ON THE THEORY OF SURFACES IN THE FOUR-DIMENSIONAL EUCLIDEAN SPACE

Georgi Ganchev and Velichka Milousheva

Abstract

For a two-dimensional surface M^{2} in the four-dimensional Euclidean space \mathbf{E}^{4} we introduce an invariant linear map of Weingarten type in the tangent space of the surface, which generates two invariants k and \varkappa.

The condition $k=\chi=0$ characterizes the surfaces consisting of flat points. The minimal surfaces are characterized by the equality $\chi^{2}-k=0$. The class of the surfaces with flat normal connection is characterized by the condition $x=0$. For the surfaces of general type we obtain a geometrically determined orthonormal frame field at each point and derive Frenet-type derivative formulas.

We apply our theory to the class of the rotational surfaces in \mathbf{E}^{4}, which prove to be surfaces with flat normal connection, and describe the rotational surfaces with constant invariants.

1. Introduction

In [4] T. Ōtsuki introduced curvatures $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}\right)$ for a surface M^{2} in a $(2+n)$-dimensional Euclidean space \mathbf{E}^{2+n}, defining a quadratic form in the normal space of the surface. In a suitable local frame of the normal space this quadratic form can be written in a diagonal form and the functions λ_{α}, $\alpha=1, \ldots, n$ are the coefficients in the diagonalized form (λ_{α} is called the $\alpha-$ th curvature of M^{2}). These curvatures are closely related to the Gauss curvature K of M^{2} :

$$
K=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n} .
$$

The local cross-section, which diagonalizes the quadratic form is called a Frenet cross-section (Frenet-frame) of the surface.

For a surface M^{2} in the four-dimensional Euclidean space \mathbf{E}^{4} the curvatures λ_{1} and λ_{2} are the maximum and minimum, respectively of the Lipschitz-Killing curvature of the surface [5]. The function λ_{1} is called the principal curvature and the function λ_{2}-the secondary curvature of M^{2} in \mathbf{E}^{4}.

[^0]Using the idea of the Frenet-frames, Shiohama [6] proved that a complete connected orientable surface M^{2} in \mathbf{E}^{4} with curvatures $\lambda_{1}=\lambda_{2}=0$ is a cylinder. The same result is proved in [7] for a surface in a higher dimensional space \mathbf{E}^{2+n}.

Our aim is to find invariants of a surface M^{2} in \mathbf{E}^{4}, considering a geometrically determined linear map (of Weingarten type) in the tangent space of the surface, as well as to obtain a geometric Frenet-type frame field of M^{2}.

In Section 2 we define a geometrical linear map in the tangent space of a surface M^{2} in \mathbf{E}^{4} and determine a second fundamental form $I I$ of the surface. We find invariants k and \varkappa of M^{2} (which are analogous to the Gauss curvature and the mean curvature of a surface in \mathbf{E}^{3}). These invariants divide the points of M^{2} into four types: flat, elliptic, parabolic and hyperbolic.

In Section 3 we give a local geometric description of the surfaces consisting of flat points, proving that they are either planar surfaces (Proposition 3.1) or developable ruled surfaces (Proposition 3.2).

In Section 4 we characterize the minimal surfaces in \mathbf{E}^{4} in terms of the invariants k and x (Proposition 4.1).

For the surfaces of general type (which are not minimal and which have no flat points) in Section 5 we obtain a geometrically determined orthonormal frame field $\{x, y, b, l\}$ at each point of the surface and derive Frenet-type derivative formulas. The tangent frame field $\{x, y\}$ is determined by the defined second fundamental form $I I$, while the normal frame field $\{b, l\}$ is determined by the mean curvature vector field of the surface.

We also characterize the surfaces with flat normal connection in terms of the invariant χ (Theorem 5.1).

In the last section we apply our theory to the class of the rotational surfaces in \mathbf{E}^{4}, which prove to be surfaces with flat normal connection, and describe the rotational surfaces with $k=$ const.

2. The Weingarten map

We denote by g the standard metric in the four-dimensional Euclidean space \mathbf{E}^{4} and by ∇^{\prime} its flat Levi-Civita connection. All considerations in the present paper are local and all functions, curves, surfaces, tensor fields etc. are assumed to be of the class \mathscr{C}^{∞}.

Let $M^{2}: z=z(u, v),(u, v) \in \mathscr{D}\left(\mathscr{D} \subset \mathbf{R}^{2}\right)$ be a 2-dimensional surface in \mathbf{E}^{4}. The tangent space to M^{2} at an arbitrary point $p=z(u, v)$ of M^{2} is $\operatorname{span}\left\{z_{u}, z_{v}\right\}$.

For an arbitrary orthonormal normal frame field $\left\{e_{1}, e_{2}\right\}$ of M^{2} we have the standard derivative formulas:

$$
\begin{align*}
& \nabla_{z_{u}}^{\prime} z_{u}=z_{u u}=\Gamma_{11}^{1} z_{u}+\Gamma_{11}^{2} z_{v}+c_{11}^{1} e_{1}+c_{11}^{2} e_{2} ; \\
& \nabla_{z_{u}}^{\prime} z_{v}=z_{u v}=\Gamma_{12}^{1} z_{u}+\Gamma_{12}^{2} z_{v}+c_{12}^{1} e_{1}+c_{12}^{2} e_{2} ; \tag{2.1}\\
& \nabla_{z_{v}}^{\prime} z_{v}=z_{v v}=\Gamma_{22}^{1} z_{u}+\Gamma_{22}^{2} z_{v}+c_{22}^{1} e_{1}+c_{22}^{2} e_{2},
\end{align*}
$$

where $\Gamma_{i j}^{k}$ are the Christoffel's symbols and $c_{i j}^{k}, i, j, k=1,2$ are functions on M^{2}.

We use the standard denotations $E(u, v)=g\left(z_{u}, z_{u}\right), \quad F(u, v)=g\left(z_{u}, z_{v}\right)$, $G(u, v)=g\left(z_{v}, z_{v}\right)$ for the coefficients of the first fundamental form and set $W=\sqrt{E G-F^{2}}$. If σ denotes the second fundamental tensor of M^{2}, then we have

$$
\begin{aligned}
& \sigma\left(z_{u}, z_{u}\right)=c_{11}^{1} e_{1}+c_{11}^{2} e_{2}, \\
& \sigma\left(z_{u}, z_{v}\right)=c_{12}^{1} e_{1}+c_{12}^{2} e_{2}, \\
& \sigma\left(z_{v}, z_{v}\right)=c_{22}^{1} e_{1}+c_{22}^{2} e_{2} .
\end{aligned}
$$

We introduce the following functions:

$$
\begin{gathered}
\Delta_{1}=\left|\begin{array}{ll}
c_{11}^{1} & c_{12}^{1} \\
c_{11}^{2} & c_{12}^{2}
\end{array}\right| ; \quad \Delta_{2}=\left|\begin{array}{ll}
c_{11}^{1} & c_{22}^{1} \\
c_{11}^{2} & c_{22}^{2}
\end{array}\right| ; \quad \Delta_{3}=\left|\begin{array}{ll}
c_{12}^{1} & c_{22}^{1} \\
c_{12}^{2} & c_{22}^{2}
\end{array}\right| ; \\
L(u, v)=\frac{2 \Delta_{1}}{W}, \quad M(u, v)=\frac{\Delta_{2}}{W}, \quad N(u, v)=\frac{2 \Delta_{3}}{W}
\end{gathered}
$$

