
ON THE THEORY OF QUEUES WITH MANY SERVERS0
BY

J. KIEFER AND J. WOLFOWITZ

1. Introduction. The physical original of the mathematical problem to
which this paper is devoted is a system of s "servers," who can be machines
in a factory, ticket windows at a railroad station, salespeople in a store, or
the like. Individuals (clients) who are to be served by these servers arrive at
random and the duration of anyone's service (e.g., stay at the ticket window)
is a chance variable whose distribution function may be arbitrary. The
phrase "at random" used above is not to be interpreted to mean that the
interval between successive arrivals is to have an exponential distribution.
The assumption of an exponential or other special distribution for either the
interval between arrivals or the service time of an individual or both usually
makes the problem much easier. We also allow the distribution of the in-
terval between anivals to be arbitrary. The queue discipline is "first come,
first served." The system is described precisely in §2.

In this system the waiting time of the individual who is ith in order of
arrival, i.e., the time which elapses between his arrival and the beginning of
his service, is a chance variable whose distribution function depends upon i.
In §3 we prove that this distribution function approaches a limit as t—*».
This limit may not be a distribution function because its variation may be
less than one. We assume that the expected value of the time interval be-
tween the arrivals of successive clients and the expected value of the service
time of an individual both exist. In terms of these one defines a quantity p
in §6. The situation may then be classified according asp<l orp^l. In the
former and interesting case the limiting function is a distribution function
(§6), in the latter case it is not a distribution function (§7). The limiting
function is (a marginal function) obtained from a function which satisfies
an integral equation derived in §3. This integral equation is satisfied by a
unique distribution function on s-space when p<l, and by no distribution
function when p S: 1 (§8). These results for the case of one server were obtained
by Lindley [l ]. The problem when there are many servers offers many diffi-
culties not present when there is only one server. The methods of the present
paper are different from those of [l ]. The proof of the result of §7, that the
limit is not a distribution function when p^l, is obtained by reducing the
problem to the case 5 = 1 by using our lemma of §4, and then employing the
corresponding result of [l ]; except for this argument our paper is self-
contained. For special distributions of the time between successive arrivals
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2 J. KIEFER AND J. WOLFOWITZ [January

and of the service time the results of the present paper have been obtained
by various authors (we refer the reader to [5 ] and [6 ] which contain extensive
bibliographies). The methods of these authors make use of their special as-
sumptions in an essential way. The novelty of the results of the present paper
lies in the fact that no restrictions are imposed on the distributions, with the
exception of the assumption of finite first moment(2). Thus the results of the
present paper include the corresponding ones of previous papers as special
cases(3).

Mathematically speaking, our study is one of the ergodic character of the
waiting time in our system, and the conditions under which the distribution
of the latter approaches stability. Our problem can be reduced, and actually
is so reduced by us, to studying a random walk in 5-space with certain im-
passable but not absorbing barriers. We actually show that, whenp<l, the
distribution function of the particle engaged in the random walk approaches
a limiting distribution which is the same no matter what the original starting
point of the particle (§8).

Perhaps our principal device is to dominate the stochastic process to be
studied by a lattice process to which we then apply available theorems from
the theory of Markoff processes with discrete time parameter and denumer-
ably many states. This device makes possible the argument of §6 and is also
employed in §8. We are of the opinion that this device could be applied to
other ergodic problems connected with random walks.

When the original process is a lattice process, i.e., when the chance vari-
ables Ri and gi (defined in §2) take, with probability one, only values which
are integral multiples of some positive number c, and when p < 1, the limiting
probabilities (which are shown to exist in §6) are reciprocals of certain mean
recurrence times (this follows from the application of Theorem 2 of Chapter
15 of [3] to the argument of §6). Monte Carlo methods (see, e.g., [4]) may
perhaps then be profitably employed to solve the integral equation (3.8).

It would be very desirable and interesting to solve the integral equation
(3.8), at least for interesting or important functions G and H (see §2). This,
however, is likely to be very difficult. Even in the simplest case, when s = 1,
the equation becomes the Wiener-Hopf equation, which has been of con-
siderable interest to physicists but has been solved only in special cases.
Some special cases of the equation (3.8) are discussed in [5], [6], and [l].
It may also interest the pure analyst that one can, by probabilistic methods

(2) Under stronger assumptions (e.g., existence of all moments), F. Pollaczek in recent
notes (C. R. Acad. Sci. Paris vol. 236 (1953) pp. 578-580, 1469-1470) gives formally an integral
equation for the Laplace transform of F (to be defined below), but does not consider the ques-
tions of the present paper.

