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1. Introduction.

If the characteristic function of an n-dimensional random vector x

has the form exp(it'u) (t'Zt), where u: nxl, E: nxn, and E > 0,

we say that x is distributed according to an elliptically contoured

distribution with parameters U, E, and , and we write x '%' EC n( ,I,).

The class of elliptically contoured distributions has been studied

by several authors: Schoenberg (1938), Kelker (1970), Devlin, Gnanadesikan

and Keltenring (1976), Kariya and Eaton (1977), Muirhead (1980), Cambanis,

Huang and Simons (1981), and Anderson and Fang (1982).

Statisticians have been trying to extend the sample theory in multi-

variate analysis to the case of samples being dependent or the case of

samples being from nonnormal populations. In this paper we consider

sampling theory in which the distribution of the population belongs to the

class of elliptically contoured distributions and the samples are dependent.

According to this requirement multivariate elliptically contoured distri-

butions are defined and some basic properties are discussed in Section I

and Section 2. The distributions of some important statistics in the
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sampling theory (such as the correlation coefficients, the multiple

correlation coefficients, Hotelling-T2 , the sample covariance matrix,

t'te generalized variance, the quadratic forms, etc.) are obtained in

Sections 3 to Section 6. As applications of the theory on multivariate

elliptically contoured distributions we consider the model of multiple

regression with the error matrix being distributed according to a

multivariate elliptically contoured distribution.

Kariya and Eaton (1977), and Muirhead (1980) discussed the effects

of elliptical distributions on some standard procedures involving correla-

tion coefficients, but the model that we consider in this paper is different

from theirs.

Throughout the paper, Nn(V,E) denotes the n-dimensional normal
n2

distribution with mean U and covariance matrix Z; Xk denotes the chi-

squared variable with k degrees of freedom; B(a1 , 2) denotes the Beta

distribution with parameters a1  and 2; Dm(a. .. Ia -;a M) denotes the

Dirichlet distribution with parameters a,. ..,am; F(k,t) denotes F-distri-

bution with k and X degrees of freedom, t denotes the t-distribution

with n degrees of freedom; Wp (,n) denotes the Wishart distribution with

covariance matrix E: px p and n degrees of freedom; U denotes~ p,m,n

Wilks' statistic which is the ratio JGI/IG+H , where G -- W (Z,n),

H - Wp (,m), and H and G are independent; I denotes the nx n

identity matrix; cn denotes the nx 1 vector with elements 1; rk(A)

denotes the rank of the matrix A and A7 denotes a generalized inverse

of A.

2. Definitions and Basic Properties.

Let X, M and T be nx p matrices. We express them in terms

I
of elements, columns, and rows as
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X ( ) =(l'x2' .X)~ - x -vec XV

M (M
XII

1i)!(n)

T-(i)- (tlt2,...,p ) - , t vec ' .

-(1)

Here x m vec X' ( . ... ,x)' and with the same meaning for

p and t.

Definition 2.1. If the characteristic function of a random matrix

X has the form

n(2.1) ,.x,(i I I' ,t1z( )  .,[)n()

with E l". n -> 0, we say that X is distributed according to a

sultivariate (rows) elliptically contoured distribution and write

x % NWU P (-;E1  " '"no)"

Oviously, when n - 1 the ultivariate elliptically contoured

distribtion reduces to the comon elliptically contoured distribution.

Let uW4) denote a random vector which is uniformly distributed on

the unit sphere In I
q  and I(nt 112) denote its characteristic function.

3I
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Let 9 be the class of all functions 0: [0,-) x [0,ca) x ... x [0,ao)

- [0,')u -13R such that O(IltliI2)***1It12) is a characteristic function,

where l" n are m 1x1,...,mnx 1 vectors, respectively.

By a method similar to Schoenberg (1938), it can be shown that

if and only if

(2.2) (ul,...,u . ... f l(rU() .. r (r ... ,r)
n 0~ 01 3 um n

for some distribution function F(x 1 ,. .. xn) on [0,) n . When n - 1 (2.2)

reduces to

(2.3) 0(u) - f2 m(ur2)dF(r)

Schoenberg (1938) pointed out that 0m D n if m < n. If the
in n

distribution function F of R is related to 0 E On as in (2.3)

with n substituted for m, then also E Om' m < n, and there

exists a distribution function F (x) of R being related to 0 as

in (2.3) with F substituted for F. Cambanis, Huang and Simons pointed

out that R* A R-b, where b > 0, b2 'I B(m/2,(n-m)/2) and b is indepen-

dent of R. For convenience we denote these relationships by R -0 E On

and R Rbm/2,(n-m)/2 4+ E OM

Lemm& 1. X '. MEC n (M;E,...,Zn;0) with rk() - k, J - ...,n,

if and only if

(2.4) x + ( i '
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where l,...,R, are independent of j (J ,. u( ... ,un
are Independet, Z - A'A is a factorization of Zi, J-1,...,n. and

the Joint distribution function F(xl,...,x n) of (R1 ,...,R n) is

related to f as

(2.5) O(u1  ) [0... f ) fk (r1ul ' ) k (ru n)dF(rl,...,rI),
J([0900) n[~o

and " _ Y" denotes that the distribution of X is the same as that of Y.

The proof is similar to one of Theorem 1 (Cambanis, Huang and Sions

(1981)). The properties of the operation ,. are discussed by Anderson

and Fang (1982). The following two properties are important in this

paper:

(i) Assume that X Y and f J(.), jl,...,m, are Borel functions,

then

f f (Y)
im

(ii) Assume that X and Y are nxp random matrices, z is a

random variable and is independent of X and Y, respectively. If

(2.6) p(z > 0) - 1

then X 9 Y if and only if zX g zY.