If

$$
\begin{align*}
& u=u(\bar{u}, \bar{v}) ; \tag{2.2}\\
& v=v(\bar{u}, \bar{v}), \quad(\bar{u}, \bar{v}) \in \overline{\mathscr{D}}, \overline{\mathscr{D}} \subset \mathbf{R}^{2},
\end{align*}
$$

is a smooth change of the parameters $\{u, v\}$ on M^{2} with $J=u_{\bar{u}} v_{\bar{v}}-u_{\bar{v}} v_{\bar{u}} \neq 0$, then

$$
\begin{aligned}
& z_{\bar{u}}=z_{u} u_{\bar{u}}+z_{v} v_{\bar{u}}, \\
& z_{\bar{v}}=z_{u} u_{\bar{v}}+z_{v} v_{\bar{v}} .
\end{aligned}
$$

Let

$$
\begin{aligned}
& \sigma\left(z_{\bar{u}}, z_{\bar{u}}\right)=\bar{c}_{11}^{1} e_{1}+\bar{c}_{11}^{2} e_{2}, \\
& \sigma\left(z_{\bar{u}}, z_{\bar{v}}\right)=\bar{c}_{12}^{1} e_{1}+\bar{c}_{12}^{2} e_{2}, \\
& \sigma\left(z_{\bar{v}}, z_{\bar{v}}\right)=\bar{c}_{22}^{1} e_{1}+\bar{c}_{22}^{2} e_{2} .
\end{aligned}
$$

Differentiating (2.2) and taking into account (2.1) we find

$$
\begin{align*}
& \bar{c}_{11}^{k}=u_{\bar{u}}^{2} c_{11}^{k}+2 u_{\bar{u}} v_{u} c_{12}^{k}+v_{\bar{u}}^{2} c_{22}^{k}, \\
& \bar{c}_{12}^{k}=u_{\bar{u}} u_{\bar{v}} c_{11}^{k}+\left(u_{\bar{u}} v_{\bar{v}}+u_{\bar{v}} v_{\bar{u}}\right) c_{12}^{k}+v_{\bar{u}} v_{\bar{v}} c_{22}^{k}, \quad(k=1,2) \tag{2.3}\\
& \bar{c}_{22}^{k}=u_{\bar{v}}^{2} c_{11}^{k}+2 u_{\bar{v}} v_{\bar{v}} c_{12}^{k}+v_{\bar{v}}^{2} c_{22}^{k} .
\end{align*}
$$

Using (2.3), we obtain

$$
\begin{align*}
& \bar{\Delta}_{1}=J\left(u_{\bar{u}}^{2} \Delta_{1}+u_{\bar{u}} v_{\bar{u}} \Delta_{2}+v_{\bar{u}}^{2} \Delta_{3}\right) ; \\
& \bar{\Delta}_{2}=J\left(2 u_{\bar{u}} u_{\bar{v}} \Delta_{1}+\left(u_{\bar{u}} v_{\bar{v}}+u_{\bar{v}} v_{\bar{u}}\right) \Delta_{2}+2 v_{\bar{u}} v_{\bar{v}} \Delta_{3}\right) ; \tag{2.4}\\
& \bar{\Delta}_{3}=J\left(u_{\bar{v}}^{2} \Delta_{1}+u_{\bar{v}} v_{\bar{v}} \Delta_{2}+v_{\bar{v}}^{2} \Delta_{3}\right) .
\end{align*}
$$

If $\bar{E}=g\left(z_{\bar{u}}, z_{\bar{u}}\right), \bar{F}=g\left(z_{\bar{u}}, z_{\bar{v}}\right)$ and $\bar{G}=g\left(z_{\bar{v}}, z_{\bar{v}}\right)$, then we have

$$
\begin{align*}
\bar{E} & =u_{\bar{u}}^{2} E+2 u_{\bar{u}} v_{\bar{u}} F+v_{\bar{u}}^{2} G, \\
\bar{F} & =u_{\bar{u}} u_{\bar{v}} E+\left(u_{\bar{u}} v_{\bar{v}}+v_{\bar{u}} u_{\bar{v}}\right) F+v_{\bar{u}} v_{\bar{v}} G, \tag{2.5}\\
\bar{G} & =u_{\bar{v}}^{2} E+2 u_{\bar{v}} v_{\bar{v}} F+v_{\bar{v}}^{2} G
\end{align*}
$$

and

$$
\bar{E} \bar{G}-\bar{F}^{2}=J^{2}\left(E G-F^{2}\right)
$$

or

$$
\begin{equation*}
\bar{W}=\varepsilon J W, \quad \varepsilon=\operatorname{sign} J . \tag{2.6}
\end{equation*}
$$

Taking into account (2.4) and (2.6), we find

$$
\begin{align*}
\bar{L} & =\varepsilon\left(u_{\bar{u}}^{2} L+2 u_{\bar{u}} v_{\bar{u}} M+v_{\bar{u}}^{2} N\right), \\
\bar{M} & =\varepsilon\left(u_{\bar{u}} u_{\bar{v}} L+\left(u_{\bar{u}} v_{\bar{v}}+v_{\bar{u}} u_{\bar{v}}\right) M+v_{\bar{u}} v_{\bar{v}} N\right), \tag{2.7}\\
\bar{N} & =\varepsilon\left(u_{\bar{v}}^{2} L+2 u_{\bar{v}} v_{\bar{v}} M+v_{\bar{v}}^{2} N\right) .
\end{align*}
$$

Further we denote

$$
\begin{array}{ll}
\gamma_{1}^{1}=\frac{F M-G L}{E G-F^{2}}, & \gamma_{1}^{2}=\frac{F L-E M}{E G-F^{2}}, \\
\gamma_{2}^{1}=\frac{F N-G M}{E G-F^{2}}, & \gamma_{2}^{2}=\frac{F M-E N}{E G-F^{2}} \tag{2.8}
\end{array}
$$

and consider the linear map

$$
\gamma: T_{p} M^{2} \rightarrow T_{p} M^{2}
$$

determined by the conditions

$$
\begin{align*}
& \gamma\left(z_{u}\right)=\gamma_{1}^{1} z_{u}+\gamma_{1}^{2} z_{v}, \tag{2.9}\\
& \gamma\left(z_{v}\right)=\gamma_{2}^{1} z_{u}+\gamma_{2}^{2} z_{v},
\end{align*} \quad \gamma=\left(\begin{array}{ll}
\gamma_{1}^{1} & \gamma_{1}^{2} \\
\gamma_{2}^{1} & \gamma_{2}^{2}
\end{array}\right) .
$$

Then a tangent vector $X=\lambda z_{u}+\mu z_{v}$ is transformed into the vector $X^{\prime}=\gamma(X)=$ $\lambda^{\prime} z_{u}+\mu^{\prime} z_{v}$ so that

$$
\binom{\lambda^{\prime}}{\mu^{\prime}}=\gamma^{t}\binom{\lambda}{\mu} .
$$

We have
Lemma 2.1. The linear map γ given by (2.9) is geometrically determined.
Proof. Let the change of the parameters be given by (2.2). Then we have

$$
\binom{z_{\bar{u}}}{z_{\bar{v}}}=T\binom{z_{u}}{z_{v}}, \quad T=\left(\begin{array}{ll}
u_{\bar{u}} & v_{\bar{u}} \\
u_{\bar{v}} & v_{\bar{v}}
\end{array}\right) .
$$

If we denote

$$
g=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right), \quad h=\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)
$$

then the defining conditions (2.8) imply $\gamma=-h g^{-1}$.
With respect to the new coordinates (\bar{u}, \bar{v}) the linear map $\bar{\gamma}$ is determined by the equality $\bar{\gamma}=-\bar{h} \bar{g}^{-1}$.

