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Ix the Report of the Fouiteerith Meeting of the British Association for the Advancement of
Science it is stated by Mr. Russell, as a result of his experiments, that the velocity of propagation
of a series of oscillatcry waves does not depend on the heig:t of the waves . A series of oscillatory

waves, such as tlat oberved by Mr. Russell, does not exactly .gree with what it is most convenient,
as regards theory, to take as the type of oscilIator' waves. The extreme waves of such a series
partake in some measui'e of the character of solitary waves, and their height decreases as they
proceed. In fact it v11 presently appear that it is only an indefinite series of waves which
1)osssses the property of being pro)agated with a unìform velocity, and without change of fornì
at least ihis is the case when the waves are such as can be propagated along the surface of a finid
which was l)rcvio1sly at rest. The middle waves, however, of a scric such as that observed by
Mi-. RusseU agree very nearly with oscillatory waves cf the standard form. Consequently, the
velocity of propagation determined by the observation of a number of waves, according to Mr.
Russell's inethcd, must be very nearly the same as the velocity of propagation uf . series of

oscillatory waves of th standard form, and whose length is cqtml to the mean length or th waves

observed, which ar uppoed to differ from each other but iìghtl)r fl lcngth.
On this account I was induced to iuivestgate the motion cf osculatory waves of the above form

to a second approximation, that is, supposing the height of the waves finite, though small. I find
that the expression for the velocity of propagation is independent of the height of the waves to a
second approximation. '.\'ith respect to the form of the waves, the elevations are no longer similar

to the depressions, as is the case to a first approxiniaticn, but the cications are narrower than the
hollows, and the height of the former exceeds tile depth the latter. This is in accordance with
Mr. Russell's remarks at PS 448 of his first Reportj. I llave proceeded to a third approximation
in the particular case in which the dcptiì of the fluid is very great, so as to find in this case the
most iniportant terni, depending Gil the height of the waves, fl tile expression for the velocity of
propagation. This term gives an increase in the velocity of propagation depending on the square
of thc ratio of tile height of the waves to thair length.

There is one result of a second approximation which may possibly be of practical importanrr.
It appears that the forward motion of the particles is not altogether compensated b their backward

motion ; so that, in addition to their motion of oscillation, the particles llave a progressive motion in
tlìe direction of propagation of tho waves. Imì the case ill which the depth of tue fluid is very great.
this progressive motion decreases rapi(Ily as the depth of tile particle considered increases. Now

when a ship at sea is overtaken by a storm, and the sky remains overcast, so as to l)re'eflt astro-
nonmical observations, there is nothing to trust to for finding the ship's place but tue dead reckoning.
But tile estimated velccity and direction of motion of tile silip are lier velocity and direction of
motion relatively to the water. If dIeu the WilOic of i.he waler near tIle surface be moving in the
direction of the waves, it is eident that time ship's cstinofnd place viil be erroneous. If, however,
tile velocity of the water can be cx pressed in terms of tile lc'ngtil and Ilciglit of tile waves, both
which can be observed approximately from time silip, tile motion of the water can he allowed for in

the dead reckoning.
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As connected with this subject, I have also considered the motion of oscillatory waves propagitetl
along the common surface of two liquids, of which one rests on tile other, or along the upper
surface of tile upper liqúid. In this investigation there is no object in going beyond a frst
approximation. \Vhen the SpeCifiC gavies of the two flUidS are nearly equal, ti'e waves at their
common surface are pIopagate(l so slowly that there is time to observe the motions of the individual
particles. The second case atT'orcls a means of comparing with theory the velocity of propagatior. of
oscillatory waves in extremely shallow 'vater. For by pouring a little water on the top of the mercury
in a trough we can easily procure a sheet of water of a small, and strictly uniform depth, a depth,
too, which can be measured with great accuracy by means of tite area of the surface and the quanLty
of water poured in. Of course, the common formula for the velocity of propagation will not ply
to this case, since the motion of tile mercury must be taken into account.

1. IN the investigations which) immediately follow, the fluid is supposed to be homogeneoi
Ifl(I incompressible, and its depth uniform. 'l'ile inertia of the air, and hie pressure (lue to
a colunin of air whose height is comparable with that of the waves are also neglected, so that
the Pressure at the upper surface of the fluid may be supposed to be zero, provided we afterwards
add the atmospheric pressure to tile pressure so determined, Tite waves which it is proposed to
iIlvestgate are those for which the motion s in two dimensions, and which are propagated with
a constant velocity, and without change of form. It will also be supposed that the waves are
such as admit of being excited, independently of friction, in a fluid which was previously at rest.
It is by these characters of thc waves that the pcoblem will be rendered dcterainate, and not l)y
the initial disturbance of the fluid, supposed to be given. rrhe common theory of fluid motion,
in which te pressure is supposed equal in all directions, will also be employed,

