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A mechanism for electron transfer reactions is described, in 
which there is very little spatial overlap of the electronic orbitals 
of the two reacting molecules in the activated complex. Assuming 
such a mechanism, a quantitative theory of the rates of oxidation
reduction reactions involving electron transfer in solution is 
presented. The assumption of "slight-overlap" is shown to lead to 
a reaction path which involves an intermediate state X* in 
which the electrical polarization of the solvent does not have the 
usual value appropriate for the given ionic charges (i.e., it does 
not have an equilibrium value). Using an equation developed else
where for the electrostatic free energy of nonequilibrium states, 
the free energy of all possible intermediate states is calculated. 
The characteristics of the most probable state are then deter
mined with the aid of the calculus of variations by minimizing its 
free energy subject to certain restraints. A simple expression for 

INTRODUCTION 

DURING recent years oxidation-reduction reac
tions involving the transfer of an electron between 

the reactants have been the subject of many kinetic 
studies.1 Several generalizations may be drawn from 
this data. For example, it was found that isotopic ex

change reactions between ions~differing only in their 
valency are generally slow if simple cations are involved 

and fast if the ions are relatively large, such as com
plex ions. 

This behavior has been qualitatively explained by 
Libby2 on the basis of related ideas of Franck, applying 
the Franck-Condon principle. The degree of orientation 
of the solvent molecules toward an ion greatly depends 
on the charge of that ion. For a given ion, it will there
fore be different before and after this ion undergoes an 
electron transfer. Libby observed that the solvent 
molecules near the reacting ions cannot adjust them
selves immediately to the change in ionic charges result
ing from an almost instantaneous electronic jump. A 
state of high energy, he suggested, is therefore produced. 
Such a barrier to reaction would be greater for small 
ions, since they are more highly solvated than large ones. 
This conclusions is in agreement with the fact that in 
most cases the smaller ions react more slowly in these 
isotopic exchange redox reactions. 

Another observation which can be drawn from a 

*This research was supported in part by the Office of Naval 
Research under Contract No. Nonr839(09). Reproduction in 
whole or in part is permitted for any purpose of the U. S. Govern
ment. 

1 See review articles: Zwolinski, Marcus (Rudolph J.), and Ey
ring, Chern. Revs. 55, 157 (1955); C. B. Amphlett, Quart. Revs. 8, 
219 (1954); 0. E. Myers and R. J. Prestwood, Radioactivity Applied 
to Chemistry, edited by Wahl and Bonner (John Wiley and Sons, 
Inc., New York, 1951), Chap. 1 ; Betts, Collinson, Dainton, and I vin, 
Ann. Repts. on Progr. Chern. (Chern. Soc. London) 49, 42 (1952); 
R. R. Edwards, Ann. Revs. Nuclear Sci. 1, 301 (1952); M. 
Haissinsky, J. chim. phys. 47, 957 (1950); and recent reviews in 
Ann.Rev.Phys.Chem. 

2 W. F. Libby, J. Phys. Chern. 56, 863 (1952). 

the electrostatic contribution to the free energy of formation of 
the intermediate state from the reactants, !J.F*, is thereby obtained 
in terms of known quantities, such as ionic radii, charges, and the 
standard free energy of reaction. 

This intermediate state X* can either disappear to reform the 
reactants, or by an electronic jump mechanism to form a state X 

in which the ions are characteristic of the products. When the 
latter process is more probable than the former, the over-all 
reaction rate is shown to be simply the rate of formation of the 
intermediate state, namely the collision number in solution multi
plied by exp(-!J.F*/kT). Evidence in favor of this is cited. In a 
detailed quantitative comparison, given elsewhere, with the 
kinetic data, no arbitrary parameters are needed to obtain reason
able agreement of calculated and experimental results. 

summarf of data on isotopic exchange reactions having 
simple mechanisms is that the entropy of activation of 
such reactions is large and negative. It is of interest 
that all these reactions were between ions of like sign. 
It was assumed3 that a reorganization of the solvation 
atmospheres about the reacting ions occurred prior to 
reaction, but it was believed that this would con
tribute a positive term to the entropy of activation. It 
was suggested that the reorganization would involve 

a partial "melting" of the solvent attached to the ions, 
and that this would involve an increase in entropy. 
To explain the observed entropy of activation there 
would have to be a larger, negative term. It was sug
gested that this term was due to the low probability of 
an electron tunnelling4 through a solvation barrier, 
from one reactant to the other in the intermediate state. 
However, several aspects of this interesting treatment 
are open to question. 5 In fact, using the values given 

a Marcus (Rudolph].), Zwolinski, and Eyring, J. Phys. Chern. 58, 
432 (1954). These authors summarize some of these data in their 
Table I. In Table II, reactions are given having apparent positive 
entropies of activation. However, in at least all but one of the 
reactions in Table II the mechanism is complex and the concen
trations of the actual reactants are unknown. Accordingly, the 
so-called entropies of activation of such reactions have no im
mediate theoretical significance. The lone possible exception, 
incidentally, does not involve reacting ions of like sign. 

4 J. Weiss, Proc. Roy. Soc. (London) A222, 128 (1954), has also 
discussed the electronic jump process. Unlike reference 3 the 
necessity for the reorganization of the solvent occurring prior 
to the electronic transition was not considered there. 

6 The mechanism used there was incomplete in that only one 
fate of the intermediate state in the reaction was considered. 
It was tacitly assumed that this state involving the reorganized 
solvent could only produce products, but not reform the reactants. 
(The former would occur by an electron jump process, the latter 
by a disorganizing motion of the solvent.) It is shown later that 
this omission can significantly affect the role played by the 
electronic jump process. 

The number of times per second that the electron in one of the 
reactants struck the barrier was not included in the over-all calcu
lation. Effectively, this made electron tunnelling appear about one 
thousand-fold less frequent than would otherwise have been 
estimated. 
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there for the probability of electron tunnelling and 
using the detailed treatment given in the present paper, 
a different conclusion will be drawn about the origin 
of the observed entropy of activation. 

An object of the present paper is to devise a method 
of calculating the free energy of reorganization of the 
solvent molecules about the reactants prior to the 
electronic jump process, and from this to develop a 
quantitative theory of electron transfer reactions. 

THEORETICAL 

General 

In most bimolecular reactions, appreciable changes in 
various interatomic distances within each molecule 
generally occur during the course of a collision. The 
potential energy of this system, arising from the stretch
ing and compression of various chemical bonds, usually 
passes through a maximum in the collision. The con
figuration of the atoms at the maximum is the well
known activated complex, and a detailed knowledge 
of it permits an a priori calculation of the reaction rate. 

In most reactions there usually is a transfer of atoms 
or groups of atoms between the reactants, and a rear
rangement of atoms within each reactant. In order for 
this to occur, there presumably must be a strong inter
action of the electronic structures of the two reactants 
in the activated complex. That is, there would be a 
considerable spatial overlap of the electronic orbitals of 
the two reacting molecules in this complex. 

In contrast to such reactions, some reactions may 
merely involve the transfer of an electron between the 
reacting molecules. For such reactions to occur, only 
a slight overlap of the electronic orbitals is perhaps 
necessary. Only a slight electronic interaction may be 
sufficient to electronically couple the two molecules and 
permit the electron transfer to occur. If this is indeed 
the case, then its consequences are far-reaching. In 
the present paper a quantitative theory for electron 
transfer reactions will be developed on the basis of the 

assumption that there is little overlap of the electronic 

orbitals of the two reacting particles in the activated 

complex. The final formula of this paper is therefore not 

applicable to any electron transfer reaction having a 

large-overlap activated complex. 

Electronic Configuration of the Activated Complex 

Just before a collision the electronic configuration of 
the reacting pair of molecules is the same as that of 

reactants. Just after a successful collision, their elec
tronic configuration is the same as that of the products. 