On the other hand, the equalities (2.5) and (2.7) express that

$$
\bar{g}=T g T^{t}, \quad \bar{h}=\varepsilon T h T^{t} .
$$

Thus we obtain $\bar{\gamma}=-\bar{h} \bar{g}^{-1}=\varepsilon T \gamma T^{-1}$, which implies that $\bar{\gamma}=\varepsilon \gamma$.
Further, let $\left\{\tilde{e}_{1}, \tilde{e}_{2}\right\}$ be another orthonormal normal frame field of M^{2}. Then

$$
\begin{aligned}
& e_{1}=\cos \theta \tilde{e}_{1}+\varepsilon^{\prime} \sin \theta \tilde{e}_{2} ; \\
& e_{2}=-\sin \theta \tilde{e}_{1}+\varepsilon^{\prime} \cos \theta \tilde{e}_{2} ;
\end{aligned} \quad \theta=\angle\left(\tilde{e}_{1}, e_{1}\right)
$$

and $\varepsilon^{\prime}=1\left(\varepsilon^{\prime}=-1\right)$ if the normal frame fields $\left\{e_{1}, e_{2}\right\}$ and $\left\{\tilde{e}_{1}, \tilde{e}_{2}\right\}$ have the same (opposite) orientation. The relation between the corresponding functions $c_{i j}^{k}$ and $\tilde{c}_{i j}^{k}, i, j, k=1,2$ is given by the equalities

$$
\begin{aligned}
& \tilde{c}_{i j}^{1}=\cos \theta c_{i j}^{1}-\sin \theta c_{i j}^{2} \\
& \tilde{c}_{i j}^{2}=\varepsilon^{\prime}\left(\sin \theta c_{i j}^{1}+\cos \theta c_{i j}^{2}\right)
\end{aligned}
$$

Thus, $\tilde{\Delta}_{i}=\varepsilon^{\prime} \Delta_{i}, \quad i=1,2,3$, and $\tilde{L}=\varepsilon^{\prime} L, \tilde{M}=\varepsilon^{\prime} M, \tilde{N}=\varepsilon^{\prime} N$, which imply that $\tilde{\gamma}=\varepsilon^{\prime} \gamma$.

The linear map $\gamma: T_{p} M^{2} \rightarrow T_{p} M^{2}$ is said to be the Weingarten map at the point $p \in M^{2}$. The following statement follows immediately from Lemma 2.1.

Lemma 2.2. The functions

$$
\begin{equation*}
k:=\operatorname{det} \gamma=\frac{L N-M^{2}}{E G-F^{2}}, \quad x:=-\frac{1}{2} \operatorname{tr} \gamma=\frac{E N+G L-2 F M}{2\left(E G-F^{2}\right)} \tag{2.10}
\end{equation*}
$$

are invariants of the surface M^{2}.
It is clear that the sign of x depends on the orientations of the tangent plane and the normal space of M^{2}, while k is an absolute invariant.

The characteristic equation of the Weingarten map γ in view of Lemma 2.2 is

$$
\begin{equation*}
v^{2}+2 \chi v+k=0 \tag{2.11}
\end{equation*}
$$

If X_{1} and X_{2} are two tangent vectors at a point $p \in M^{2}$, then $g\left(\gamma\left(X_{1}\right), X_{2}\right)=$ $g\left(\gamma\left(X_{2}\right), X_{1}\right)$, i.e. γ is a symmetric linear operator and hence

$$
\begin{equation*}
x^{2}-k \geq 0 \tag{2.12}
\end{equation*}
$$

Using the defining equalities (2.10), it follows that

$$
4\left(\varkappa^{2}-k\right)=\left(\gamma_{1}^{1}-\gamma_{2}^{2}+2 \frac{F}{E} \gamma_{1}^{2}\right)^{2}+4 \frac{E G-F^{2}}{E^{2}}\left(\gamma_{1}^{2}\right)^{2}
$$

This equality implies that the condition $x^{2}-k=0$ is equivalent to the equalities $\gamma_{1}^{1}=\gamma_{2}^{2}, \gamma_{1}^{2}=0$, i.e. to the conditions

$$
\begin{equation*}
L=\rho E, \quad M=\rho F, \quad N=\rho G, \quad \rho \in \mathbf{R} . \tag{2.13}
\end{equation*}
$$

Thus we get the following equivalence at a point $p \in M^{2}$:

$$
\begin{equation*}
L=M=N=0 \quad \Leftrightarrow \quad k=\chi=0 . \tag{2.14}
\end{equation*}
$$

As in the classical case (for a surface M^{2} in \mathbf{E}^{3}), the invariants k and \varkappa divide the points of M^{2} into four types. A point $p \in M^{2}$ is said to be:
flat, if $k=x=0$;
elliptic, if $k>0$;
parabolic, if $k=0, x \neq 0$;
hyperbolic, if $k<0$.
Let $X=\lambda z_{u}+\mu z_{v}, \quad(\lambda, \mu) \neq(0,0)$ be a tangent vector at a point $p \in M^{2}$. The Weingarten map γ determines a second fundamental form of the surface M^{2} at $p \in M^{2}$ as follows:

$$
I I(\lambda, \mu)=-g(\gamma(X), X)=L \lambda^{2}+2 M \lambda \mu+N \mu^{2}, \quad \lambda, \mu \in \mathbf{R} .
$$

First we study the class of surfaces whose points are flat.

3. Surfaces consisting of flat points

In this section we consider surfaces $M^{2}: z=z(u, v),(u, v) \in \mathscr{D}$ consisting of flat points, i.e. surfaces satisfying the conditions

$$
\begin{equation*}
k(u, v)=0, \quad x(u, v)=0, \quad(u, v) \in \mathscr{D} . \tag{3.1}
\end{equation*}
$$

We give a local geometric description of these surfaces.
For the sake of simplicity, we shall assume that the parametrization of M^{2} is orthogonal, i.e. $F=0$. Denote the unit vector fields $x=\frac{z_{u}}{\sqrt{E}}, y=\frac{z_{v}}{\sqrt{G}}$. Then
we write (2.1) in the form

$$
\begin{align*}
& \nabla_{x}^{\prime} x=\quad \gamma_{1} y+\frac{c_{11}^{1}}{E} e_{1} \quad+\frac{c_{11}^{2}}{E} e_{2}, \\
& \nabla_{x}^{\prime} y=-\gamma_{1} x \quad+\frac{c_{12}^{1}}{\sqrt{E G}} e_{1}+\frac{c_{12}^{2}}{\sqrt{E G}} e_{2}, \tag{3.2}\\
& \nabla_{y}^{\prime} x=\quad-\gamma_{2} y+\frac{c_{12}^{1}}{\sqrt{E G}} e_{1}+\frac{c_{12}^{2}}{\sqrt{E G}} e_{2}, \\
& \nabla_{y}^{\prime} y=\quad \gamma_{2} x \quad+\frac{c_{22}^{1}}{G} e_{1} \quad+\frac{c_{22}^{2}}{G} e_{2}
\end{align*} .
$$

Obviously, the surface M^{2} lies in a 2-plane if and only if M^{2} is totally geodesic, i.e. $c_{i j}^{k}=0, i, j, k=1,2$.

