. Lab. v. SCHée‘bs‘bbuWkund?e, . -
*  Technische Hogeschos! | ARCHIEF
o Delft

‘XXXIII. On the Theory of Oscillatory Waves. By G. G. StokEs, M.A,
Fellow of Pembroke College. :

[Read Marck Y, 1647.3

Ix the Repart of the Fourteenth Meeting of the British Association for the Advancement of
. Scicnce it is stated by Mr, Russell, as a result of his experiments, that the velocity of propagation
! of a series of oscillatcry waves does not depend on the height of the waves®. A series of oscillatory
| waves, such as that observed by Mr. Russell, does not exactly zzree with what it is most convenient,
! as regards theory, to take as the type of oscillatory waves. "[he extreme waves of such a series
‘ partake in some measure of the character of solitary waves, and their height decreases as they
proceed. In fact it will presently appear that it is only an indefinite series of waves which
| possesses the property of being propagated with a uniform velocity, and without change of form:
at least this is the case when tlie waves are such as can be propagated along the surface of a fiuid
‘ which was previously at rest. The middle waves, however, of a scries such as that observed by
Mr. Russell agrce very nearly with oscillatory waves of the standard form. Consequently, the
| velocity of propagation determined by the observation of a number of waves, according to Mr.
| Russell’s methed, must be very ncarly the same as. the velocity of propagation of = series of
oscillatory waves of the standard form, and whose length is equal to the mean length of the waves
_observed, which are supposed to differ from each other but slightly in length.
‘ On this account I was induced to investigate the motion cf oscillatory waves of the above form
to a second approximation, that is, supposing the height of the waves finite, though small. 1T find
that the expression for the velocity of propagation is independent of the height of the waves to a
second approximation. With respcet to the form of the waves, the elevations are no longer similar
to the depressions, as is the case to a first approximaticn, but the elevations are narrower than the
hollows, and the height of the former exceeds the depth of the latter. This is in accordance with
Mr. Russell's remarks at page 448 of his first Report}. I have proceeded to a third approximation
in the particular case in which the depth of the fluid is very great, so as to find in this case the
most important term, depending cn the height of the waves, in the expression for the velocity of .
propagation. . This term gives an increase in the velocity of propagation depending on the square
of the ratio of the height of the waves to thair length.
i There is onc result of a second approximation which may possibly be of practical importance.
It appears that the forward motion of the particles is not altogether compensated by their backward
. motion ; so that, in addition to their motion of oscillation, the particles have a progressive motion in
the direction of propagation of the waves. In the case in which the depth of the fluid is very great,
this progressive motion decreases rapidly as the depth of the particle considered increases. Now
when a ship at sea is overtaken by a storm, and the sky remains overcast, so as to prevent astro-
noniical observations, there is nothiug to trust to for finding the ship’s place but the dead reckoning.
But the cstimated velccity and dircction of motion of the ship are her velocity and direction of
motion relatively to the water. If then the whole of the water near the surface be moving in the
direction of the waves, it is evident that the ship’s cstimated nlace will be erroncous. T, Lhowever,
the velocity of the water can be expressed in terms of the length and height of the waves, both
which can be observed approximately from the ship, the motion of the water can he allowed for in

the dead reckoning. .

e Pape 36y (note), and page 370. t Reports of li;e British Asseciation, Vol, vi.
3.2
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As connected with this subject, I have also considered ihe motion of escillatory waves propagated
along the common surface of two liquids, of which one rests on the other, or along the upper
surface of the upper liquid. In this investigation there is no object in going beyond a first
approximation.  When the specific gravities of the two fluids are nearly equal, the waves at their
common surface are propagated so slowly that there is time to observe the mations of the individual
particles. "The second case affords a means of comparing with theory the velocity of propagatior. of
oscillatory waves in extremely shallow vater. For by pouring a little water on the top of the mercury
in a trough we can easily procure a sheet of water of a small, and strictly uniform depth, a deptl,
too, which can be measured with great accuracy by means of the area of the surface and the quantity
of water poured in. Of course, the comnion formula for the velocity of propagation will not apply
to- this case, since the motion of the mercury must be taken into account. T

1. I the investigations which immediately follow, the fluid is supposed to be homogeneous
and incompressible, and its depth uniform. ‘The inertia of the air, and .ihe pressure due to
a column of air whose height is comparable with that of the waves are also neglected, so that
the pressure at the upper surface of the fluid may be supposed to be zero, provided we afterwards
add the atmospheric pressure to the pressure so determined, The waves which it is proposed to
investigate are those for which the motion is in two dimensions, and which are propagated with
a constant velocity, and without change of form. It will also be supposed that the waves are
such as admit of being excited, independently of friction, in a fluid which was previously at rest.
It is by these characters of thc waves that the problem will be rendered determinate, and not by
the initial disturbance of the fluid, supposed to be given. The common theory of fluid motion,
in which the pressure is supposed equal in all directions, will also be employed,