By using the first property and (2.4) we have
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where A is a generalized inverse of A. In particular, if Z I p

j - 1,2,...,n, then (2.7) becomes

(2.8) (, ",Ri 2) (tz(1)II,...,II2(n)I()

Ihe I x (i1I2 - i 1,

where I ) x(i)!(,)Ii l,...,n, or

(2.8)' (Rji,"',R ) " i1(l)lIl,.,X(nill)

In this case, if p(X-O) - 0, we have

(2.9) n.J (SP)~((P(2.91~ d (u 
p )  . ~ )

WhenX , MECn (M;,,...,En;0) with (u ,...,un  exp[-(Ul+.4un)/21,

the corresponding population is normal, i.e. x(j) % Np(j(j),Ej), ji w,...,n,

and x(1),...,X(n) are independent. Now Rt ,...,Rn are independently dis-
2 2

tributed according to Xk respectively. If the joint distribution

2 2ki
of R,...,R is a multivariate chi-square distribution (or generalized

Rayleigh distribution)(cf. Johnson and Kotz (1972), p. 220), then

!(j) ' ' Np( (j),Zj), j=l,...,n, but x(1),.*.X(n) are dependent. By

this method, we could generalize the theory of the distribution and esti-

mation in the multiple normal population to the dependent case.

Suppose X 1% EC (M;.E,...,n; ). From Le ima 1 X d P +R A
- nxp ...n ..(j) .(j), -j.j

i.e. x (j) --- ECp(((j),Ej **) where * E Ok 14+Ri It is easy to see

that 0*(u) - 0(0,...,0,u,0,....0) where u is in the J-th position.

What is the marginal distribution of xj? From (2.4) we have
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d, ( k1)

(2.1 ) 
d + a (k )

where is the J-th column of AI, J- 1,...,p; I - 1,...,n. Let

S ) and - • .Ek)' k Nk (0, ) ,  then

(91),~~2 91d() 1)y 1Y

(CO) (n) () 2 1 k 1
as aj a -a , and Y //i YRi 2fl'B , , (cf. Anderson and

Fang (1982)). Hence

(2.11) Xj 1Jj +

k -1

where zl,.zn are independent, Zj 0 , z2 B(~ k1_) -1..

are independent of zl,...,z n  and (R.,...,R) F(x,...,xn).

We believe some further results similar to the elliptically contoured

distribution could be obtained by the method used by Cambanis, Huang and

Simons (1981). In this paper we mainly pay attention to a specific sub-

class of multivariate elliptically contoured distributions which will be

defined in the next section.
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z;-.

3. The Case in Which the Characteristic Function is Composed of

,Adition of Arguments.

From now on we assume

(3.1) €(u1,...,un ) -(u I + ... +un

and we still denote the multivariate elliptically contoured distribution

by MEC (M;E. ..., En;).

Theorem 1. X x MEC nxp(M;l,..., n;) if and only if x " ECp

(Uv,O) with

S 2 ... 0

(3.2) V

0 0 ... E

Proof. If X M MEC (M;Z,...En;O), the characteristic function
~. nxp ~n

of X Is (ef. (2.1) and (3.1).)

exp 1~~~j t :), J -)jrt(j)) _ exp(it',A)O(t'Vt)

i.e. x tEC (V,V,O). The "if" part is obvious and the theorem follows.
- np .

Theorem 1 shows us that for any * E "k we can construct a

*(n 1 "". .) by (3.1) such that E w,...,k with k.+ ... +kn - k.
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Corollary. M " nxpC (M;Z,...,X;) if and only if x EC np(U,V,O)

with V- In®Z.

Definition 3.1. If the random vector (z1 ,...,z m ) ' satisfies

d 2
(3.3) (z1,...,z) R (d2 ,...,d)

where (di,...,d 1 ) Dm(o 1 ,...,a_ 1;c), d-1- i'l di, R > 0, R", F(x)

and R is independent of dl,...,dM_1 , then we write (zl,...,z m )

Gm(am,...,c1ia, m;0) and (zl,...,z M ) Gm(c1,..., a_1;q;0), where

0 E n 4- the distribution function F(x) of R and n - 2 a ti"

Anderson and Fang (1982) point out that if P(R-0) = 0 the density

of zl,... ,ZM 1  is

(3.4) m z -(n-
2
) (r2 z) m dF(r)

II r(at) i
1

for zl ,..., zm _1 > 0.

Further if x % ECn (P,E,4') has a density, which must have the form

(3.5) j J "( ( E-1 ' -1 (X-P)

for a suitable function g(.), then the density of R related to $

is

(3.6) f(r) 2 n/ rn g(r)2

9



In this case the density of Gm(al,•. aM-,am;o) has the simpler form

n/2 m ai-i m(3.7) m zl i ( zi)"

ii r(cy i- 1
1

From Theorem 1, if X % MECnXp(M;l, ;) and rj ,

then x "U EC np(1,V,) where V is defined by (3.2). Hence, x has the

stochastic representation (cf. Cambanis, Huang and Simons (1981))

(3.8) xd + RB,u(k) , k . n

where B'B = V and B' is an npx k matrix. On the other hand, there

is the stochastic representation (2.4) for X; what is the relationship

between R and R1 ,..., Rn, and between B and Ai (i-i,...,n)?