Now, let at least one of the coefficients $c_{i j}^{k}$ not be zero. Then

$$
\operatorname{rank}\left(\begin{array}{lll}
c_{11}^{1} & c_{12}^{1} & c_{22}^{1} \\
c_{11}^{2} & c_{12}^{2} & c_{22}^{2}
\end{array}\right)=1
$$

and the vectors $\sigma(x, x), \sigma(x, y), \sigma(y, y)$ are collinear. Let $\{b, l\}$ be a normal frame field of M^{2}, consisting of orthonormal vector fields, such that b is collinear with $\sigma(x, x), \sigma(x, y)$, and $\sigma(y, y)$. It is clear that the normal frame field $\{b, l\}$ is invariant. Then the derivative formulas of M^{2} can be written as follows:

$$
\begin{array}{llll}
\nabla_{x}^{\prime} x= & \gamma_{1} y+v_{1} b, & \nabla_{x}^{\prime} b=-v_{1} x-\lambda y & +\beta_{1} l, \\
\nabla_{x}^{\prime} y=-\gamma_{1} x+\lambda b, & \nabla_{y}^{\prime} b=-\lambda x-v_{2} y & +\beta_{2} l, \\
\nabla_{y}^{\prime} x= & -\gamma_{2} y+\lambda b, & \nabla_{x}^{\prime} l= & -\beta_{1} b, \tag{3.3}\\
\nabla_{y}^{\prime} y= & \gamma_{2} x+v_{2} b, & \nabla_{y}^{\prime} l= & -\beta_{2} b,
\end{array}
$$

for some functions $v_{1}, v_{2}, \lambda, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}$ on M^{2}.
The Gauss curvature K of M^{2} is expressed by

$$
\begin{equation*}
K=v_{1} v_{2}-\lambda^{2} . \tag{3.4}
\end{equation*}
$$

Further we denote $\beta=\beta_{1}^{2}+\beta_{2}^{2}$. It follows immediately that β does not depend on the change (2.2) of the parameters.

Since the curvature tensor R^{\prime} of the connection ∇^{\prime} is zero, then the equalities $R^{\prime}(x, y, b)=0$ and $R^{\prime}(x, y, l)=0$ together with (3.3) imply that either $K=0$ or $\beta=0$.

A surface M^{2} is said to be planar if there exists a hyperplane $\mathbf{E}^{3} \subset \mathbf{E}^{4}$ containing M^{2}. First we shall characterize the planar surfaces.

Proposition 3.1. A surface M^{2} is planar if and only if

$$
k=0, \quad \chi=0, \quad \beta=0 .
$$

Proof. I. Let $M^{2} \subset \mathbf{E}^{3}$ and b be the usual normal to M^{2} in \mathbf{E}^{3}. Choosing l to be the normal to the hyperplane \mathbf{E}^{3}, from (3.3) we get $L=M=N=0$ and $\beta=0$.
II. Under the conditions $k=\chi=\beta=0$, from (3.3) it follows that $l=$ const and M^{2} lies in a hyperplane \mathbf{E}^{3} orthogonal to l.

A ruled surface M^{2} is a one-parameter system $\{g(v)\}, v \in J$ of straight lines $g(v)$, defined in an interval $J \subset \mathbf{R}$. The straight lines $g(v)$ are called generators of M^{2}. A ruled surface $M^{2}=\{g(v)\}, v \in J$ is said to be developable, if the tangent space $T_{p} M^{2}$ at all regular points p of an arbitrary fixed generator $g(v)$ is one and the same.

Each ruled surface M^{2} can be parameterized as follows:

$$
\begin{equation*}
z(u, v)=x(v)+u e(v), \quad u \in \mathbf{R}, v \in J \tag{3.5}
\end{equation*}
$$

where $x(v)$ and $e(v)$ are vector-valued functions, defined in J, such that the vectors $e(v)$ and $x^{\prime}(v)+u e^{\prime}(v)$ are linearly independent for all $v \in J$. The tangent space of M^{2} is spanned by the vectors

$$
\begin{aligned}
& z_{u}=e(v) \\
& z_{v}=x^{\prime}(v)+u e^{\prime}(v) .
\end{aligned}
$$

The ruled surface M^{2} determined by (3.5) is developable if and only if the vectors $e(v), e^{\prime}(v)$ and $x^{\prime}(v)$ are linearly dependent.

We shall characterize the developable ruled surfaces in terms of the invariants k, x and the Gauss curvature K.

Proposition 3.2. A surface M^{2} is locally a developable ruled surface if and only if

$$
k=0, \quad \chi=0, \quad K=0 .
$$

Proof. I. Let M^{2} be a developable ruled surface, defined by the equality (3.5), where $e(v), e^{\prime}(v)$ and $x^{\prime}(v)$ are linearly dependent. Without loss of generality we assume that $\|e(v)\|=1$. Then, the vector fields $e(v)$ and $e^{\prime}(v)$ are orthogonal and the tangent space of M^{2} is $\operatorname{span}\left\{e(v), e^{\prime}(v)\right\}$. Since $x^{\prime}(v) \in \operatorname{span}\left\{e(v), e^{\prime}(v)\right\}$, then $x^{\prime}(v)$ is decomposed in the form $x^{\prime}(v)=p(v) e(v)+q(v) e^{\prime}(v)$ for some functions $p(v)$ and $q(v)$. Hence, the tangent space of M^{2} is spanned by

$$
\begin{aligned}
z_{u} & =e \\
z_{v} & =p e+(u+q) e^{\prime} .
\end{aligned}
$$

Considering only the regular points of M^{2} (where $u \neq-q$), we choose an orthonormal tangent frame field $\{x, y\}$ of M^{2} in the following way:

$$
\begin{align*}
& x=e=z_{u} ; \\
& y=\frac{e^{\prime}}{\left\|e^{\prime}\right\|}=-\frac{p}{(u+q)\left\|e^{\prime}\right\|} z_{u}+\frac{1}{(u+q)\left\|e^{\prime}\right\|} z_{v} . \tag{3.6}
\end{align*}
$$