Let the fluid be referred to the rectangular axes of , y, , time plane v being horizontal,
and coinciding with the surface of the fluid when in equilibrium, tite axis of y being directed
downwards, and that of a' taken in die direction of propagation of the waves, so that the ex-
pressions for the pressure, &c. do not contain . Let p be the pressure, p the density, t he
time, u, o the resolved parts of the velocity in tile directions of the axes of a', y; g the force of
gravity, Ii the depth of the fluid when in equilibrium. From the characte of the waves which
was mentioned last, it follows by a known theorem that udv + ody is an exact difFerential dp.
The equations by which the motion is to be determined are well known. They are

d pfdp (d-/'1-r yç' (1);

dp (11

(F2+(jy2 (2);

dçb = e, when y=h, (3);
(1/

tip d dp d(/.) dp+.. + -----=0, when p=O, (4);dt (IV tic dg dg

where (3) expresses the condition that the particles in contact with tile rigid plane on which the
fluid rests remain in contact with it, aud (4) expresses the condition that the same surface of
particles continues to be the free surface throughout the tnotibn, or, in other words, th't there i
no generation or destruction of fluid at the free surface.
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1f e be the velocity of propagation, u, y and p will be by hypothesis functions of .v - cl and ii.

it follows then from the equations u = , y = and (i), that the diulerential coefficients
dx dy

of with respect to x, y and t will, be functions of x - cl arid y ; and therefore itself must
be of the form ¡(y - cl, y) + Cl. The last term will introduce a constant into (i); and if
this constant be expressed, .we may suppose to be a function of t - ct anti y. Denoting v - ct
by y', we have

dp dp dp dp-=-----, -----C----,,
dx dx dt dx

and similar equations hold good for . On making these substitutions in (i) and (4), omitting
the accent of x, and writing - g k for C, we have

dpf(dçt2 ídçb' 'I
p = gp (y + k) + cp -dr 2 djvi tij) j'
fdb dp dçbdp- = o, when p = 0. (6).+
da' dx dy dy

Substituting in (6) the value of p given by (5), we have

dy dx2 \dv dx' dy dxdy

dxJ da2 clx dy dxdy \d,i) d'i" ........¡
when g(y+k)

d{(d)2 (d)S} (s).

The equations (7) and (8) are exact ; but if we suppose the inoion small, and proceed to the
second order only, of approximation, we may neglect th last three ternis in (7), and we may

easily eliminate y bcweeii (7) and (8). For putting ', , &c. fo the values of , ,

when y = O, the number of accents above marking the order of the differential coefficient with
respect to r, and the number below its order vit1i respect to y, and observing that k is a small
quantity of the first order at least, we have from (8)

g (y -i k) + C (' + 'y) - ('2 + q) o,

whence y = - k - + ' (k + ') ± (p' + (n).

Substituting the first approximate value of y in the first two ternis of (7), putting y O in tIte

next two, and reducing, we have

gd, - c'Ç" - (g - c/,") (k + - ') + 2e (/"+ q,ç,') = o. ... (IO).

will now have to be determined from the general et1uat.ion (2) with the particular conditions (t;)

aticl (10). WThcn is known, y, tise ordinate of the surface, will be got from (s), and k will
titen be determined by the con(Iition that the mean value of y shall he zero. 'I'he value of p, if
required, may then be obtained from (5).

Thc ecader will observe that the y in this equation is the orditinte of the surf,cc, whcrca the y in (1) attd(2) is the otdinatc of
any point in the fluid. The context will 1 ways ahoi in which sense y k t-niployed.
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. In proceeding to a first approximation we have the equations (2), (3) and the equaion
obtained by omitting the small terms in (io), namely,

dç 02d

The general integral of (2) is

when y = O. .., ... (ii).

=

the sign extending to all values of I, ni and n, real or imaginary, for which m2 + n' = O:
time particular values of , Coe + C', Dy D', corresponding respectively to n = O, ni = O, must
mlso be included, but the constants C', D' may be omitted. In the present case, the expression
for must not contain real exponentials in ¿r, since a term containing such an exponential would
!ome infinite either for ¿r = - , or for ¿r , as well as its differential coefficients which
would appear in the expressions for u and u ; so that m must be wholly imaginary. Replacing
then the exponentials in ¿r y circular functions, we shall have for the pa;t of b corresponding
to any one value of ni,

(Ac'"' + A'C'"') sin rn.x' + (116 + B'C'' cos nzv,
and the complete value of will be fotr'.d by taking the sum of all posihle particular values of
the above form and of the particular value C + Dy. When the value so formed is substituted
in (s), which lias to hold good for all vaimes of ¿r, the coefficients of the several sines and cosines,
amid the constant term must be separately equated to zero. Wrc have therefore

D =0, A' 2mhj, ¡ 62mhfl;

so that if we change the conscants we shall have

p = + : ('' + _m5_Y)) (Í sin mx + B cos iiìv), ...
the sign :: extending to all i-cal values of m, A and B, of which in may be supposed positive.