The electronic configuration of the intermediate stage 

in the reaction, i.e., of the activated complex, is pre

sumably of an intermediate nature. We may readily 

determine it for activated complexes in which there is 

but slight overlap of the electronic orbitals of the two 

reacting particles. 

One may write down Schrodinger's wave equation, 
describing the wave function cf> of the electrons of the 
reacting particles in the activated complex, taking into 
account their interactions with each other and with all 
the solvent molecules. Let us consider first any given 
configuration of all the atoms in the system, i.e., of 
the atoms of the two reacting particles and of the sol
vent. If there were no overlap of the electronic orbitals 
of the two reacting particles there would be no elec
tronic interaction of the two molecules. Therefore an 
exact solution of the wave equation would then simply 
be that wave function which characterizes the electronic 
configuration of the two reactants when they are far 
apart in the solvent. For the given atomic configura
tion of the reacting particles, let us denote this wave 
function by cf>x*· Again, an equally valid solution to 
the wave equation would be that which characterizes 
the electronic configuration of the two products when 
they are far apart in the solvent. For the given atomic 
configuration of the reacting particles, let this function 
be cf>x· In the case of weakly interacting electronic 
orbitals of the two reacting particles the linear com
bination (cf>x+ccf>x•), where cis a constant, would be the 
appropriate wave function for the activated complex, 
but not cf>x or cf>x• alone. It can be shown6 that this is the 
appropriate solution for weakly interacting orbitals 
only if the total energy of the system is the same for each 
of electronic configurations cf>x and cf>x* in any given 
atomic configuration. 

Presumably, in our activated complex the two elec
tronic configurations, cf>x and cf>x•, make equal contribu
tions to the total wave function. The important thing, 
however, is that for every atomic configuration of the 
activated complex the total energy of a hypothetical 
system having the electronic configuration of the 
reactants (cf>x•) must be the same as that of a hypo
thetical system having the electronic configuration of 
the products (cf>x). Since this is a thermodynamic sys
tem, there will be many atomic configurations of all the 
solvent molecules and of the reacting pair of molecules 
in the activated complex which will conform to this 
energy restriction. Thus, the energy in a thermo
dynamic sense, which is the average of the energies 
of all the suitable atomic configurations, must be the 

same for both electronic configurations. These two 

hypothetical thermodynamic states of the system will 

be called the intermediate states, X* and X. 

6 The Schrodinger equation can be written as H¢=E</>; E is the 
energy of an atomic configuration. The Hamiltonian operator H 
includes terms expressing the interaction of the electrons and 
nuclei of the reacting particles with each other and with the solvent 
molecules. In the case of no overlap, cf>, and cf>,• were shown to be 
solutions to this wave equation. Let their corresponding energies 
beE, and E,•, respectively, so that we have: llcf>x=Excf>x and 
llcf>x•=E,•cf>x*· If c is any constant, a linear combination of cf>x 
and cf>,• is (cf>x+ccf>,•). When introduced into the wave equation 
this yields: H(<Px+ccf>x•)=Exc!>x+E,•ccf>,•. Only when Ex equals 
Ex• is the right-hand side equal to E,(cf>,+ccf>,•). That is, only 
under these conditions does (cf>,+ccf>x*) satisfy the equation 
llcf>=E¢. It is also seen that for such a linear combination, the 
total energy E equals E, and therefore Ex•. 
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These considerations of the energy restriction are 
amplified later in an application of the uncertainty 
principle to a discussion of the validity of assuming a 
small-overlap activated complex. 

The total energy condition can readily be shown to 
place a severe restraint upon the solvation of the 
activated complex. The degree of orientation of the 
solvent molecules about any ion will strongly depend 
on its charge. Accordingly, the equilibrium set of con
figurations of all the atoms of the solvent in the neigh

borhood of the reacting particles will greatly depend on 
whether these particles have the ionic charges of the 
reactants or of the products. Now the average configura
tion of the solvent was seen to be the same in the two 
states, X* and X. These states differ in the charges of 
the reacting particles. Therefore, the average configura
tion of the solvent in the activated complex cannot be 
an equilibrium one. (In this respect it differs from the 
large-overlap complex, as discussed in a later section.) 
The average configuration of the solvent in the activated 
complex must also be such as to satisfy the energy 
restriction noted earlier. That is, in the activated com

plex the solvent configuration must be such that the 
total energy of the system, solvent plus reacting par

ticles, must be the same, regardless of whether these 
particles are the reactants or the products. 

It is of interest that the foregoing discussion can be 
rephrased in terms of the Franck-Condon principle: 
When one electron configuration is formed from the 
other by an electronic transition, the electronic motion 
is so rapid that the solvent molecules do not have time 
to move during the electronic jump. That is, the reac
tion proceeds by way of two successive intermediate 
states, X* and X, which have the same atomic con
figurations but different electronic configurations. Con
servation of energy leads to the requirement that the 
total energy of these two states must be the same. 

The electronic wave function of the activated com

plex derived previously, a linear combination of cf>x• 
and cf>x, admits of a simple interpretation. The function 
is a function of the position coordinates of all the elec
trons of the two reacting particles. It can be plotted in a 
many-dimensional space as a function of all these co
ordinates. In such a plot cf>x• will be large in certain 
regions of this many-dimensional coordinate space, 
and cf>x will be large in other regions. The function 
cf>x• will be large when the coordinates of all the electrons 
are such that the number of electrons in the vicinity 
of each of the reacting particles is the same as when these 
particles are reactants. Since the electrons are indis
tinguishable there will be a number of such regions in 
the many-dimensional space. Similarly, cf>., will be large 
when the number of electrons in the vicinity of each 
of the reacting particles is the same as when these 
particles are products. Again there will be a number of 
such regions. The wave function for the activated 
complex, being a linear combination of these two wave 
functions, is large in all these regions. The reaction 

ultimately involves going from the regions character
istic of cf>x• to those characteristic of cf>x· 

Since the wave function is the sum of two wave func
tions, each corresponding to a different electronic con
figuration, we can also interpret the wave function as 
representing a quantum-mechanical resonance of two 
electron configurations, one being the electronic con
figuration of the reactants, the other that of the 
products. 

Inasmuch as there will be some overlap of the elec
tronic orbitals of the two reactants, the description of 
the activated complex given in this section is but a first 
approximation, which is the better the less the overlap. 

Reaction Scheme 

The occurrence of a small overlap in the activated 
complex introduces another consideration which is 
normally not present in the usual large-overlap acti
vated complexes. Since the electronic interaction be
tween the reacting particles in a small-overlap complex 

is weak, the rate at which this electronic interaction can 
effect any change of electronic configuration may be
come a slow step in the over-all process. We can envisage 

the over-all reaction as occurring in the following way. 
As the two reactants approach each other there is a 
certain probability that a suitable fluctuation of the 
solvent molecules which satisfies the restriction de
scribed in the previous section will occur, such that 
an activated complex could be formed. An electronic 
interaction of the reacting particles could then result 
in the correct electronic configuration of the activated 
complex. A theoretical treatment of this aspect of the 
problem could involve the use of several quantum
mechanical methods including the use of time-dependent 
perturbation theory2

•
6

a or electron tunneling formulas.3
•
4 

We shall return to this later. We can suppose, then, 

that when the reactants are near each other a suitable 

solvent fluctuation can result in the formation of the 

state, X*, whose atomic configuration of the reacting 

pair and of the solvent is that of the activated complex, 

and whose electronic configuration is that of the re

actants. This state X* can either reform the reactants 

by disorganization of some of the oriented solvent 

molecules, or it can form the state X by an electronic 

transition, this new state having an atomic configura

tion which is the same as that of X* but having an 

electronic configuration which is that of the products. 