Since the tangent space of M^{2} does not depend on the parameter u, then the normal space of M^{2} is spanned by vector fields $b_{1}(v), b_{2}(v)$. With respect to the basis $\left\{e(v), e^{\prime}(v), b_{1}(v), b_{2}(v)\right\}$ the derivatives of $b_{1}(v)$ and $b_{2}(v)$ are decomposed in the form

$$
\begin{align*}
& b_{1}^{\prime}=-c_{1} e^{\prime}+c_{0} b_{2}, \tag{3.7}\\
& b_{2}^{\prime}=-c_{2} e^{\prime}-c_{0} b_{1},
\end{align*}
$$

where c_{0}, c_{1}, c_{2} are functions of v.
Then the equalities (3.6) and (3.7) imply

$$
\begin{aligned}
& \nabla_{x}^{\prime} b_{1}=0, \\
& \nabla_{y}^{\prime} b_{1}=-\frac{c_{1}}{u+q} y+\frac{c_{0}}{(u+q)\left\|e^{\prime}\right\|} b_{2}, \\
& \nabla_{x}^{\prime} b_{2}=0, \\
& \nabla_{y}^{\prime} b_{2}=-\frac{c_{2}}{u+q} y-\frac{c_{0}}{(u+q)\left\|e^{\prime}\right\|} b_{1} .
\end{aligned}
$$

Consequently, $L=M=N=0$ and $K=0$.
II. Let M^{2} be a surface for which $L=M=N=0$ and $K=0$. We consider an orthonormal frame field $\{x, y, b, l\}$ of M^{2}, satisfying the equalities (3.3). Since $K=0$, then $v_{1} v_{2}-\lambda^{2}=0$. If $v_{1}=v_{2}=0$, then M^{2} lies in a plane \mathbf{E}^{2}. So we assume that there exists a neighborhood $\tilde{\mathscr{D}} \subset \mathscr{D}$ such that $v_{2 \mid \tilde{\mathscr{D}}} \neq 0$ (or $\left.v_{1 \mid \tilde{\mathscr{O}}} \neq 0\right)$ and we consider the surface $\tilde{M}^{2}=M_{\mid \tilde{\mathscr{V}}}^{2}$.

Let $\{\bar{x}, \bar{y}\}$ be the orthonormal tangent frame field of \tilde{M}^{2}, defined by

$$
\begin{aligned}
& \bar{x}=\cos \varphi x+\sin \varphi y ; \\
& \bar{y}=-\sin \varphi x+\cos \varphi y,
\end{aligned}
$$

where $\tan \varphi=-\frac{\lambda}{v_{2}}$. Then $\sigma(\bar{x}, \bar{x})=0, \sigma(\bar{x}, \bar{y})=0$. So the formulas (3.3) take
the form

$$
\begin{array}{llrl}
\nabla_{\bar{x}}^{\prime} \bar{x}= & \bar{\gamma}_{1} \bar{y}, & \nabla_{\bar{x}}^{\prime} b & =\bar{\beta}_{1} l, \\
\nabla_{\bar{x}}^{\prime} \bar{y}=-\bar{\gamma}_{1} \bar{x}, & \nabla_{\bar{y}}^{\prime} b & =-\bar{v}_{2} \bar{y} \quad+\bar{\beta}_{2} l, \\
\nabla_{\bar{y}}^{\prime} \bar{x}= & -\bar{\gamma}_{2} \bar{y}, & \nabla_{\bar{x}}^{\prime} l= & -\bar{\beta}_{1} b, \\
\nabla_{\bar{y}}^{\prime} \bar{y}= & \bar{\gamma}_{2} \bar{x} \quad+\bar{v}_{2} b, & & \nabla_{\bar{y}}^{\prime} l= \\
-\bar{\beta}_{2} b,
\end{array}
$$

where $\bar{v}_{2} \neq 0$.
Since the curvature tensor R^{\prime} is zero, then the equalities $R^{\prime}(\bar{x}, \bar{y}, b)=0$ and $R^{\prime}(\bar{x}, \bar{y}, l)=0$ imply that

$$
\bar{\gamma}_{1}=0, \quad \bar{\beta}_{1}=0 .
$$

Hence,

$$
\begin{array}{ll}
\nabla_{\bar{x}}^{\prime} \bar{x}=0, & \nabla_{\bar{x}}^{\prime} b=0, \\
\nabla_{\bar{x}}^{\prime} \bar{y}=0, & \nabla_{\bar{x}}^{\prime} l=0 .
\end{array}
$$

Let $p=z\left(\bar{u}_{0}, \bar{v}_{0}\right),\left(\bar{u}_{0}, \bar{v}_{0}\right) \in \tilde{\mathscr{D}}$ be an arbitrary point of \tilde{M}^{2} and $c_{1}: z(\bar{u})=$ $z\left(\bar{u}, \bar{v}_{0}\right)$ be the integral curve of the vector field \bar{x}, passing through p. It follows from $\nabla_{\bar{x}}^{\prime} \bar{x}=0$ that c_{1} is contained in a straight line. Hence, \tilde{M}^{2} lies on a ruled surface. Moreover, since $\nabla_{\bar{x}}^{\prime} b=0$ and $\nabla_{\bar{x}}^{\prime} l=0$ then the normal space $\operatorname{span}\{b, l\}$ of \tilde{M}^{2} is constant at the points of c_{1} and hence, the tangent space $\operatorname{span}\{\bar{x}, \bar{y}\}$ of \tilde{M}^{2} at the points of c_{1} is one and the same. Consequently, \tilde{M}^{2} is part of a developable surface.

From now on we exclude the flat points from our considerations.

4. Minimal surfaces

We recall that a surface M^{2} is said to be minimal if the mean curvature vector $H=0$. In this section we characterize the minimal surfaces in terms of the invariants k and χ.

Proposition 4.1. Let M^{2} be a surface in \mathbf{E}^{4} without flat points. Then M^{2} is minimal if and only if

$$
x^{2}-k=0 .
$$

Proof. Without loss of generality we assume that $F=0$ and denote the unit vector fields $x=\frac{z_{u}}{\sqrt{E}}, y=\frac{z_{v}}{\sqrt{G}}$. Then we have

$$
\begin{aligned}
& \nabla_{x}^{\prime} x=\quad \gamma_{1} y+\frac{c_{11}^{1}}{E} e_{1} \quad+\frac{c_{11}^{2}}{E} e_{2}, \\
& \nabla_{x}^{\prime} y=-\gamma_{1} x \quad+\frac{c_{12}^{1}}{\sqrt{E G}} e_{1}+\frac{c_{12}^{2}}{\sqrt{E G}} e_{2}, \\
& \nabla_{y}^{\prime} x=\quad-\gamma_{2} y+\frac{c_{12}^{1}}{\sqrt{E G}} e_{1}+\frac{c_{12}^{2}}{\sqrt{E G}} e_{2}, \\
& \nabla_{y}^{\prime} y=\gamma_{2} x \quad+\frac{c_{22}^{1}}{G} e_{1} \quad+\frac{c_{22}^{2}}{G} e_{2} .
\end{aligned}
$$

I. Let $H=\frac{1}{2}(\sigma(x, x)+\sigma(y, y))=0$. Then

$$
\Delta_{2}=\left|\begin{array}{ll}
c_{11}^{1} & c_{22}^{1} \\
c_{11}^{2} & c_{22}^{2}
\end{array}\right|=0, \quad \frac{\Delta_{3}}{G}=\frac{\Delta_{1}}{E} .
$$

Therefore

$$
L=\rho E, \quad M=\rho F, \quad N=\rho G
$$

where ρ is a function on M^{2}. Hence $\chi^{2}-k=0$.
II. Let $\varkappa^{2}-k=0$. Then

$$
L=\rho E, \quad M=\rho F, \quad N=\rho G ; \quad \rho \neq 0 .
$$

The condition $F=0$ implies that $M=0$. Then $\left|\begin{array}{ll}c_{11}^{1} & c_{22}^{1} \\ c_{11}^{2} & c_{22}^{2}\end{array}\right|=0$ and $c_{22}^{1}=\tilde{\rho} c_{11}^{1}$, $c_{22}^{2}=\tilde{\rho} c_{11}^{2} . \quad$ Further, the equality $\frac{L}{E}=\frac{N}{G}$ implies that $\tilde{\rho}=-\frac{G}{E} . \quad$ Hence $\operatorname{tr} \sigma=0$,
i.e. $H=0$.