3. To the term Cv in (12) corresponds a uniform velocity parallel to ¿r, which may be supposed
to he impressed on the fluid in addiioi to its other motions. II the velocity of propagation be
defined merely as the selocity with which the wave forni is propagated, it is evident that thevelocity of propagation is perfectly arbitrary. For, for a given state of relative motion of the1)arts of the fluid, the velocity of propagation, as so defined, can be altered by altering the vahieof C. And in proceeding to the higher orders of approximation it becomes a question whatwe shall define the velocity of l)ropaation to be. Thus, we might define it. to be the velocityvitli which the wave form is propcted when the mean horizontal velocity of a particle in time
upper surface is zero, or the velocity cf propagation of the wave form when the mucan horizontalvelocity of a particle at the bottom is zero, or in various other ways. The following two definitionsappear chiefly to deserve attention.

First, we may define the velocity of propagation to be the velocity with which the wave forumis propagated in space, when tIme mean horizontal velocity at each point of pace occupied 1y flicJluid is zero. The terni mean here refers to the variation of the time. This is the definitionwhich it will be most convenient to emIoy in tIme investigation. I shall accordingly uppeseC = o in (12), auci c will represent the velocity of propagation according to the al)ove definition.
Secondly, we may define the velocity of propagation to be the velocity of propagation of the

wave form in space, when time mean horizontal velocity of the mass of link! comnpi-iecl between
two ve:y (listant planes perpendicuiar to time axis of ¿r is zero. The. nican horizontal velocity of
time masa means here the sanie tIming a time horizontal velocity of its cemitro of gravity. Thisappear to be the most natural definition of the velocity of propagation, since in the ca'e consideredthere is no current in the mass of fluid, taken as a whole. I shall denote the velocity of propaga-
tion according to this definition by e'. In the most important case to consider, namely, that in
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which the der,h is innite, it is easy to sec that c' = c, whatever be the order of appro:imaion.
For when the depth becomes inthiite, the velocity of the centre of gravity of the mass comprised
between any two planes parallel to the plane yzvanishes, provided the expression for u contaiano coastant term.

We must now substitute in (ii) the value of çb.
= + (A sin mi + B cos mc) (is)

but since (ii) has to hold good for all values of v, the coefficients of the several sines and cosines
must be separately equal to zero: at least this must be true, provided the series contained in (i )are convergent. The coefficients vill vanish for any one value of ni, provided

Putting for shortness 2 inh = we have
dlogc2 i 2

d,
which is positive or negative,.t being supposed positive, according as

3+ ),
and is therefore necessarily negative. Hence the value 0 e given by (14) decreases as or ni
increases, and therefore (I 1) cannot be satisfied, for a given value of c, by more than one positivevalue of m. Hence the expression for must contain only one value of ni. Either of the termsìÍ cos in.r , li sin fl2V may Lc got rid of by altering the origin of v. We may therefore take, forthe most general value of ç,

= A (_'1) sin mx (1.5).
Substituting in (s), we have for the ordinate of tile surface

mAc
(c'i + E_hh) cos in.r (16),

k being = o, since the mean value of y must be zero. Thus everything is known in the resultexcept A amid w, J'ich are arbitrary.
It appears from time above; that of all waves for whuich the motion is in two dimensions,which are propagated in a fluid of uniform depth, and which arc such as could be propagated intofluid previously at rest, so that ud.v + vdy is an exact cfFercntial, there is only one particular kind,namely, that just considered, which possesses the propert:i of being propagated with a constantvelocity, and without change of forni ; so that a solitary wave cannot be propagated in this manner.Thus the degradation in the height of such waves, which Mr. Russell observed, is not to beattributed wholly, (nor 1 believe chiefly,) to the imperfect fluidity of the fluid, and its adhesion tctile sides and botto,, of the canal, but it is an essential characteristic of a solitary wave. It is (niethat, this conclusion depends on an investigation vllichi applies strictly to indefinitely small motionsonly : but if it rere true in general that a solitary wave could be propagated uniformly, without

degradation, t \oid be true in the limiting case of indefinitely small muotions ; and to disprove
a general proposition it is sufficient to disprove a particular ease.

G. In proceeding to a second approximation we must substitute the first approximate value of
m, giveil by (15), in the small terms of (io). Observing that k = O to a first approximation, and
eliminating g from the small terms by means of (14), we find

g4, - c5" GA'r"c sin 2 nmx = O



\1oreover since the term in ¿p containing sin mx must disappear from (17), the equation (i ) U
ivc e to a second approximation. -

If we denote the coefficient of eos tn in the first approximate value of y, the ordinate of the
-.urface, by a, we shall have