The state X can either reform X* by an electronic 

transition, or alternatively, the products in this state 

can merely move apart, say. 

The pair of states X* and X constitute the activated 

complex. If the electronic interaction between them 

were large, the formation of one from the other would 

be very rapid and one need then not speak of them 

•• L. Pauling and E. B. Wilson, Introduction to Quantum Me
chanics (McGraw-Hill Book Company, Inc., New York, 1935). 
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separately. An analogous situation also arises in very 

different reactions, such as some cis-trans-isomerizations 

in which spin-conservation requirements can cause the 

effective electronic interaction to be very weak.7 

It may also be remarked that the term activated com

plex was defined earlier in the usual way as the atomic 

configuration at the potential energy maximum along 

the reaction coordinate. This does not mean, however, 
that the reaction rate can be calculated in the usual 

way simply by calculating the free energy of formation 

of the activated complex from the reactants and intro

ducing this into the well-known absolute reaction rate 

theory formula7 for the rate constant. Instead, the 

present reaction has been shown to consist of several 

elementary steps, several of which may be slow. In 

such cases the rate constants of all the elementary steps 

must be evaluated individually, and for this purpose, 

too, the absolute rate theory formulas will not be used 

as such. 

The reaction scheme described above can be written 

as the sequence Eqs. (1) to (3). In this treatment it is 

not necessary that all of the reactants or products have 

charges. In this reaction sequence A and B will denote 

the reactants involved in the electronic transition. 

kl 

A+B~X* (1) 
k-1 

t2 

X*~ X (2) 
k-2 

k3 

X ~products. (3) 

The reverse step of (3) does not have to be consid

ered, even though it may occur when the concentration 

of products is appreciable, since we are only interested 

here in calculating the rate constant of the over-all 

forward reaction. The rate constant for the over-all 

backward reaction could then be calculated from this 

with the aid of the equilibrium constant for the over-all 

reaction. 

The sequence (1) to (3) will in many cases represent 

the complete reaction. In more complex systems, how

ever, A and B may not be the actual compounds intro

duced into the reaction system, but would be the active 

entities formed from them. The over-all rate of this 

reaction sequence will be written as kb;CaCb where 

c's denote concentrations and kb; is the observed rate 

constant of this reaction sequence. According to Eq. 

(3), the rate is also given by k3cx. We may therefore 

write 

(4) 

7 Glasstone, Laidler, and Eyring, The Theory of Rate Processes 
(McGraw-Hill Book Company, Inc., New York, 1941). 

The steady-state equations for the concentrations of 

X* and of X, Cx• and c,, are given by Eqs. (5) and (6). 

Introducing into Eq. (4) the value obtained for c, 
by solving these simultaneous equations, we find 

The various rate constants appearing in this expres

sion for the over-all rate constant, kb;, will be esti
mated in the present paper. It is shown later that 

when the forward step in reaction (2) is more probable, 

or about as probable, as the reverse step in reaction (1), 
Eq. (7) reduces to a particularly simple form (neglect
ing factor of about two, which is of minor importance): 

(8) 

Otherwise, Eq. (7) would be used. Equation (8) will 

be used extensively in correlating observed and calcu

lated rates of oxidation-reduction reactions. 

We proceed now to estimate the properties of the 
intermediate states X* and X, in order to be able to 
calculate their rate of formation. 

Solvation of Activated Complexes 

As noted earlier, in the activated complex all the 
solvent molecules are oriented in some nonequilibrium 

configuration. This is in marked contrast to what is 

usually assumed for large-overlap activated complexes. 

In the latter, the solvent configuration is assumed to be 

in equilibrium with the ionic charges of the activated 

complex. For example, it is generally assumed that the 
electrical polarization of the solvent at any point can 

be calculated from the dielectric constant and the ionic 

charge and radius of the complex, by standard electro
static procedures. It is usually assumed, for example, 

for purposes of calculating the free energy of solvation 

of the complex, that the complex can be treated as a 
sphere having a charge equal to the sum of the charges 

of the reactants. 7 This theory has proved very useful 

in interpreting the effect of dielectric constant on the 

reaction rate. However, we have seen that such a 

description would be quite inapplicable to electron 

transfer reactions in which the overlap of the electronic 
orbitals of the two reacting particles is small in the 
activated complex. 

In order to calculate the thermodynamic properties, 
such as the energy, of the intermediate states X* and X 

it is necessary to use expressions which do not assume 
that the solvent molecules are oriented toward the ions 

in an equilibrium manner. More explicitly, the electrical 
polarization of the solvent at each point is not in elec-
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trostatic equilibrium with the electrical field produced 

by ionic charges. That is, it cannot be predicted from 

the known ionic charge distribution by standard meth

ods. Recently, however, a method for calculating the 

thermodynamic function of such systems was devised8 

and will be used to calculate the free energy of forma
tion of the intermediate states X* and X from the 

reactants. 
There are an infinite number of pairs of (thermo

dynamic) intermediate states, X* and X, just as there 
are an infinite number of thermodynamic states of any 

system, each pair satisfying the energy restriction 

described earlier. Actually it is the most probable pair 

of intermediate states which constitutes the activated 

complex. The most probable pair of intermediate states 

can be determined with the aid of the calculus of varia
tions by minimizing the free energy of formation of X* 

from the reactants subject to the energy restriction 

found earlier, that is, subject to the restriction that 
X and X* have the same total energy. This mini

mization procedure serves to determine the electrical 

polarization of the solvent at each point of the system 

in the intermediate state. This can be used to calcu

late the free energy of formation and rate of formation 

of the intermediate state from the isolated reactants 

in the medium. 

A Model for the Reactants 

The model which will be used for the structure of the 

reactants will be closely akin to that which is generally 

employed in the treatment of ionic interactions. It will 

be assumed that each reactant may be treated as a 

sphere, which in turn may be surrounded by a concen
tric spherical region of saturated dielectric,9 outside of 

which the medium is dielectrically unsaturated. 

We let the sphere bounding the saturated region 

have a radius a. The radii, a1 and a2, for the two reac
tants could change somewhat when the two ions 

approach each other though this effect is invariably 

ignored in the treatment of ionic interactions and will 
be ignored here. For a given element of the Periodic 

Table it will also depend to some extent on the valence 

of the ion. In the case of monatomic ions, however, a is 

generally assumed to equal the sum of the crystal

lographic radius and the diameter of a solvent molecule, 

since only the innermost layer of solvent molecules is 
usually assumed to be saturated.9 However, since the 

crystallographic radius varies relatively little with the 
valence of the ion,10 a would be expected to vary but 

little with the ion' valence. A refinement of the present 

s R. A. Marcus, J. Chern. Phys. 24, 979 (1956). 
9 Numerous theoretical treatments of the free energy of solva

tion which have assumed this model include: (a) J.D. Bernal and 
R. H. Fowler, J. Chern. Phys. 1, 515 (1933); (b) D. D. Eley and 
M. G. Evans, Trans. Faraday Soc. 34, 1093 (1938); (c) E. J. W. 
Verwey, Rec. trav. chim. 61, 127 (1942); (d) R. W. Attree, 
Dissertation Abstr. 13, 481 (1953). 

10 This is especially true when the valence of the ion before and 
after the reaction differs by only one unit. This will be shown to 
be the case of greatest interest, in later applications of this paper. 

treatment would take this variation into consideration. 

In general when a is slightly different before and after 

the electron transfer reaction a mean value for it will 
be adopted. To sum up we shall suppose that the region 

inside a sphere of radius a about a reactant is rigid, 

all groups within a being fully oriented (saturated 

dielectric). A refinement of this assumption of constant 

a will be described in a later paper of this series. 