5. Surfaces of general type

From now on we consider surfaces, satisfying the condition

$$
x^{2}-k \neq 0
$$

and call them surfaces of general type.
As in the classical differential geometry of surfaces in $\mathbf{E}^{\mathbf{3}}$ the second fundamental form determines conjugate tangents at a point p of M^{2}. A tangent $g: X=\lambda z_{u}+\mu z_{v}$ is said to be principal if it is perpendicular to its conjugate. The equation for the principal tangents at a point $p \in M^{2}$ is

$$
\left|\begin{array}{cc}
E & F \\
L & M
\end{array}\right| \lambda^{2}+\left|\begin{array}{cc}
E & G \\
L & N
\end{array}\right| \lambda \mu+\left|\begin{array}{cc}
F & G \\
M & N
\end{array}\right| \mu^{2}=0
$$

A line $c: u=u(q), v=v(q) ; q \in J$ on M^{2} is said to be a principal curve if its tangent at any point is principal.

The surface M^{2} is parameterized with respect to the principal lines if and only if

$$
F=0, \quad M=0
$$

Let M^{2} be parameterized with respect to the principal lines and denote the unit vector fields $x=\frac{z_{u}}{\sqrt{E}}, y=\frac{z_{v}}{\sqrt{G}}$.

Since the mean curvature vector field $H \neq 0$, we determine the unit normal vector field b by the equality $b=\frac{H}{\|H\|}$. Further we denote by l the unit normal vector field such that $\{x, y, b, l\}$ is a positive oriented orthonormal frame field of M^{2}. Thus we obtain a geometrically determined orthonormal frame field $\{x, y, b, l\}$ at each point $p \in M^{2}$. With respect to the frame field $\{x, y, b, l\}$ we have the following Frenet-type derivative formulas:

$$
\begin{array}{llll}
\nabla_{x}^{\prime} x= & \gamma_{1} y+v_{1} b ; & \nabla_{x}^{\prime} b=-v_{1} x-\lambda y & +\beta_{1} l ; \\
\nabla_{x}^{\prime} y=-\gamma_{1} x & +\lambda b+\mu l ; & \nabla_{y}^{\prime} b=-\lambda x-v_{2} y & +\beta_{2} l ; \\
\nabla_{y}^{\prime} x= & -\gamma_{2} y+\lambda b+\mu l ; & \nabla_{x}^{\prime} l= & -\mu y-\beta_{1} b ; \tag{5.1}\\
\nabla_{y}^{\prime} y=\gamma_{2} x+v_{2} b ; & \nabla_{y}^{\prime} l=-\mu x & -\beta_{2} b,
\end{array}
$$

where $\gamma_{1}=-y(\ln \sqrt{E}), \gamma_{2}=-x(\ln \sqrt{G})$ and $\mu \neq 0$.
Hence we have

$$
\begin{equation*}
k=-4 v_{1} v_{2} \mu^{2}, \quad x=\left(v_{1}-v_{2}\right) \mu, \quad K=v_{1} v_{2}-\left(\lambda^{2}+\mu^{2}\right) . \tag{5.2}
\end{equation*}
$$

Remark 1. We note that we determine the tangent frame field $\{x, y\}$ by the Weingarten map (the second fundamental form $I I$) and the normal frame field $\{b, l\}$-by the mean curvature vector field, while the Frenet-cross section in the sense of O Otsuki diagonalizes a quadratic form in the normal space. In general the geometric frame field $\{b, l\}$ is not a Frenet-cross section. Finding the relation between $\{b, l\}$ and the Frenet-cross section of Ötsuki we derive the following relation between the invariant k and the curvatures λ_{1} and λ_{2} of \bar{O} tsuki:

$$
k=4 \lambda_{1} \lambda_{2} .
$$

The same formula is valid in the cases of minimal surfaces and surfaces consisting of flat points.

Using (5.1) we find the length $\|H\|$ of the mean curvature vector field and taking into account (5.2) we obtain the formula

$$
\|H\|=\frac{\sqrt{\varkappa^{2}-k}}{2|\mu|}
$$

which shows that $|\mu|$ is expressed by the invariants k, \varkappa and the mean curvature function.

Let $z=g(z, x) x+g(z, y) y$ be an arbitrary tangent vector field of M^{2}. We define the one-form θ by the equality

$$
\theta(z)=g\left(\nabla_{z}^{\prime} b, l\right) .
$$

Then the formulas (5.1) imply that

$$
\theta(z)=g\left(\beta_{1} x+\beta_{2} y, z\right),
$$

which shows that the one-form θ corresponds to the tangent vector field $\beta_{1} x+\beta_{2} y$ and

$$
\|\theta\|=\sqrt{\beta_{1}^{2}+\beta_{2}^{2}}
$$

Using that $R^{\prime}(x, y, x)=0, R^{\prime}(x, y, y)=0, R^{\prime}(x, y, b)=0$ and $R^{\prime}(x, y, l)=0$, we get the following integrability conditions:

$$
\begin{align*}
& v_{1} v_{2}-\left(\lambda^{2}+\mu^{2}\right)=x\left(\gamma_{2}\right)+y\left(\gamma_{1}\right)-\left(\left(\gamma_{1}\right)^{2}+\left(\gamma_{2}\right)^{2}\right) ; \\
& 2 \mu \gamma_{2}+v_{1} \beta_{2}-\lambda \beta_{1}=x(\mu) ; \\
& 2 \mu \gamma_{1}-\lambda \beta_{2}+v_{2} \beta_{1}=y(\mu) ; \\
& 2 \lambda \gamma_{2}+\mu \beta_{1}-\left(v_{1}-v_{2}\right) \gamma_{1}=x(\lambda)-y\left(v_{1}\right) ; \tag{5.3}\\
& 2 \lambda \gamma_{1}+\mu \beta_{2}+\left(v_{1}-v_{2}\right) \gamma_{2}=-x\left(v_{2}\right)+y(\lambda) ; \\
& \gamma_{1} \beta_{1}-\gamma_{2} \beta_{2}+\left(v_{1}-v_{2}\right) \mu=-x\left(\beta_{2}\right)+y\left(\beta_{1}\right)
\end{align*}
$$

At the end of this section we shall characterize the surfaces with flat normal connection in terms of the invariant χ.