Let the fluid be referred to the rectangular axes of z, y, », the plane o being horizoutal,
and coinciding with the surface of the fluid when in equilibrium, the axis of y being directed
downwards, and that of x taken-in ibe direction of propagation of the waves, so that the ex-
pressions for the pressure, &c. do not contain ., Let p be the pressure, p the density, ¢ the
time, u, v the resolved parts of the velocity in the directions of the axes of x, y; g the force of
gravity, & the depth of the fluid when in equilibrium. From the character of the waves which
was mentioned last, it follows by a known theorem that udx + vdy is an exact differential dp.
The equations by which the motion is to be determined are well known. They are

oo _,,%if. - g{(f{iﬁ)l (f’i’)’}, reveveeeereneeneeens (1) 4

. dy
| 7o ¢
det  dyt
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ﬁ =0, When ¥ =B, ceeeeinniiieeinriieeceescnsensansoceonsons 3);
dp dpdp d¢ dp
— ——— — —— ——— 'h =0 ®essssverssagusgasvan :
dt " dw dx ¥ dy dy 0 when p =0, ®)

where (3) expresses the condition that the purticles in contact with the rigid plane on which the
fluid rests remain in coutact with it, and (4) expresses the condition that ithe same surface of
particles continues to be the free surface throughout the motibn, or, in other words, thot there is
no generation or destruction of fluid at the fice surface.
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1f ¢ be the velocity of propagation, u, v and p wil! be by hypothesis functions of & — ¢ and 4.
Tt foliows then from the equations u = i-—i—’ » U= %’i and (1), that the differential-coefficients
: y
of ¢ with respect to x, y and ¢ will be functions of # ~c? and y; and therefore ¢ itself must
be of the form f(z—~cf, y) +C¢ The last term will introduce a comstant into (1); and if
this constant be expressed, we may suppose ¢ to be a function of @ — c¢ and y. Denoting x — ¢!
by 2, we have

and similar equations hold good for ¢. On making these substitutions in (1) and (4), omitting
the accent of 2, and writing — gk for C, we have

p=gply+k) +CP(;-—?—§{(%)2+ (%‘-5)}, ............ (5),
. (%—c):—:+j—? gg:o, when p = 0. seseessninatenass - (6).

" Substituting in (6) the value of p given by (5), we have

d¢p ¢ - (dp &¢p dp d'¢
g—d?-c d_:z"‘-+2c (_d_; d.z:’+ dy d.z'dy)

L (A\ P _ dg dp Ep _ (dp\'dD
\d“’) da* " *dx dy dady (dy) dyr =0 8

when  g(y +kj + c%% - %{(‘;—?)'+ (%%)2} = 0.. . ().

"The equations (7) and (8) are exact; but if we suppose the motion small, and proceed to the
second order only of approximation, we may neglect the last three terms in (7), and we wmay
2¢ 5 d¢ , e
de  dy
when y =0, the nuraber of accents above marking the order of the differential coefficient with
respect to x, and the number below its order with respect to y, and observing that & is a small
quantity of the first order at least, we have from (8)

g+k)+c(d +¢ ) -3(@"+¢)) =0,

’ 1 ’ ! b/
whence y=—k—£g-¢ +§¢, (k+§¢)+§—é(¢’+¢,").’* ....... (9)-

easily eliminate y botween (7) and (§). For putting ¢'s ¢,, &c. for the values of

Substituting the first approximatc value of y in the first two terms of (7), putting y = 0 in the
next two, and reducing, we have .

gp, - 9" - (gp,~ ¢k + 2 ) + 2 (P'P"+ ¢»,¢>,'5 =0. ... (10).

will now have to be determined from the general equation {2) with the particular conditions (5)
and (10). When ¢ is kuown, y, the ordinate of the surface, will be got from (9), and & will
then be determined by the condition that the mean value of y shall be zero, The value of p, if
required, may then be obtained from (5). ' _—

* The reader will observe that the g in this cquation is the ordinate of the surface, whereas the y in (1) and (2) is the oudinate of
any point in the fluid. The context will always show in which sense y is employed.
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2. In proceeding to a first approximation we have the cquations (2), (3) and the equation
obtained by omitting the small terms in (10), namely,

dp _ 49
Lo

g dy =0, WHER & = 0. sesuvernrnerannnnnccesanses (11).

The general integral of (2) is
¢ = EA-G“"“",

the sign 3 extending to all values of A, m and #, real or imaginary, for which m*+ a*=0:
the particular values of ¢, Ca + €', Dy + D, corresponding respectively to # =0, m =0, must
also be included, but the constants ¢*, D' may be omitted. In the present case, the expression
for @ must not contain real exponentials in @, since a term containing such an cxponential would
B:2come infinite either for 2 = — &, or for @ = + o2, as well as its differential coefficients which
would appear in the expressicus for u and v; so that m must be wholly imaginary. = Replacing

then the exponentiuls in @ by circular functions, we shall have for the ract of ¢ corresponding
to any one value of m,

(de™? + A'e™%) sin ma + (Be™Y + B'e™¥) cos ma,

and the complete value of ¢p will be fourd by taking the. sum of all possible particular values of
the above form and of the particular value Cz + Dy. When the value so formed is substituted
in (5), which has to hold good for all values of &, the coefficients of the several sines and cosines,
and the constant term must be separately equated to zero. e have therefore

_ D=0, A'=¢"4, B =¢&"B;
so that if we change the consiants we shall have
¢=Cz4 Z("*¥, e""'""'"’) (4 sinma + B cosma), ... (12),
the sign 2 extending to all real values of m, 4 and B, of which m may be supposed positive.

