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Abstract

A series of equations are developed for the study of the effects of cosolvents on the solubility of a

solute in mixed solutions where the solute displays a finite solubility. The equations differ depending

on the scale used for the solute (and cosolvent) concentrations. The expressions use Kirkwood-Buff

integrals to relate the changes in solubility to changes in the local solution composition around the

solute, and can be applied to study any type of ternary system including electrolyte cosolvents. The

expressions provided here differ from previous approaches due to the use of a semi open ensemble,

and the extension to finite solute solubilities.

Introduction

Cosolvents (anything other than the primary solvent) are well known to affect the solubility of

solutes in solution. A rigorous theory of the effects of cosolvents is desirable in order to

understand the molecular level interactions responsible for the changes in solubility, and

therefore improve our ability to manipulate the properties of solutions. Recently, the Kirkwood-

Buff (KB) theory of solutions1 has been used to rationalize the effects of cosolvents on the

solubility of sparingly soluble solutes in terms of intermolecular distributions.2–13 KB theory

is an exact theory of solution mixtures and therefore provides a solid foundation for the

understanding of such effects.

Previous studies have investigated many aspects and applications of the theory, from small

molecules to large biomolecule solutes. The general idea is to use KB fluctuation theory to

extract information about the local microscopic distribution of molecules from macroscopic

experimental results. The theory has nothing directly to say about the interactions that bring

about the microscopic structure; but, of course, it is the intermolecular interactions which are

ultimately responsible for them. Apparently, Hall and O’Connell were the first to suggest the

use of KB theory to study changes in solubility in ternary systems with a finite solute solubility.
2,14 In particular, KB theory has been applied to study low solute solubility in water by deriving

KB based expressions for Henry’s constant.2,4 These studies typically used closed ensembles,

sparingly soluble solutes, with solubilities and cosolvent concentrations expressed using mole

fractions. Lee studied finite solubilities using KB theory and closed ensembles.3 However,

Hall and more recently Mazo recognized that the most appropriate ensemble for these studies

was one where T, P, and the chemical potential of the solute are held constant.7,14

The approach presented here builds on the ideas of Hall and Mazo.7,14 We extend the range

of applicability to include solutes with finite solubilities in ternary systems of any type. The

observed relationships differ from previous approaches primarily due to the use of an open
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system ensemble in the current study. Futhermore, we investigate in detail the differences

observed when solubilities and cosolvent concentrations are defined using different

concentration scales, and argue that the molarity scale provides the simplest and clearest picture

of the cosolvent effect.

General Theory of Solubility

We will adopt the convention of a primary solvent (1), solute of interest (2), and cosolvent (3)

at a fixed temperature (T) and pressure (P), together with the approach previously outlined by

Mazo.7 The chemical potential of the solute (μ2) can be expressed by the statistical mechanical

relationship,15

(1)

where Λ is thermal de Broglie wavelength, μ* is the pseudo chemical potential, ρ2 is the solute

number density (n2/V), and β = 1/RT. The pseudo chemical potential (pcp) was introduced by

Ben-Naim and its uses have been discussed in detail.15 The current use of the pcp, and thereby

the molar concentration scale for the solute solubility, represents one of the major differences

from previous studies and the consequences of this choice will be discussed later. At saturation,

the chemical potential of the solute is the same as the pure solid (or gaseous) solute at the same

T and P for any solvent and cosolvent mixture. Hence, if we follow the saturation equilibrium

(ρ2 = ρ2
sat = S2) for a particular system then we have,

(2)

for all solvent and cosolvent solution compositions. To relate changes in the solubility to

changes in the cosolvent concentration (ρ3) it will prove convenient to define the following

derivative,

(3)

The superscript c for K23 indicates that the solubility and cosolvent concentration are measured

in terms of number densities (molarities). The value of K23
c clearly depends on the solution

composition and represents the slope of the saturation (solubility versus cosolvent molarity)

curve. In general, if the solute solubility is increased on addition of a cosolvent then the value

of K23 will be negative for most compositions, and vice versa. Experimentally, this slope is

often determined to be independent of cosolvent concentration. However, we do not make that

assumption here. The objective is to determine an expression for K23
c in terms of the

distribution of both the cosolvent and solvent molecules around the solute.

Kirkwood-Buff Theory

In order to relate the thermodynamics of the salting in/out process to changes in the distribution

of cosolvent and solvent molecules in solution we will use the Kirkwood-Buff theory of

solutions.1,15 KB theory relates integrals over radial distribution functions (gij) to properties

of the solution. The main components are the KB integrals between the different species,

(4)

and the number densities or molar concentrations of each species (ρi = ni/V). An excess

coordination number can be defined (Nij = ρjGij ≠ Nji) which characterizes the excess number

of j molecules around a central i molecule in an open system above that observed within an

equivalent volume of a bulk solution. It is a measure of how the addition of a single i molecule

affects the distribution of i and j molecules around it compared to the bulk reference

distribution. Generally, a positive value of Nij indicates an increase in the local density of j
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around i above that of their bulk ratios. This can be viewed as the result of some favorable net

interaction or affinity between the two species. However, fluctuation theory is mute about

specific details of the nature of these interactions.

