scale as L−2
B near the

singularities (and we check that our results do not change when the

step-size is reduced by a factor of 10).

We now discuss our numerical results for normal modes of a mag-

netar. We find that the normal modes exist only when γ is sufficiently

large, that is, γ > γ crit. When this condition is satisfied, then the fre-

quency of the normal mode is complex and the mode decays with the

rate close to γ crit. By contrast, when γ < γ crit, a thorough numerical

search fails to identify the complex eigenfrequency for which all of

the boundary conditions are satisfied. This is in full agreement with

previous work done on the resonant absorption in the solar corona.

For example, in Steinolfson’s (1985) simulation the system behaves

like a decaying normal mode when the friction is sufficiently large,

while for small friction no normal-mode-like behaviour occurs and

instead, the phase mixing is observed, where individual modes of

the continuum are excited and oscillate each at their own frequency.

The same occurs in our initial-value simulations, which we describe

2 These boundary conditions are derived mathematically from the Frobenius

series expansion of ξ̄φ (θ ) near the poles, or physically by requiring the crustal

angular velocity and acceleration be finite at the poles.
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Figure 1. Damping rate for a global torsional mode is plotted as a function

of the dissipative rate γ . The lines in the figure are numbered by an integer

i = 1, . . . , 10; each line corresponds to the magnetic field strength

Beff = i × 1014 G. For small γ , that is, to the left of the lines, the modes do

not exist.

in Section 3. (Hollweg 1987a,b) gives an excellent physical dis-

cussion of why, when the mode exists, its decay rate is friction

independent.3

In Fig. 1 we show the decay rate for the lowest frequency normal

mode as a function of γ , for the ten values magnetic field strengths

Beff =
√

4πρca ranging from 1014 to 1015 G.

Here Beff =
√

B Bc if the protons form a superconductor with the

critical field strength Bc, and Beff if the protons form a normal Fermi

liquid, and ρ is the density of the core material coupled to the mag-

netic field.4 Our fiducial parameters were ρR/� = 10 [probably an

underestimate, but its increase would only increase the crust–core

coupling – see equations (12) and (13)], ωel = 2π × 20 Hz and

νa/ωel = 0.2, appropriate for ρ ∼ 1014 g cm −3. We see that when

the modes exist they show rapid decay, on the time-scale ≪1 s.

This result holds for all higher order modes we have considered,

3 Briefly, this can be understood as follows: the energy is absorbed in narrow

resonant layers; in our case they have cylindrical shapes. Friction produces

two main effects: (i) it reduces the excitation amplitude of the resonant layer

and (ii) it increases the effective width of the layer. It is easy to check that

for the simple frictional terms we are using, the two effects compensate

each other and the total absorption power is friction independent. Hollweg

(1987a) proves that the same result holds for more complicated dissipative

effects, like viscosity or Ohmic dissipation in the plasma.
4 This density can range from the density of protons ρpr if the neutron super-

fluid is entirely decoupled from the proton motion, to the full core density

ρcore if the neutrons are efficiently coupled to protons. Our guess is that in

reality ρ takes the value somewhere in between the two extremes: it may

be hard for neutron superfluid to become completely decoupled from the

charged component, since neutron superfluid vortices are expected to be

strongly magnetized and may interact strongly with the superconducting

flux-tubes; see, for example, Ruderman, Zhu & Chen (1998) and references

therein. We take the numerical value ρ = 1014 g cm−3, about 1/10 of the

core density and twice the proton density. Our choices for B and ρ affect

directly the value of the lowest frequency QPO simulated in Section 3.

and shows how efficiently the crustal motion is coupled to the con-

tinuum. However, the friction (e.g. due to viscosity) may be small

in magnetars, and the normal modes most likely do not exist. Thus

the problem of magnetar torsional motion must be addressed using

initial-value simulations. This is the subject of the next section.