3. To the term Cw in (12) corresponds a uniform velocity parallel to @, which may be supposed
to he impressed on the fluid in addition to its other motions. If the velocity of propagation be
defined merely as the velocity with which the wave farm is propagated, it is evident that the
velocity of propagation is perfectly arbitrary. For, for a given® state of relative motion of the
parts of the fluid, the velocity of propagation, as so defined, can be altered by altering the value
of C. And in proceeding to the higher orders of approximation it becomes a question what
we shall 'define the velocity of propagation to be. Thus, we might “define it to be the velocity
with which the wave form is propzzated when the mean horizontal velocity of a particle in the
upper surface is zero, or the velocity cf propagation of the wave form when the mean horizoutal

velocity of a particle at the bottom is zero, or in various other ways. ‘The following two definitions
appear chiefly to deserve attention. ' '

First, we may define the velocity of propagation to be the velocity with which the wave form
is propagated in spacc, when the mean horizontal velocity a¢ each point of
Jluid is zero. The term mean here refers to the variation of the time. This is the definition
which it will be most convenient to employ in the investigation. I shall accordingly suppose
C =0 in (12), ard ¢ will represent the velocity of propagation according to the above definition.

Secondly, we may define the velocity of propagation to be the velacity of propagation of the
wave form in space, when the mean horizontal velocity of the mass of fluid compriced between
two very distant planes perpendicular to the axis of # is zero. The. mean horizontal velocity of
the mass means here the same thing as the horizontal velocity of its centre of gravity. ‘This
appears to be the most natural definition of the velocity of propagation, sirce in the case considered
there is no curreat in the mass of fluid, taken as a whole. I shail denote the velocity of propagza

DT
tion according to this definition by ¢, In the most important case to consider, namely, that in

shace occupied by the

’
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which the depth is infinite, it is easy to sec that ¢ = ¢, whatever be the order of approximation.
For when the depth becomes infinite, the velocity of the centre of gravity of the mass compriscd
between any two planes parallel to the plane y= vanishes, provided the expression for 1% contain
no constant term, o

4. We must now substitute in (11) the value of ¢.
P =3 (AN 4 =43 (4 sin ma + B cos MT) vereernnera. (18) 3

but since (11) has to hold good for all values of @, the coefficients of the several sines and cosines
must be separately equal to zero: at least this must be true, provided the series contained in (11)
are convergent. The coefficients will varish for any one value of m; provided

. & Gul ey

C'= - \_“--- 900008000 c0000000000000 00000 (]4‘)-

et e
Putting for shortness 2mk =y, we have .
d log ¢ 1 2
du -’

which is positive or negative, u being supposed positive, according as .

. e ew B
. 2p>Let—-¢ ><2(u.+l.2.3 ......),
and is therefore necessarily negative. Hence the value of ¢ given by (14) decreases as u or m
increases, and therefore (11) cannot be satisfied, for a given value of ¢, by more than one positive
value of m. Hence the expression for ¢ must contain only one value of m. Either of the terms
A cosma, I sin ma may tc got rid of by altering the origin of #. We may therefore take, for
the most general value of ¢, - '

P=d( P+ e ™ Y S0 BT e (15).
Substituting in (8), we have for the ordinate of the surface
mAdce

g

k being = 0, since the mean value of y must be zero. Thus everything is known in the result
except 4 aud m, which are arbitrary.

y= - (€™} + €7™2) COS M@ vvurereenvnnrnnennrnninnsn (16),

5. It appears from the above, that of all waves for which the motion is in two dimensions,
which are propagated in a fluid of uniform depth, and which are such as could be propagated into
fluid previously at rest, so that udz + vdy is an exact Giferential, there is ouly one particular kind,
namely, that just considered, which possesses the property of being propagated with a constant
velocity, and without change of form; so that a solitary wave cannot be propagated in this manner.
Thus the degradation in the height of such waves, which Mr. Russell observed, is not to be
attributed wholly, (nor°I believe chiefly,) to the imperfect fluidity of the fluid, and its adhesion te
the sides and bottox. of the canal, but it is an essential characteristic of a sclitary wave. It'is true
that this conclusion depends on an investigation which applics strictly to indefinitely small motions
only: but if it were true in general that a solitary wave could be propagated uniformly, without
degradation, it wou!ld be true in the limiting case of indcfinitely small motions; and to disprove
a general proposition it is sufficient to disprove a particular case, '

6. In proceeding to a sccond approximation we must substitute the first approximate value of
» given by (15), in the small terms of (10). Observing that k= 0 to a first approximation, and
climinating g from the small terms by means of (14), we find

8P, ~ '’ 6Lnicsin 2ma =0 ,......0..0. 7).
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The general value of ¢ given by. (1), which is derived from (2) and (8), must now be restricted o
satisfy (17). It is evident that no new terms in ¢ involving sin ma or cos m 2 need be introducal,
since such terms may be included in the first approximate value, and the only other term which ¢
enter is one of the form B (em®-¥ 4 ¢-m*-¥) sin 2ma. Substituting this term in (17), and
simplifying by means of (14), we find
3m 4A*
: = —
. L S R R c(eml«_e—nh)t

Morcover since the term in ¢ containing sin ma must disappear from (17), the equation (14) w:ll
give ¢ to a second approximation. : : . : . ) ]
If we denote the coefficient of cos ma in the first approximate value of g, the ordinate of the
surface, by @, we shall have
IR £ S ca

O
me (e™ + e~™) ™ — gk’
and substituting this value of A in that of ¢, we have

M-y 4 cmib-g) WAy L ~2mih-y)

¢ =-ac sin 22 ... (18).