(3) In a paper to be published elsewhere which makes extensive use of the present paper,
the authors obtain, under minimal conditions, theorems on convergence of the mean of various
variables connected with the queueing process.
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1955] ON THE THEORY OF QUEUES WITH MANY SERVERS 3

like ours, prove the existence or non-existence of distribution function solu-
tions of (3.8).

Finally, in §9 we discuss the limiting distribution (as i—* °°) of the queue
size, i.e., of the number waiting to be served when the service of the ith
customer begins.

We are obliged to Professor J. L. Doob for helpful discussions.
2. Description of the system. The system consists of s (^1) machines,

Mi, • • ■ , M„. The ith individual arrives at time /,• (^0), with, of course,
ti^ti+i. If all machines are in service at his arrival he takes his place in the
queue. His service begins as soon as at least one machine is unoccupied, and
all individuals with smaller indices have been or are being served. If more
than one machine becomes unoccupied at the time when it is the ith indi-
vidual's turn to be served, we shall assume, for definiteness, that he takes his
place at the unoccupied machine with smallest index.

Let to = 0, g, = U—ti-i for all i^ 1. We assume that the g< are independently
and identically distributed chance variables; let G(z) = P {gi ^ z}, where P { }
is the probability of the relation in braces. Throughout the paper we assume
that G(0) <1; the case G(0) = 1 is too trivial to discuss. We assume Eg\ < °o.

Let Ri be the length of time the ith person spends being serviced by a
machine. We assume that the Ri are independently and identically dis-
tributed chance variables, distributed independently of the g,-; let H(z)
= P {Ri ^ z}. We assume ERi < ». We also assume H(0) < 1, the case H(0) = 1
being trivial.

Let Wn+ti be the time at which service of the ith individual begins; v>n
is his waiting time. Then the ith individual leaves his machine at the time
Wn+U+Ri.

Let Uij-\-ti be the time at which the jth machine finishes serving the last
of those among the first (i — 1) individuals which it serves. Let u'(J
= max (0, «i,). Let wn, • • • , w« be the quantities u'n, ■ ■ ■ , u'u arranged in
order of increasing size. It is easy to see that this definition of wn coincides
with the former.

Let

(2.1) Fi(xi, • ■ • , x.) = P{wa ^ xi, ■ ■ ■ , WiS ̂  x,}.

If ever Xj>Xj+i we may, since Wij^Wiu+D, replace Xj by Xj+i in both mem-
bers of (2.1) without changing the value of either.

Write Wi = (v>ii, ■ ■ • , Wi,). The earliest times at which the various ma-
chines could attend to the (i+l)st individual are U+Wn+Ri, ti+Wa, ■ • • ,
ti+Wi,. If ti+i is greater than or equal to any of these quantities the (i+l)st
individual finds at least one machine unoccupied at his arrival and does not
have to wait at all. If ti+i is less than all these quantities the (i-fT)st indi-
vidual has to wait for the first machine to be unoccupied. Since ti+i = U
+g,+i, Wi+i is obtained from Wi as follows: Subtract g,+i from every component
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4 J. KIEFER AND J. WOLFOWITZ [January

of (wn+Ri, wt2, wi3, • • • , wu). Rearrange the resulting quantities in ascend-
ing order and replace all negative quantities by zero. The ensuing result is

3. Recursion formula for Ft. Existence of the limit of Ft as i—*<*>. Let
<j>j(a, b, c), j=l, • • • , s, be the value of w>(i+«,y when Wi = a, Ri = b, gi+i = c.
If d is a point in s-space we shall say that a^dii every coordinate of a is not
greater than the corresponding coordinate of d. If now a^d then obviously

<t>i(a, b, c) ^ 4>j(d, b, c)

for 1 Sj^s. Applying this argument k times we obtain the following result:
Let Ri+j-i = b{+j-i, gi+j = Ci+j, j=l, ■ ■ ■ , k. Let wi+h = e1 when wi = a1, and
let w,-+fc = e2 when w, = a2. Then ai^a2 implies ei^e2-

Let S be the totality of points (xi, x2, • • ■ , x„) of Euclidean s-space such
that 0 ^ Xi ̂  x2 ̂  • • • ^ xs. Let x and y be generic points of S. For i ^ 1, let

•PtC^I y) = Pi^i = x\ Wl = y\.
Let 0 be the origin in 5-space. Then

F,(* | 0) = F<(*)
and

(3.1) F*iO) = JF<(*| y)iPi(y).

The conclusion of the preceding paragraph enables us to conclude that
yiGS, y2£.S, yi^yi, imply

Ft(x | yi) ^ Ft(x | y.)

for every x and every i. Now

(3.2) F,-+1(x) - Ft(x) =   f [F,(* | y) - F,(* | 0) ]iF,(y).