Theorem 2. (i) 2 2 k 1";k l k n

(R.0...0)Gn22 (1

(3.9) B- 0 A .... O0

o o ... 'A

Proof. Comparing (2.4) and (3.8), the formula (3.9) follows and we

have

Rku1

(k) •

10
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Let ykxl Nk(OIk) and y- (y()' ... y(n)t), where y(l) ... y(n)

have kl,...,kn elements of y, respectively. Therefore

y y y(1)  11~x {M 11, iiy M11 lo)'

l yll 11ly(l) 1I [{yli l '

R(k) dR : -R d

(n) (n) Yn 1()1y y ly (k nJiii i (n) ii jyi{ -T U n

because u k  
M / Is 1(J), j -,...,n, and y()Aly(')Il is independent

of Iy(J){{, and therefore yZ )/jjy')j{ is independent of Ily(J)[1/lyll. No.

2 2 d R2 ( 1 2 Iy(n)2

the theorem follows. Q.E.D.

Corollary1. If E .. n " A'A, rk(E) 1n, thenoa . -1 -2 -11- . .. .-

2 2 Gan
(Rj9...,Rn) " Gn (L/2 ,... ,i/2,L/2; ) and

A 0 ... 0

0 A... 0

0 0 ... A

Definition 3.2. If X 1, MEC (M;E ... ,E - " .... -n

- nxp - -1' -n .1- -

and M ie Q i, we write X ' LECnxp(',ZO).
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Corollary 2. Assume X % LEC (0,E,O) and rk(E) - L, then

~ nxp.~

(3.10) x 1 , + RUA

(nk)
where A'A- -Z, A: txp, U: nxt, vec U- u ~ R c 0 'n and R

is independent of U.

Proof. From Theorem 1 and Theorem 2 we have x % EC np(C n ,In(D,).

Let U (ute,...,U()n

A' ... 0

d (n~

0C ... u'

x- -nK +

u (1)

+ R

(n2( 
n) ,

because u (n ) vec U - vec U'. Thus

x'd ,,@ji' + R % " j,' + RUA Q.E.D.

-(n)-A

In order to obtain the marginal distribution of X, we need the

following Lemma which is from Cambanis, Huang and Simons ( 1981), and

Anderson and Fang (1982).
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Lemka 2. Assume y ECn (,I, n). 0 E 4n corresponds to R and C

is an n x p matrix with rk(C) - p < n, then x - C'y ". EC p(C'1i,C'C,O).,

* d
where 0 E 0p Rbp/2,(n-p)/2

Assume X % LEC (j,1,$), rk(E) - i and $ E 4 r 4 R, from Theorem

1 and Lemma 2 we immediately obtain the marginal distributions of rows

and columns of X:

(1) x(j) % EC G,,$), where $ E z R*d Rbt/2,Z(n-l)/2*

(2) xj ECn(V ,O n,4), where E )D 4n R* -Rb

n j~n'jj-n) n n/2,n(-1)/2'

U is the J-th component of j and E = (ai).

The following corollaries concern the distributions of linear

functions of X.

Corollary 1. Assume X 't, LECnxp. (5j4)~ , rk(E) = 9, 4 E Dn9 : R,

and B is a p x q matrix with rk(B) - min(pq), then

(1) XB % LECx (B'5,B'B,) with 4 E %nt 4+ R if q > 9;

(2) X 'b LEC (B' I,B'EB,O) with 4 E 4> - R* Rb
nxq nq nq/2,n(Eq)/2

if q < k.

Proof. As X ' LECn~p (j,,) with rk() - Z, then

x " + RUIA,

whore A'A - E. Thus

13



XB d (c i')B + RUAB

- C (5'B) + RU(AB)

or

B'Av

veC(XB)' E n (B' + (a)

B#A'

The corollary follows from Lemma 2 and Corollary 2 of Theorem 2. Q.E.D.

Corollary 2. Assume X ' LEC ( ,,), rk(E) - L, E n R,

and B is a q x n matrix with rkB q < n. Then

(3.11) vec(BX) ', EC qp(j(B n ) , E (BB', )

where b 1 40q -R Rb qL/2,(n-q)/2.

Proof. From the assumption

x nc )5 + RUA

where U: n x Z, A:X x p and A'A -E. It can be shown that

a'a

at-

vec Xd e +R ... ) u(n) with A"
at'a

14



Thus

"' .. "a )  u~

vec(BX) d i®(Be n) + R ...

0 .. B ~(p)

J

S (Be + RC'u )  (say)

Using Lemma 2 vec(BX) r, EC (ji (Be ),C'C,O) with 0 E 0 4

R Rbq/2,(n-q)X/2* The coroolary follows from C'C - EO (BB'). Q.E.D.

Remark. The above two corollaries show us that the distribution of

XB still belongs to the class of the multivariate elliptically contoured

distributions, but the distribution of BX in general does not belong to

this class unless BB' = c21 where c is a constant.

Theorem 3. Suppose that X % LEC (j,4,) with E > 0, then~ txp ~ ~

(1) R2  tr E-G where R+ E and
~ ~ np

n

(3.12) G (X(i)- )(XM-5) (X-Cn -)(X-CnQ5)

(2) The density of X has the form of

(3.13) 1.1-n/2 g(tr ~ -G)

if it exists.

15



Proof. As X 1, LEC n (jE, ), then x - vec V % ECp(Fn ,n

From Corollary 1 of Cambanis, Huang and Simons (1981)

2d -1
R (x-C 001)'(I ® -) (X-n 05)

-n _n _n..f

-(X-C 00i)( OE )(X-Cn OW~
S -) - -

(X '5 -i(x) -0-i" ( (

i-iG

=tr Z G

If X has a density, so does x and the density of x has the form of

(cf. (3.5))

n( ®  (1- X ,(( - ® )'(! _ -En - ))

" I1E- n/2 g(tr ~ AG). Q.E.D.