Combinations of KB integrals can be used to provide information on solution properties in

either open or closed systems. Before doing so it will be useful to define several expressions

which appear repeatedly in the following analysis. In particular, the previous notation

introduced by Smith for binary and ternary solutions will be used.16,17 We define,

(5)

with,

(6)

and,

(7)

Note that we have emphasized that the above expressions depend on the solute concentration

even though the expressions themselves do not explicitly contain the solute concentration.

There is no requirement that the Gij values be independent of concentration.

Many interesting cosolvents are salts. KB theory can be applied to salt solutions as long as one

does not treat the individual ions as independent thermodynamic variables.18 There are several

approaches to this problem.19–24 We will use the indistinguishable ion approach in the case

that the cosolvent is a salt.25 This involves treating the salt as a collection of ions, without

acknowledging the differences between anions and cations. This has particular advantages

when analyzing computer simulation data (see the Discussion).25 Therefore, we will

distinguish between the traditional molar salt concentration cs and the total ion number density

ρ3. The following relationships then hold: ρ3 = n± cs, n±dμ3 = dμs = n+dμ+ + n−dμ−, and γ3 =
γ±, etc, where n± = n+ + n− is the total number of ions produced on dissolving the salt. In our
opinion, this is the simplest approach for salts and provides equivalent expressions to other
methods.20,21,26 However, care must be taken when using the mole fraction concentration
scale for salts (see Appendix 1).

Kirkwood-Buff Theory of Semi Open Ternary Systems

One can express several properties of semi open ternary solutions using the above definitions.
The following expressions were determined using the approach of Smith.17 The change in
cosolvent activity with cosolvent molarity is provided by,

(8)

where a3 is the cosolvent activity. Alternatively, using the molality and mole fraction
concentration scales one finds,

(9)

and,

(10)
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respectively. The last equation was obtained from Equation 9 using an expression for the
required derivative (∂x3/∂m3)T,P,μ2 which was derived using a similar approach to that in
Appendix 1, together with previously existing expressions.17 All three equations reduce to the
expected binary system results when n2 tends to zero. In the case of the molarity and molality
derivatives the expressions themselves do not change, whereas the mole fraction derivative
expression simplifies considerably. The additional complexity in Equation 10 arises from the
fact that n2 can vary in a system open to the solute and this directly affects the cosolvent mole
fraction, whereas it does not directly affect the cosolvent molarity or molality.

Throughout this paper we will refer to molalities according to mi = ni/n1. Hence, our molalities
are dimensionless. They are related to the standard experimental definition of molality by a
simple conversion factor of 1000/M1 or 55.5 mol/kg for water. In real applications this
conversion factor has to be included.

Kirkwood-Buff Theory of Closed Binary Solutions

In the limit that the solute concentration approaches zero the above expressions are related to
properties of the binary solvent and cosolvent solution. In this case, Equation 8 and Equation
9 adopt the same functional form but are now applicable to a closed binary system of 1 and 3
at constant T and P. Therefore, we can then use several additional established relationships
derived for binary systems under constant T and P conditions. For instance, the partial molar
volumes (pmv) in the binary solution can be written as,1,15

(11)

Alternatively, the cosolvent pmv can be expressed by,14,17

(12)

where κT is the isothermal compressibility of the solution. The above equation can then be
used to eliminate G13 from Equation 5 to generate,27

(13)

and  is the volume fraction of solvent. Furthermore, the pmv of an infinitely dilute
solute in a cosolvent and solvent mixture is given by,15

(14)

Finally, we note that,

(15)

All of the above relationships can be used when the solute concentration is low.

General Kirkwood-Buff Theory of Solubility

Having provided a variety of background information we return to Equation 3, which is the
starting equation for the present discussion. An expression for the first derivative in Equation
3 in terms of KB integrals has been determined previously for semi open ternary mixtures.17

Therefore, using this expression (Equation 17 of Reference 17 with an appropriate change of
indices) for the required derivative one finds,

(16)
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The above expression holds for any concentration of solvent or cosolvent, and also any
solubility of the solute. It also holds for electrolyte cosolvents. The Gij values depend on the
particular solute, solvent, and cosolvent composition. All the above KB integrals should be
evaluated at saturation of the solute.

Many studies use molality (m) and not molarity for both the solubilities and the cosolvent
concentration. In this case one obtains a different expression for K23 given by Equation 20 of
Reference 17 with an appropriate change of indices. The result is,

(17)

where we have used the definitions provided by Equation 6 and Equation 7. The above equation
is essentially that suggested by Hall but derived using a different approach.14 In addition,
concentrations may be measured using mole fractions (x). To derive an expression on this
concentration scale we use the following thermodynamic relationship,

(18)

where m23 = (∂m2/∂m3)T,P,μ2 and which was derived from the corresponding mole fraction
definitions using a similar manner to the approach outlined in Appendix 1. From the above
relationship, and the molality derivative used to develop Equation 17, one finds that the correct
expression when the solute and cosolvent concentrations are measured using mole fractions is
given by,

(19)

where ρ = ρ1 + ρ2 + ρ3 is the total number density of the solution. The above expression is
applicable to salts. However, care has to be taken with the mole fraction definition using the
indistinguishable ion approach. In particular, dx3 ≠ n± dxs and the exact relationship between
the two approaches is somewhat complex for ternary systems open to one component (see
Appendix 1).