- ga ca
mc (e + _mS)

and substituting this value of A in that of ¿p, we have

+ +ac sin mx + 3m a'c sin 2mx ... (is).(e"' -
'J.'he ordinate of the surface is given to a second approximation by ). lt will be found that

y = a vos mx ,fl2 ( + 6_mS) (62m +" + 4)
2 (?' _nth)1 cus 2mv (1J),

ma'
¿mh

7. The equation to the surface is of the frn
g = a cos mx Ka2 cos '2,nx (20),

where K is necessarily positive, and a may be supposed to be positive, since the case in which it
negative may be reduced to that in which it is positive by altering the origin cf y by the quauti

or X being the length of the waves. On referring to (20) we see that the waves arc i: -

metrical with respect to vertical planes drawn through their ridges, and also with respect to virti h

planes drawn through their lowest lines. The greatest depression of the fluid occurs when r =

or = X, &c., and is equal to a a'K: the greatest elvation occurs when or = c

and is equal to a + a'K. Thus the greatest elevation exceeds the greatest depression by '2': .

When the surface cuts the plane of mean level, cus mx - aK C0S 2m.-r = 0. Putting in the

term in this equation the approximate va'ue mx = , we have cos m-r = -- aK = cos ( +

'X aKX\ IX UKX\whence .x = (-- -f. I , = I - - -- l &c. We see then that the breadth of each h.!- .
\4 2-J 4 QrJ

X CLXXmeasured at the height of the plane of mean level, is -- , while the breadth of each
2 r

portion of the fluid is
2 ir

It is easy to prove from the expression for K, which is given in (m9), that for a givtfl %.d.-
of X or of n:, K increases as h decreases. hence the difFerence in form of the elevatc'l .ini
depressed DortiOns of the fluid is more conspicuous in the case in which time fluid i mukrat h
shallow than in the case in which its depth is very great compared with the length of tie ti't.

416 Ma. STOKES, ON THE THEORY OF OSCILLATORY WAVES.

The general value of ¿p given by (13), which is (lerived from (2) and (3), must now be restrjçt(ll t,
satisfy (17). It is evident that no new terms in ¿p involving sin mx or cos ,n.v need be intru(lticj
since such terms may be included in tha first approximate value, and the onl) 'tlu'r t.rm whkh c ineu:er is one of the form B (c + sin 2 mx. Substituting this term in (17), .j

by means of (14), find

B- 3 nz iV
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When the depth of the fluid is very great compared with the length of a wave, we may
without sensible error suppose h to be infinite. This supposition greatly simplifies the expressions
already obtained. We have in this case

= - ()
a cos mv -jma2 cos 2ma' (22),

k=o, K==,
2 X

the !I
in (22) being the ordinate of the surface.

It is hardly necessary to remark that the state of the fluid at any time will be expressed by
merely writing v - cf in place of x in all the preceding expressions.

'I's find the nature of the motion of the individual particles, let + be written for v, y + i
for y, and suppose x and y to be independent of t, so that they alter only in passing from one
particle to another, while and 77 are small quantities depe&idng on the motion. Then taking the
case in which the depth is infinite, we have

u = - rnacem(Y+ cosm ( + - cl) = - macc"cosm ( - cl) + nì'ace sinin.(w ci) .

+ rn2acC"' cos m (.c - ci) . ,j, nearly,

d
r sin in (y + - cl) = rnacem'' sin in (x - cl) + nSacE1Y cos in (v - cf) .

dt
- ni'ac e"' sin in (a' - et) . i, nearly.

'l'o a first a1)proxilnation

= ac' sin in (v - et), ;j = ae"' cos in (y - cl),

the arbitrary constants being omitted. Substituting these values in the small terms of the preceding
equations, and integrating '.g:'n, we have

= (J"O' sin ni (v - cf) + ,n'a'ct _2m

= a"' cos rn (r - cf).
I-Jonce the motion of the particles is the same as to a 'first approximation, with one important

difference, which is that in addition to the motion of osdillatk'i the particles arc transferred for'ards,
that is, in the direction of propagation, with a constant velocity depending on the depth, ¿id
decrea.sing rapidly as the depth increases. If U be this velocity for a particle whose depth heüw

the surface in e1uilibrium is y, we have

U = m54'c c "M = a2 (-i-) g A (23)

'l'ho motion of the individual particles may be dctermoeJ in a similar manner when the (k1ìth
is finite from (IS). In this case the values of and q contain terms of the second order, involvin!
respectively sin 2m (y - cl) and cos 2m (y - cf), besides the term iii which i multiplied by t.

'l'ue most important thing to consider is the vai tie of U, which is

U = m2a'c (rnh -
(2.1.).

Since U is a small quantity of the order a', atd in proceeding to a sccond approximation th0
velocity of propagation is given to the order a only, it. is immaterial which of the definitions of
velocity of propagation mentioned in Art. 3, we please. to adopt.