Corollary 1. Under the supposition of Theorem 3, if X has the

density (3.13), then R has the density

2, np np-1 2
(3.14) r g(r

r (1 np)

The proof uses (3.6).

Corollary 2. Assume that x(j) Np(,E) with E > 0, J- 1,...,n and

..,x(n)  are independent, then tr 2-1G X 2

16



Proof. Take e - *xp(-t/2) in Theorem 3. As we know R 2X 2

the corollary follows.

4. The Distributions of Correlation Coefficients, the Multiple

Correlation Coefficients, and T2.

Throughout the rest of this paper we assume X I'v LEC (j,X,$) with

E > 0 and f E * the distribution function F of R.
~ np

According to the common definition of the correlation coefficient rij,

(x -ci£)' (x -Ej n)r - i n [. _jn

- 1, x  1j- €'"

where x - x i M 1...,p. Let D - I --- C , then
n -n~i' " -n n -n-n

(4.1) ij .
Ix'Thc *x'Dx

. i--i -i -zi

At first we consider x(j) ' ' N (5,E),J l,...,n, and suppose

are independent. There exist y(j) Np(O,Ip), j ,...,n,

independent such that

(4.2) x(j) d Ay(j) . . , n

where Z A'A. Let

(4.3) Y - , A (al,...ap) and Li
!!

i (n) p.. 11 r

17



it is easy to see that

(4 .4) x = i n +  Y a i  i = l . .. ,p .

Hence we have

a 'Y'DYa.(4.5) rij M ~ ~~

(ajY'DYai) (a Y'DY

Secondly, we come back to the case of X . LEC(xp(,E, ). From (3.10)

d
x - Vj + ,
-j J-n + RZa

where U: n x p and vec U du ( p) . Hence

xmDx d R2 a'UDUa R2ajYDYa /tr Y'Y, V ij,

because U (tr YY), now (4.1) becomes

(ar y 'DYa
i ) (aY 'DYae )

which is equivalent to the normal case by the properties (i) and (ii)

"td"
of the operation

Theorem 4. Suppose that X '- LECn p ( j,E,O) with E > 0, then the

joint distribution of rij, i - 1,...,J-1; j - 2,...,p is the same as the

normal case where x(j) " Np (,E), j - 1,...,n, and x( 1 ),***,X(n) are

independent.

18



Corollary 1. Suppose that X C%, L C i. I ,) and R - (r

then the Joint density of r, i < J is

q ~~~[r( .)] p  ll(.p
(4.6) [rp( )]

r~ P( n)

where r() - P(P--) -r and m = n-i. In particular, the
p 2 i-i

density of r is

(4.7) 2 )I(m-3)

rl (m-1)) 1-

(cf. Anderson (1958), Section 7.6),.

Corollary 2. Suppose that X- LECnxp,~ and Paj = iiJ/

0, then the density .f r j is

2m-21 2 )m/1, r2 .(m-3)/2(21r)a2( a)
-2 (1-P) 2- ~1 - ) / (2p r aJ -ij -L 2 1

(4.8) at
(m-2)! 7r 2%w (~~c)

(cf. Anderson (1958), Section 4.2).

Now we consider the distribution of the multiple correlation coefficient,

for instance, the multiple correlation coefficient between the first

variable and the rest of the variables. Denote (cf. (3.12)).

- 2 222jand E -21 ( : 2

where &11  and Ol are the first diagonal elements of G and E,

19



respectively. According to the definition of the sample multiple correla-

tion coefficient

-12  G122221

R* g11

It is easy to see that G- X'DX, g " -T1' -G12 a 1 - ' nd

C22 - X'(2)DX(2) where X(2) - (x2,...,p). By the same method as in

the case of the correlation coefficients we have

2 a'Y'DYA [Ay ,'DYA ]A' YDYa

aiy_ DYa1

where A(2) - (a2,...,a p ) for the normal case and the same expression for

2
R, in the case of X 1 LEC np(5,EO).

Theorem 5. Suppose X "' LEC xp(,E,$) with E > 0.

(1) if
-1

-2 _E12 22 21. o

1 1

2 2
then [R*-/(l-R;)](n-p)/(p-1) 'b F(p-ln-p).

-2 2

(2) If R > 0, then the density of R2 is

2 h(n-p-2) -2); (n-) (12)o( 2 (p-l)4-l 2 1

1 1 1

(cf. Anderson (1958) Section 4.4)).

20



Suppose X 'v LEC. (j,,$) with E > 0 we want to test

H 0 " 0  and H1 : Po

Without loss of generality we can assume p0 0. It is well-known that

we can use Hotelling's T -test for testing the null hypothesis under the

normal distribution. What is the distribution of T2  in the case of the

multiple elliptically contoured distributions?

According to the definition of T we have

(4.9) - n(n-l)x'G x

where

n x

(4.10) X- X)-Xe

and G is defined by (3.12). Using G - X'DX and (4.10) we have

(4.11) T2 . n(- 1)( 1 X)(x'Dx)-l x1 .

In the normal case we have X = n j' + YA with A'A E E (cf.

(4.2)-(4.4)). If the null hypothesis is true we have

(4.12) T2 - , ,'YA(A'Y, -,A'Y'C
n Z -- -- -- -n

By (3.10) and U = Y/(tv Y'Y) , when the null hypothesis is true we obtain

the same expression as (4.12) for T2  in the case of X N LEC (E,$).
2 nXp~~

21



Theorem 6. Suppose that X',LEC (iE, ) with E > 0 and T

2
is defined by (4.9), if = 0 the distribution of [T /(n-l)][(n-p)/p]

is F(pn-p).