3 I N I T I A L - VA L U E S I M U L AT I O N S

The aim of this section is to simulate torsional motion of a mag-

netar. During this motion, the discrete torsional modes of the crust

interact strongly with a continuum of Alfven modes in the core, and

this interaction affects dramatically the motion of the crust. In the

next subsection, we explore with a help of a toy model the dynamics

of a harmonic oscillator coupled to a continuum of oscillators. The

toy model provides us with an insight into QPOs of such a system,

and gives us intuition for what to expect in the case of a magnetar.

In Section 3.2 we set up the initial-value simulation for our mag-

netar model (the ‘real’ magnetar, as opposed to the toy model in

Section 3.1), and present results.

3.1 Coupling of a harmonic oscillator to a continuum:

toy model

In Fig. 2 we show the set-up of our toy problem. We consider a pen-

dulum weighing 1 kg, with a proper oscillation angular frequency of

ω0 = 1 (the units are irrelevant). We model the pendulum coupling to

a continuum of modes by suspending 10 000 tiny pendulums, each

weighing 0.01 g, from the big pendulum. We arrange the angular

frequency of the small pendulums to be

ωm = 0.5 + 0.0001m, (18)

where m = 1, 2, . . . , 10 000. Thus the frequency of the big pendu-

lum lies in the middle of the range of those of the small pendulums.

The initial condition for our simulation is as follows: the big pen-

dulum is deflected by a small angle (we keep the problem linear),

while the small pendulums are relaxed and hanging straight down.

This is meant to mock an initially strained crust and relaxed core.

The big pendulum is released, and the evolution is followed by

two independent numerical routines. One routine uses the fourth-

order Runge–Kutta method, while the other one uses a symplectic

second-order leapfrog algorithm, which is very robust for simulating

Hamiltonian systems (see e.g. Kinoshita, Yoshida & Nakai 1991).

Both runs conserve the total energy of the system with high pre-

cision, and produce results which are in excellent agreement with

each other. In Fig. 3 we plot the big-pendulum displacement as a

function of time. After several oscillations, the amplitude of the

Figure 2. Big pendulum coupled to a large number of small one.
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Magnetar QPOs 163

Figure 3. Big-pendulum displacement as a function of time.

pendulum’s motion is reduced by ∼100, as the energy is rapidly

transferred from the big pendulum to the small ones. Then the ex-

ponential decay abruptly stops, as the big pendulum now reacts to

the collective pull of the small ones. The blow-up of this second re-

gion is shown in Fig. 4. The amplitude still decays, but only slowly,

as 1/t. Astonishingly, even with naked eye, one can detect QPO(s)

in the pendulum motion! Fig. 5 shows the time Fourier transform of

the big-pendulum displacement for this interval of time. Two QPO

frequencies are clearly present, 1.5 and 0.5, both identified with the

edges of the continuum and not with the natural frequency of the big

pendulum!

We get a clue for the origin of these QPOs by plotting the phases

of small pendulums as a function of the oscillator frequency, ωm ; see

Fig. 6. Over the range of m, the phases average out, thus preventing

the small pendulums from pulling coherently on the big pendulum.

The only location where this averaging does not occur is near the end

points of the spectrum; see the arrows on Fig. 6. Thus the pendulums

near the end points of the spectrum do pull coherently on the big

pendulum and produce the two QPOs observed in the simulations.

The number of ‘coherent’ oscillators shrinks as 1/t, as the phase

gradients with respect to m grow linearly with time. This explains

why the QPO amplitude decays as 1/t. In Appendix B we present a

more mathematical way to understand this phenomenon.

Apart from edges, there may be other special points in the con-

tinuum which could generate QPOs. One example is the local max-

imum or minimum in ωm as a function of m; we shall call such

special points the turning points. The same reasoning as that for

the edges shows that the phases of small oscillators near the turn-

ing point will not average out for some time, and hence these

oscillators will act coherently. Moreover, the density of states is

higher near a turning point than that near an edge, and diverges as

|ω − ω0|−1/2, where ω0 is the frequency of the reversal. We thus

expect that turning points generate stronger QPOs than the edges;

this is confirmed by our simulations shown below. The simulations

also show that the turning-point-generated QPOs are longer lived

than the edge-generated, and their amplitudes decay only as t−1/2.