The usual treatment of ionic interactions assumes 

that the free energy of interaction of two ions of 

charges q1 and q2 a distance R apart in a medium of 

dielectric constant D is q1q2/ DR. This implies several 

assumptions11
•
8 and we shall make analogous ones in 

the present treatment. We shall treat an ion plus its 

rigid, saturated dielectric region as a conducting sphere 

of radius a. Now the free energy of the entire system is 

the sum of several contributions; one is the free energy 

of interaction of all the atoms within one sphere with 

each other and with the central ionic charge in that 

sphere. A second is the free energy of interaction of all 

the atoms within the sphere about the second reactant 

with each other and with the central ionic charge of the 

second reactant. A third is the free energy of interaction 
of all the molecules outside of the two spheres with 

each other and with the charges of the spheres. A fourth 

is the interaction of the two ionic spheres with each 

other. As in the treatment of ionic reactions which 

employs the q1q2/DR law, we observe that if, as as

sumed, the atoms in the spheres are not to change their 

average positions during the mutual approach of the 

ions, the first two contributions to the free energy will 
remain fixed and, therefore, not contribute to the free 

energy of formation of the state X* from the reactants, 

and similarly will not contribute to the free energy of 

formation of the products from the state X. The re

maining two contributions to the free energy are calcu

lated, as previously observed, by treating each ion plus 

saturated sphere as a conducting sphere of radius a. 

We proceed to consider the properties of the dielectric, 

assumed unsaturated,9 outside of these saturated spheres. 

Electrostatic Characteristics of the Activated 
Complex 

As noted previously, each of the intermediate states 

X* and X, can be treated as a macroscopic system 

having a definite value of the electrical polarization of 

the medium at each point of the system. The primary 
problem then becomes one of determining this polariza

tion function in these two intermediate states, in the 

volume outside of that occupied by the two reactants 
plus saturated spheres. 

The polarization of any dielectric medium is generally 

regarded as consisting of electronic, atomic, and orienta
tion contributions. As observed previously, the two 
intermediate states X* and X have similar configura
tions of all atomic nuclei in the system. Since the atomic 

11 SeeR. Platzman and J. Franck, Z. Physik 138, 411 (1954). 
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and orientation polarization are associated with the 
polarized motion of the nuclei, the first being associated 

with the relative positions of the atoms within a mole

cule and the second with the orientation of the molecule 
as a whole, we see that each of these two contributions 

will be the same in both intermediate states, X* and X 

The electronic polarization, on the other hand, is asso

ciated with the electronic motion of the solvent's 

molecules. Just as the electronic structure of either 

reacting particle differs in states X* and X, the elec

tronic polarization can differ, and is presumably that 

which is produced by the electric field generated by 

the ionic charges plus the atomic and orientation 
polarization. 

It is seen that in the intermediate states X* and X, 

the electrical polarization of the medium can be classi

fied into two types. One type, which is the electronic 

polarization in the present case, varies with position 

in a way dictated by the local electric field strength. 

That is, it is in "electrostatic" equilibrium with the 

field. The other type, which is atomic plus orientation 

polarization in the present case, is independent of the 

local electrical field strength, i.e., it is not in electro

static equilibrium with it. These two types of polariza
tion were termed8 E-type and U-type, respectively. At 

any point in the system outside of the two spheres 

occupied by the saturated dielectric let these types of 
polarization have a magnitude and direction given by 

the vectors P .(r) and P u(r), respectively, where the 

coordinates of the point are indicated by the vector r 

drawn from any arbitrary origin to the point. As ob

served previously the intermediate states X* and X 

have the same vector point function, P u(r), but will 

have different values of the function P.(r). The total 

polarization P(r) at any point is the vector sum of these. 

P(r)= P.(r)+ P u(r). (9) 

As observed previously, the medium outside of the 

two saturated spheres is assumed to be unsaturated. 

Accordingly outside of these spheres P .(r) is at each 
point proportional to the electric field strength E(r). 

On the other hand P,.(r) is unrelated to E(r) in these 

nonequilibrium states. We shall let 

P.(r)=a.E(r) (10) 

where a. is the polarizability associated with the E-type 

polarization. 
In treating the electrostatic behavior of states in 

which all or part of the polarization is not in equilibrium 

with the electric field produced by the charges in the 
system, a vector Ec was defined. 8 This is the electric 
field strength which the spheres would exert if they 

were in a vacuum rather than in a polarized medium. 

It is given by Eq. (11). 

{ f

p(r)dV fu(r)dS } 
Ec(r') =- Vr' --+ --

1 r- r' I I r- r' I 
(11) 

where p(r) and u(r) denote the volume and surface 
charge densities in the system, and where the subscript 

r' on the gradient operator Vr' indicates differentiation 

with respect to the coordinates of r'. The first integral 
is over the entire volume of the system, and the second 

integral is over every surface present. An ion, for ex

ample, is generally treated as a sphere bearing a uniform 

surface charge density. 

In any system, equilibrium or not, it was observed8 

that the potentiall/t(r') at any point r' in the system 

depended on the polarization, P, and the vector, Ec, 
according to Eq. (12). 

1/t(r')=f(P-Ec/47r)·V-
1
-dV (12) 

lr-r'l 

where only in an equilibrium system can P be im

mediately expressed in terms of the electric field 

strength, E. In the absence of dielectric saturation 

(outside the region occupied by the two spheres) the 

relation between P and E is given by Eq. (13), since 

E(r) is -w. 
P(r)=aE= -aVl/t (13) 

where a is the total polarizability of the medium. The 

values of Ec, P ., P u, P, and E which obtain in the 
intermediate state X* will be designated by an asterisk, 

while those characteristic of state X will bear no 

asterisk. Since the U-type polarization is the same in 

both states, P" * equals P u· 

The electrostatic free energy of any state is generally 

defined as the reversible work required to charge up 

that state. Expressions have been derived elsewhere8 

for the electrostatic free energy of nonequilibrium 

systems of the type discussed here. Using the results 
given by Eq. (25) of reference 8 we have for the electro

static free energy of states X* and X. 

1 {E*
2 (p )} F*=;J ~ -P*·Ec*+Pu· a: -E* dV (14) 

(15) 

where the dot, ·, denotes the dot product of two vectors 

and where au is the polarizabi-lity for the U-type polar

ization. This can be expressed8 in terms of the static 

dielectric constants D. and optical dielectric constant 

Dop (i.e., the square of the refractive index in the 

visible region of the spectrum, say): 

(16) 

For water as solvent, D. and Dop equal 78.5 and about 
1.8, respectively, at 25°C. The electrostatic contribution 
D.F* to the free energy of formation of the intermediate 
state X* from the reactants may be found by sub

tracting from F* the reversible work, W; •• •·, say, 
required to charge up the spheres when they are iso-
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lated (i.e., far apart) in the dielectric medium. 

tlF*=F*- W; •• •*. (17) 

Similarly, the electrostatic contribution to the free 
energy of formation of X from the products is F minus 
the work W; •• • required to charge up the isolated 
products in the medium. 

Before applying these considerations to the de
termination of the solvent polarization in the inter
mediate state, the restraint imposed by the fact that the 
states X* and X have the same total energy and the 

same P" ( r) will be examined in greater detail. 

Restraint Imposed upon the Activated Complex 

As observed previously, the intermediate states X* 
and X will have the same total energy. Again, two 
states which have the same set of atomic configurations 
will also have the same entropy term arising from their 
atomic motions. (The magnitude of this entropy term 
has been discussed elsewhere. 8) In fact, their only 
difference in entropy will arise from a possible dif
ference in the electronic degeneracy between the 
products and the reactants, and will be denoted by 
tlS., say. If the product of the electronic degeneracies 
of each of the reactants is Q* and if that of the product 
is Q, then tlS. is given by Eq. (18). 

tlS.=k lnQjQ*. (18) 

Generally, tlS. will be equal to or essentially equal 
to zero. 