5. The Distributions of the Sample Covariance Matrix and Generalized

Variance.

5.1. The distribution of the sample covariance matrix. It is a well-

kmown fact that the distribution of the sample covariance matrix of multi-

variate normal population is the Wishart distribution. If the sample

x(l),**X(N) is from the population of N (pE) and

N

A then dx a) -i)

then A n where n - N-1 and z(1)'. .. ,z are i.i.d.

distributed according to N (0,E). Now we want to find the corresponding

distribution for multivariate elliptically distributions. Assume

X 1 LEC X.(O,Z,) with E > 0 we want to obtain the distribution of

n
(5.1) W 7 ()~ ' (we)

(1) Assume X has a density. Theorem 3 shows us that the density of

X is

(5.2) Ei,- n / 2 g(Xr Ex'x) - IZj - n/2 g(tr

as j - 0 and W - G. By Lemma 13.3.1 (p. 319, Anderson (1958)), the

density of W (i.e. the density of .,w w ...,w ) is
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(5.3) i P/2ppl/ IWI(n-p-l)/2 Irl-n/2 g(tr E-lW)_

p n-a+ln Ir(n-

In the normal case (5.3) reduces to the Wishart density.

(2) Assume p(X-0) - 0. In this case it is possible that X does

not have a density, but all the marginal distributions of X will have

densities (cf. Kelker (1970)). We consider the following interesting and

Important situations:

(A) Let

(5.4) and W X k ,1 < k < p.

In order to obtain the density of Xk we need the following Leuma.

Lemma 3. Assume x " ECn(O,,) with Z > 0 and p(X=0) = 0.

Let x - (xl),x 2))' where x( 1 ) is an m x 1 vector, m < n, then

the density of x (1) is

(5 - -(n-2) 2 -1 (n-m)/2-1 dF(r),

m/2 n-- r r -x(1)yllX(l))

where E is the first principal minor of order m of E.
-.11

Proof. If E- In' the density of x(l) is

-n
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n!

(5.6) r() (n-2) (2_ (n-m)/2-1 dF(r),. (.6> ,m/2 rI'?M) ~1x1)r ( -x(1) )  Fr

(cf. (21), Cambanis, Huang and Simons (1981); the lower limit of the

integral in that paper should be u, not u). When Z 0 In  the Lemma

follows by using the transformation y - Z'x. Q.E.D.

Using Lemma 3 and noting the structure of X , the density of
-k

-kis

r (M)lzkl-k/2
(5.7) r 2'k r-~lL (rL trE- X.X)(P)/ dF(r)

2 /trE 1 )x-
2 tr~1 X'X

Zk k-~k

where Zk is the first principal minor of order k of E. By Lemma

13.3.1 of Anderson (1958) again, the density of Wk is

(5.8) r() -lk-n k r -(np-2)

kti k( -k -k

(r2-trEklk n(p-k)/2-1 dF(r)

(B) Let

X(1 i) I . ,p m 
< 

n W() )X)

ml • 4
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In a similar way the densities of X(m)  and W(m)  are found as

(5.9) 2 - /  
rt (np-2) (r 2_trE-iXmXl) (n-e)p/2-1

(59) mp/2 2 r((trn-m)P)F -_ (M)X() dF(r)

and

(5.10) 1p~p-l/4 (-m~pP m-Ot+l. (M

r(2 RC r(l
P(P-1)/F( ) L- ---

r~-(np-2) (2_tr-IVm) (n-e) p/2-1dFr,

rtrrZ1 Wm)dFr

- in_ )

respectively.

Further, partition X into k+l parts, i.e.

where XIX,..,X.+ are n I x p, n2 x P,...,nk+ I x p matrices, respeic-

tively and p< ni <n, i- 1,...,k, nk+1 > k+l ni Un. Let

W X5X i 1,...,k, then the joint density of W (l ) , . . W( k )  is
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( (nP)I-(k+l k (n -p-l)/2(5.11) k - n 11 I
kpp~Y4_.k+P.k p n-t+1 I N(j)~

Tkp(p)/4-r(-k+lP n r(-1j--) Q)

2 J-1 a2l

r'(-np-2) t2- k r (j))p ? k+l /2-1dFr

k r-W r (rjtZl dF(r)

The method to obtain (5.11) is the same as to obtain (5.10), but here we

need to use Lemma 13.3.1 of Anderson (1958) k times. When p - 1,

the density (5.11) reduces to Gk+l(nl/2,...,nk/2;nk+1/2;M). We denote

the density (5.11) by MGp k+l(Z;n /2,...,nk/2;nk+l/2;4).

Further, if X has a density (3.13), we rewrite it as

1-n/2 'k+1

&[1 trE' (Jj -

We use Lemma 13.3.1 of Anderson (1958) k+1 times to obtain the density

of W(1),...,(k+1) as

7 _np /2 _ - n / 2 ( k 1 _ k + l_ _l _W _I 
( n - p - ) / 2

(k+1)p(p-1)/4 .rI (j p n -a+l
(5. 