Since the integrand is never positive we have that

(3.3) Fi+l(x) :S F{(x)

for all x and i. From (3.3) it follows that F,(x) approaches a limit, say F(x),
which is nondecreasing in every component of x, continuous to the right, and
assigns non-negative measure to all rectangles. It need not, however, be a
distribution function, i.e., its variation over S (hence over all of s-space) may
be less than one.

Write

(3.4) <t>(a, b, c) = Oi(a, b, c), ■ ■ ■ , <t>s(a, b, c)).

For given x£jS, b, c, let \[/(x, b, c) be the totality of points y£.S such that
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1955] ON THE THEORY OF QUEUES WITH MANY SERVERS 5

4>(y> &> c)^x and £S. Obviously

(3.5) F(,+1)(x) = j Pi{f(x, b, c)}dH(b)dG(c)

where P,- is the measure according to Fi. This equation determines each F<
uniquely by recursion, since of course Fi(0) =1. For 5 = 1 and x^O, \f/(x, b, c)
is {y\0^y^x — b+c}. Hence (3.5) becomes, for x = 0,

(3.6) F(t+1)(x) = Jf^x - b + c)dH(b)dG(c),

an equation due to Lindley [l ]. (In (3.6) it is understood that F<(x — b+c) = 0
whenever x — b+c<0.) For 5 = 2 and x=(xi, x2)£S we have that yf/{x, b, c)
is the set of points y£S such that y ^ (xi — b+c, x2+c), together with the set
of points yES such that yg([min (x2 — b+c, Xi+c)], Xi+c). We extend
the definition of F<(yi, y2) to all of 5-space in the natural way as follows:
Fiiyi, y2)=0 if either yi or y2<0, F<(yi, y2) = F,(y2, y2) if yi>y2. Then for
all (xi, x2) in S and 5 = 2, (3.5) becomes

F(,+i)(xi, x2) =  I   [F,(xi — b + c, x2 + c) + Fi(x2 - b + c, xx + c)
(3.7) J

- Fi(xi - b + c, Xl + c)]dH{b)dG{c).

In general, when (3.5) is written in the form of (3.6) and (3.7) the integrand
contains (2* —1) terms. With the integrand in this form let i—><» in (3.5). By
Lebesgue's bounded convergence theorem we obtain for x£S,

(3.8) F(x) = f P^ifix, b, c)}dH(b)dG(c)

where ?„ is the measure according to F(x). (When 5 = 1 or 2 equation (3.8)
becomes (3.6) and (3.7) with the subscripts of F deleted.) This is an integral
equation satisfied by F(x). We shall later prove that, when p<l, F(x) is a
distribution function (d.f.), and the only d.f. over .S which satisfies (3.8).
Moreover, we shall prove that, when p=£l, F(x) is not a d.f., and (3.8) has
no solution which is a d.f. over S.

We remark that (3.8) implies that if F(x) is a d.f., the latter defines a
stationary absolute probability distribution for our (Markoff) stochastic
process, i.e., if Wi is distributed according to F(x) then w,- has this distribution
for every value of i.

Write X! = (xi, oo, • • • , oo), Ff(xi) =F<(xi). Then, from (3.5), the Lebes-
gue bounded convergence theorem, and the structure of \p, it follows that

(3.9) F*+1)(x1) = J Pi{+(xh b, c)}dH{b)dG(c).
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6 J. KIEFER AND J. WOLFOWITZ [January

We proved earlier that

(3.10) F<(«) £ jF(«h>(*)
for every i and x. In (3.10) let the last (5 — 1) coordinates of x approach in-
finity. We obtain

(3.11) *«(*i) fc tftfuCxi).
We conclude that lim,,M F?(xi) exists; call it F*(xi), say. Clearly we have

(3.12) F*(*i) fc *(*i)-
We shall prove in §5 that equality holds in (3.12). It will then follow from
(3.8) that

(3.13) F*(Xl) = J* P„{*(*!, b, c))dH(b)dG{c).

4. An essential lemma. In this section we shall prove the following

Lemma.

lim    lim inf P{wit8 — w,-,i g y'\ = 1
y'—»oo i—tea

for s>\.

Proof. Let
3-1

(4.1) Bi = (s - \)wi,. - J^wt.j

for *«£l. It follows easily from the way in which W(,+i) is obtained from a/,-
that

(Bi — R( when R{ ^ wit — wn,
(4.2) iJ(i+D g  <15* - J(w*. - w«) + (* - 1)** £ (* - 1)2J4

when Ri ^ w,s — wu.