VOL. VIII. PART IV. s M
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io. Tue waves produced by the action of the wind on the surface of the sea do not probably
dfPcr very vick1y from those which have just been considered, and %hìClì may be regarded asty)iCal form of oscillatory waves. On this supposition the particles, in addition to their
nct'jU of oscillation, will have a progressive motion in the direction of propagaton of the waves,

atiil consequently In the direction of the wind, supposing it not to have rccertIy shifted, and this
progressiVe motion vil1 ciccrease rapidly as the depth of the particle considered hcreases. If the
J)resure of the air ou the posterior parts of the waves is greater than on the anterior parts,
ill consequence of the wind, as unquestionably it must he, it is easy to see that some such pio-grcsive motion must be produced. If then the waves are not breaking, it is probable that equation

which is applicable to deep vater, may give approximately the meall horizontal velocity
(If the ¡)ai'tiClCS ; but it is (liffiCult to say how far the result may be modifle by frictiçn. If
then we i'cgard a ship as a mere particle, in the flrst instance, for the sake cf sinìplicity, and put¿r. for the value of (J when y = O, it is easy to see that after sailing for a time t, the ship
itst be a distance U0t to the lee of her estimated place. It will not however be sufficient toregani the ship as a mere particle, o ccount of the variation of the factor e2"Y, as y varies from
o to the greatest de1)th of the ship below the surface of the water. Let be this depth, or rather
i dpth something less, in order to allow for the narrowing of the ship towards the keel, and supposetI euIct of the progressive motion of the water on the motion of the ship to be the sanie asif the vater were niovirig with a velocity the same at all depths. an'! equal to the nican valie)f (I velocity U from y = O to y = . If U1 be this mean velocity,

UI = fiUdy mac (i

On this supposition, if a ship be steered so as to sail in a direction making an angle O 'vith thedirection of the rind, supposing the vater to have no current, and if V be the velocity ith hchtuo ship moves through the water, lier actual velocity will be the resultant of a velocity V intue direction just mentioned, which, for shortness, I shall call the direction of steering, and ofvelocity U1 in the direction of the vind. But the ship's velocity as estimated by the log_lineher velocity relatively to the water at the surface, and is therefore the resultant of a velocity V inthe direction of steering, and a velocity Uo - U1 in a direction opposite to that in which the windis blowing. If then E be the estimated velocity, and if 've neglect (72,

E= V(U0 U1)cosO.
But the ship's velocity is really tile resultant of a velocity V + U1 cos O UI the direction of steering,and a velocity U sin O in the perpendicular direction, while her estimated velocity is E ¡ri thethreetion of steering. Hence, after a time t, the ship will be a distance U0t cos O ahead ofher estimated place, and a distance U11 sin O aside of it, the latter distance being iìieasurcd in adirection perpendicular to tile direction of steering, and on the sitie towards VIliCll tile vind isl)IOW i ng.

I do not suppose that the preceding formula can be employed in practice; but I think itmay not be altogether useless to eaU attention to the importance of having regard to the magnitudeand direction of propagation of the waves, as well as to the wind, in making the allowance forleeway.

11. The formuhe cf Art. G arc perfectly general as regards the ratio of the length of tue wavesto tile depth of the fluid, the only rcsttiction being that the height. of tue waves must be sufhcientiysmall tu allow the series to be rapidly convergent. Consequently, they must apply to the limitingcase, in which the waves are SUI)POSCd to be extremely long. hence long waves, of the kindconsidered, are propagated without change of form, and the velocity of prcpagation is independentoZ the height of the waves to a second approximation. These conclusions might seem, at first sight,

e
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at variance with the resuIs obtained by Mr. Airy fc'r the case of long waves On proceedingto a second approximation, Mr. Airy finds that the form of long waves alters as they proceed,and that the expression for the velocity of propagation contains a term depending on the heightof tile waves. But a little attention will remove this apparent discrepancy. If we SUppOSeinh very small in (f9), and expand, retaining only the most important Vrins, we shall find forthe equation to the surface

3 ay = a cos nix - cos 2nìx.
4rn2/i,1

Now, in order that the method of approximation adopted may be legitimate, it is necessary that
the coefficient of cos Qni.v in this equation be small compared with a. hence a

and therefore
sfl/iJ

X2a
must be small, and therefore must be small compar.d wilì (). Jut the investigation

of Mr. Airy is applicable to the case in which is very large; so that in that investigation

is large compared with () . Thus the difference in the results obtained corresponds to a
difference 1ll the physical circumstances of the motion.