Equation 16, Equation 17, and Equation 19 represent the primary results from the application
of KB theory to quantify the effects of cosolvents on the solubility of solutes where all
concentrations are finite. The difference between Equation 16 and Equation 17 or Equation 19
arises from two factors. The numerator is different due to the different solubility scales adopted
for the solute. The denominators are different due to the change in cosolvent concentration
scale and thereby the corresponding derivative. The latter difference disappears as ρ3 decreases,
while the former does not. The reasons for this will be discussed later. We will focus primarily
on the molarity based expression in the subsequent sections.

Sparingly Soluble Solutes

The above expressions are valid for any stable ternary mixture with the solute component 2 at
saturation. Many solubility studies involve a solute that is sparingly soluble in both the pure
solvent and the cosolvent-solvent mixtures. In this case one can take the limit that ρ2 tends to
zero. This does not change the expressions provided in Equation 16 or Equation 17. However,
in this limit the previous ensemble (T, P, μ2) now approaches that of a constant T and P
ensemble. Therefore, using Equation 16 one finds that,

(20)
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where the activity derivative a33 is now a property of the binary solution mixture alone. It
should be noted that although the above expression is identical in form to Equation 16, the KB
integrals themselves will be different as the presence of a solute at finite concentrations can
alter (both directly and indirectly) the intermolecular distributions. For K23

c to be constant over
all cosolvent concentrations one requires G23 − G21 to be proportional to 1/a33. Whether or not
K23

c is constant, the value of a33 is always positive.14 Hence, the difference in KB integrals
(G23 − G21) determines the sign of K23

c and therefore the direction of the salting in/out effect.

In many cases one can replace some of the (often unknown) KB integrals with corresponding
properties of the solution which are known or can be easily approximated. Elimination of
G21 using Equation 14 provides,27

(21)

where the infinity superscript indicates the pmv of the solute corresponds to that at infinite
dilution in the solution mixture. Additional elimination of G13 via Equation 12 then gives,

(22)

The above equations are exact for an infinitely dilute solute. In the final expression the value
of G33 is a property of the mixture in the absence of solute and is the same for all solutes. The
value of G23 quantifies the distribution of cosolvent molecules around an infinitely dilute solute
molecule. The latter can be obtained from the slope of the solubility curve if the corresponding
properties (pmv of the solute and G33) of the solution mixture are known.

When one expresses the solubility and cosolvent concentrations using molalities the sparingly
soluble solute limit provides an identical expression to that of Equation 17, although one can
now use the properties of the cosolvent and solvent mixture to provide,

(23)

or equivalently,

(24)

Alternatively, the sparingly soluble solute approximation for the mole fraction concentration
scale provides,

(25)

or using the properties of the solution mixture,

(26)

The last two equations can be used for electrolytes. Again, care has to be taken with the mole
fraction definition using the indistinguishable ion approach. In particular, one finds that dx3 =
(x3/xs)(1−x3)/(1−xs) dxs ≠ n± dxs for a closed binary system (see Appendix 1). This differs
from the much simpler molarity and molality based cases.

Electrolyte Cosolvents

The above equations refer to sparingly soluble solutes in any type of cosolvent solution. In the
case of electrolytes the KB integrals are related to the individual ion integrals through a series
of electroneutrality conditions. For the cosolvent we have,21,28

Smith and Mazo Page 6

J Phys Chem B. Author manuscript; available in PMC 2009 July 3.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



(27)

and,

(28)

In addition, for the salt distribution around the solute one can write,

(29)

which combined with the electroneutrality constraint equation,

(30)

provides,

(31)

Ben-Naim has pointed out that the above expressions for salts are not due to the ionic nature
of the interactions per se, but the fact that the cation and anion concentrations cannot be varied
independently.18 Hence, combining Equation 22, Equation 27, and Equation 31 provides,

(32)

which holds for any solvent and cosolvent concentration, and where we have focused on the
cation as the single independent species.