In either case we have

(4.3) 5(i+i) ^ max (£< - 7?,-, (5 - l)Rt).

Applying (4.3) to Bi we obtain

(4.4) Bii+r> £ max (J?*_i - X*., - 2?,-, (5 - 1)2?,_, - Ri, (s - l)Rt).

Continuing in this manner and noting that 2?i = 0 we obtain

Bi+i ^ max [(* - 1)2?,, (5 - 1)K*_, - 2?,-, (5 - 1)2?«_, - £,_! - 2?,-,
••■•-,(*- l)22i - R2- Ri] = Yi (say).
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1955] ON THE THEORY OF QUEUES WITH MANY SERVERS 7

Since the R,- are independently and identically distributed, we may inter-
change indices j and i—j+1, .7 = 1, • • • , i, in the middle member of (4.5)
without altering its distribution. Hence, setting h = (s —1)_1, we have

P{Yn g /} = P{Ri = hy', R2 ̂  h(Ri + y'), ■■■ ,
i?n= h(R1+.-. +Rn_1 + y')}

(where, for w = l, we replace i?i + • • • +2?„_i by 0). Since Bi^Wn — Wn, our
proof will be complete if we show that

(4.7) lim   liminf P{Yn ^ y'\ = 1.
y'—*oo n—»°0

From the strong law of large numbers we have

( 1   A Rn )(4.8) P< lim — 52Ri = ERh lim— = 0>  = 1.
ln-»«°   11   <=i n-»»    n )

Now, for y'^0,

,     s = P{*n = A(Ui +■■■ + Rn-i + y') for n = 1, 2, • • • , ad inf.}
(4.9)

(£„     Ui + • • • + Rn-i     y' )
= P \-=-+ — for n = 1, 2, ■ ■ ■ , ad inf.}- .

Because of (4.8), for any e>0 there exists an integer N such that

( Rn Rl+  ■■  + Rn-1  t J
P {-=-for n > N \   > 1 - «.

{ hn n )

Clearly, there is a value y0' such that for y'>y!>

lRn      Rx + ■ ■ ■ + £„_!      y' )
P \-• g-h — for n ^ N}  > 1 - e.

( hn n n )

Equation (4.7) is an immediate consequence.
5. Certain immediate consequences of the lemma.
(A) P*(*i) = P(*i>.
Proof. Let x(xu y') be the point xlt y', ■ ■ ■ , y'. From the lemma it follows

at once that for any e>0 and i and y' sufficiently large we have

(5.1) | P[wa = xi} - P[wa = *i, wi2 = y, ■ ■ • , wit g y} | < e.

Let i—* oo. We obtain

(5.2) | F*(*0 - F(x(xlt /)) | ^ «•
Let y'—* oo. We obtain

(5.3) |**(*o-*(*)!*:«.
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8 J. KIEFER AND J. WOLFOWITZ [January

Since e was arbitrary the desired result follows.
(B) Either F and F* are both distribution functions or neither is a dis-

tribution function.
This follows from the fact that (A) above implies that lim F(x) as all

coordinates of x approach infinity is the same as lim F*(xi) as Xi approaches
infinity.

6. Proof that F is a distribution function when p<l. We define

(6.1) p = (ER1)(sEg1)-1.

We shall now prove that, if p<l, F(x)—>1 as all coordinates of x approach
infinity. Then, by (3.12), we have lim F*(xi) = l as Xi—>oo.

I. We show that it is sufficient to prove this result in a "dominating" case
where, for some e>0,

(6.2) Zp{R1 = ci\  = T.P{gi = ci} = 1.
1-0 i=0

Let [a] be the largest integer ^a and for some one c>0 define, for all i,

*-.[f],    *-.[*]+ *
Then gl gg< and Rl ^F<. Let w{ be the same function of {gj } and {Rj }
that Wi is of {g,} and {Rj}- It follows from an argument like that of §3
that w' ^Wi for all i. Hence if we can show that

(6.3) lim   liminf P{w'n ^ y', • ■ ■ , wit ^ y'} =1
y *—► ao i—* oo

it will follow that

(6.4) lim F(y', y', ■ ■ ■ , y') = 1
y'—+«

which is the desired result.
We have

Eg'i ^ Egi - c,        ER'j = ERj + c.