Since the energies of the states X* and X are the 
same and since their entropies only differ by an amount 
of tlS., it is seen that the free energy difference between 
the two states is - TtlS •. 

A common type of electron transfer reaction is one 
in which no valence bonds are broken in the reaction 
sequence (1) to (3). In many reactions of this nature 
corresponding valence bonds in the products and in the 
reactants are probably not appreciably different in 
length, so that they do not have to be stretched or 
compressed in the formation of the intermediate state. 
This rephrases in part what was previously stated, 
namely that in the present paper we will consider a 
reactant in which all atoms within the sphere of radius 
a maintain their same relative positions throughout the 
reaction. It is reactions of this type which will be 
treated in the present paper. A treatment of reactions 
which also involve bond ruptures or other changes in 
bond lengths will be described later. 

Because of this restriction the over-all standard free 
energy of formation of the products from the reactants 
can be written simply as the sum of three terms: the 
contribution (F*- W;./) to the free energy of forma
tion of the state X* from the reactants, the free energy 
change accompanying the formation of X from X*, 
which we have seen to be- TtlS., and the contribution 
to the free energy of formation of the products from the 

state X, - (F- W; •• •). There is one other term in
volved in the free energy of formation of X* from the 
reactants, which is associated with the fact that in the 
state X*, unlike the initial state in which the reactants 
are far apart, the relative motion of the centers of 
gravity of the two reactants is restricted. However, the 
corresponding free energy term, which is discussed 
later, is exactly canceled by a similar term in the free 
energy of formation of the products from the state X. 

It may be concluded that the standard free energy 
of reaction tlFO is given by Eq. (19). 

tlFO= (F*- W; •• •*)-TtlS.- (F- W;.o'). (19). 

The derivation of this equation is seen to include, 
and in fact to summarize quantitatively, the restraints 
imposed upon the two intermediate states. 

Minimization of the Free Energy Subject to the 
Free Energy Restriction, Eq. (19) 

It was observed in an earlier section that there are an 
infinite number of intermediate states X* and X which 
could satisfy the free energy restriction given by Eq. 
(19), each pair having the previously stated charge dis
tributions but a different vector point function, P ,.(r). 
The problem is to determine that pair which has the 

maximum probability of formation from the reactants, 
i.e., to determine the pair (X* and X) with minimum 

free energy, subject to the restraint on P,(r) imposed 
by Eq. (19). To do this the variation of the free energy 
of the state X* corresponding to a variation in the 
function P ,(r) is first computed. The computation is 
made at fixed charge distribution, so that the variation 
in E.*, oE.*, equals zero. The temperature is also held 
fixed. The only contribution to the free energy of forma
tion of the state X* from the reactants which can vary 
under these conditions is seen from Eq. (17) to be F*. 
Computing oF* from Eq. (14) we obtain 

lf{ 2P,. 
oF*=- -oP*·Ec*+-·oP .. 

2 au 

-Pu·oE*-E*·oPu }dv. (20) 

The quantity oP* which appears in Eq. (20) may be 
expressed in terms of oP" and oE* by introducing into 
this equation the analog of Eqs. (9) and (10) which 
obtains for state X*, 

P*(r) = P .,(r)+a.E*(r). (21) 

We obtain in this manner, 

oF*=~f{ ( -E/+
2
:"-E*)-oP,. 

- (a.E.*+Pu)·oE* }dv. (22) 
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The variations in P" and E* in this equation are not 

independent since the variation in P u throughout the 

medium will affect the variation in E* at any point. 

A relation between the integrals involving 5P,. and 5E* 

has been developed elsewhere. 8 Using this relation it 

has been shown in Eq. (40) of reference 8 that Eq. (22) 

of the present paper is equivalent to 

5F*= J (:: -E*) ·oP,.(r)dV. (23) 

The U-type polarization P ,.(r) in the most probable 

pair of intermediate states X*, and X, is to be deter

mined by setting oF* equal to zero. Accordingly, this 

P u(r) satisfies the relation, 

f (:uu- E*) •oP u(r)dV =0. (24) 

In passing it is observed that if there were no re

straints on oP u(r) the quantity in parentheses in Eq. 

(24) would be everywhere equal to zero, since the 

integral itself must equal zero for all arbitrary varia

tions, oP u(r). That is, we would obtain, as expected, 

Pu(r)=a,.E*, the equilibrium relation. However, in the 

present problem the variation oP,.(r) is to be performed 

subject to the restraint on P,.(r) expressed by Eq. (19). 

Since t,.F0
, W;,o'*, 11S., and W;,o' of that equation are 

unaffected by a variation in P u(r), the equation of 

restraint is also given by Eq. (25), obtained by taking 

variations of the terms in Eq. (19), 

oF*-oF=O. (25) 

The variation oF* is given by Eq. (23), and 5F is given 

by a similar equation without the asterisks. Accordingly, 

we obtain 

oF*-oF= f (E-E*)·oP,.dV=O. (26) 

Equations (24) and (26) are to be satisfied simul

taneously. Multiplying the latter equation by a con

stant, the Lagrangian multiplier, m say, and adding 

these equations we have 

f { :,~- E*+ (E- E*)m} ·oP udV = 0. (27) 

This is an identity for all arbitrary variations of 

P u in each volume element. Accordingly the expression 

in brackets is everywhere equal to zero and we have 

in each volume element, 

P,.=a,.{E*+ (E*-E)m}. (28) 

It is now desirable to express the field strengths E* 

and E in terms of the quantities Eo* and Ec since the 

latter can very easily be calculated from the known 

charge distributions. In the appendix it is shown that 

using the usual assumptions made in treatment of ionic 

interactions we obtain for the present case 

and 
(29) 

(30) 

where the dielectric constants Dop and D. have been 

defined previously. With the aid of these equations, 

Eq. (28) for P u becomes 

Pu(r)=au _c -m(E/-Ec) ---{
E* (1 1) 
D, Dop D. 

m(Ec*-Ec)} 
+ 0 

Dop 
(31) 

Introducing these equations for E*, E, and P u into 

Eq. (14) for the electrostatic free energy of state X*, 

and into Eqs. (14) and (15) for (F*- F) we obtain 

1 {E*
2 (1 1)} F*=-f -c-+m2 (Ec*- Ec)2 

--- dV 
81r D, Dop D, 

(32) 

and 

- (2m+1)(Ec*-Ec)2
(-

1 
_ _2:_) }dv 

Dop D. 

=11F0+TI1S.+W;,o'*-W;,o' (33) 

where in the latter equation we have also introduced 

Eq. (19). Equation (33) serves to determine the 

Lagrangian multiplier, m. 

In passing we observe that a special case of this equa

tion obtains when the reacting ions differ only in their 

valency and when the electronic jump simply effec

tively exchanges the charges of these ions. In this case 

it is readily verified that the solution of this equation 

is m = -! : First, in the case DFD and 11S. are zero. 

·Moreover W;,o' and W;,o•• are equal, since the over-all 

reaction produces no net change in the numbers of each 

ionic species. For the same reason and by symmetry the 

integral involving Ec *2 equals that involving Ec2
• Further, 

the integral in Eq. (33) involving (Ec- E/)2 must be 

positive. Introducing these results into Eq. (33) we 

see that m equals -i. 
These equations for the electrostatic free energy F* 

of the intermediate state X*, and for the Lagrangian 

multiplier, m, will now be expressed in terms of the 

ionic charges and radii. We let the charges of the first 

reactant be e1* and e1 in states X* and X, respectively, 

and the corresponding charges of the second reactant 

will be denoted by e2* and ez. The radii of the saturated 
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dielectric spheres about these reactants, a1 and a2, are, 
as previously stated, taken to be essentially unchanged 
by the reaction. 