To relate our expressions to the salting out constants commonly presented in the literature one
can integrate Equation 3 using the assumption that K23

c (= KS
c) is independent of cosolvent

concentration (as observed for many salts) to give,

(33)

where S2
o is the molar solubility of the solute in pure solvent. Traditionally, experimental

solubility curves have used the common logarithm for the solute solubility, and often the ionic
strength in place of concentration. The ionic strength on the molarity scale is defined by,

(34)

where z+ and z− are the charges on the cation and anion, respectively, and c3 is the cosolvent
molarity. Consequently, the use of the indistinguishable ion approach provides,

(35)

which can be directly compared to the experimentally observed slope.7

The interpretation of G23 provided by Equation 32 and Equation 35 depends on the treatment
of the salt. For the present indistinguishable ion approach, the value of G23 quantifies the
deviation in the ion distribution around the solute. Alternatively, one could use the traditional
molarity (c3) of the salt solution and set n± = 1 during the analysis. The corresponding value
of G23 then quantifies the deviation in the distribution of salt “molecules” around the solute.
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Salting Out Constants

Salting out constants are usually defined by the slope of the solubility curve as the solute and
cosolvent concentrations tend to zero. Applying the zero cosolvent concentration limit for the
case of sparingly soluble solutes we have,

(36)

where it is implied that the KB integrals correspond to the distributions observed at infinite
dilution of both solute and cosolvent. Using our relationships for the solute pmv and the
properties of salt solutions (Equation 14 or Equation 32) this can be expressed in an equivalent
form,

(37)

where we have used the fact that ρ3G+− → 1 as ρ3 → 0,28 and the zero superscript indicates
a property of the pure solvent. Alternatively, using the molality concentration

(38)

which can be written,

(39)

 Equation 38 and Equation 39 were previously derived by Mazo.7 Finally, the solubility can
also be measured in mole fraction units in which case,

(40)

or,

(41)

Hence, a series of limiting expressions are obtained which depend on the concentration units
adopted for measuring the solubility of the solute. We note that Equation 38–Equation 41
involve properties of the cosolvent even at infinite dilution of both the solute and cosolvent.

The Relationship Between Expressions for K23 Using Different Concentration

Scales

The expressions for the salting out constants derived using the different solubility scales are
clearly similar. A general relationship can be developed for sparingly soluble solutes. Equating
the solute chemical potentials using the different concentration scales one can write,

(42)

for the molality scale, the pcp (or molarity) scale, and the mole fraction scale, respectively.
Here, γ2 and f2 are the molal and mole fraction activity coefficients and the standard states
correspond to the infinitely dilute solute and the pure solute for the molality and mole fraction
scales, respectively. Taking derivatives with respect to the cosolvent molality at infinite
dilution of the solute one obtains,

(43)

Using the standard thermodynamic relationships of (∂ρ3/∂m3)T,P = ρ1φ1 and (∂x3/∂m3)T,P =
x1

2 for binary mixtures of 1 and 3 provides,
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(44)

Therefore, replacing the corresponding derivatives with the appropriate K23, defined in
analogous fashion to Equation 3, one finds the final relationship,

(45)

which is general for any cosolvent concentration. The above relationship (Equation 45) relates
the mole fraction based approach of Shulgin and Ruckenstein,6 to the molality based approach
of Mazo,7 and the pseudo chemical potential approach presented here – all for an infinitely
dilute solute. An alternative (more general) derivation is also provided in Appendix 2. The
corresponding salting out constants are therefore related by,

(46)

which only involves properties of the pure solvent and an infinitely dilute cosolvent.

Symmetric Ideal and Ideal Dilute Solutions

Symmetric ideal (SI) and ideal dilute solutions provide a useful reference point and so we will
briefly discuss the results obtained from Equation 16, Equation 17, and Equation 19 when the
cosolvent mixture is ideal. Ideal solutions display unit activity coefficients for all compositions.
However, the conditions for ideal behavior depend on the concentration scale for finite
cosolvent concentrations. Ideality arises when the lhs of Equation 8, Equation 9, and Equation
10 equals unity. On the molar concentration scale an ideal dilute solution is characterized by
a33 = 1 or G33 − G13 = 0 for all compositions. Alternatively, ideal dilute behavior on the molality
scale is provided when η13 = ρ1 or ρ1(G11 + G33 − 2G13) = −1 for all compositions. These are
the same conditions for ideal behavior in closed binary systems of 1 and 3. Consequently,
Equation 16 and Equation 17 reduce to,

(47)

and,

(48)

respectively. Both are valid for finite solute concentrations.

The condition for ideality on the mole fraction scale is more involved. Ben-Naim has shown
that symmetric ideal solutions are characterized by ΔGij = Gii + Gjj − 2Gij = 0 for all i-j pairs.
18 In this case, one has η13 = ρ1 + ρ3 with A1 = 1 and therefore K23

x = 0, as expected. If we
restrict ourselves to just symmetric ideal solutions of 1 and 3 then Equation 19 reduces to,

(49)

for any solute concentration. Hence, for symmetric ideal and ideal dilute solvent and cosolvent
solutions the expressions involve only the terms in the numerators of Equation 16, Equation
17, and Equation 19.