Hence, if c is sufficiently small, (ER{){sEg{)-1<l.
In the remainder of this section we assume that (6.2) is satisfied with

p<l, and we shall prove (6.3) for this process.
II. We show that (6.3) is valid if P{Fi = 0} >0. We recall that P{& = 0}

<1. Hence, for any i and integral a-i, • • • , a„, with 0gai^a2^ • • • ga„

P{w(i+j) = 0 for some j \ Wi,i = a\c, w,i2 = a2c, • • ■ , w,-,, = asc\

is positive. Let Z be the totality of all points (aiC, a2c, • • • , aBc) with integral
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1955] ON THE THEORY OF QUEUES WITH MANY SERVERS 9

tt's such that 0^«i^a2^ • • • ^a.. Let z be a generic point of Z. The points
z are the states of our Markoff process {Wi\. The preceding argument shows
that the origin 0 and all the points z which can be reached by the process
{wi\ with positive probability form a chain C which is irreducible. C is
aperiodic, since

(6.5) P{wi+1 = 0| Wi = 0} ^ F{Fi = 0} > 0.

The desired result then follows by III below.
III. We shall show that, if C is aperiodic and irreducible, (6.3) holds.

From §3 or [3, Chap. 15, Theorems 1 and 2], it follows that

lim P {Wi = z}

exists for all z in C; call it/(z). From the theorems of [3] cited above it follows
that

(6.6) £ /(z) =0   or    1.
zGc

Our result is proved if we show that the sum in (6.6) is 1. Suppose it were 0;
every/(z) is then zero. We would then have

(6.7) F(y\ y', ■ ■ ■ , y') = 0
for every y'. Hence from (A), §5, we obtain, using (6.7),

(6.8) F*(Xl) = 0

for every Xi. From the definition of w\ and the fact that p < 1 we obtain that
there exists an M>0 such that, whenever

(6.9) M ^ ai ^ a2 ^ • • • ^ a„

we have

(6.10) E < 23 W(i+i,,,-1 Wi} = a,-, j = 1, ■ • • , s>   < X) ai - s

for some 5>0. It is to be noted that, whether (6.9) holds or not, the left
member of (6.10) is never greater than

(6.11) E a,; + ERt.

Since F*(xi) =0 we can find an N>0 such that for i^N we have

i i s
(6.12) F Wi,i < M   <-

S + ERt
Then, for i^N, we have
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10 J. KIEFER AND J. WOLFOWITZ [January

V i-l 1-1 )

(6.13) = £ J£ j Z w<+1„- - £ v,a,| w,;-.i = 1, • • • ,s\\

S ERi
<-(£Pi) +-(-6) = 0.

5 + ERi 5 + ERi

Hence, for i>0,

(6.14) Ej^ wi+N,j < E^, wN,j
)=i y-i

so that -EX/-1 w*.i is bounded uniformly in i. This contradicts (6.7) and
proves III.

IV. We now suppose P{i?i = 0} =0, and we construct a suitable "domi-
nating" process for which we can prove results analogous to II and III.

Let k be a positive integer such that (sk —1)>0,

(6.15) P{Pi ^ (sk - l)c} = 1,

and

(6.16) PJPi = (sk - l)c} > 0.
If necessary, we can decrease the c of (6.2) so that such a k can always be
found. If now

(6.17) P{gi^skc} >0,

then it is clear that

(6.18) P{ wi+j = 0 for some j > 0 | w> = z\ > 0

for every z in C. Hence C is irreducible. It is also aperiodic, because

(6.19) P{ww = 0[ tin = 0} > 0.

Hence the desired result follows by III. We therefore assume that (6.17) does
not hold, i.e., that

(6.20) P{gl g (sk - \)c] = 1.

Let m be the largest integer for which

P{gl = mc) > 0.

Let Ai be the set of a (say) non-negative integers j<m such that

P{gi = Jc) = o, i€4
Let {g( } be independently and identically distributed chance variables with
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1955] ON THE THEORY OF QUEUES WITH MANY SERVERS 11

the following distribution:

P{gi = jc\   =X, jGAu
P{g'i = mc) = P{gx = mc\ - ah,

p{si=jc}   =P{gi=jc), J9*m,j$.A1.

Here X is a small positive number, whose choice will be more fully described
shortly, but which should in any case be such that P{g\ = mc\ —aX>0 and
X<P{F!=(5*-l)c}.

Let A2 be the totality of integers j> (sk — l) such that

p{Rl = jc\ =0, ye Ai.
Let {Ri } be independently and identically distributed chance variables,
independent of {g! } and with the following distribution:

p[R[=jc}=-, jeAt,

P{R[=jC}  = p{R1=jc},        j*(sk- 1),JGA„
P{R[ ^ (sk - l)c} = 1.

We choose X > 0 so small that

(ER[)(sEg[)-i < 1.
Any such X will suffice.

Let {wi } be the same functions of {Rl, g' } as wt are of {P,-, g,}. Let F'
and F' be the corresponding functions for the primed Wi. Comparing cor-
responding sequences in the manner of §3 we obtain that

Fj(x) g Fi(x) for every x.