A surface M^{2} is said to be of flat normal connection [3] if the normal curvature R^{\perp} of M^{2} is zero. The equalities (5.1) imply that the normal curvature R^{\perp} of M^{2} is expressed as follows:

$$
\begin{align*}
& R_{b}^{\perp}(x, y)=D_{x} D_{y} b-D_{y} D_{x} b-D_{[x, y]} b=\left(x\left(\beta_{2}\right)-y\left(\beta_{1}\right)+\gamma_{1} \beta_{1}-\gamma_{2} \beta_{2}\right) l \tag{5.4}\\
& R_{l}^{\perp}(x, y)=D_{x} D_{y} l-D_{y} D_{x} l-D_{[x, y]} l=-\left(x\left(\beta_{2}\right)-y\left(\beta_{1}\right)+\gamma_{1} \beta_{1}-\gamma_{2} \beta_{2}\right) b .
\end{align*}
$$

Taking in mind (5.4) and the last equality of (5.3) we get:

$$
\begin{aligned}
& R_{b}^{\perp}(x, y)=-x l, \\
& R_{l}^{\perp}(x, y)=x b,
\end{aligned}
$$

i.e.

$$
\chi=g\left(R_{l}^{\perp}(x, y), b\right)=g\left(R^{\perp}(x, y) l, b\right) .
$$

The function $g\left(R^{\perp}(x, y) l, b\right)$ is the curvature of the normal connection D of M^{2}. Hence, the invariant χ is the curvature of the normal connection.

Thus the surfaces with flat normal connection are characterized by the following

Proposition 5.1. A surface M^{2} in \mathbf{E}^{4} is of flat normal connection if and only if

$$
x=0 .
$$

Obviously, M^{2} is a surface with flat normal connection if and only if $v_{1}=v_{2}=: v$. So, the Frenet-type formulas (5.1) of a surface M^{2} with flat normal connection take the form:

$$
\begin{array}{llll}
\nabla_{x}^{\prime} x= & \gamma_{1} y+v b ; & \nabla_{x}^{\prime} b=-v x-\lambda y & +\beta_{1} l ; \\
\nabla_{x}^{\prime} y=-\gamma_{1} x+\lambda b+\mu l ; & \nabla_{y}^{\prime} b=-\lambda x-v y & +\beta_{2} l ; \\
\nabla_{y}^{\prime} x= & -\gamma_{2} y+\lambda b+\mu l ; & \nabla_{x}^{\prime} l= & -\mu y-\beta_{1} b ; \tag{5.5}\\
\nabla_{y}^{\prime} y=\gamma_{2} x+v b ; & & \nabla_{y}^{\prime} l=-\mu x & -\beta_{2} b .
\end{array}
$$

Hence the invariants k and K are expressed by

$$
k=-4 v^{2} \mu^{2}, \quad K=v^{2}-\left(\lambda^{2}+\mu^{2}\right)
$$

Remark 2. The curvature of the normal connection of a surface M^{2} in \mathbf{E}^{4} is the Gauss torsion \varkappa_{G} of $M^{2}[1]$. The notion of the Gauss torsion is introduced by É. Cartan [2] for a p-dimensional submanifold of an n-dimensional Riemannian manifold and is given by the Euler curvatures. In case of a 2 -dimensional surface M^{2} in \mathbf{E}^{4} the Gauss torsion can be expressed in terms of the ellipse of normal curvature at a point $p \in M^{2}$.

According to the theorem of Rodrigues, a curve c on a surface M^{2} in \mathbf{E}^{3} is a line of curvature if and only if the tangential component of the derivative of the normal vector field to M^{2} along c is collinear with the tangent of c. Using this geometric characterization of the lines of curvature for surfaces in \mathbf{E}^{3}, É. Cartan generalized in [2] the notion of lines of curvature for a surface M^{2} in \mathbf{E}^{4}. However, the lines of curvature in the sense of Cartan exist only in the class of the surfaces with zero Gauss torsion $\left(\varkappa_{G}=0\right)$, i.e. in the class of the surfaces with flat normal connection.

6. Rotational surfaces

Now we shall apply our theory to the class of the rotational surfaces in \mathbf{E}^{4}.
We denote by $O e_{1} e_{2} e_{3}$ a fixed orthonormal base of \mathbf{E}^{3}. Let $c: \tilde{z}=\tilde{z}(u)$, $u \in J$ be a smooth curve in \mathbf{E}^{3}, parameterized by

$$
\tilde{z}(u)=\left(x_{1}(u), x_{2}(u), r(u)\right) ; \quad u \in J .
$$

We denote by \boldsymbol{c}_{1} the projection of \boldsymbol{c} on the 2 -dimensional plane $O e_{1} e_{2}$.
Without loss of generality we can assume that \boldsymbol{c} is parameterized with respect to the arc-length, i.e. $\left(x_{1}^{\prime}\right)^{2}+\left(x_{2}^{\prime}\right)^{2}+\left(r^{\prime}\right)^{2}=1$. We assume also that $r(u)>0$, $u \in J$. Let us consider the rotational surface M^{2} in \mathbf{E}^{4} given by

$$
\begin{equation*}
z(u, v)=\left(x_{1}(u), x_{2}(u), r(u) \cos v, r(u) \sin v\right) ; \quad u \in J, v \in[0 ; 2 \pi) . \tag{6.1}
\end{equation*}
$$

The tangent space of M^{2} is spanned by the vector fields

$$
\begin{aligned}
& z_{u}=\left(x_{1}^{\prime}, x_{2}^{\prime}, r^{\prime} \cos v, r^{\prime} \sin v\right) ; \\
& z_{v}=(0,0,-r \sin v, r \cos v) .
\end{aligned}
$$

Hence,

$$
E=1 ; \quad F=0 ; \quad G=r^{2}(u) ; \quad W=r(u) .
$$

We consider the following orthonormal tangent vector fields

$$
\begin{aligned}
& \bar{x}=\left(x_{1}^{\prime}, x_{2}^{\prime}, r^{\prime} \cos v, r^{\prime} \sin v\right) ; \\
& \bar{y}=(0,0,-\sin v, \cos v),
\end{aligned}
$$

i.e. $z_{u}=\bar{x} ; z_{v}=r \bar{y}$. The second partial derivatives of $z(u, v)$ are expressed as follows

$$
\begin{aligned}
& z_{u u}=\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}, r^{\prime \prime} \cos v, r^{\prime \prime} \sin v\right) ; \\
& z_{u v}=\left(0,0,-r^{\prime} \sin v, r^{\prime} \cos v\right) ; \\
& z_{v v}=(0,0,-r \cos v,-r \sin v) .
\end{aligned}
$$

Let κ and τ be the curvature and the torsion of the curve \boldsymbol{c} (considered as a curve in \mathbf{E}^{3}). We consider the normal vector fields e_{1} and e_{2}, defined by

$$
\begin{aligned}
& e_{1}=\frac{1}{\kappa}\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}, r^{\prime \prime} \cos v, r^{\prime \prime} \sin v\right) \\
& e_{2}=\frac{1}{\kappa}\left(x_{2}^{\prime} r^{\prime \prime}-x_{2}^{\prime \prime} r^{\prime}, x_{1}^{\prime \prime} r^{\prime}-x_{1}^{\prime} r^{\prime \prime},\left(x_{1}^{\prime} x_{2}^{\prime \prime}-x_{1}^{\prime \prime} x_{2}^{\prime}\right) \cos v,\left(x_{1}^{\prime} x_{2}^{\prime \prime}-x_{1}^{\prime \prime} x_{2}^{\prime}\right) \sin v\right)
\end{aligned}
$$

Now it is easy to calculate that

$$
L=0 ; \quad M=-\left(x_{1}^{\prime} x_{2}^{\prime \prime}-x_{1}^{\prime \prime} x_{2}^{\prime}\right) ; \quad N=0 .
$$

Hence,

$$
k=-\frac{\left(x_{1}^{\prime} x_{2}^{\prime \prime}-x_{1}^{\prime \prime} x_{2}^{\prime}\right)^{2}}{r^{2}} ; \quad x=0 .
$$

Applying Proposition 5.1 we get

Corollary 6.1. Any rotational surface M^{2} in \mathbf{E}^{4}, defined by (6.1), is a surface with flat normal connection.