Comparison with the Hall Approach

Hall derived the equations of KB theory using a totally different approach from Kirkwood and
Buff. In doing so Hall produced two primary equations from which many of the expressions
presented here can be generated. These have the advantage of being directly applicable to semi
open systems and are relatively simple to use for binary and ternary systems. His approach,
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however, was still somewhat involved. Here we present a simpler derivation of the Hall
equations. The first focuses on changes in the molar concentrations of any component. If we
consider the species molarities in the grand canonical ensemble to be functions of T and all
chemical potentials then we can write,

(50)

for any component i at constant T. The summation is over all nc components of the solution.
The above derivatives in terms of KB integrals are provided directly from the fact that,15

(51)

which is the starting equation for KB theory. Here, δij is the Kroenecker delta function. From
the these two equations one finds,

(52)

which is valid for composition changes of any component in any multicomponent system and
any thermodynamically reasonable ensemble with T constant. This is the equation derived by
Hall but using a much longer route. From this equation one easily finds,

(53)

and,

(54)

for our semi open ternary system. These expressions, when combined with the Gibbs-Duhem
derived relationships,

(55)

provide Equation 16. This procedure replaces many of the thermodynamic transformations
required by other approaches,1,15,17 with relatively simple algebraic manipulations.

In addition, Hall also provided the following general expression for changes in molal
concentrations at constant T and P,

(56)

where Nij
+ = Nij + mj (1 + N11 − Ni1 − Nj1). Equation 56 can be generated from Equation 52

by noting that d ln mi = d ln ρi − d ln ρ1, and then eliminating dμ1 via the corresponding Gibbs-
Duhem relationship at constant T and P,

(57)

Hence, the additional constraint of constant P. Using Equation 56 one immediately finds,
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(58)

and,

(59)

for our semi open ternary system which, after combining and rearranging, provide Equation
17. We note that η1i = ρ1(Nii

+ + 1) and A1 = ρ1 N23
+/ρ3.

The primary advantage of the Hall approach is that it can be applied to any number of solution
components in any constant T ensemble (molarity version) or constant T and P ensemble
(molality version). However, Hall did not provide a starting expression for mole fractions. This
can be achieved by noting that,

(60)

Therefore using Equation 52 we have,

(61)

which is somewhat involved but very useful as it applies to any number of components in any
constant T ensemble. The above equation leads to the mole fraction results for our ternary
system, although the algebra involved makes it no more efficient than our previous approach.
It does confirm the relationships derived in the present manuscript, as well as many of those
derived earlier.16,17

The Direct Correlation Function Approach

In several previous applications of KB theory the direct correlation approach has been used.
29,30 The expressions provided here in terms of KB integrals, based on the total correlation
function, can be converted to equivalent expressions using the direct correlation function
(cij). The direct correlation functions are defined by the relationship,

(62)

This is merely the Ornstein-Zernike (OZ) equation in matrix form in wave number space
evaluated at zero wave number. Here, G is the matrix (Gij), C is the matrix (Cij), and ρ is a
diagonal matrix with diagonal elements (ρ1, ρ2, …). The Cij integrals are given by,

(63)

Equating the elements of the two resulting matrices in Equation 62 provides expressions for
the Gij integrals in terms of the Cij integrals,

(64)
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for a ternary system. If necessary, the |1−ρC| determinant appearing on the rhs of the above
expressions can also be evaluated. However, this factor will cancel in the majority of
expressions we have provided here. The above set of equalities can then be used to transform
any of the present expressions into equivalent expressions involving just the C’s.

For example, the major result of this study is Equation 16. In terms of the direct correlation
function integrals this can be written,

(65)

For sparingly soluble solutes one then has,

(66)

and the corresponding salting out constant is then provided by,

(67)

where we have used previously derived expressions for the solution properties in terms of the
direct correlation function integrals.30 We have not provided a complete set of expressions in
terms of the direct correlation function for reasons outlined in the Discussion.

Discussion

In the previous sections we have outlined a general approach for understanding solubility
curves in terms of KB integrals. The primary result is Equation 16 where all concentrations
are measured on the molarity scale. This equation can be applied to small solutes (He, Ne,
CH4, etc) or large molecules such as peptides and proteins at any level of solubility. In addition,
the KB approach allows one to isolate G23 (or G2+) at infinite dilution, and other concentrations
if a33 is known. A more physical picture of the difference in KB integrals can be obtained by
reference to a similar thermodynamic property which is used to quantify cosolvent effects in
biological systems.31 In particular, Timasheff and coworkers have used preferential binding
to understand equilibrium dialysis experiments and the thermodynamics of transfer of proteins
from pure solvent to cosolvent mixtures.32 The preferential binding at infinite dilution of a
protein solute is given by,16

(68)