The vector Ec* is the negative gradient of the poten
tial which the reacting ions in state X* would exert if 
they were in a vacuum rather than in a polarized me
dium. In a discussion elsewhere8 it has been observed 
that the potential tacitly used in the usual treatment of 
ionic interactions between ions of charges e1 and e2 in a 
vacuum is given by the following equations: 

e1 e2 
1/l(r)=-+-, 

r1 r2 

1/l(r) =constant, 

r1~ a1 and r2~ a2} 

r1 <a1 or r2<a2 

(34) 

where r1 and r2 are the distances of the field point r 
to the centers of these ions. The vector Ec is simply 

- 'N, 1/1 being given by these equations. Thus, we have 

Ec=-e1V'~-e2V'~, r1~a1 and r2~a2} 
r1 r2 . 

Ec=O, r1 <a1 or r2<a2 

(35) 

The vector Ec * is obtained from Ec simply by replacing 

e1 by th* and e2 by e2*. 
These expressions for Ec and Ec* are introduced into 

Eq. (32) for F* and into Eq. (33) for the Lagrangian 
multiplier m, and the integrations are performed. The 
following integrals which are readily verified are used 

for this purpose: 

(36) 

where R is the distance between the centers of the ions, 

and where the integration volume excludes the volume 

physically occupied by the two ionic spheres (i.e., 

we have r1~ a1 and r2~ a2, simultaneously). 

The work required to charge up conducting sphere of 

radius a in a dielectric medium is given by the well

known expression/2 e2/2aD., where e is the ionic 
charge. Accordingly W; •• •• and W; •• • are given by 

12 E.g., if during some point of the charging process the ion has 
a charge q, then the potential at any point in the dielectric medium 
distant r from the center of the ion is q/D.r. The potential at the 
surface of the sphere is q/D,a. The work required to add an 
infinitesimal charge dq to the ion is therefore (q/D,a)dq. Upon 
integrating this from q=O to q=e, the total work required to 
charge up the ion is seen to be e'/2aD,. In passing it is observed 
that when one subtracts from this the work, e' j2a, required to 
charge up the sphere in a vacuum (D.= 1), one obtains the usual 
expression for the contribution to free energy of solvation of an ion, 
-(e2/2a)(1-1/D.), arising from the dielectric outside of'the 
sphere. See reference 9. 

Eq. (37). 

(37) 

With the aid of Eqs. (17), (32), (35), (36), and (37), 

we obtain for the contribution, !J.F*, to the free energy 
of formation of the intermediate state X* from the 
isolated reactants in the dielectric medium, 

!J.F*=F*- W; •• •• 

= e
1
*e

2
* +m2(!J.e)2(_1 +-1 _ _!:_) (-1 _ _!_) (38) 

RD. 2a1 2a2 R Dop D. 

where we have introduced the conservation of charge 
relation, 

(39) 

Similarly, with the aid of Eqs. (33), (35), (36), and 
(37), we obtain as the equation form 

(
1 1 1){1 1) -(2m+ 1) (!J.e)2 -+--- ---

2a1 2a2 R Dop D. 

where !J.S. is given by Eq. (18). 

The standard free energy of formation of the inter
mediate state X* from the isolated reactants in the 

dielectric medium is the sum of !J.F* and of a term 
describing the motion and positions of the centers of 
gravity of each of the two reactants in the initial 
state and in the state of the system, X*. This contribu
tion is evaluated in a later section. 

Rate Constants of the Elementary Steps 

(a) Estimation of k-1 and k3 

The rate constant k-1 is associated with the disap
pearance of the state of the system X* to reform the 
reactants. There are several possible modes of de
composition and each of these will be considered. 

The first mode involves an escape from the solvent 
cage. In the intermediate state, as in any collision 
complex in solution, the reactants may be considered to 
be in a solvent cage. Within this cage they vibrate with 
respect to each other, striking the cage walls about 1013 

times a second. The chance that one of them will escape 
from the cage is a per collision with the walls of the cage. 
Accordingly, the unimolecular rate constant for this 
mode of dissociation would be about 1013a sec-1 where a 

is less than one. 

Another mechanism for the dissociation of X* to 
reform the reactants is a disorganizing motion of the 
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solvent, destroying the polarization appropriate to the 
intermediate state. This state was treated as a macro
scopic state in which the polarization was not in equi
librium with the charge distribution. Once this state 
is formed, it seems reasonable to suppose that a time 
of the order of magnitude of the relaxation time would 
be required for the system to assume some other, 
almost certainly unsuitable, value of the polarization 
function P u(r). The relaxation time for atomic polariza
tion is of the order of lQ-13 sec and that for orientation 
polarization is about 10-n sec. The atomic polarization 
is associated with the polarized motion of the atoms in 
each solvent molecule and constitutes an appreciable 
fraction of the U-type polarization. If it reverts to an 
unsuitable value, the state X* can be considered to 
be destroyed. The unimolecular rate constant for this 
mode of dissociation would therefore be about 1013 

sec-1
• This is seen to be not less than that for the 

solvent cage escape mechanism, and therefore to corre
spond to a prevalent mode of decomposition. 

Similar remarks apply to the rate constant k 3 for the 
dissociation of the other intermediate state, X, to 
products. Accordingly, we may write approximately 

(41) 

(b) Estimation of k1 

The equilibrium constant of reaction (1) is k1/k-1· 

The rate 
k1 

A+B-;:::::.X* (1) 
k-! 

constant k1 will be calculated by estimating this equi
librium constant and using the value of k-1 determined 

in the previous section. 

Each of the two reactants have three translational 
degrees of freedom. In the intermediate state X*, these 
six coordinates become three translational degrees of 
freedom of the center of gravity of the two reactants, 
two rotational degrees of freedom about this center of 
gravity, and one degree of freedom involving the vibra
tion of the reactants with respect to each other in the 
solvent cage. The partition function for the three trans
lational degrees of freedom of the first reactant in the 
solution is generally written on the basis of the free 
volume theory as 

where V1 is the free volume and N 1 is the number of 
molecules or moles (depending on the units of the 
equilibrium constant) of reactant 1. The corresponding 
factors for reactant 2 and for the state X* are obtained 

by replacing m1 and N1 by m2 and N2, and by (m1+m2) 
and N x•, respectively. Actually to calculate the equi
librium constant, the values of the translational parti
tion functions when the species are in their standard 
states are needed. That is, in these partition functions 
we set N1/V=1, N2/V=1, and Nx•/V=1, the units 
determining those of the equilibrium constant. The 
rotational partition function is 81r2p.R2kT/h2, p. being the 
reduced mass m1m2/ (m1 +m2) and R being the distance 
between the centers of gravity of the two reactants. 
The vibrational partition function for motion within 
the cage equals unity, within a factor of about three, say. 