.1 Tjr2J)j i ~~ )  =1 Er(-A-=--_ )

When p 1, (5.12) reduces to (3.7) with m = k+1. Denote (5.12) by

p,k+l (E;n 12,...,nk/2,nk+l/2; ). In this case as F(r) has a density,

we can change (5.11) to the simpler form
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2,np/2-kp(p-)/4, 1 k (n-p-l)/2

_ k+P p k p n-c.-a+l J- I-(J)I

r( )j-i cti r -2Jul 0-1

r 7 I %(r2 + , tr - cj) dr.
i-i

(C) Consider the marginal density of Wll,...,'p-l,pl,Wlp,...)Wl~pl,

w2p,...,w2  ,..,wp_ 2 , plW,...,wpl,p (i.e. the marginal density

of W except w pp); for simplicity we will say the density of W

(1) Let E - U'U where U: nxp and vec U - u Let Y be

defined by (4.3), then

(5.13) E _ Y'Y/try'Y (

We want to find the density of E (i.e., the density of E except epp

However, the correlation coefficient r is

rif

aeii; f iffjj

where (fi) = F = Y'Y. As we know, fri , i- l,...,J-l,J=2,...,p} are

independent of 1iyi1i, i - l,...,pl and (11y f
2 . . , y p

\.
- ) / t rY' Y

.I\

Dp(A2.... ;b), hence (all,...pl D2 and the density

of e, i/a- a P- is

2P-lr p-1 pl2T

2 n-l
(5.14) 11 a I ei if 2rp [ 2) - i- 1 1
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From Corollary 1 of Theorem 4, the joint density of el,...,ep-l,r12....

rp , r2 3,.., rp-l p  is

p(p-l)14 P _.n-i+l. ~
p--l

l p-i 2

if e < 1.
i=1

Consider the following transformation

ei ei2{- 2

with e p (1 - ej It is easy to see that the matrix of

D(e''e- - ..l.','e l -l e 231 ....e 2 -l'''',ep-2 -l'el,,...,ep_,.P)

a(e 1 , .. .a p - r l12 , " r •.- , l p l r 23 , " r • •, 2 ,p l , •. rp _ 2 ,p l r lp , •.- ., r rp l ,p )

is lower triangular with diagonal elements 2el,. . , 2 ep 1 el,e 2 ,...,ele ple 2 e 3
,

... ,e2ep-l,...,ep_2ep-lel ep,...,ep_lep, thus the Jacobian of the transfor-

mation is

- 1  T (P (-l)/ 2

(5.16) 2
p -

1 e
(p- l) PIT eP - 2

(P
-1) 1-

P i1 i"i

Combining (5.15) and (5.16), the density of E is
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r(-M) 4(np) p-ile -(np-1) p-i(5.17) iRiS-pI 1- 1 i ] i1 ei

7p(p-l)/4 P _n-i+l)

7rr 1E1r(npl)

p (p-l)/
4 P n- .

with e 1 ell.
pp 1 *

(2) Let E be p xp a positive definite matrix and A be an upper

triangular matrix such that A'A - . Let V - A'EA - (vii). We want
*

to obtain the density of V (i.e. the density of V except v
- pp

Partitioning V, A and E as follows

_11 Ya( [11 1 1) 1!l

) ppJ (1) appj e('l) pp J0 a pp ]
we have

A

V1+ A app

v p a2  e + 2a a a
pp PP ppe

As e, and v are not independent variables, the Jacobian of trans-

formation is
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J(v E) - J(Vl El) • J(v )  e )

J(V -, Ell)- I A1 1I p -1 - "

where E is the first principal minor of order (p-i) of E, and

J(v( - el) - j.IIap 1 - iEll I  ap I1

-() (l -llpp - pp

Thus

(5.18) J(V - E) , JE ll (p+l) ap- 1  IElll (p+l) . -1p (n--1)

Noting Il = I A'IIEII A " IEIIEI, the density of V is

(5.19) 2 (A -n+lI, 1- IV13(n-p- 1 )
7lp(p-1)4 P r n-i+11

i: I

As vpp is not an independent variable, we need to find the relationship

between it and the other variables. Since

U'U - E - A'-1 vA -I

we have

1 " trU'U - tr(A'-VA
-1 ) - trV-l "

Denote E-1 iJ and V - (vij); then
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(S.-20) v P,(a ) ( 1 o ii Pip ip (PP)-((I-V*) (say)

i1 J-1 i i-i

(3) Assume X ' LEC n (O,E, ) with Z > 0 and P(X-0) 0. From~ nXp. ..... "

(3.10)

X RUA

where U: nx p, vec U - u , A is a px p upper triangular matrix and

A'A - Z. Then

(5.21) W - X'X R2 A'U'UA = R2 AEA = R 2V

We have obtained the density (5.19) of V, and it has the form of

cwVn (n
-p -l )

where c is a constant. Thus the cdf of W, for W positive definite

is

P{Rv < j -1,...,p-1; R2vij < w i<jl

TO PIvjj :i 2 J:,...,p-1; v <_ 2 J, V positive definitedF(r).
r r

When the probability is written as the definite integral of the density

of V, differentiation yields as the density of W*

(5.22) c T r-p(p+1)+2IRI (npl) dF(r)
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K]

2 2
where H (h), h -w /r2, i 1,...,p-l; h - w/r t < J and

h = (OPP)- (1-w*/r2  ( ppr2)-l (r2 -*
PP

w*

where w- P-I aijw + E IP- ip" As h must be positive,
iini J.1 ii i-i ip* pp

the density of W, is

(5.23) c cf r- p(p+ I) + 2 r-p (n-p - 1) W] (n-p-l) dF(r)

c wr-(pn-2)Wj r (n-p-1) dF(r)

M 2) l 'In+ll 1ij-  r-(pn-2)1 W t (n-p-1) dF(r),
p(p-l)/4 P _(n-i+l.

i-i

where W m (we) with

(5.24) wp- (oPP) -l(r2-w*) (PP)- r2-l i Pc j- il Pwip
pp( r 11i-i Jil iP

Now we can summarize the above results as follows:

Theorem 7. Aame that X I" LEC O,(0j,) with E > 0 and n > p;

X is partitioned into k+l parts X,...,Xk+l which are n, xp,...,nk+lxp

matrices, respectively, p . n,, i - 1,...,k+l and E1+l ~ ~

V -XX and W is defined by (5.4).