0 100 200 300 400 500

0 100 200 300 400 500

-0.01

-0.005

0

0.005

0.01

-0.01

-0.005

0

0.005

0.01

time

Figure 4. Zoom-in on the post-decay part of Fig. 3. Quasi-periodicity is

clearly visible.

0 1 2 3

1 2 30

0

0.002

0.004

0.006

0.008

0.01

0

0.002

0.004

0.006

0.008

0.01

frequency

Figure 5. Power spectrum of the post-decay big-pendulum displacement.

Two QPOs are clearly visible; they are associated with the edges of the

continuum frequency interval.

This decay law is explained mathematically in Appendix B. Fig. 7

shows an example of a spectral law with a turning point.

We simulate the initial-value problem for this example and show

in Fig. 8 the big pendulum’s displacement as a function of time.

The strong long-lived QPO at the turning-point frequency of 0.5 is

apparent with the naked eye.

Effect of viscosity. We have modelled the effect of viscosity by

introducing frictional forces between neighbouring small oscilla-

tors. We expect that with the passage of time the small oscillators

get more out of phase, the velocity shear increases and so does the

dissipation rate. This is confirmed by our simulations: the total me-

chanical energy of the system is drained efficiently after some time.
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Figure 6. Phases of the small pendulums.
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small pendulum number

Figure 7. Spectral law with the turning point.

In magnetars, this may efficiently heat the core and affect the post-

burst afterglow; we shall discuss these issues elsewhere. We find,

though, that the QPOs survive for a much longer time than the global

mechanical energy, because the oscillators creating it are precisely

those ones which are moving in concert. The QPOs generated by

the turning points are particularly robust.

3.2 Initial-value problem for the magnetar model

Lessons learned from the toy model lead us to expect (i) rapid decay

of initial crustal perturbation and excitation of the core continuum

and (ii) QPOs generated by the edges and turning points of this

continuum. In our model for the magnetar we have turning points in

all Alfven overtones, at angular frequencies ωn = nπca/R for the odd

modes, and ωn = (n − 1/2)πca/R for the even ones; the odd torsional

motions are decoupled from the even ones. Thus potentially we

expect QPOs at all of these frequencies. We shall find however,

0 100 200 300 400 500

0 100 200 300 400 500

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

time

Figure 8. Big-pendulum displacement as a function of time. Here it is calcu-

lated for the case when the small pendulums follow the spectral law in Fig. 7.

QPO associated with the turning point is clearly visible in the post-decay

time interval.

that our magnetar model displays a much richer dynamics than the

toy models of the previous subsection, although the basic features

of the toy models (initial rapid decay of the crustal motion, QPOs

associated with continuum turning points) remain. In what follows

we explain how our initial-value simulations are set up and show

the results.

Modal decomposition. A crustal displacement could be repre-

sented as a sum of the crustal normal modes:

ξ̄φ(θ, t) = � j b j (t) f j (θ ), (19)

where f j (θ ) are proportional to the functions given in equation (16),

and are normalized so that
∫

π

0

fi (θ ) f j (θ ) sin θ dθ = δi j . (20)

We now develop a formalism which allows us to numerically com-

pute the time-evolution of bi (t). When the crust is not coupled to

the core, bi (t) oscillate harmonically with the frequencies of corre-

sponding crustal modes, but their behaviour is very different when

the crustal modes are coupled to the continuum modes in the core. In

what follows we model this continuum with a large but finite num-

ber of small oscillators, and we test that our results do not change

when the number of oscillators is increased.