The remaining contribution to the standard free 
energy of formation of the intermediate state X* from 
the reactants is !lF*, given by Eq. (38). Introducing 
these results into an expression for the equilibrium 

constant, we obtain 

k1 (2Tr(m1+m2)AvkT /h2)i(V1/V) (8rp.R2kT /h2) exp(- llF* /kT) 
(42) ~----------------------------------------------

k-1 (21rm 1kT /h2)!(VJ!V) (21rm 2kT /h2)i(VJ!V) 

Now k_1 is approximately equal to kT/h, since each is 
about equal to 1013 sec-1

• Introducing this into Eq. 
(42) we obtain after some cancellation 

k1= (87rkT/p.)!R2(V/V1) exp(-!lF*/kT) (43) 

where !lF* is given by Eq. (38). This expression for k1 
is simply the collision number in solution,13 Z, multi
plied by exp(- !lF* /kT). That is, 

k1=Z exp(-llF*/kT). (44) 

(c) Estimation of k2 and k-2 

According to Eq. (2), the equilibrium constant for 
the interconversion of the intermediate states, X* and 
X, is k2/k-2• As noted earlier the free energy difference 
of these states is - TllS., where llS. is given by Eq. 
(18). Accordingly, the equilibrium constant for Eq. (2) 

ta E.g., A. A. Frost and R. G. Pearson, Kinetics and Mechanism 
(John Wiley and Sons, Inc., New York, 1953), Chap. 7. 

is given by 
k2/k-2= exp(llS ./k) =fJ/Q*. ( 45) 

In general this ratio will be approximately, or exactly, 

equal to unity. 
The individual estimation of each of these constants 

k2 and k_2 can be made assuming some model for the 
electronic jump process. This has been treated3 as an 
electron tunnelling process. On the basis of some ap
proximate calculations the probability of an electron 
tunnelling through a barrier from one reactant to the 
other, Ke, was estimated3 to depend exponentially, 
essentially, on the tunnelling distance, r ab, i.e., 
K.=exp(-fJrab). According to the calculations given 
there, we find {3= 1.23 A-1 for the ferrous-ferric isotopic 
exchange reaction in water, for example. We would 
expect this tunnelling distance to be about twice the 
diameter of a water molecule, i.e., 5.5 A, since the small 
cations, ferrous and ferric, each have water molecules 
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strongly bound to them, and the innermost layer of 
them is presumably quite difficult to remove. We calcu
late that Ke is to-a for this distance. However, the 
numerical value of fl is to be regarded as quite tentative 
pending a more detailed treatment of the tunnelling 
process than is given in reference 3. For example, the 
effect of the water molecules on the extension in space 
of the electronic cloud of these ions is of particular 

interest. 
The rate constant k2 is Ke multiplied by the number of 

times per second that the electron strikes the barrier. 
This number is presumably the frequency of motion of 
the valence electron in the ground state of the ferrous 
ion. This is of the order of the frequency of excitation 
of this electron to the next higher principal quantum 
number. From some data on the energy levels of the 
ferrous ion14 we estimate this to be about 2X 1015 sec1

• 

Multiplying this by the value of Ke, we obtain for k2 

(46) 

Comparison with Eq. (41) shows that this is of the 
same order of magnitude of k-t, within the error of the 
calculations. 

Validity of the Assumed Small-Overlap 
Activated Complex 

These calculations of k2, k-2, ka, and k_t, and hence 
of the lifetimes of each of the intermediate states X* 

and X, can be used to examine more closely the basic 
assumption of this paper, namely, the assumption that 
some electron transfer reactions, at least, will have a 
small-overlap activated complex. The calculations can 
also be used to examine the relation of this complex 
to the large-overlap one. 

A consequence of the assumption of the small-overlap 
activated complex was6 the statement that the energies 
of the two states X* and X were equal. Any limitation 
of this statement is a limitation on the assumption of a 
small-overlap activated complex. A limitation exists 
in the form of the uncertainty principle. The energy of 
any state, X*, is broadened by an amount llt: which is 
related to the lifetime r of that state according to the 
uncertainty principle, lle· r=h/41r. The greater the over
lap the shorter will be the lifetimes of X* and of X. The 
lifetime of the state X*, for example, is about equal 
to 1/(k2+k-t)-1

• (It is essentially, therefore, the same 
as that of the state X.) If r is about 10-13 sec then llE is 
found to be about 0.075 kcal mole-1

• Thus the energy 
restriction, summarized by Eq. (19), would have to be 
modified to state that the energies of the states X* and 
X must be equal only within an amount prescribed by 
the uncertainty principle. This amount would be 2l1E 

or 0.15 kcal mole-1 if r= 10-13 sec. Thus, in Eq. (19) 
which was derived on the basis of the exact equality 
of energies of X* and X, we should really replace llFO, 

14 C. E. Moore, Atomic Energy Levels (National Bureau of 
Standards, 1952), circular 467, Vol. II. 

say, by l1F0±0.15 kcal mole-1
• However, this is a neg

ligible correction, and it is evident that this can readily 
be verified to have a negligible effect on the calculated 
value of llF*. Even if the lifetimes of the individual 
states X* and X were, as a result of large values of 
k2 and L2, as small as 10-14 sec, 2l1c would be only 1.5 

kcal mole-1 and this again would only have a relatively 
small effect on the calculated value of tlF*. On the other 
hand in a large-overlap activated complex the fre
quency with which one electronic configuration would 
be formed from the other would be the order of the 
electronic frequencies in molecules. These frequencies 
are about 1015 sec1• Thus r would be about lQ-15 sec 
and 2l1E would have the large value of 15 kcal mole-1. 

The restriction involved in Eq. (19) would no longer 
be very strong, since D.FO would have to be replaced by 
l1F0±15 kcal mole-1• 

In summary, if the overlap of the electronic orbitals 
of the two reactants is such that the lifetimes of the two 
intermediate states are greater than lQ-14 sec, say, 

we have a small-overlap activated complex. On the 
basis of the calculations of k3 and of k2 given previously 
we infer that a small-overlap activated complex may 
well prevail for many electron transfer reactions. 

The Over-AU Bimolecular Rate Constant 

We have seen that k-1 is essentially equal to k3, 

according to Eq. (41), and k2 is essentially the same as 
k-2· Therefore, when k2 and k_t are of the same order of 
magnitude, it follows from Eq. (7) for the over-all 
bimolecular rate constant, kc;, that 

kb,"'kt=Z exp( -llF*/kT) (47) 

where we have introduced Eq. (44) for k 1, Z being the 
collision number in solution. If k2 were appreciably 
less than k_1, this approximation would tend to break 
down, and the more exact expression for kb;, given by 
Eq. (7), would have to be employed. The calculations 
of k2 and k_t given previously tentatively support the 
approximate equation, and some success has been 
obtained in correlating experimental and theoretical 
results on the basis of this equation. 

If k2 were about five-fold smaller than k_1, say, then 
according to Eq. (7) and the earlier discussion the ap
proximate equation for kb;, Eq. (47), should be divided 
by a factor of seven. However, this constitutes a rela
tively minor correction. 

The Interionic Distance, R 

The interionic distance, R, in the pair of intermediate 
states, X*X, can affect the over-all reaction rate in 
several ways. For example, the rate of the electronic 
jump process, reaction (2), decreases exponentially 
with increasing R. It was seen that when the rate con
stant of this step, k2, was greater than or about equal 
to 1013 sec-1

, the over-all reaction rate was independent 
of k2. However, for larger R's, k2 will become small and 
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will then affect the magnitude of the over-all rate. 

Accordingly, the exponential decrease of the rate of the 

electronic jump process with increasing R is one of the 

main factors tending to make R a minimum in the 

intermediate states, X* and X. 

The size of the interionic distance will also affect 

the over-all reaction rate through its effect on t:;.F*. 

For example when the ions come closer together, the 

solvation atmospheres about each ion tend to overlap 

and to become more similar. Accordingly when a major 

barrier to reaction lies in the difference of the solvation 

atmospheres about the reactants, the reaction will occur 

most readily when these atmospheres are most similar, 

that is, when the interionic distance R is least. This may 

also be verified from Eq. (38) for t:;.F*; when the major 

barrier to reaction lies in the difference of the solvation 

atmospheres about the reactants, the second term in 

that equation is greater than the first term, the Cou

lombic repulsion. It is seen that the second term de

creases as R decreases. 

