ON THE THEORY OF TESTING COMPOSITE HYPOTHESES
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By HENRY ScHEFFE
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1. Introduction. Our purpose is to extend some of the Neyman-Pearson
theory of testing hypotheses to cover certain cases of frequent interest which are
complicated by the presence of nuisance parameters. Our results give methods
of finding critical regions of types B and B,. Type B regions were defined by
Neyman [1] for the case of one nuisance parameter. Type B, regions are the
natural generalization of the type A, regions of Neyman and Pearson [5] to
permit the occurrence of nuisance parameters. The reader familiar with the
work of these authors will recognize most of the notation and some of the
methods.

We consider a joint distribution of n random wvariables z;, 22, ---, z.,
depending on ! parameters 6, 62, ---,8;, | £ n. The functional form of
the distribution is given. The random variables may be regarded as the co-
ordinates of a point ¥ in an n-dimensional sample space W, the parameters,
as the coordinates of a point @ in an [-dimensional space € of admissible param-
eter values. @, unlike W, in general will not be a complete Euclidian space.
Let  denote the subspace of 2 defined by 6; = 6} . The hypothesis we consider is

Ho: O cw.

Neyman and Pearson [4] call Hy a hypothesis with [ — 1 degrees of freedom;
for our present purpose we shift the emphasis by saying it has one constraint.

It is clear that whenever we test whether a parameter has a given value, and
other parameters occur in the distribution, we are testing a hypothesis with one
constraint. Hypotheses of the type 6, = 6,, in which we do not specify the
common value of 8, and 6; , nor the values of any other parameters, may always
be transformed to H, by choosing new parameters. In general, the hypothesis
that the parameter point © lies on some hypersurface in Q, g(61, 62, --- , 6;) =
go , may be transformed to H, if the function g satisfies certain conditions,—
say, g is continuous and monotone-increasing in one of the #'s for all © in Q.
Another circumstance lending importance to the theory of testing hypotheses
with one constraint is its connection with the theory of confidence intervals,
which we shall point out below.

The path which led Neyman to critical regions of type B is the following:
Every Borel-measurable region w of sample space determines a test of H,,
which consists of rejecting H, if and only if E falls in w. In deciding which
is a most efficient test, one may limit the competition to similar' regions, if
such exist. Because of the general non-existence [2, p. 372] of uniformly most

! Defined by condition (a) of definition 1.
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powerful tests, one is led to consider common best critical regions {4] if he is
interested only in alternatives 6, < 6% (or 8; > 67), or else regions giving an
unbiased test [1, p. 251]. Narrowing the competition further to the latter
class of regions, one is led to regions of type B if he seeks tests which are most
powerful for 6, very near to 6] , and to type B regions if he is not content with
this. These types of regions are defined in section 2.

We may now state the relationship of hypotheses with one constraint to the
theory of confidence intervals [2]. To find confidence intervals for 6; , we must
first find similar regions w(6}) for testing H,. If with every admissible 6
we can associate a w(6,), then confidence regions for 6; are determined, and if
these be intervals, they are confidence intervals. Every class of similar regions
mentioned above is intimately related to a category of confidence intervals.
In particular, to find Neyman’s short unbiased confidence intervals we must
first solve the problem of type B regions. Likewise, if we define shortest un-
biased confidence intervals in the obvious way along the lines laid down by
Neyman, their discovery rests on the solution of the problem of type B, regions.

While the assumptions of section 3, especially 3°, are unpleasantly restrictive—
they are obviously tailored to fit the proof rather than the problem—they are
nevertheless satisfied in many sampling problems associated with normal
distributions. An application of the theorems of section 4 will be given in
another paper On the ratio of the variances of two normal populations. The present
theory was needed to round out that paper and was originally planned as a
section thereof. However, it seems desirable for the convenience of other
workers who might have use for the theory not to bury it under the preceding
title.

Seci;ion 5 consists of an appendix on the moment problem raised by assump-
tion 5.