Consider, for concreteness, only odd modes (they remain decou-

pled from the even ones because of the reflection symmetry). Recall

that for a fixed cylindrical radius η0, the equation of motion for the

core fluid is

∂
2ξφ(η0, z)

∂t2
= c2

a

∂
2ξφ(η0, z)

∂z2
, (21)

with boundary conditions ξφ(η0, h) = ξ̄φ[θ (η0)] and ξφ(η0, 0) =
0, where h =

√

R2 − η2
0 is the cylinder’s height, and θ (η0) =

arcsin(η0/R). Let us introduce a new variable,

χ (η0, z) = ξφ(η0, z) − ξ̄φ[θ (η0)]
z

h
. (22)

C© 2007 The Author. Journal compilation C© 2007 RAS, MNRAS 377, 159–167

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
7
7
/1

/1
5
9
/1

0
7
9
2
4
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Magnetar QPOs 165

We obtain an inhomogeneous equation for χ ,

∂
2χ (η0, z)

∂t2
− c2

a

∂
2χ (η0, z)

∂z2
= −

z

h

∂
2ξ̄φ[θ (η0)]

∂t2
, (23)

but with easy boundary conditions

χ (η0, 0) = χ (η0, h) = 0. (24)

Because of this boundary conditions, we can expand χ in a Fourier

series:

χ (η0, z, t) =
∞

∑

n=1

an(η0, t) sin(nπz̄), (25)

where z̄ = z/h(η0). The right-hand side of equation (23) can be

expanded in the same Fourier basis using the identity

z̄ = −2

∞
∑

n=1

(−1)n

nπ
sin(nπz̄). (26)

Now, by substituting equations (25) and (26) into equation (23), we

obtain the equations of motion for an :

∂
2an(η0, t)

∂t2
+ n2

π
2ν2

a an(η0, t) =
2(−1)n

πn

∂
2ξ̄φ[θ (η0)]

∂t2
. (27)

We now use equation (11) to write down the expression for the

hydromagnetic back-reaction on the crust:

L B(θ ) = −
ρR

�
(ca/R)2

[

∞
∑

n=1

nπ(−1)nan[η(θ )] + ξ̄ (θ )

]

. (28)

The crustal mode amplitudes bm(t) obey the following equations of

motion:

∂
2bm

∂t2
+ ω2

mbm =
∫

π

0

L B(θ ) fm(θ ) sin θ dθ, (29)

where ωm is the frequency of the crustal mode of m. In writing the

last equation, we have used the normalization property of the modal

wavefunctions fm(θ ). So far we have not used any approximations.

Now we discretize the integral in equation (29) by summing over a

large number N of points θi , which we take to be equally spaced with

the interval �θ = π/N. When we do the sum, the continuum mode

amplitude an(θ ) is substituted with the discrete one, ain = an(θi ).

Thus effectively doing the sum instead of the integral substitutes a

continuum of the core modes with the large number of the discrete

core modes. The true continuum dynamics is fully recovered when

N goes to infinity.

We are now in the position to write down the equations of motion

for the coupled crustal and core modes. From equation (27), we have

∂
2ain

∂t2
+ n2

π
2ν2

a ain =
2(−1)n

πn
�∞

m=1

∂
2bm(t)

∂t2
fm(θi ). (30)

Further, from equation (29) we get

∂
2bm

∂t2 +
(

ω2
m +

ρR

�
ν2

a

)

bm =

= −
ρR

�
ν2

a �θ
∑

n,i

nπ(−1)n fm(θi ) sin θi ain .

(31)

Equations (30) and (31) are the main equations of this section. As

with our toy models, we integrate these equations using two inde-

pendent numerical techniques, the fourth-order Runge–Kutta and

the second-order leapfrog. The two methods give results which are

in excellent agreement with each other.

We can now show some results from our numerical experiments.

Here, we consider the two lowest odd crustal modes, b1 and b2,

0 1 2 3

0 1 2 3

-1

0

1

-1

0

1

time, seconds

Figure 9. Crust displacement as a function of time.

with frequencies of 40 and 84.5 Hz, coupled to 10 000 odd modes

of the continuum: 1000 values of θi with 10 Alfven overtones at

each point. This model should be representative for variability below

100 Hz. For higher frequencies it is desirable to move away from the

thin-crust approximation; this is the subject of future investigations.