- sin ma.+ 3 mae —
emll —¢ mA a (emh_ € M)i

The ordinate of the surface is given to a second approximation by (9). 1t will be found that

(E”'A-i- e-mk) (eamh + e-zmh + 4)
9 (emb _‘e-mk):

¥ =acosmxr —ma

€OS 2MT vevrnrvanaasss (19),

% ma® _
= Imh o <zmAt
e?m e 2mk

7- The equation to the surface is of the form

..., Y=0acosmT ~ Katcos LMET ceiieeeiniennrnrroerannnas (20),
where K is necessarily positive, and @ may be supposed to be positive, since the case in which it i

negative may be reduced to that in which it is positive by altering the origin ¢f @ by the quantits

= A . . . q
— or —, X being the length of the ‘waves. "On rcferring to (20) we see that the waves are syw.-
m 2

metrical with respect to vertical planes drawn through their ridges, and also with respect to vertical
planes drawn through their lowest lines. The greatest depression of the fluid occurs when &« =

) ’ . A 3\
or = % ), &c., and is equal to @ - a* K : the greatest elevation occurs when @ = * 2= £ —, NC.

and is equal to @ +a’K. Thus the greatest clevation exceeds the greatest depression by 2a’ A
1When the surface cuts the plane of mean level, cos mz — a X cos 2ma = 0. Putting in the suiail

; q T . s o
term in this equation’ the approximate value ma = 2’ we have cos me = - a K = cos w(; +nh }
a 5 GKA : g TR
whence ¢ = & (’-\- + —1(—7-\) y =% (A»{- ——), &c. We see then that the breadth of each huilva,
-+ 2w 4 2.
- A aXA . Aates
measured at the height of the planc of mean level, is s —, while the breadth of each elvvat.-t
T
. . A ak
portion of the fluid is 2 .
r

It is easy to prove from the expression for X, which is given iu (10), that for a given value
of A or of m, X increases as A decreases. Uence the. difference in form of t‘hc.clc\'alml .m.l.
depressed portions of the fluid is more conspicuous in the case ir which the ﬂwu_ul.:s woderatddy
shallow than in the case in which its depth is very great compared with the length of the waves.
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8. When the depth of the fluid is very great compared with the length of a wave, we may
without sensible error suppose & to be infinite. This supposition greatly simplifies the expressions
already obtained. e have in this case

‘ ¢ = e ace-m, Sin ML eoesvsevecccovvsveccrscecasccsavesocse (21)’

y=acosme~ -gima' COS 2MA vevrrsssseeonsencessss (22)s

; _m_= _&A
k=0, K_z A’ 27’

the y in (22) being the ordinate of the surface.
"1t is hardly nccessary to remark that the state of the fluid at any time will be expressed by
merely writing # - c£ in place of # in all the preceding expressions. .
9. “Fo find the nature of the motion of the individual particles, let & + £ be written for 2, y + %

for y, and suppose 2 and y to be independent of ¢, so that they alter only in passing from one
Yy pp and y P > - the) 'y in passing 1re
particle to another, while £ and 5 are small quantities depeuding on the motion, Then taking the

case in which the depth is infinite, we have

d—’f= w=-—mace "t cosm (2 + & —ct) =— maee~™ cosm (@ — cf) + m*ace ™ sinm (z-c?). &

d
+mtace=™ cos m (v ~ ct).n, nearly,

— D

d . g q .
d,t’ v =mace "¢tV sinm (v + § - ct) = mace ™ sin m (z — ¢t) + m*ace ™ cos m (z—ct). &

- m*ace~™.sinm (x — cf) .y, nearly.
TI'o a first approximation ' :
. f=ae™ sinm (v ~ct), y=ae ™ cosm (¥ ct),
the arbitrary constants being omitted. Substituting these values in the small terms of the preceding
equations, and integrating ~grin, we have ‘
£ =ae™ sin m (2 - ct) + mPa’cte

—-2my
]

p=ae™ cos m (z - ct). -

Hence the motion of the particles is the same as to a ‘rst approximation, witls one important
difference, which is that in addition to the motion of oscillation the particles are transferred forwards,
that is, in the direction of propagation, with a constant velocity depending on the depth, and
decreasing rapidly as the depth increases. If U be this velocity for a particle whose depth Lelow
the surface in eguilibrium is y, we have

2m\1i iny
U = m*a’ce*™ =a (7::) gae" P X ) B

~ The motion of the individual particles may be determined in a similar manner when the depth
is finite from (18). In this case the values of £ and 5 contain terms of the sccond order, involving
respectively sin 2m (v — ¢f) and cos 2m (z — ¢f), besides the term in ¢ which is multiplied by £
The most important thing to consider is the value of U, which is

ﬁszv—l)+e—2mwrh)

(G“h _ e—mﬁ)w

Since U is a small quantity of the order o, and in procceding to a second approximation the
velocity of propagation is given to the order a only, it is immaterial which of the definitions of
velocity of propagation mentioned in Art. 3, we please-to adopt.