Hence

F (x) = limF-(x) ;£ F(x) for every x.

If, therefore, we prove the desired result for the system {w( } we have a
fortiori proved the desired result for the system {w,}. We may therefore drop
the accents and henceforth assume that

(6.21) P{gl=jc}>0, i = 0, • •• ,(5*- 1),

(6.22) P{gl £ (sk - l)e] - 1,
(6.23) P{Rt = jc) >0,j= (sk - 1), (sk), (sk + 1), • • ■ ,
(6.24) P{j?! ^ (sk - l)c} = 1.

(We note that these imply that we are in the case 5>1, for 5 = 1 would
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12 J. KIEFER AND J. WOLFOWITZ [January

violate the requirement that p<l.)
Let

z* = (skc, skc, ■ ■ ■ , skc).

Let

z = (a\C, a-ic, ■ ■ • , a,c)

with 0^ai^a2= ■ ■ ■ =a. be any point in Z. Let

L = wu + skc.

If Ri+j-\ = L — Wij and g.+, = 0, j = l, • • • , s, an event of positive probability,
we have

wi+, = (L, L, ■ ■ ■ , L).

If i?,+i+j_i=(s£ — l)r and gi+,+i=kc,j=l, • ■ ■ , s, again an event of positive
probability, we have, since L^skc, that

Wi+2, = (L — c, L — c, • ■ • , L — c).

Applying the above argument a, times we conclude that, for any z and i,
P{wi+j = z* for some j^0\Wi = z}>0. Let D be the set of all points in Z
which can be reached from z* with positive probability. The above argument
shows that the states of D form an irreducible Markoff chain. This chain is
aperiodic, because a modification of the above argument shows (using (6.23))
that there exists a number N such that, whatever be n = N, there is a positive
probability of moving from z* back to z* in exactly n steps.

If now, with probability one, Wi^D for some i, an argument similar to
that of III applies and the desired result is proved.

V. We now prove that, with probability one, Wi£_D for some i.
From (6.23) and the fact that P{g1 = 0}>0 it follows that any point

z= (a\C, • • • , asc) £Z such that (2sk — 1) ^<Zi is a member of D. We now note
that the probability of entering D in at most s steps from any point z not in
D is bounded below by a number (say) p.>0, independently of z (not in D).
To see this, we note that this can be accomplished in at most 5 steps where
each R = 2skc and each g = 0. From this it follows that the probability of
entering D for some i is one.

The proof of the result of this section is now complete.
7. Proof that F is not a distribution function when p^l. To prove this

result we must in addition assume that, when p = l,

(7.1) P{Ri-sgi = 0} < 1.

For if (7.1) does not hold we have, for some e> 0,

(7.2) P{gl = e\ = p{R1 = se) = 1.
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(Hence p = 1 here.) Therefore, with probability one,

wi = (0, 0, • • -, 0),
w2 = (0, 0, • • • , 0, (s - l)e),

wt - (0, 0, • • • , 0, (5 - 2)e, (s - l)e),

wa = (0, e, 2e, • • • , (s — l)e),

Wi = w„ i > 5.

Hence a limiting distribution function F does exist.
We therefore assume that p^l and (7.1) holds. We shall show that

F(x)=0, and hence (see §5, A) that F*(xi)=0.
Let {Li} be a sequence of chance variables defined as follows: Li = Q with

probability one. For i ^ 1

Li+i = max (0, Li + F, - sgi+1).

Thus Li is the waiting time of the ith individual in a system such as de-
scribed in §2 where 5 = 1, the service time of the ith individual is F„ and the
interval between the ith arrival and (i+l)st arrival is 5gj4i. In this system
p ^ 1, so that the theorem of Lindley (which treats the case 5 = 1) is applicable,
i.e.,

(7.3) lim   lim P{Li^ x'} = 0.
X '—* oo      i—» oo

Now, if 0^Oi^a2^ • • • ^a„ and b, c, and d are non-negative numbers
with b^ 2_j-i ai> we clearly have max (0, ai+c — d)+ ]5^*_2 max (0, a,j—d)
^max (0, b+c — sd). We conclude, using induction, that for all *^1,

(7.4) Li g £ u,i,i
j=i

with probability one. It follows from (7.3) and (7.4) that

lim F(x', *',•••, x')  =   lim   lim P{ w,-,,- ̂  x', j = 1, • • • , 5}

(7.5) ^  lim   limpjx>,-,, ^ 5*'}
z'->»     4-no (.  j_! J

^   lim   lim P{L( ^ 5x'} = 0,
X*—*«      <—»oo

which proves the desired result.
8. Proof that lim,^ Fj(x|y) exists and is independent of y. Uniqueness

of the solution of the integral equation (3.8). Suppose first that p^l. Since
Fj(x|y) ^Fi(x) for every i and every x and y£.S, it follows from the results
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14 J. KIEFER AND J. WOLFOWITZ [January

of §7 that

lim Fi(x | y) = 0

when p=l. We shall shortly show that, when p^l, (3.8) has no solution
which is a distribution function over S.