We begin with the crustal displacement b1 = b2 = 1 and the relaxed

core, ain = 0. We monitor the crustal displacement at θ = π/4. In

Fig. 9 we plot this displacement as a function of time for the first few

seconds after release. Like in our toy models, we observe an initially

rapid decay of crustal motion, due to pumping of the crustal energy

into the core. The crustal motion is then stabilized as the crust reacts

to the vigorous movement of the neutron star core. In Fig. 10 we plot

the dynamical spectrum of the crustal motion for the first 100 s (we

split the time-axis into 1/2-s intervals, and take a Fourier transform

at each interval. The density of points represents the magnitude of

the square of the Fourier transform). In the dynamical spectrum, we

see several QPO-type features. The low-frequency QPOs asymptote

to the turning points of the core continuum, ca nπ/R (here we are

considering the odd modes). Intermittent drifting QPOs appear at

higher frequencies, and they get strongly amplified near the crustal

frequencies. The nature of the QPO frequency drifts is unclear to us

at this point.

The simulated dynamical spectrum of Fig. 10 is in qualitative

agreement with that of the X-ray light curve in the tail of a giant

flare, see Israel et al. (2005). In both cases there is significant steady

power below the lowest crustal frequency, and we conclude that

the observed 18-Hz QPO is almost certainly the turning point of the

core continuum. We also see an intermittent excess of power near the

crustal frequencies, in qualitative agreement with the observations.

4 O U T L O O K

In this paper we have elucidated the crucial role that the core Alfven

continuum plays in the dynamics of torsional motion of magnetars.

We have shown that the global torsional modes do not exist un-

less the friction is unphysically large. We have performed a series

of initial-value simulations for a simple but geometrically realis-
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Figure 10. Dynamical spectrum of the crustal displacement. Thin hori-

zontal lines mark the pure crustal frequencies. Two low-frequency QPOs

asymptote to the continuum turning points, and are unrelated to the crustal

modes. Larger version of the figure, with better resolution near the crustal

frequencies, is available upon request.

tic magnetar model, and have observed QPOs with the properties

closely resembling those in the tails of giant magnetar flares. In

our model, the steady low-frequency QPOs are associated with the

turning points of the Alfven continuum. This gives us a constraint

on the combination of magnetic field geometry and strength and

density of the core material which is coupled to the magnetic field.

For our geometry,

(

B

1015 G

)(

1014 g/cm3

ρ

)1/2(

10 km

R

)

≃ 1. (32)

Some of the higher frequency power is clustered around the crustal

frequencies, in agreement with the observations. This seems to be

due to intermittent amplification of the drifting QPOs when they are

close to a crustal frequency.

While the qualitative agreement between our simulations and ob-

servations is good, we see several directions for future research:

(i) Investigate qualitatively the origin of the QPO drifts is the

simulations, and the reason why the QPO amplitudes get amplified

near the crustal frequencies.

(ii) Study the Alfven continuum for more realistic field geome-

tries, for example, the ones proposed in Braithwaite & Spruit (2004,

2006).

(iii) Investigate quantitatively the effect of viscous friction in the

core. We have done some pilot studies for the toy models in Sec-

tion 3.1, and have found that viscous friction is very efficient in

draining of the core’s kinetic energy, but does not significantly affect

the QPOs. It is interesting to learn whether some of the long-term

thermal afterglow could be generated from the heat deposited in the

core by viscously damped Alfven waves.