The last equality indicates that when the ratio of cosolvent to water molecules in the vicinity
of the solute is greater than the bulk cosolvent to solvent ratio (ρ3/ρ1) the value of Γ23 is positive.
This is equivalent to a negative value of K23

c and a salting in effect. When the ratio of the local
cosolvent to solvent concentrations is less than the bulk ratio one observes a salting out effect.
In the case of hydrophobic solutes and ionic cosolvents, it is expected that the ions will be
excluded from the solute surface due to their strong solvation shells. Here, the solutes are
preferentially hydrated and Γ23 will be negative. KB theory provides a way to quantify these
changes in the ion and solvent distributions. The use of Equation 14 to relate G23 and G21

physically states that the solvent and cosolvent distributions are linked through a constraint on
the volume surrounding the solute. Therefore, if a cosolvent is excluded from the vicinity of a
solute then an equal volume of water must replace the cosolvent to maintain a constant overall
volume.
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Our presentation has been given in terms of the KB integrals and not direct correlation function
integrals. Indeed, when KB theory was first published the direct correlation function cij(r) was
rarely used in statistical mechanics. Since that time, however, several authors have preferred
to express the results of KB theory in terms of these integrals.3,29,30 Presumably, the rationale
for using the C’s is that their integrands (cij) have a shorter spatial range than do the integrands
(gij −1) of the G’s. Although it is not difficult to use Equation 64 to express Equation 16,

Equation 17, and Equation 19 in terms of the C’s rather than the G’s, we have not pursued this
approach for two main reasons. First, the G’s have a clear physical meaning in terms of the
excess particle numbers, or concentration fluctuations.18 The C’s have no such direct physical
meaning. Second, the c’s are defined by Equation 62. They are not measurable experimentally
nor calculable theoretically by any method of which we are aware that does not use Equation
62 or something equivalent to it. The G’s, on the other hand, are measurable (at least in
principle) by radiation scattering and have been successfully calculated by simulation.19,33,
34 In addition, the resulting expressions in terms of the G’s are much simpler. When any of
the gij functions become really long range, such as near a critical point,30 then it becomes
advantageous to use the C’s instead of the G’s. But, barring such exceptional circumstances,
we advocate the present formulation in terms of the G’s.

The value of G23 − G21 is central to the discussion of the salting in or out effect. Other KB
integrals correspond to properties of the solution mixture and are not measures of the effect of
a specific cosolvent on a specific solute (they are the same for all solutes in that particular
cosolvent solution). This is precisely why the pseudo chemical potential approach is to be
preferred. If a cosolvent displays a positive value of G23 − G21 then K23

c is negative and the
solute solubility is increased (salting in effect). Conversely, if G23 − G21 is negative then
K23

c is positive and the solute solubility is decreased (salting out effect). If one measures the
solute solubility using molalities or mole fractions, then additional terms appear in the
numerator of the expressions for K23 which refer to properties of the solution. These terms
have nothing to do with the solute under investigation. Hence, the molarity or pcp based
approach is much simpler and easier to interpret, especially when the cosolvent and water pmvs
are unknown. For example, if a cosolvent displays no preference for the solute (G23 − G21 =
0) then an increase in cosolvent molarity leads to no change in the solute solubility (Equation
16) as K23

c is zero. However, if one uses the molality or mole fraction scale results (Equation
17 and Equation 19) then the values of K23

m and K23
x are non zero and there will be a change

in solubility even though there is no preference of the cosolvent for the solute. Let us be clear
about what this sentence means. We are certainly not asserting that the physical amount of
solute in a solution changes when one changes the units of measurement. The point is that the
definition of solubility is dependent on these units. The molal and mole fraction based equations
are perfectly correct, but they do not, in our opinion, provide the simplest and clearest
interpretations of the experimental data.

Recently, Mazo presented an analysis of the effects of salts on the solubility of benzene based
on the experimental data of McDevit and Long.7,35 Here, we have reanalyzed the same
experimental data. The new analysis is presented in Table 1 and is different to that of Mazo
for several reasons. First, Mazo analyzed the molarity based data of McDevit and Long using
the molality based Equation 39. In principle, this is incorrect but is numerically not serious at
these low concentrations. Second, Mazo used the pmv of the salt rather than the

indistinguishable ion  – but this is also not serious. Third, a misplaced decimal point
in the original calculations led to the most serious error in the construction of the previous
table. Therefore, R.M.M. would like to withdraw Table 2 of Reference 7 and substitute for it
Table 1 of the present paper.

The results presented in Table 1 demonstrate a decrease in salt exclusion for sodium salts as
the anion becomes larger. This is exactly the trend predicted on simple solvation principles.
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The same trend is observed for alkali metal chlorides as the cation size increases, with the
noticeable exception of LiCl. If LiCl were incompletely dissociated in dilute solution this would
decrease the salting out effect and explain the anomaly at least qualitatively. On the other hand,
we are not aware of any evidence for incomplete dissociation. In conductance studies it appears
to be a typical strong electrolyte. An alternative conjecture involves the possibility of
significant cation interactions with the benzene pi system. This would favor an increase in
G2+ for Li+ over other cations. However, this remains quite speculative at present.

In the above analysis the value of G21 = −89.4 cm3/mol is the same for all cosolvents at infinite
dilution. The corresponding excess coordination number N21 is then −4.9. This can be
interpreted as benzene, at infinite dilution, occupies the same space as 4.9 water molecules
would occupy in pure water.