!(J) Fjj Zk
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(1) If X has a density (5.2), then the density of W is (5.3)

and the joint density of W(l),...,W(k+l) i. (5.12).

(2) If P(X-O) - 0, then there exists the marginal density of any

(proper) subset of elements of W. In particular, the density of W k is

(5.8), the density of W* (i.e. the density of W except w pp) is (5.23)

and the joint density of W(1)h"',!(k) is (5.11).

Corollary 1. Assume X k LEC x(O,E, )  with E > 0 and n > p,

and X has a density (5.2). Let Y-I and V W , then the

density of V is

(5.25)rp/2-p(p-l)/4 In/
2 ,Vj-(n+p+l)/2 g(trV )(5.5)n-ct ~g~rl

- )

r(n 1g )

2'
i i

Proof. From (5.3) and the fact of the Jacobian of the transformation

W 
= V

-
1 is IV]

- (p+ l
) the corollary follows. Q.E.D.

When c - exp(-t/2), i.e. X is from a normal population, (5.25)

reduces to the inverted Wishart distribution.

Corollary 2. Assume the condition of Corollary 1 holds and Z I,

then the density of the characteristic roots X1 > ... > Xp of W is

(526 (_.T .. R "Cx<
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Proof. From (5.3) and Theorem 13.3.1 of Anderson (1958), the density

of X0 '.... X is

1 p

np/2-p(p-l)1
4  p (n-p-l)/2 * 7p(p+l)/4

cti ct-i 2

and the corollary follows. Q.E.D.

5.2. The distribution of the generalized variance.

Theorem 8. Assume that X'%,LEC nxp(O', ) with 0 E 4np +-* R,

Z > 0, p(X-O) - 0 and n > p. Let Yl'""Yp+I be independently

2 2 2 2

distributed as 2 2 2 2Xn-p+lXp(p-)/2' respectively. Then

Xn'X-l'*"Xn-~l'X(p-i .1
p p+l

(5.27) Iwl ! RZPlE I  y'/1 YiJ

i-l i

Proof. From the assumption X d RUA d RYA//-rY-T, where Y is

defined by (4.3), then

(5.28) IWI IX'xI 9 R2PlA'Y'YAI/(tr YY)p - R2PlEIIY'YI/(tr Y'Y)P

Let T - (t) be the lower triangular matrix such that TT' - Y'Y.

It can be shown that

(a) t ' N(0,1) for any i > J;
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M t (~e. t2 AJ 2

) i u ni+l (ii )(n- )  1,...

(c) ft1j, J < i) are independent.

(cf. Johnson and Kotz (1972)). Thus

1!1 d R2P[ I jTT, I/(tr TT,)p•

As T is a lover triangular we have

I~ ~ T I 2 d PIY
ii yi

ti-i

and

tr TT2 +tt 2 d l-+ y. Q.E.D.
Ii i Jl

6. A Multivariate Analogue to Cochran's Theorems.

In Section 5 we obtained the distributions of W (M) and denoted

it by MG (E; M*nr
p,2Z 2; 2 *) " Let D be an n x n symmetric matrix. We

want to know a necessary and sufficient condition for X'DX

Mro

Theorem 9. Assume that X" LECx (OE, ) with E > 0 and P(X-O) 0,

and D is an n xn symmetric matrix, then X'DXvMC (E I, M; * if

and only if D2 - D and rk(D) - m.

Proof. Assume X'DX 1%, MG M*R).- Since Xd RA ehv

p2 2 2 IA ehv

(cf. Theorem 7)

R2A'U'DUA x'DX g R2A'U'U.A
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where U is an m x p matrix and .U (UU' The condition P(X-O) - 0
2 2- 2

implies P(R2 > 0) -1, i.e., R2  satisfies the condition (2.6). As R2  is

independent of U, by Lmma 1 of Anderson and Fang (1982) we have

A'U'DUA - A'U'UI.

We can remove A' and A from both sides because E > 0 and A is non-

singular matrix; hence

tu d uiyu1 .

Let Y be defined by (4.3), then the above formula becomes

Y'DY/tr Y'Y YY 1 /tr Y,

where Y is partitioned into Y and Y in the same fashion as U1

and U2 . As tr Y'Y is independent of Y/tr Y'Y, we can multiply by

tr Y'Y on both sides (cf. Lemma 1 of Anderson and Fang (1982)) and obtain

-IYay -- W p(q'm)-

From Cochran's Theorem for the multivariate normal distribution (cf.

Anderson (1958)), we have D - D and rk(D) - m.

Assume D2 - D and rkD - m; there exists an orthogonal matrix r

such that r'Dr - m 0) Lot z- rx, then Z11, LECnXp(0,M) (cf.

Corollary 2 of Lemma 2), and

X'DX Zr'Drz -' - -( 2n. f).

Q.E.D.
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There is a close relationship between Cochran's Theorem in the uni-

variate case and one in the multivariate case. When the population is

normal this relationship has been established (cf. Anderson (1958), Rao

(1973)). We will point out similar results for elliptically contoured

distributions.

Corollary 1. Assume X and D satisfy the condition of Theorem 9.