Assume, therefore, thatp<l, which is the interesting case. We shall show
that, for all x and y in S, the ergodic property

(8.1) limP,(x| y) = F(x)

holds. From this it follows easily that (3.8) has at most one solution which
is a distribution function over 5 (thus, by §6, it has exactly one such solu-
tion). For, suppose, to the contrary, that there were another such distribu-
tion function, say V(x). It is clear then that, if wt is distributed according
to V(x), so are wz, w3, ■ ■ ■ , so that V(x) is the limiting distribution. On the
other hand, it follows from (8.1) and the Lebesgue bounded convergence
theorem applied to

V(x) = jFi(x\ y)dV(y)

that

V(x) =  f F(x)dV(y) = F(x)

which is the desired result. (Thus we have proved that, when p<l, F(x) is
the unique stationary absolute probability distribution; see the paragraph
following equation (3.8).)

Conversely, if (3.8) has a solution V which is a distribution function over
S, then

F(x) = \wiFi(x) = lim   \ Fi(x\ y)dV(y) = V(x),
i—* OO f—> GO     J

so that (from the result of §7) p<l and hence V(x) =limi^0O Fi(x) is the
unique solution of (3.8).

Denote by [a, b] and [c, d] the smallest closed intervals for which

P{a ^ Px = b} = P{c ggigd] = 1.

We shall conduct the proof separately for several cases.
Case 1: b>sc. Let b — sc = 2v>0. Then, for any positive integer n,

P{wsna > vn) = qn > 0.

Fix n. For any x and 5>0 there exists an integer M such that, for all j = M
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and k>0, we have

| Fj(x) - Fj+k(x) | < qn8.

We recall that, if y\^y2, yi(E.S, y2€zS, we have, for all i,

Fi(x\ yO £F,(*| y2).
Hence, for j = M, we have

0 = qn[Fi(x) - Fj(x\ (nv, nv, ■ ■ ■ , nv))}

(8 2) sf\Ft*)-*<*\y)W-(y)

<qJ+ J   [Fy+._i(x) - Fj(x\ y)]dFan(y) = qn8.

Therefore

(8.3) 0£ [F,-(*)-F,(*|y)]<«
for all y^(nv, nv, ■ • • , nv), y£S, and all j^M. Since x, n, and 5 were
arbitrary this proves (8.1) for Case 1.

Case 2: a <d. Let y be any point in S, and

Pn(y) = P{wn = 0; w, ?* 0, i < n\ wx = y}.

We shall show that, for all y in S,

(8.4) ZPn(y) = L

This is sufficient to prove the desired result, because

(8.5) Fi(x | y) - E Pn(y)Fi-n(x)

then approaches zero as *—*».
To prove (8.4) we proceed as in §6 to construct a "dominating" random

walk on a lattice. The walk begins at a point on the lattice all of whose co-
ordinates are no less than the corresponding ones of y. As in §6 one proves
that with probability one the walk enters an irreducible aperiodic chain.
Since a<d this chain contains the origin. Since p<l and F(x) is a distribu-
tion function this chain constitutes a positive recurrent class. For an irre-
ducible, recurrent class (8.4) must hold for all y in the class. Since the walk
enters the class with probability one, (8.4) holds for all y in 5.

Case 3: c = d^a = b^sc. In this case we have P{Ri = b} =P{gi = c} =1.
Since p < 1, we also have b <sc.

Let y* = (yi, • • • , y„) be any point in 5, and let y" = (y„, • • ■ , y>). Given
the process {Pit g,-}, let w* be the position of Wi if wi = y*, let w' be the posi-
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tion of Wi if Wi = 0, and let wi' be the position of Wi if Wi = y". Clearly,
Wi l^w* tkw" for all i with probability one, and for t^jwe have w[ =w,
where w is defined by

(8.6) w = (0, w,_i, • • • , m2, «i),

where

Uj = max (b — jc, 0).

We shall show that wi' =w with probability one for i sufficiently large, which
implies that for sufficiently large i with probability one, w* = w, and proves
the desired result.

It is clear that, for all i,

w'i+i.i = max (0, w'i'j+i - c) for 1 ^ j < s,
(°-<) t, n    .   ,

wi+i,t = WiA + b — c.