The results obtained from Equation 39 and presented in Table 1 should not be interpreted as
favoring a picture of cation dominated interactions. The anions play an equally important role.
The deviations in the distribution of both cations and anions around a benzene molecule, from
the bulk solution distributions, must be the same due to the electroneutrality constraint
(Equation 31). It is possible that only one ion interacts directly with the solute. However,
exactly which of the ions provides the driving force for the association with, or exclusion from,
the solute cannot be deduced from the KB approach. In our opinion, this kind of information
can only be obtained from accurate computer simulation data.

There have been several computer simulation studies aimed at understanding the changes in
small molecule solubility by different cosolvents.33,36,37 These approaches are often based
on Widom particle insertion calculations.38 In this case the excess chemical potential (μ2

ex)
of the solute is the property to be determined and is defined by the following expression,

(69)

where q2 is the internal partition function of the solute. It should be noted that the above excess
chemical potential is different to the traditional experimental definition for mixtures on the
mole fraction scale. Clearly, the pcp and the excess chemical potential differ by a factor of ln
q2, which in most cases can be safely assumed to be reasonably independent of solution
composition. Hence, the particle insertion calculations essentially probe changes in the pcp of
the solute. In addition, one of the main advantages of using the indistinguishable ion approach
is observed when analyzing computer simulation data concerning the distribution of salt ions
around a solute. While it is relatively easy to count the number of ions (either anions or cations)
observed around a central solute, it is quite difficult to count salt “molecules” when the salt is
fully dissociated.

Many of the relationships provided for finite solute concentrations in our open ensemble take
on exactly the same form as those for sparingly soluble solutes in closed ensembles, especially
for the molarity and molality cases. They are different because the KB integrals will adopt
different numerical values under different compositions. The similarities are immediately
understood if one examines the Gibbs-Duhem relationship for these ternary systems. Namely,

(70)

at constant T and P. Clearly, our open ensemble (dμ2 = 0) and the low solute concentration
closed ensemble (n2 → 0) provide the same relationship (n1dμ1 + n3dμ3 = 0) between the
chemical potentials of the solvent and cosolvent. This relationship generally appears in the
expressions occurring in the denominator of Equation 16 and Equation 17 (compare with
Equation 8 and Equation 9). From the point of view of the solute, as the solute concentration
tends towards that of an infinitely dilute solute (n2 → 1), the properties of the solution tend
towards that of a simple binary solution of 1 and 3 at the same composition, and therefore
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n2dμ2 → 0. This provides the expressions that occur in the numerator of Equation 16 and
Equation 17.

The current approach is different from that of other studies which have primarily focused on
sparingly soluble solutes.2,4,10 In particular, the majority of previous approaches have adopted
the KB expressions for ternary systems in closed ensembles, even for finite solute solubilities.
3 Hence, their expressions differ from the semi open ensemble results developed here. In
particular, the finite concentration results quoted here are generally simpler and do not involve
G22. Both the open and closed ensemble approaches provide the same results for sparingly
soluble solutes. Equation 16 and Equation 19 are new, while Equation 17 was originally derived
by Hall.14 They are the only ones that should be applied to study changes in solubility where
the solute appears at a finite concentration.

The equations presented here provide a solid foundation for the analysis and interpretation of
solubility in mixed solvents. The required KB integrals can be obtained from theory, simple
models, or experimental data where available. The latter is relatively simple to obtain for
sparingly soluble salts as one only requires properties of the binary solvent and cosolvent
solution (G33 and G13), from which knowledge of the solubility curve provides values for
G23 − G21. The required experimental data is more extensive for semi open ternary systems
where all species appear at finite concentrations. Fortunately, the KB integrals can be obtained
from studies of the corresponding closed ternary system at the same composition, i.e the solute
solubility limit, using existing equations for closed ternary systems.17,39,40 This is the same
process as used previously.3 Performing such an analysis will generate all the Gij values.
Hence, one does not require the slope of the solubility curve to provide G23 − G21 in this case,
and therefore one could use knowledge of the solubility curve as a consistency check. In either
case, we argue that the correct expressions for the interpretation of the solubility data involve
Equation 16, Equation 17, or Equation 19.

Conclusions

Solubility may be quantitatively defined in several ways using different measures of the relative
amounts of solute and solvent(s) present in solution. We have discussed the three most common
measures in this paper - molarity, molality, and mole fraction. From the point of view of logic,
these are all equivalent, merely involving a (nonlinear) change of scale. From the point of view
of interpretation in terms of molecular distributions, we have argued that the molarity scale of
solubility is the most convenient one. We have given formulae for solubilities and salting out
coefficients for all three concentration scales. All of these rely on the Kirkwood-Buff integrals
to express the local structure of the solution, particularly near a solute molecule, as well as
auxiliary thermodynamic properties of the solution. It appears that the molarity scale formulae
emphasize the structural information, and deemphasize the ancillary part to a greater extent
than do the other two scales. We therefore recommend that, as far as possible, the molarity
scale be used when measuring and reporting solubilities. Certainly, molalities and mole
fractions have their advantages as concentration measures. Nevertheless, for interpretive
purposes we recommend molarities.