12. There is no difficulty in proceeding to the higher orders of approximation, except whaiarises froni the length of tile formule. In the pa:icular case in which the depth f. cansideredinfinite, tile fornn'l are very much simpler than in the general case. I shall proceed to the thirdorder ill the ease of ali infinite depth, so as to find in that case th ìost iai1)ortant terni, depc'ndingou the height of tile waves, in the expression for the velocity of propagation.
For this purpose it vil1 be necessary to retain the ternis of the thud order in the expansionof (7). Expanding this equation according to powers of y, and neglecting terms of the fourth, &-c.orders, we have

g, + (g,, c")y + (gp,,, c,") + 2c('" +
+ 2e ((,'ç"+ qíp,"+ cP'+ c15,(/)11')y /I2c/tJ'_ 2'qy,'_ çti»P,, = o. (25).In the sniall teri;s of this equation We Int;st put for and y their values given by (21) and (22)respectively. Now since tile value of to a second approximation is the same as its value toa first approximation, the equation gç5 - c" = O is satisfied to terms of the second order. But

the coefficients of y and , in the first line of (25), are derived fronì the left-hand member of
the preceding equation by inserting the factor ", differentiating either once or twice withrespect to y, ami then pUtting y O. Consequently these coefficients contain no terms of thesecond order, aiid therefore tue terms involving y in the first line of' (25) are to be neglected.

cl'l'he next two ternis are together equal to e (/2 +dx
y

which does not contain x, so that these two ternis The coefficient of y ill thesecond line of (25) may be dervcd from the two terms last considered in tue manner alreadyindicated, and therefore the f crins containing y will disappear from (25). The only small terms

Encyclopdia ifcIropo1itaac, Tides a,i1 Aic1 fmi, &c.
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remaining are the last three, and it vil1 easily be found that their sum is equal to mt a3c sin rnv, so
that (25) becomes

g , - & + '&a'c1 sin mx O (26)

'rite value of will
we have

---z

It i reinarcab1e that this equation coincides with that of the
vo1are cycoid, if the 1uer equation he expanded accrding to
.ioccnding powers of the distance of the tracing point front the
cern-e of the rol1iig circle, and ftc crins of the fourth utl:r be
otnitted. Tie polte cycloid is the form asigned by Mr. Rst-

(& e3 -- mg) A + mt a' c' = O.

evidently be of the form A' sin mx. Substituting this value in (26),

the small tern), we have
mc' = g ma'g,

g gX i 2r'a3wnence c
= (_) ( nh2a2)

(__)
(i +

)
The equation to the surface may be fotuid without difficulty. It is

y = a cos nix - ma2cos2in,v + m2a3cos3mx*, (27):
we have also k = O, = - ac (1 - .- m'a2) emYsinm.x.

The following figure represents a vettical section of the waves propagated along the surface

of deep water. The ligure is drawn for th case in which a . The term of the third order

in () is retained, but it is almost insensible. The straight line represents a section of the plane
of mean level.

13. If ve consider the manner in which the terms introduCe(l by each successive approximation
enter into equations (7) and (8), we shall see that, whatever be the order of approximation, the
series expressing the ordinate of the urface will contain only cosines of mx and its multiples,
while the expression foi' ç5 will contain only sines. The manner in which y enters into th
coefficient of cos rmx in the expression for is determined in the case of a finite depth by
equations (2) and (3). Moreover, the principal part of the coefficient of cos rx or SiLt r;11r Wjll
be of the order & at least. S\Te may therefore assume

= a Ar(Cr1(h_P) + _rIfllS._Pi) sin mix,

y = a cos me atBcos mix,
and determine the arbitrary coefficients by means of cc]uations (7) and (s), having previously
expanded these equations according to ascending powers of y. The value of e' will be determined
by equating to zero the coefficient of sin nix in (7).

Since changing the sign of a comes to the saine tiling as altering the origin of x by 4 X, it is
plain that the expressions for "ra 11r and c will contain only even powers of a. Thus tue values
of each of these quantities 'vili be of the feriti C0 + C, & -i- C, a' +

It appears also that, whatever be the order of approximation, the waves will be syniinetrical with
respect to vertical planes passing through their ridges, as also with respect to vertical planes
passing through their lowest lines.

sell to wave, cf the kiud herc considered. Reporte of Me 11,-lush
,IisciaEion, Vol. vi. p. -f48. Whe, the depth of ih fluid is rot
great cor.11)accl witt, the icrgth ola wave, the fenn of the surface
does not auree with the prolete cyclod een to a sccnd approx-
imation.

1)ividing by mA, and putting for A and c their approximate values ac, respectively i t'



MR. STOKES, ON THE THEORY OF OSCILLATORY WAVES. 451

14. Let us consider now the case of waves propagated at the common surface of two liquids,
of which otte rests &: the other. Suppose as before that the motion is in two dimensions, that the
fh,id extend indefinitely in all horizontal directions, or else that they are bounded by two vertical
pianes paraiki to the direction of propagation of the waves, that the waves are propagated with
a constant velocity, and without change of forni, and that they are such as can b propagated into,
or ected in the fluids supposed to have been previously at rest.. Suppose first tluit the fluids
are bounded by two horizontal rigid planes. Then taking the common surface of the fluids when
at rest for the plane .rz, and employing the same notation as before, we have for the under fluid

+ =0,dv dy'

dp
= O when y = h,

p = C gpy + cp

neglecting the squares of small quantities. Let h, he the depth of the upper fluid when in equi-
librium, and let p,, p, q5,, C, be the quantities referring tn the upper fluid which correspond to
p, p, , C referring to the under then we have for the uper fluid

e !+!O
d322 dy2

o when y - h1 (si),

dç
p,= C,+gp,y+cp,

We have also, for the condition that the two fluids shall not pctletl'ate into, nor separate from each
other,

dç5dq-- = e, when y = O (32).dy dy

Lastly, the condition answering to (i i) is

dq dp 'dp. dpg -_ - p1-1') - o' p - P, dx') = o

when C - C, + g (p --p,) y + e p - p.. )
° (34).