Vor. VIII, ParT IV. 3 M

U =mta’c

e e——
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10, The waves produced by the action of the wind on the surface of ‘the sea do not probably
differ very widely from those which have just been considered, and \_vhich may b? .regarfled as
tae typical form of oscillatory waves. On this supposition the particles, in addition to their
metivn of oscillation, will have a progressive motion in the direction of propagation of the waves,
and consequently in the direction of the wind, supposing it not to have recently shifted, and this
progressive motion will decrease rapidly as the depth of the particle considered increases. If the
pressure of the air on the posterior parts of the waves is greater than on the anterior parts,
in consequence of the wind, as unquestionably it must be, it is easy to sce that some such pro-
gressive motion must be produced. If then the waves are not breaking, it is probable that equation
(23), which is applicable to decp water, may give approximately the mean horizontal velocity
of the particles; but it is difficult to say how far the result may be modifiec by friction. If
then we regard a ship as a mere particle, in the first instance, for the sake of simplicity, and put
U, for the value of U when y=0, it is easy to see that after sailing for a time ¢, the ship
mast be a distance Uy to the lee of her estimated place. It will not however be sufficient to
regard the ship as a mere particle, op 2ccount of the variation of the factor €%, as y varies from
0 to the greatest depth of the ship below the surface of the water. Let § be this depth, or rather
a depth something less, in order to allow for the narrowing of the ship towards the keel, and suppose
the effect of the progressive motion of the water on the motion of the ship to be the same as
if the water were moving with a velocity the same at all depths. and equal to the mean value
of the velocity U from y=0 to y=3. If U, be this mean velocity,

mate
Y

Uy =3 [Udy = < (1-3-""’).

On this supposition, if a ship be steered so as to sail in a direction making an angle § with the
direction of the wind, supposing the water to have no current, and if ¥ be the velocity with which .
the ship moves through the water, her actual velocity will be the resultant of a velocity V in
the direction just mentioned, which, for shortness, I shall call the direction of steering, and of
a velocity U, in the direction of the wind. But the ship’s velocity as estimated by the log-line
is her velocity relatively to the water at the surface, and is therefore the resultant of a velocity ¥V in
the dircction of stecring, and a velocity U, ~ U, in a direction opposite to that in which the wind
is blowing. If then E be the estimated velocity, and if we neglect 07,

E= V— (Uo- U]) coso-

But the ship's velocity is really the resultant of a velocity ¥V + U, cos @ in the direction of steering,
and a’ velocity U,sin@ in the Jperpendicular direction, while her estimated velocity is £ in the
direction of steering. Hence, after a time ¢, the ship will be a distance U,¢ cos @ ahead .of
her estimated place, and a distance U,#sin @ aside of it, the latter distance being measured in a
direction perpendicular to the direction of steering, and on the side towards which the wind is
blowing. ' .

I do not suppose that the prececing formula can be employed in practice; but I think it
may not be altogether useless to call attention to the importance of having regard to the magnitude
and direction of propagation of the waves, as well as to the wind, in making the allowance for
lee-way.

11, The formule of Art. 6 are perfectly general as regards the ratio of the length of the waves
to the depth of the fluid, the only restriction Leing that the height of the waves must be sufficiently
small tu allow the series to be rapidly convergent. Consequently, they must apply to the limiting
case, in which the waves are supposed to be extremely long.  Hence long waves, of the kind
considered, are propagated without change of form, and the velocity of prepagation is independent
of the height of the waves to a second approximation. Thesc conclusions might scem, at first siglt,
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at variance with the results.obtained by Mr. Airy for the case of long waves®. On proceeding
to a second approximation, Mr. Airy finds that the form of long waves alters as they proceed,
and that the expression for the velocity of propagation contains a term depending on the height
of the waves. But a little attention will remove this apparent discrepancy. If we suppose

mh very small in (1g), and expand, retaining only the most important terms, we shall find for
the equation to the surface

]
= ACOSMT — ———— €os M.
y amh? ’

Now, in order "that the method of approximation adopted may be legitimate, it is necessary that

. : . . . a
the coefficient of cos 2ma in this equation be small comjared with a. Hence ot and therefore
m*h

e o (AN ' .
- must be small, and therefore 7 must be small compar.d with (X) . But the investigation

of Mr. Airy is applicable to the case in which % 'S very larges so that in that investigation

n ! . AN . . ..

i large compared with ()—\) - Thus the difference in the results obtained corresponds to a
t

difference in the physical circumstances- of the motion:

12.  There is no difficulty in proceeding to the higher orders of approximatien, except wha
arises from the length of the formule. In the paticular case in which the depth {5 considered
infinite, the formuvle are very much simpler than in the gencral case, I shall proceed to the third
order in the case of an infinjte depth, so as to find in that case the most important term, depending
on the height of the waves, in the expression for the velocity of propagation.

For this purpese it will be necessary to retain the terms of the third order in the expansion

of (7). Expanding this equation according to powers of y, and neglecting terms of the fourth, &c.
orders, we have ,

£P= "+ @b~ Py + (g9, - ") %' +2c(P'¢" +¢,9,))
+2c(P,/ "+ ')+ D, P+ ¢,0.))y - ¢ ¢ - 2¢'¢p, ¢, - ¢j’¢u =o. ceeeee (25).