Acknowledgements

The project described was supported by Grant Number R01GM079277 (PES) from the National Institute of General
Medical Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official
views of the National Institute of General Medical Sciences or the National Institutes of Health.

Smith and Mazo Page 15

J Phys Chem B. Author manuscript; available in PMC 2009 July 3.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Appendix 1. The Indistinguishable Ion Approach for Mole Fractions

The use of the indistinguishable ion approach is relatively straight forward for the molarity and
molality concentration scales. In this case we find dρ3 = n± dcs and d ln ρ3 = d ln cs for the
cosolvent molarity, and similarly for molality. Both are independent of the ensemble. However,
the same is not true for the mole fraction scale in both closed and, especially, open ensembles.
There are two possible definitions for the cosolvent mole fraction in ternary systems,

(A1.1)

where ns is the number of salt “molecules” and the latter refers to the indistinguishable ion
definition. Note that the particular definition also affects the solvent and solute mole fractions.
Let us consider our ensemble with T, P, and μ2 constant and therefore n2 can vary. Using the
first expression one can write,

(A1.2)

where m23 was defined earlier in the text. If we apply the same procedure to x3 then we have,

(A1.3)

Hence, we find that,

(A1.4)

and therefore it is clear that d ln x3 ≠ d ln xs and also dx3 ≠ n± dxs for this ensemble. The
corresponding relationship in a closed ternary system is recovered when m23 = 0, for which
one also has dx3 ≠ n± dxs for the cosolvent. The relationship in a closed binary system of 1 and
3 is provided by setting n2 = 0 and m23 = 0, but one still finds dx3 ≠ n± dxs for the cosolvent.
Only when x3 tends to zero do we find that dx3= n± dxs is valid. Hence, the determination of
KS

x is relatively straight forward, but the determination of K23
x is more involved. One can still

use the indistinguishable ion approach in all cases, but care should be taken that the required
transformations are performed correctly.

Appendix 2. The Sechenov Constant for Different Concentration Measures –

A Unified Approach

The object is still to express the slope of the solubility curves in terms of Kirkwood-Buff
integrals. In this appendix we show how all three cases can be treated on a common basis. This
is neither more nor less correct than the previous approach, it is merely a way of emphasizing
the common idea behind all three representations. The Sechenov coefficient (KS

z) is defined
by,

(A2.1)

where S is the solubility of a solute in a salt solution of salt concentration cs, measured in
concentration units z. The units of z can be either molality (m2), molarity (c2), or mole fraction
(x2). From now on, we drop the T and P subscripts on partial derivatives, since these will be
held constant throughout. We first write,
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(A2.2)

where n± is the total number of ions resulting from the dissociation of one formula unit of the
salt, and c3 = n±cs (see text). All we have to do is calculate the derivatives on the rhs. It is the
derivatives (∂μi/∂Nj)N' that are easily computed in terms of KB integrals, so we must express
the derivatives appearing in Equation A2.2 in terms of the latter. That can be done as follows,

(A2.3)

These are two linear equations in the two unknowns. These can be solved, say by Cramer’s
rule, for the two unknowns, ∂μ2/∂z2 and ∂μ2/∂c3. It only remains to place the solutions in
Equation A2.2 and then pass to the limit c3 → 0.

The ∂z2/∂N and ∂c3/∂N derivatives are easy to calculate. Since we are computing a ratio and
then taking a limit, a lot of cancellation occurs. In particular, we may safely set c3 = 0
everywhere except where it multiplies G33 or where it occurs in a denominator. When the
cosolvent is an electrolyte it is not completely obvious that c3G33 = 0 at infinite dilution of
electrolyte since c3G+− = 1 in this limit.21 However, Equation 27 of this paper shows that, in
fact, there is no problem.

When c3 occurs in a denominator, the dangerous looking poles get tamed when taking the ratio
but this must be done carefully. It is not necessary to compute the KB determinant since it will
cancel on taking the ratio. Similarly, in solving Equations A2.3 using Cramer’s rule it is not
necessary to compute the determinant of the coefficients as this will also cancel. These rules
greatly simplify the algebra of the computation.

Finally, the results obtained from Equation A2.2 yield Equation 38, Equation 39, and Equation
41 of the main text.
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Table 1

KB analysis of the effects of different salts on benzene solubility at 298 K.
Salt ks M

−1 G23 − G21 cm3/mol G2+ (= G2−) cm3/mol

NaF 0.254 −292 −382
NaCl 0.195 −225 −314
NaBr 0.155 −179 −268
NaI 0.095 −109 −199
LiCl 0.141 −162 −252
NaCl 0.195 −225 −314
KCl 0.166 −191 −281
RbCl 0.140 −161 −251
CsCl 0.088 −101 −191

Salting out constants (ks = KS
c = K23

c) were taken from Reference 35. All values correspond to infinite dilution of both solute and cosolvent. Data in

column three were obtained using Equation 35 and Equation 36. Data in column four were obtained from Equation 37 using a value of

 taken from Reference 35.
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