Since C - C' is evidently a small quantity of the first order at least, tile CO11(litiOIì is that (ss)
shall be atisficd when y o. Equation (34) will then give the oì-dinate of the common surfncc of
the two liquids when y is put = o in the last two ternis.

The general value of suitable to the presetit case, which is derived from () sublect to the
condition (29), is given by (is) if we suppose tlìat the fluid is free fioul a uniform horizontal motion
compounded ritii tite oscillatory motion expressed by (i s). iucc the equatìoUS of tite present
investigation are linear, in consequence of tite omission of the squares of small quantities, it will be
sufficient to consider one of time termos in (13). Let then

= A (m (i-Y) + c_" u_Y) sin

(ss).
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The gcucral value of swill be derived from (13) by merely srritirig - h, for h. But in onki-
that (32) may b' satisfied, the value nf p, must reduce itself to a single tet-in of the same form as
the second side of (35). \Vc way take then for the value of

= A, (m.+Y) + ') sin mx - (36).

Putting for shortness
± " S, - = D,

.iiul taking S,, D, to denote the quantities derived from S, D by svritiug h, for h., we have from (32)

DA + D,il, = o

ati,I frani (33)
p (gD in e2 S)A + p, (gD, + ìnc2S,)Á, = 0 (38)

Eliminating il and A, from (37) (38), we have

g (pp) DD,
(39).mpSD,+p,S,D

The equation to the common surface of the liquids will be obtainer! from (34). Since the mean
va!ue of y is zero, we have in the first place

C,=C (40).
\Ve have then, for the. value of

y = a co mx (4!),
where

mc pA,S, pAS DD, p,A,S, pAS
- g p p, - e pSD, p,D

Substituting in (35) and (36) the values of A and A, derived from (si) aoci (42), we have

- (?' + e''1) sin nì.,-c (43),

= (6m(S--) + Y) sin mx (44).

Equations (39), (40), (41), (43) and (44) contain the solution of the problem. It is evident that
C remains arbitrary. The values of p and p, may be easily found if required.

If we difFerentiate the logarithm of e2 with respect to ni, and multiply the iesul t by the product
of the denominators, which ai-e necessarily positive, we shall find a quantity of the form Pp +
\rhere P and P, do not contain p or p,. It may be proved in nearly the sanie manner as in Art. 4,
that each of the quantities P, P, is nccessarily negative. Consequently e will decrease as ni increases,
or will increase with X. It fellows from this that the value of cannot contain more than two
ternis, one of time forma (35), and the other derived from (33) by replacing sin mx by cos ma-, and
changing the constant A : but the latter term may be- got i-id of by altering the origin of r.

The simplest case to consider is that in which both h and h' are regarded as infinite compared
with . In this case we have

= ac" sin (D. = acemy sin nìx, c = i cos mx,p+p,m
tue latter being the equation to the surface.
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15. The preceding investigation applies to two incompresib1e fluids, but the results are
applical)Ie to the case of tI)e waves propagated along the surface of a liquid exposed to the air,
provided that in coflsidering the effect of the air we neglect terms which, in comparison with those
retained, are of the order of the ratio of the length of the waves considered to the length of a wave
of sound of the sanie period in air. Taking then p for the density of the liquid, p, for that of the
air at the time, and supposing h, , we have

ir(pn)D gDI f D\plC2=- ' ------1 - 1 l--,nearIy.rnpS+p,D tnS( Si pj
If we had considered the buoyancy only of the air, we should have had to replace g in the

formula (ì4) by e_1 g. We should llave obtained in this manner
f),

,=.(p_p,)D=gD71 p'
;n pS rnS k

hence, in order to allow for the inertia of tile air, the correction for buoyancy must be increased
in the ratio of i to + whole correction therefore increases as the ratio of the length of a
wave to the depth of the fluid decreases. For very long waves the correction is that due to
buoyancy alone, while in the case of very short waves the correction for buoyancy is doubled.
Even i: iuis case the velocity of propagation is altered by only the fractional part of the whole:

f)
and as this quantity is much less than the unavoidable errors of observation, the effect of the air in
altering the velocity of propagation may be neglected.