The most appropriate value of R is to be found by 

maximizing with respect to R Eq. (7) for the over-all 

rate constant. However, the present limitations of our 

quantitative knowledge of the electronic jump process 

make this procedure have doubtful utility. For the 

present it appears reasonable to suppose that the 

most suitable value of R is the minimum value. A fmt 

approximation to R is therefore the sum of the radii 

of the two reactants, a1+a2. 

The Radius, a 

The radius a appears in the expression for t:;.F* and 

therefore in the rate constant k1 for the formation of 

the intermediate state X*. As previously stated, this 

radius is that of a sphere about the reactant inside of 

which the dielectric is saturated and outside of which 

it is assumed to be unsaturated. In this section some 

tentative suggestions for such radii will be discussed. 

As a first approximation it has been assumed for 

monatomic ions that the innermost layer of solvent is 

dielectrically saturated.9 Accordingly, for such ions the 

radius a is the sum of the crystallographic radius of the 

ion plus the diameter of a water molecule.9b,c,d A 

similar assumption was also used in a recent theo

retical treatment of the spectra of halide ions in waterY 

Some recent work on the dielectric constant of aqueous 

ionic salt solutions appears to indicate, however, that 

the solvent is less saturated in the vicinity of anions15 

than in the vicinity of cations and this should be taken 

into account. An interesting explanation for this was 

given in terms of the difference in freedom of a water 

molecule, in the innermost solvation layer about an 

ion, to rotate when the ion is· a cation and when it is 

an anion.l5
•
16 

,. Hasted, Ritson, and Collie, J. Chern. Phys. 16, 1 (1948). 
16 See D. H. Everett and C. A. Coulson, Trans. Faraday Soc. 36, 

633 (1940). 

Some special circumstances which may occur when 

a monatomic ion loses its charge completely during an 

election transfer process will be discusse'd in Part III 

of this series of papers. 

The dielectric saturation in the vicinity of many 

polyatomic ions would be expected to be much less 

than that near monatomic ions, because of their larger 

size: the orienting electric field arising from the ionic 

charge is responsible for the saturation and varies 

roughly as the inverse square of the distance from the 

center of the ion. It seems reasonable to assume as a 

first approximation for polyatomic ions such as Mn04-

and Fe(CN) 6"', that the radius a is simply equal to the 

crystallographic radius of the ion in each case. In fact 

this is consistent with the assumption that only the 

first solvation layer of monatomic ions is saturated. 

The size of a hydrated monatomic cation is about the 

same as that of one of these polyatomic ions. 

APPENDIX 

In this appendix, Eqs. (29) and (30), expressing E 
and E* in terms of E. and Eo*, will be established. 

As discussed previously,8 the usual treatment of the 

interaction of ions in a dielectric medium leads to an 

especially simple relation between the electric field 

strengths exerted by the ions in a dielectric medium, 

Et and in a vacuum, E.t. According to Eq. (53) of 

reference 8 this relation is17 

Et (r) = E.t (r)/ (1 +41ra) (48) 

where a is the polarizability of the dielectric medium 

and where we have used the superscript t, to avoid 

possible confusion with later substitutions which will be 

made in this equation. This relation will be used in order 

to establish Eqs. (29) and (30). 

In Eq. (12) of the present paper an expression has 

been given for the potential at any point in a medium 

for any state whether it is in equilibrium or not. The 

potential 1/;* (r') at each point r' in the state of the 

system X* may be obtained from this equation simply 

by adding an asterisk to each symbol. Subtracting the 

resulting equation from Eq. (12), which incidentally 

can be regarded as the potential in the intermediate 

state X, we obtain as the difference of potential at the 

point r' in these two states, 

f(r') -1/;*(r') 

f{ (Ec-Ec*)} 1 
= P-P*- ·Y'--, dV. 

411" I r- r I 
(49) 

Now, subtracting Eq. (9) for P from a corresponding 

equation for P* we have 

P-P*=P.+P u- (P.*-P,.) (SO) 

17 Equation (48) of the present paper may be obtained from 
Eq. (53) of reference 8 by observing that in that equation, (a) 
E=-V'if;, (b) D=1+4?ra, (c) E. is the value of E when D=1 
(vacuum). 
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since P ,.*equals P ,.. Introducing Eq. (10) for P ., and a 

corresponding equation for P.*, we obtain 

P-P*=a.(E-E*)= -ae'v(o/;-if;*). (51) 

Introducing this equation into Eq. (49) we find that 

J
E.-E.* 1 

o/;(r')-o/;*(r')=- ·V'--dV 
411" lr-r'l 

-fa.V'(if;-if;*)·V'-
1 

-dV. (52) 
Jr-r'J 

It is of interest to compare this with the potential in 

a system which is in electrostatic equilibrium. Accord

ing to Eqs. (12) and (13) this is given by 

f
Eet 1 

y;t(r') =- -· V'--dV 
41!" jr-r'j 

-Javo~;t.v-
1

-dV (53) 
lr-r'j 

where we have used the superscript t to avoid possible 

confusion with later substitutions made in this equation. 

Comparing Eqs. (52) and (53), it is seen on replacing 

y;t of the latter by o/;-o/1*, E.t by Ec-E.*, and a by 

a., that Y,-if;* is actually also equal to the potential 

which would be exerted at each point in an equilibrium 

medium whose polarizability is a., by a system of 

charges which exerted a field strength E.-:-: Ec * in a 

vacuum. Now we have seen that when these charges are 

ions there is a very simple relation between the field 

strengths exerted by them in a dielectric medium and 

in a vacuum, given by Eq. (48). Accordingly, replacing 

a by a. in that equation, E} by E.-Ec* and Et by 

-V'(Y,-1/;*), i.e., by E-E*, we obtain 

(54) 

As noted previously6 (1 +41!"ae) is equal to the square 

of the refractive index, Dopo Accordingly, we obtain 

from Eq. (54) the first of the desired equations 

(29) 

To obtain the second equation, Eq. (30), we proceed 

as follows. Introducing Eq. (29) forE- E* into Eq. (28) 

for P ,., we obtain 

P,.=a,.{E*+m(E.*-E.)/Dop}. (55) 

Now, the equation for the potential Y,*(r') at each 

point in the intermediate state X* is given by Eq. (12), 

where an asterisk should be added to every symbol. 

Introducing into this equation, Eq. (55) for P,.(r) and 

the analog of Eq. (10) for P.*(r), i.e., P.*=a.E*, we 

obtain 

1 
+a.E*-E.*/41r}·V'--dV. (56) 

Jr-r'J 

This equation can be written in a more suggestive 

form by rearranging terms and observing that 

E*=- V'if;*, 

if;*= I{ -Ec*+a,.m(Ec*-Ec)/Dop}·V'-
1
-dV 

41!" Jr-r'J 

-f(a.+a,.)V'o/1*· V-
1
-dV. (57) 

Jr-r'l 

Comparing this with Eq. (53), it is seen, by making the 

following substitutions, 

- Ect = _ Ec * + aum(E.*- Ec) (
5

S) 
oJ;t=oJ;* l 

411" 411" Dop 

a=a.+a,. 

that if;* is actually the potential which would be exerted 

in a medium of polarizability (a.+au) by a set of charges 

which exerted a field strength in a vacuum equal to 

{Ec*-41l"a,.m(Ec*- E.)/Dop}. 

Since these charges are also ions, we may use Eq. (48). 

Substituting E* for Et there, 

{E/-41l"aum(Ec*- Ec)/Dop} 

for E.t, and (a.+a,.) for a we obtain, finally, 

E*(r) = {E.*-41!"a,.m(E.*- E.)/Dop}j 

(1+47r(a.+a,.)). (59) 

As noted previously (1 +41!"a,) equals Dop, and a,. 

can be expressed in terms of D. and Dop, as in Eq. (16). 

Introducing these results into Eq. (59), we obtain the 

desired equation forE* in terms of E. and E.*. 

(30) 