In the small teri.s of this equation we must put for ¢ and y their values given by (21) and (29)

: Yoo £k . 13 . .
respectively,  Now siace the value of ¢ to a second approximation is the same as its value to
a first approximation, the cquation o — c"'gb"= 0 is satisfied to terms of the second order. DBut

. y . . ] :
the coefficients of y and S in the first line of (25), are derived from the left-hand member of

the preceding equation by inserting the facior € ", differentiating cither once or twice with
respect to y, and then putting y = o, Conscquently these coefficients contain no terms of the

second order, and thercfore the terins involving y in the first line of (25) are to be neglected.

d
. . o . ’
The next two terms are logcthm equal to ¢ ;1—1: ((pa +‘/’1’)- But
¢12 + q)lt = m?q? c:'
which does not contain 2, so that these two terms disappear.  The coefficient of ¥ in the

seccond line of (25) may be derived from the two terms last considered in the manner already
indicated, and therefore the ferms containing y will disappear from (25). The only small terms

* Encyclopandia Metropolitana, Tides and ""’arcs, Articles 148, &«
' 3me

/
/

/

- /

7

.
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remaining are the last three, and it will easily be found that their sum is equal to m*a3¢*sin ma, so

that (25) becomes »
g0, - @ +ma’c’sin mr =0...cc.ennnnnn.... (26).

'The value of ¢ will evidently be of the form A e sinma. Substituting this value in (26),
we have '
(m*c* - mg) 4 + m*a’c = 0.
Dividing by m4d, and putting for o and ¢* their approximate values —ac, g respectively in
m

the small term, we have .
me* = g + m*alg,

; .' _(g)} ) - gr "( 2""“’)
whence c (m) (l + 4 mia (27r) 1+ )

The equation to the surface may be found without difficulty. It is
y=acosmr — tma*cos2ma + Fm*a®cos Smat,.eueninennnn (27):
we have also k=0, ¢p=—ac(l - §m*a®) e™sinma.

The following figure represents a veitical section of the waves propagated along the surface
o q ] . . C TN . o3
of deep water. The figure is drawn for the case in which a = " The term of the third order

in (27) is retained, but it is almost insensible. The straight line represents a section of the plane
of mean level, . . e .

- /\\//\v/’\\

13. If we consider the manner in which the terms introduced by each successive approximation
enter into equations (7) and (8), we shall sce that, whatever be the order of approximation, the
series expressing the ordinate of the 3urface will contain only cosines of mz and its multiples,
while the expression for ¢ will contain only sines. The manner in which y enters into the
coefficient of cos rmz in the expression for ¢ is determined in the case of a finite depth by
equations (2) and (3).” Moreover, the principal part of the coefficient of cos »ma or sin rmr will
be of the order a" at least. We may therefore assume

P =2"a 4,("PY 4 A=y sin rina,
y=acosme 3, a' B, cosrma,

and determine the arbitrary coefficients by means of equations (7) and (8), having previously
expanded these equations according to ascending powers of . The value of _c’ wili be determined .
by equating to zero the coefficient of sin ma in (7).
~ Since changing the sign of a comes to the same thing as altering the origin of @ by LA, itis
plain that the expressions for ,, B, and ¢* will contain only even powers of a. Thus the values
of each of these quantities will be of the fern ¢ + Cya* + Cy6* + ...

It appears also that, whatcver be the order of approximation, the waves will be symmetrical with
respect to vertical planes passing through their ridges, as also with respect to vertical planes
passing through their lowest lines.

® It is remnarkable that this equation coincides with that of the | sell to waves of the kind herc considered. Reports of the Rritish
prolate cycloid, if the latter equation be expanded according to | fssociation, Vol. v1, p. 448. When the depth of the fluid is not
ascending powers of the distance of the tracing point from the | great compared with the lergth of a wave, the form of the surface
centre of the rolling cirele, and the ierins of the jourth urder be | does not agree with the prolate cycloid even o a sccond approx -
cmitted, Tle prolate cycloid is the form assigned by Mr, Rus. | jmation,
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14. Let us consider now the case of waves propagated ai the common surface of two liquids,
" of which one rests cu the other. Suppose as Lefore that the motion is in two dimensions, that the
fluids extend indefinitely in all horizontal directions, or else that they are bounded by two vertical
planes parallel to the direction of propagation of the waves, that the waves are prepagated with
a constant velocity, and without change of form, and that they are such as can be propagated into,
or excited in the fluids supposed to have been previously at rest.. Suppose first that the fluids
are bounded by two horizontal rigid planes. Then taking the common surface of the fluids when
at rest for the plane 2, and employing the same notation as before, we have for the under fluid

&d : .
E£+(T_'/?=o’ tes 000 asassoseacsatonsoscsnnoe (‘.28),
do

v = 0 when y= &, (29),
¢

d
p=C+gpy+ep—,
ucglecting the squares of small quantities. Let %, be the dcpth‘ of the upper fluid when in equi-
librium, and let p,, p,, ¢, C, be the quantities referring to the upper fluil which correspond to
P> p» @, C referring to the under : then we have for the upper fluid

]

i %+dg¢’ R

=0 ceiesosen $90500000000000a0 000000 P TOIOP 0RO RIOERSS D
az T dy : (30).