1G. 'rhcie is a discontinuity in the density of the fluid mass considered in Art. 14, in passiog
from one fluid into the other; and it is easy to show that there is a cOrre3ponding discontinuity iiithe vt1ocity. If we consider tv. fluid particles in contact with each other, and situated on oppcsite
si(leS of the surface of junction of the two fluids, we see that the velocities of these particles resolvedin a direction normal to that surface are the same; but their velocities resolved in a direction tan-gential to the surface are different. These velocities are, to the order of approximation employed
in the investigation, the values of and when y = O. We have then from (43) and (44.). for
the velocity with which the upper fluid slides along the under,

S S'
m a e _- + cos ?fl a.

17. When the upper surface of the upper fluid is free, the equations by which the probleiri
is to be solvcd are the same as those of Art. 14, except that the condition (Si) is replaced by

(l dp
g e ¿y2 _ o, when y = - h,; (4.5)

and to deterniin the ordinate of the upper surface, we bave

C, + gp,y + cp, = o,

where y is to be replaced by - h, in the last term. Let us consider the motion corresponding to
the value of d75 given by (35). \V'e must evidently have

+ fl,e_Th5) SI!) 1fl.V
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where A, and B, have to be determined. The conditions (3e), (33) and (15) give

DA + A, - B, = o,

p (gD - me'S) A 4 p,(g + mc2) A, - p, g - mc2) B, o,

(g + flic?) 'A, - (g - mc2) e'B, = O.

Eliminating A, A, and B, from these equations, and putting

C2 =

we find
(p SS, + p,DD,) 2 - p (SD, + S,D) + (p - p,) DD, O. ... (46).

The equilibrium of the fluid being supposed to be stable, we must have p, <p. This being
the case, it. is easy to prove that the two roots of (46) are real and positive. These two roots
correspond to two systems of waves of the same length, which are prop*gated with the same
velocity.

lu the limiting case in which - = c, (46) becomes

SS, - (SD, + S,D) ' + DD, = O,

the roots of which are and , as they evidently ought to be, since in this case the motion of

the tinder fluid will not be aflectd by that of the upper, and the upper flnJ can be in motion
by itself.

SD, + S,D m(h+h.) -
p, p one root of (46) vanishes, and the other becomes or ,

SS, + DD, +h) +
The former of these roots corresponds to the waves propagated at the common surface of the fluids,
while the latter gives the velocity of propagation belonging to a single fluid having a depth equal
to tite sum of tite depths of the two considered.

When the depth of the upper fluid is considered infinite, we must put = i in (16). The

two roots of the equation so transfornied are 1 and (p D
, tite fornier corresponding to waves

p.S + p,D
propagated at tite upper surface of LIC upper fluid, and the latter agreeing tith Art. 15.

When the depth of the tinder fluid is considered infinite, and that of the upper finite, we
D . (pp)Dmust put - i in (4G). '1'ie two roots vill then become I and ' ' . Tite value of the5 pS,+p,D,

foruter root shows that whatever be the depth of the tipper fluid, one of tite two systems of
waves will always be propagated wi.h the same velocity as waves uf the s'me length at the sur-
face of a single fluid of infinite depth. This result is true even when the motion is in three
throensions, aiid the form of the waves changes with the time, the waves being still supposed to
liC such as cculd be excited t the fluids, supposed to have been previolisiy at rest, by means of
forces applied at the upper surface. For tite most general small motion of the fiiids in titis case
may be regarded as tite resultant of ait infinite nuniber of systems of waves of tite kind con-
sidcrc-d in this paper. It is remarkable thi when the depth of tite upper Ibid is very great, the
root = i is that which corresponds to tite waves for which the upper Ilo(1 is disturbed, while
tite tinder is seiisibiy at rest ; whereas, when tite depth of tite tipper fluid is ;ery small, it is the
other root which corresponds to those waves which arc analcgous to tite tva'.es tvhieh would
he propagated in the upper fluid if it restcd on a rigid piane.
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When the depth of the upper fluid is vcry small compared with the length of a wave, one
of tue roots of (1G) will be very small ; and if we neglect square and products of rn/i and , the

e(juatl&m becomes 2 pD 2 (p - p,) ni/t,D = O, whence

= í__R'nzh,, c = gli,. (47).
1' p

These formule will tot hold good if nih be very small as well as nih,, and comparable with it,
imìce in that case al the terms of (4G) will be small quantities of the second order, nih, being

regaickd as a small luantity of time first order. In this case, if we neglect small quantities of the
t lurch order in (.aG), it. becomes

4 p - 4 ni p (Ii + h,) + 4 (p - p,) rn'h h, = o,

whence e' =
{

+ h, \/(h - h1)' -& hh,}. (48).

Of these values cf e', that in which the radical lias the negative sign belongs to that system of
waves to which tile formulie (47) apply when h, is very small compared with h.

If time two fluids arc water and mercury, - is equal to about 13.57. If the depth of the

water be very nmalI compared both with the length of the waves and with tite depth of the
mercury, it appears from (47) that the velocity of propagation will be less titan it would have
been, if the water had rested ou a iigicl l)lauìc-, iì lie ratio of .9624 to 1, or 26 to 27 nearly.
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