2. Definitions. The symbols w, w, , wy will always be understood to denote
Borel-measurable regions in W. We shall symbolize 8'Pr{E e¢w | 6}/36; for
i=20,1,2by Plw|®), P(w|0), P'(w]| ©), respectively. Since 6, plays a
distinguished roéle, it will often be convenient to write ® = (6, , &), where the
nuisance parameters are denoted by ¢ = (62, 6;, ---, 8).

DEFINITION 1: wy 1s said to be a type B region for testing H, if for all © 1n w

(@) P(wo | 6], ®) = a, where a is independent of ¥,

(b) P'(wo | 6y, 8), P"(wo| 6], &) exist,

(c) P'(wo| 61,9 =0,

(d) P"(wo| 67,8 = P"(w| 6, 9) for all w, satisfying (a), (b), (c).

DEFINITION 2: wp €5 said to be of type B if the conditions (a), (b"), (c), (d’)
are satisfied. The conditions (a), (¢) are given in definition 1, the other two are

(b") P’(wo | 6y, ©) s continuous in 6 at 6, = 6; for all © in w,

(@) P(wo | 8,,9) = Plun | 61, &) for all wy satisfying (a), (b"), (c), and all
0 n Q.
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3. Assumptions. p(21, 22, -++, 2s | ©) will be a generic notation for the
p.d.f. (probability density function) of random variables z;, 2;, - - - , 2, whose
distribution depends on 6. The numbering of the following assumptions follows
that of Neyman elsewhere [1].

1°. (a) There exists a p.d.f. p(E | ©) such that for any w, and any 0 eQ,

(1) Pw|0) = [ p(&|0)w

where dW denotes the volume element dxidzs - - - dz., .

(b) The region W, in W defined by p(E | ©) > 0 is independent of 6 for
Oew.

(c) The connectivity of w is such that it is possible to pass from any point
0’ in w to any other point 6” in w by a path lying entirely in w and consisting
of a finite number of segments on each of which all but one of 6, 6, --- , 8,
are constant.

2" ForallE e W, and 0 ¢ w, p(E | ) is differentiable twice with respect to &
and indefinitely with respect to 6., 6;, ---, 6,. For any w, and any O ew,
the corresponding derivatives of P(w | ©) exist and may be obtained by differen-
tiating under the integral sign in (1).

We now define
b = alng(E l 9)/801') i = a¢i/80i1 Z,] =12, )l'

3’. Forall E e W, and © e w, ¢; = ¢:(E, ) is continuousin B, = 1,2, - - - , 1
and

l

(2) @i = Aij + I;B,-,-kqsk, 1,,] = 2, 3, e, l’
4

(3) ¢1‘1=A,‘1+’;Bilk¢k, i=}_’2’... ’l,

where A;; = A6, 9), Bij, = Bin(6),9) are continuous in each of
62,05, -, 0.

4°. The matrix (3¢;/0x3), s = 1, 2,---,1;j = 1, 2, -+-, n, contains an .
! X ! minor which is non-singular® forall £ ¢ W, and © ¢ w, and whose elements
are continuous in E. ,

Write ® = (¢2, 3, - - - , ¢1), and denote by p(¢1,® | w, ©) the p.d.f. of (¢1,P)
calculated under the assumption that E ew, i.e., that the p.df. of E is
p(E | ©)/P(w | 6) for E ew and zero for E ¢ W — w. Define

2 If for each © e w, 4% is violated on an exceptional set U(®) for which P(U/(8) | 8) = 0,
the theorems 1 and 2 may still be valid. What is essential is the existence of the p.d.f.
Pp(é1, ¢2, -+ ,¢1]|0) for all 8 ew. On reconsidering the theorems and their proofs, the
reader will see that if the set U(9) is deleted from W , then 19(b) may be violated, but not
seriously, and no essential changes are necessary. The addition of the necessary quali-
fying clauses to our statements, regarding sets of probability zero, would encumber the
developments.
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+a0
(4) Qs(¢ [ w; 9) = B d’: p(¢l, $ I w; e) d¢l .