(iv) Investigate the dynamics of the magnetosphere. It is likely

that the magnetosphere also features the continuum of Alfven

modes, and they will affect the emission of X-rays in the giant

flare afterglow.
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A P P E N D I X A : E L A S T I C F O R C E S A N D

AC C E L E R AT I O N S

The purpose of this appendix is to derive the expression (4) in the text

for the crustal acceleration due to elastic forces. Since our problem

is axially symmetric, the quickest derivation is obtained by consid-

ering the flow of the z-component of the shell’s angular momentum

density. The displacement ξ̄φ(θ ) causes the horizontal shear stress

in the shell which is given by

Tθ̂ φ̂ = (μ/R) sin θ
∂(ξ̄φ(θ )/ sin θ )

∂θ
, (A1)

where μ is the shear modulus of the shell. The flow of angular

momentum in the ∂θ direction is given by

Lflux = 2π(R sin θ )2

∫

drTθ̂ φ̂, (A2)

where the integration is over the thickness of the shell. The small

thickness of the shell warrants the assumption of r-independent

ξ̄φ(θ ), so only μ needs to be integrated. The angular momentum

density with respect to the Rθ coordinate is given by

Ldensity = 2π(R sin θ )2�(∂ξ̄φ(θ )/∂t). (A3)
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Angular momentum conservation demands

∂(Ldensity)/∂t = −(1/R)∂(Lflux)/∂θ. (A4)

By substituting equations (A2) and (A3) into equation (A4) and

performing some trivial algebra, one obtains

∂
2ξ̄φ(θ )

∂t2
= ω2

el

[

∂
2ξ̄φ

∂θ2
+ cot(θ )

∂ξ̄φ

∂θ
− (cot2(θ ) − 1)ξ̄φ

]

, (A5)

where

ω2
el =

∫

μ dr

�R2
=

μ̄/ρ̄

R2
. (A6)

The right-hand side of equation (A5) is the operator L(ξ̄φ) used in

the text.

A P P E N D I X B : Q P O S F RO M E D G E S A N D

T U R N I N G P O I N T S I N T H E C O N T I N U U M

The purpose of this appendix is to explain mathematically the late-

time behaviour of QPOs produced by the edges and turning points

of the continuum in the toy models of Section 3.1.

B1 Edges

Let us assume that after initial excitation, the oscillation amplitude

of the small pendulums described in Section 3.1 does not change.

Then the force acting on the big pendulum can be written as

F(t) =
∫ ωmax

ωmin

dω f (ω) exp(iωt), (B1)

where ωmin and ωmax are the upper and lower edges of the contin-

uum, and function f (ω) encompasses the amplitude of excitation,

the coupling strength and the density of the continuum states at fre-

quency ω. Let us continue f (ω) smoothly outside the (ωmin, ωmax)

region in such a way that f → 0 sufficiently fast (to be presently

specified) as |ω| → ∞. We call this new function f̃ (ω) and choose

it in such a way that its inverse Fourier transform, f ∗(t), has a finite

effective width �t. Then F(t) is the convolution of f ∗(t) and s∗(t),

F(t) ∝
∫

dτ f ∗(τ )s∗(t − τ ). (B2)

Here

s∗(t) = [exp(iωmaxt) − exp(iωmint)]/t (B3)

is the inverse Fourier transform of the function s(ω), which equals

1 for ωmin < ω < ωmax, and 0 otherwise. When t ≫ �t, we can

substitute 1/(t − τ ) with 1/t in equation (B2). Then we have for late

times

F(t) ∝ [ f (ωmax) exp(iωmaxt) − f (ωmin) exp(iωmint)]/t, (B4)

and thus the edge QPOs decay as 1/t.

B2 Turning points

Consider a downward turning point at angular frequency ω0 (i.e. a

local maximum in ω as a function of m). The density of states near

the turning point scales as (ω0 − ω)−1/2. Then the contribution of

the oscillators near the turning point frequency to the force acting

on the big pendulum is given by

F(t) ∝
∫ ω0

dω(ω0 − ω)−1/2 exp(iωt). (B5)

Introducing the new variable x = (ω0 − ω)t and noticing that for

large t the range of x becomes essentially (−∞, 0), we see that

F(t) ∝

[

∫ 0

−∞
x−1/2 exp(ix)

]

×
exp(iω0t)

t1/2
. (B6)

Thus, the amplitude of the QPO associated with the turning point

decays as t−1/2 .

This paper has been typeset from a TEX/LATEX file prepared by the author.
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