d

_"Tq-"= 0 ‘Vhe" y:.: - h,.'c..c'oal.l.lll'.all.lal.-.-al.i...lla veae (31)}

d¢l

2,=C +gpy+cp, e

We have also, for the condition that the two fluids shall not penetrate into, nor separate from each
other, e

S = —’w]len := o-uoi;-tooc ----- ocuc-O.c...oo--.pcl--o‘--u-n--(sg)-
y Y

Lastly, the condition answering to (11) is

g (P % -p,%‘yk‘) -c (p‘;ig -p, 'fi‘f,) =0 tereerinnienienn. (38),

d¢ _ dg |
when C—~C + - +c( -+ - ——-‘) =0 cecinsrannss (34).
‘ ] g({’ Pl)y P d.T.' Pi d.z' ( ) '
Since C — C" is evidently a small quantity of the first order at least, the condition is that (53)
shall be satisfied when y = 0. Equation (84) will then give the ordinate of the common surface of
the two liquids when y is put = 0 in the last two terms.

"The general value of ¢ suitable to the present care, wiich is derived from (28) subject to the
condition (29), is given by (13) if we suppose that the fluid is free from a uniform herizontal motion
compounded with the oscillatory motion expressed by (18). Since the cquations of the present
investigation are lincar, in consequence of the omission of the squares of small quantities, it will be
sufficient to consider one of the terms in (13).  Let then -

Dl G R e W L O (.1:) )

oodb
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The general value of ¢, will be derived from (13) by merely writing — &, for k. But in order
that (32) may be satisfied, the value of ¢, must reduce itself to a single term of the same form as
the second side of (35). Ve may take then for the value of ¢,

BT W Colat U S el ) S F RN (86)..
Put.n'ng for shortness . _ o
G’M-{- e-mh= S, EM - e-mb = D,
and taking .5, D, to denote the quantities derived from &, D by writing &, for 4, we have from (32)
DA+ D, 4, = o (37),

amd from (83) ' , . -
P(gD=m*SY A '+p, (gD, +mPS) A, =0 .ccoevveunenrennnnn.. (38)
Eliminating 4 and 4, from (37) and (88), we have
S (p - Pl) DDI

= -b-ﬁ— ..... LR ( .
c T o ) CEESITI0E000 e IO \39).

The equation to the common surface of the liquids will be obtained from (34). Since the mean
value of y is zero, we have in the first place ' '

€= €ttt et seesseee s resenveseesneen (40),

We have then, for the value of g,

Y=GCOSMT oisreeninnrrennnnnncsonnanssinoonsonenssenssessesees (21),
where . - ' ' .
mep A,S,—pAS DD, p A S -pAS
& p-p ¢ pSD+pSD

a =

Substituting in (35) and (36) the values of 4 and 4, derived from (37) and (42), we have.

ae o . ' o
¢=- ) (" 4 D) SN M creeireiiraeeene e erienen. (43), S

¢, = g&”“"‘-*-‘" + €PN S0 M e eenae. (48).
,

Equations (39), (40), (41), (+3) and (44) contain the solution of the problem. It is evident that
C remains arbitrary. The values of p and P, may be easily found if required. .

If we differentiate the logarithm of ¢* with respect to m, and multiply the result by the product
of the denominators, which are necessarily positive, we shall find a quantity of the form Pp + Pp ,
where P and P, do not contain p orp,. It may be proved in uearly the same manner as in Art. 4,
that each of the quantities P, P, is nccessarily negative, Consequently ¢ will . decrease as m increases,
or will increase with A. It fellows from this that the value of ¢ cannot contain more than two
termis, one of the form (85), and the otker derived from (35) by replacing sin ma by cos ma, and
changing the constant A: but the latter term may be got rid of by altering the origin of «.

The simplest case to consider is that in which both & and A’ are regarded as infinite compared
with A.  In this case we have

¢ = —ace ™ sin m2, ¢, =ace™ sinma, = il 75 4 + Y = G cos M,
: ptp, ™

the latter being the equation to the .surface. .
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15. The preceding investigation applies to two incompressible fluids, but the results are
applicable to the case of the waves propagated along the surface of a liquid exposed to the air,
provided that in considering the effect of the air we neglect terms which, in comparison with those
retained, are of the order of the ratio of the length of the waves considered to the length of a wave
of sound of the same period in air. Taking then p for the density of the liquid, p, for that of the
air-at the time, and supposing &, = &, we have .

a:g-—(p-P')D=g-—D{l—(

1 D) P'} nearl
mpS+pD mS *F e’ S

“If we had considered the buoyancy only of the air, we should have had to replace g in the

formula (14) by PP, 8- We should have obtained in this manner

cEl-p)D ,éi’(, AN
. m S msS e/

Hence, in order to allow for the inertia of the air, the correction for buoyancy must be increased
' D . o .
in the ratio of 1 to 1 + 3 The whole correction therefore increases as the ratio of the length of a

wave to the depth of the fluid decreases. For very long waves the correction is that due to
buoyancy alone, while in the case of very short waves the correction for buoyancy is doubled.

Even iz this case the velocity of propagation is altered by only the fractional part & of the whole ;

and as this quantity is much less than'the unavoidable errors of observation, the cffcct of the air in
altering the velocity of propagation may be neglected.