Then X'DX 1 M ,(E; 2; n%; 0) if and only if Z'X'DXL" G2( ; n- )
-- p,2- 2 2~- 2~ 2 22

for every ~D" E-MP with V'X - 1, where 0 E4 n + -+R d Rbn/2,n(p-l)/2"

Proof. If XtDX ' MG(E; M (n-m, ), then D and rk(D)=m
-,2~~2 2' 2 )  h ~

by Theorem 9. From Corollary 1 of Lemma 2 V 1v LECnxI (0,v'i,) = EC n(0,1 n,*)

for all k E]R p  
and VU- 1, where tE 0n - Rb n/2 n(p..l)/2*

Thus £'X'DXU n G 2 (!; n- ) by Theorem 1 of Anderson and Fang (1982).

if~'X'DX ^ dG2(; -; 4) for some t E]RP and 'EX 1

2 2

with R -R* - Rbn/ 2 ,n(pl)/ 2 , then D2 . D and rkD - m by Theorem

1 of Anderson and Fang (1982). The assertion follows by Theorem 9. Q.E.D.

By using a technique similar to the one for proving Theorem 9, we

can obtain the following theorem.

Theorem 10. Assume that X n LEC (O,E,4) with Z > 0 and
~ nxp~~ ~~

P(X-O) - 0, and Dl,...,k are symmetric matrices; then

(X'D X...,XDDX) Au Mp,k+(z; nh/2,...,nk/2;nk+l/2
;0) where n 1 > p,

Ik:k+l 2

i - 1,...,k, nk+1  E , ni - n, if and only if D2  Di  rk(D ) - i ,

i- 1,...,k and D D - 0 for 1 i j.
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7. Applications.

In this section we apply the theory of multivariate elliptically

contoured distributions to the multiple regression model.

We consider the following model

[Ynx = X nqB qp+ E nxp p+q <S n , rkX - q
~?nxp ~nxq~qxp +-- +In r~-

(7.1)

IE(VecE) - 0 , D(vecE') I n ( , E % LECnxp(0,E,O) with Z > 0.

Minimizing jE'EI or tr EE with respect to B gives the least

squares

(7.2) B (X'X)x'y

since

(7.3) E'E = (Y-XB)'(Y-XB) - (Y-XB)'(Y-XB) + (B-B)'X'X(B-B)

By assumption we have

(7.4) E d RUA

where A'A E . Thus

(7.5) Y XB + RUA

and

(7.6) B g B+ R(X'X)- X'UA
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Theorem 11. Under the assumption in the model (7.1) we have

S(7.7) vec(B-B) -- EC pq(OE(D (X')5) 0

where E 0nq - R Rbpq/2,(n-q)p/2"

Proof. From (7.4) and (7.6) we have B-B d (X'X)-IX'E. Then

Theorem 11 follows by Corollary 2 of Lemma 2. Q.E.D.

In general the distribution of B does not belong to the class of

the multivariate elliptically contoured distributions unless (X'X)-  = c 2I

where c is a constant in which case

A 2
(7.8) B-B Ix, LEC (O,c Z,4)~ ~ qxp ~ ~

R*

where 0 E +-R * being defined by Theorem 11.Pq

AA A

Corollary. Denote B = (p'',) Under the assumption of Theorem

11 we have:

(1) a - EC (BOta(X'X) ,), where 0 E + <-R - Rb
q ~' q q/2,np-q/2 "

I AA

(2) cov(Oi,,j) - const. aij(X'X)-

Proof. The assertion (1) is a consequence of Lemma 2 and Theorem 11.

The assertion (2) follows by Theorem 4 of Cambanis, Huang and Simons

(1981). Q.E.D.

39



Now we consider the distribution of E'E (Y-XB)'(Y-XB). As

,E - Y'(1 n-x(x'X)-x')Y -E '(I n-X(X'X)x')E
(-XXx- --x')- n- -

and (I -X(X'X) X') is a projection matrix with rank n-q, if

P(E-O) - 0, then from Theorem 9,

(7.9) S - EE 11 MG p,2 (E;(n-q)/2;q/2;0).

Under the model (7.1) we want to test the following linear hypothesis:

(7.10) H: HE - C , H: txq , C: txp and rkH - t<p

Under the condition of HB - C minimizing IE'E or tr E'E with

respect to B gives the least squares estimator

(7.11) BH - - (X'x)-l H'(H(X'X)-')-(-C) 

where B is given by (7.2). Since

(Y-XB)'(Y-XB) - (Y-XgH)'(y-xiH  + 6 H-!)'X'X(Bk-!)

Thus

main (Y-XB)'(Y--X)
HB-C .. ...

- I(Y-XB)(Y-XB) + (HB-C)'(H(X'x) -
1
H')- (HB-C)I

Is 1+TI (say)0
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A statistic for testing the hypothesis H is

in[ (Y-xB) '(Y-xB) [
B .. .. IsI

(7.12) X W~-S-T:m nI (Y-xB)'(Y-xB)i S: T
HB-C .. ..

Noting E d RUA and B B + (X'X)-x'UA, if the hypothesis is true we

have

S d R2AU,[IX(X'X)-lX']UA

and

T - (HB-C)'(H(X'X)-H') (HB-C)

- (fi-B) 'H'(H(X'X)-H')-H(B-B)

_M R2A, UX(X' X) -1H' (H(X'X) -1H') -1H(X'X)-I'uA ,

where A'A - Z (cf. (7.6)).

2
Substituting them into (7.12) we see that A is independent of R

By the method applied in Section 4, the distribution of X is the same

as in the normal case; i.e. U (Wilks' distribution).
p , t n-q

Theorem 12. Under the model (7.1) and P(E-0) - 0, the statistic

X given by (7.12) for testing the linear hypothesis (7.10) is distributed

according to Up,t,n-q
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