Let us denote the curvature of the plane curve c_{1} by $\kappa_{1}=x_{1}^{\prime} x_{2}^{\prime \prime}-x_{1}^{\prime \prime} x_{2}^{\prime}$. Then with respect to the frame field $\left\{\bar{x}, \bar{y}, e_{1}, e_{2}\right\}$ the derivative formulas of M^{2} look like:

$$
\begin{aligned}
& \nabla_{\bar{x}}^{\prime} \bar{x}=\quad \kappa e_{1} ; \quad \quad \nabla_{\bar{x}}^{\prime} e_{1}=-\kappa \bar{x} \quad+\tau e_{2} ; \\
& \nabla_{\bar{x}}^{\prime} \bar{y}=0 ; \quad \nabla_{\bar{y}}^{\prime} e_{1}=\frac{r^{\prime \prime}}{\kappa r} \bar{y} ; \\
& \nabla_{\bar{y}}^{\prime} \bar{x}=\frac{r^{\prime}}{r} \bar{y} ; \quad \nabla_{\bar{x}}^{\prime} e_{2}=\quad-\tau e_{1} ; \\
& \nabla_{\bar{y}}^{\prime} \bar{y}=-\frac{r^{\prime}}{r} \bar{x} \quad-\frac{r^{\prime \prime}}{\kappa r} e_{1}-\frac{\kappa_{1}}{\kappa r} e_{2} ; \quad \nabla_{\bar{y}}^{\prime} e_{2}=\frac{\kappa_{1}}{\kappa r} \bar{y} .
\end{aligned}
$$

So, the Gauss curvature of M^{2} is:

$$
K=-\frac{r^{\prime \prime}}{r} .
$$

Obviously M^{2} is not parameterized with respect to the principal lines. The principal tangents of M^{2} are:

$$
\begin{aligned}
& x=\frac{\sqrt{2}}{2} \bar{x}+\frac{\sqrt{2}}{2} \bar{y} \\
& y=\frac{\sqrt{2}}{2} \bar{x}-\frac{\sqrt{2}}{2} \bar{y}
\end{aligned}
$$

With respect to the geometric frame field $\{x, y, b, l\}$ the Frenet-type formulas (5.5) hold good, where

$$
\begin{array}{ll}
\gamma_{1}=\gamma_{2}=-\frac{\sqrt{2}}{2} \frac{r^{\prime}}{r} ; & v=\frac{\sqrt{\left(\kappa^{2} r-r^{\prime \prime}\right)^{2}+\left(\kappa_{1}\right)^{2}}}{2 \kappa r} ; \\
\lambda=\frac{\kappa^{4} r^{2}-\left(r^{\prime \prime}\right)^{2}-\left(\kappa_{1}\right)^{2}}{2 \kappa r} \sqrt{\left(\kappa^{2} r-r^{\prime \prime}\right)^{2}+\left(\kappa_{1}\right)^{2}} ; & \mu=\frac{\kappa \kappa_{1}}{\sqrt{\left(\kappa^{2} r-r^{\prime \prime}\right)^{2}+\left(\kappa_{1}\right)^{2}}} .
\end{array}
$$

Consequently, the invariants k, χ and K of the rotational surface M^{2} are:

$$
k=-\frac{\left(x_{1}\right)^{2}}{r^{2}} ; \quad \chi=0 ; \quad K=-\frac{r^{\prime \prime}}{r}
$$

At the end of the section we shall describe all rotational surfaces, for which the invariant k is constant.

1. The invariant $k=0$ if and only if $\kappa_{1}=0$, which means that the projection of the curve \boldsymbol{c} on the plane $O e_{1} e_{2}$ lies on a straight line. There are two subcases:
1.1. If $K=0$, i.e. $r^{\prime \prime}=0$, then M^{2} is a developable ruled surface.
1.2. If $K \neq 0$, i.e. $r^{\prime \prime} \neq 0$, then M^{2} is a planar surface.
2. The invariant $k=$ const $(k \neq 0)$ if and only if $r(u)=a\left(x_{1}^{\prime} x_{2}^{\prime \prime}-x_{1}^{\prime \prime} x_{2}^{\prime}\right)$, $a=$ const. Moreover, if $r(u)$ satisfies $r^{\prime \prime}(u)=c r(u)$, then the Gauss curvature K is also a constant.

Acknowledgement. We would like to thank the referee for his useful and valuable remarks, which contributed to the improvement of the present paper.

References

[1] Yu. Aminov, The geometry of submanifolds, Gordon and Breach Science Publishers, 2002.
[2] É. Cartan, Riemannian geometry in an orthogonal frame: from lectures delivered by Élie Cartan at the Sorbonne 1926-27, World Scientific, Singapore, 2001.
[3] B.-Y. Chen, Geometry of submanifolds, Marcel Dekker, Inc., New York, 1973.
[4] T. Ōtsuki, On the total curvature of surfaces in Euclidean spaces, Japanese J. Math. 35 (1966), 61-71.
[5] T. O TSUKI, Surfaces in the 4-dimensional Euclidean space isometric to a sphere, Kodai Math. Sem. Rep. 18 (1966), 101-115.
[6] K. Shiohama, Surfaces of curvatures $\lambda=\mu=0$ in E^{4}, Kodai Math. Sem. Rep. 19 (1967), 7579.
[7] K. Shiohama, Cylinders in Euclidean space E^{2+N}, Kodai Math. Sem. Rep. 19 (1967), 225228.

Georgi Ganchev
Bulgarian Academy of Sciences
Institute of Mathematics and Informatics
Acad. G. Bonchev Str. bl. 8
1113 Sofia
Bulgaria
E-mail: ganchev@math.bas.bg
Velichka Milousheva
Bulgarian Academy of Sciences
Institute of Mathematics and Informatics
Acad. G. Bonchev Str. bl. 8
1113, Sofia
Bulgaria
E-mail: vmil@math.bas.bg

[^0]: 2000 Mathematics Subject Classification. Primary 53A07, Secondary 53B25.
 Key words and phrases. Surfaces in the four-dimensional Euclidean space, Weingarten-type linear map, surfaces with flat normal connection, rotational surfaces.

 Received September 19, 2007; revised December 10, 2007.