16. There is a discontinuity in the density of the fluid mass considered in Art. 14, in passing
from one fluid into the other; and it is easy to show that there is a corresponding discontinuity in
the velocity. If we consider t+wu fluid particles in contact 'with each other, and situated on oppesite
sides of the surface of junction of the two fluids, we see that the velocitics of these’particles resolved
in a direction normal to that surface are the same; but their velocities resolved in a direction tan-
gential to the surface are different. These velocities are, to the order of approximation employed

. 0o d d - :
in the investigation, the values of -d—¢ and % when y =0. We have then from (48) and (44), for
& x R :

the velocity with which the upper fluid slides along the under,

mac S’ S) cos 3
(F,+D oS ma.

17. When the upper surface of the upper fluid is free, the equations by which the problem
is to be solved are the same as those of Art, 14, except thai the condition (31) is replaced by

do ~ &
g -i' - il =0, when y= — & ;.cceviieinrnnirnrnnnnss (45);

dy dx’

and to determine the ordinate of the upper surface, we have
d -
C,+gp,y + cp, -di;' =0,

where y is to be replaced by — %, in the last term. - Let us consider the motion corresponding to
the valuc of ¢ given by (35). We must evidently have
b, = (4,e"5 + B ") sin ma,
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where A,. and B, have to be determined. The conditions (32), (33) and (45) give
DA+ 4d,- B, =0,
pED-mSH A+ p,(g+mct)d, -p (g-mc) B, =0,

—mh . L3 - R
. (g +mc)e™™ 4, - (g —-mc?)™B, = 0.
Elimiriating A, 4, and: B, from these cquations, and putting
O 19 ,
m

we find e :
(eSS, +p,DD)* = p (8D, + SD){ +(p - p) DD, = 0. ... (6).

The equilibrium of the fluid being supposed to be stable, we must have p, < p. This being’
the case, it is casy to prove that the two roots of (46) are real and positive. These two roots
correspond to two systemns of waves of the same length, which are propagated with the same
velacity. '

In the limiting case in which Lo, (46) becomes

(] .

S8, = (5D, + SD){ + DD, = o,

D D . e e . .
the roots of which are — and !, as they evidently ought to be, since in this case the motion of

5 S,
the under fluid will not be afieccted by that of the upger, and the upper fluid can be in motion
by itself.
SD + 8D em(h«l-h,) — e-m(hfu
4 ’ or

A+A, - A)°
SS,+ DD, A moah)
The former of these roots corresponds to the waves propagated at the common surface of the fluids, .
while the latter gives the velocity of propagation belonging to a single fluid having a depth equal
to the sum of the depths of the two considered.

When o, = p one root of (46) vanishes, and the other becomes

4

D
When the depth of the upper fluid is considered infinite, we must put ?' =1 in (46), The

two roots of the equation so transformed arc 1 and {e-p)D
pS +pD

propagated at the upper surface of e upper floid, and the latter agrecing with Art. 15.

When the depth of the under fluid is considered infinite, and that of the upper finite, we
must put D =1in (46). The two roots will then becoma 1 and -(p———f—'i)—D—’ . The value of the

N _ pS,+p,D,

former root shows that whatever be the depth of the upper fluid, one of the two systems of
waves will always be propagated with the same velocity as waves of the same length at the sur-
face of a single fluid of infinite depth. ‘This result is truc even when the motion is in three
dimensions, and the form of the waves changes with the time, the waves being still supposed to
he such as cculd be excited in the fluids, supposed to have been previously at rest, by means of
forces applied at the upper surface, For the most general small motion of the fluids in this case
may be regarded as the resuliant of an infinite number of systems of waves of the kind con-
sidercd in this paper. It is remarkable that when the depth of the upper flaid is very great, the
root { =1 is that which corresponds to the waves for which the upper flaid is disturbed, while
the under is seusibly at rest; whereas, when the depth of the upper fluid is very small, it is the
other root which corresponds to those waves which are analcgous to the waves which would
he propagated in the upper fluid if it rested on a rigid plane,

s the former correspending to waves
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When the depth of the upper fluid is very small compared with the length of a wave, one ﬂ
of the roots of (16) will be very small; and if we neglect square and products of mk, ard {, the ‘\
cquation becomes 2 pDZ ~2(p —p)mh, D =0, whence |

{ = P—;—’i’mh,, e = ﬂ%ghl. NSNS (4:74)

‘These formule will not hold good if mA be very small as well as mk,, and comparable with it,
since in that case all the terms of (46) will be small quantities of the second order, m#, being
regarded as a small quantity of the first order. In this case, if we neglect small quantities of the
third order in (46), it becomes :

4pt—4mp (b + hf) {+4(p—p)mhh, =0,

»

whence ¢* s g{h +hE '\[(h -hk)+ %kh‘} (48).

Of these values of ¢ that in which the radical has the negative sign belongs to that system of
waves to which the formulw (47) apply when &, is very small compared with A.
If the two fluids are water and mercury, L s equal to about 13.57. If the depth of the

water be very small compared both with the length of the waves and with the depth of the
mercury, it appears from (47) that the velocity of propagation will be less than it would have
been, if the water had rested on a rigid plane, in the ratio of .9624 to 1, or 26 to 27 nearly.

G. G. STOKES.

Vor. VIII. I’art IV. o SN