For n = 0 and 0 = i ^ 5 — 1, we evidently have

(8.8) J0l+n.+tM =   w'n',+i,i.

Let Af be a positive integer such that y, — N(sc — b) = 0. Then w^+i,i = 0 for
n^N, and hence from (8.8) we have wj'^0 for i^Ns-\-l. It follows from
(8.7) that wi' = w for i^(iV+l)s.

Case 4: a^a, b^sc, and either a<b or c<d. Let My be as in (8.6) and for
e>0 define w'=(0, ues_u • ■ ■ , i4, u\), where n' = max (0, Uj — e). From the
definition of b and c we have that, for every e>0,

P{w,fi ^ M,"_y+i, j = I, ■ ■ ■ , s} = y > 0.

An argument like that of Case 1 (with y for qn and F, for P,„) then shows
that

lim Fi(x I y) = F(x)

for all y£r~«= {y|y£S, y^w«} and all ac.
Let y be any point in S, and

Pn(y) = P{wn G r', w,- $ r', i < »| wi = y}.

We shall show that, for some e>0 and all y£.S, we have

(8.9) £p»(y) = U
n=l

from this and the result of the previous paragraph, the desired result is proved
in the manner of the first paragraph of Case 2.

Let
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(8.10) E = {y\y = (yu ■ ■ • , y.) GS;yi = 0; y. ^ (s - l)b}.
In order to prove (8.9) for some e>0 and for all yE5, it clearly suffices to
show that

(8.11) P {Wi G E for infinitely many i | wi = y} = 1

for all yG-5, and that there exists a positive integer If and positive numbers
a and e such that

(8.12) F{wm er'| wx = y} > a

for all yGP.
We first prove (8.11). To this end, let y = (yi, • • • , y„) be any fixed point

in S. Since we have always assumed d>0, we have in Case 4 that a>0. It
follows from equation (4.3) that for n>(s — l)y,/a we have

(8.13) P{F„= (5- l)ft| Wl = y} = 1.

Let {«i}, {/,•} be any sequences of non-negative numbers, and let {»<}
be the corresponding sequence of values of {wt} when Wi = y*, F< = e<,
and gt=/». Then, if Va = 0 for only finitely many i, it would follow that
lim infn^oo (l/») 2?-i (e< — 5/>'+i) =0- However, since p<l, the strong law of
large numbers implies that

F i lim — X) (Pi - sgi+1) = EFi - sEgl < o\  =1.

Hence

(8.14) P{wt,i = 0 for infinitely many i\ wx = y*} =1

for all y*G5. Equation (8.14) is a fortiori true for the original process, and
(8.11) is an immediate consequence of (4.1), (8.13), and (8.14).

It remains to prove (8.12). We recall that in Case 4 we have c<b^sc and
that there are numbers V, c' such that P{Pig&'} =p>0, P{gi^c'} =q>0,
and b' — c' = b — c — e for some e>0. An obvious modification of the argument
of Case 3 (put b', c' for b, c) shows that if Wi = y££ and if Rj — b' and g/+i = c'
for 1 ̂  j < M where M/s is the greatest integer contained in 2
+ (s-l)b/(sc'-b'), then

(8.15) wM,i ^ max (0, V - (s + 1 - i)c') ^ «'_,+,.

Equation (8.15) is a fortiori true if Rj^b' and gy+i^c' for l^j'<Af (the
argument being similar to that of §3). We conclude that (8.12) is satisfied
for e and M as defined here and for a = (pq)M~l.

9. Distribution of the number of individuals waiting in the queue. In
order to avoid trivial cases and the circumlocutions required to dispose of
them, we shall assume in this section that G(0) =0. This means that the prob-
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ability is zero that two or more individuals arrive simultaneously.
Let Qi be the number of arrivals in the open time interval (t{, ti+Wa);

i.e., Qi is the number of individuals in the queue waiting to be served, just
before the service of the ith individual begins.

Since g1+i, gi+t, ■ • ■ are independent of /,-, we have

P[Q{ = n\ = J P{g! + g2 + • ■ • + gn < a}dF*(a)
(9.1)

= JG"*(a-)dF*(a),

where Gn*(a) denotes the M-fold convolution of G(a) with itself. Since Ft*(a)
tends nonincreasingly to F*(a) as i—>oo for all a, and since Gn*(a —) is con-
tinuous from the left, we obtain, in the case p<l,

(9.2) lim P{Qi = n\ =  (G"*(a-)dF*(a).

If p^ 1, equation (9.1) shows that lim^w P {Qt _ n} =1 for all n, except in the
trivial case where P{i?i — 5gi = 0} =1.
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