Let w; be any region satisfying condition (a) of definition 1:
5°. We assume, for each © ew, that if the moments® of Q,(® | w:, ©) and
Q.(® | W, ©) are the same then these functions are equal for almost all

(a) for s = 0,
(b) for s = 1.
Note that @, is p.d.f., @; is not.
4. Theorems. A result of Neyman’s [1] for [ = 2 is generalized in the fol-
lowing®*

TraroreM 1: Under the assumptions 1° to 5°, consider the existence of functions
k(®, 61, 9),7 = 1, 2, such that ky < k, and

k2 (®,00,8)
5) f Sipr, &6, 9) den

1 ((’.0?.0)

+o0
—(-a) [ oip@, @[, 0 dk, s=0,1,

Jor all® = (¢g, 3, -+, ¢1). If such functions exist for some 6 = 0’ e w, they
exist for all © ew. Then the region wy in W defined by
(©) $1(E, 6,9 < (@, 6,9 and $u(E, 61,9) > k(®, 6, 9)

1s independent of &, and is a region of type B for testing the hypothesis H, .

Since throughout the proof ® = (6], ¢), we shall write © in place of these
symbols to simplify the printing. It is to be understood that every statement
in the proof involving the symbol © is asserted for all © in w.

We suppose first that a type B region w, exists in W, . Then from (a), (¢)
of definition 1 and assumptions 1°(a) and 2°,

(7) [ »Ei0)aw = a,

(8) f e1p(E|0)dW = 0.

Since the value of the integral (7) is independent of &, all its derivatives with
respect to 6y, 6z, ---, 6; must vanish. This leads [3, pp. 50, 51. Insert k.
before ¢; " in (15)] to

3 By this term we include ‘‘product moments.”

¢ When I communicated this theorem to Professor Neyman, he informed me it was
among the results of a thesis by R. Satd, Contributions to the theory of testing statistical
composite hypotheses, University of London, 1937, and he kindly sent me a copy of the MS.
I decided nevertheless to publish my version of theorem and proof, since for the reasons
indicated in section 1 this theory should be available in the literature.
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1
(9) a_lf H(b’:‘p(E‘e)dW:M(k?)ké”“yklle)) ki=0,1)2)”')

0 =2

where M is independent of wy, and thus has the value obtained from (9) by
putting wo = W and @ = 1. In particular,

(10) a“f ¢o:p(E|6)dW =0, i1=2,3,-,1.
wo

The necessary condition (9) for (7) is also sufficient. Denoting by &(f|w, 6)
the expected value of a function f(¥, ©) caleuldted under the assumption that
E ¢ w, equation (9) may be written

! 1
(1) &(IL ¢ 1w, 0) = &(TL s, 0).

=2 =2
From assumption 5%(a) it then follows that
(12) Q(® | wo, ©) = Qu(® | W, 6)

for almost all &. Conversely, (12) implies (11).
In a similar manner we get from (8) with the aid of (9),

(13) @(¢1g¢’z‘lwo,0)=&<¢1g¢§‘lw,e).

We calculate the moments of the function @,(® | w, 8) to be
6(@ g¢§‘lw, e>,

and hence because of 5%(b), (13) implies

(14) Qi(®|wo, ) = (@ | W, 6)

almost everywhere in the ®-space. The pair of conditions (12), (14) are equiva-
lent to the pair (7), (8).

In order that wo be a type B region, it is necessary and sufficient that it satisfy
(12) and (14) and that

P"(wo| ©) = P"(wr | ©)

for all w, satisfying (12) and (14). The inequality may be transformed with
the help of 1°(a), 2°, (3), (7), (8), and (10) to

f 6ip(E|0) dW 2 f o1 p(E|0) dW,
wo w)]
which is equivalent to

+o0 +o0
f é10(¢1, ®|wo, ©) depr dps - - - depy

+0 +0
.Z..f_ N ¢fp(¢;,<l>lw1,0)d¢ld¢2...d¢l'
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Sufficient for this is
(15) Q2(¢’ | Wo , e) g Q2(q) I wr, 9)

We note the functions in (12), (14), and (15) are all of the form (4) with
s = 0, 1, 2, and propose to transform these to integrals over certain portions
of the sample space W. First, we write (4) in the form

oo
(16)  Qu(®|w, e)_ ¢1p(dr| @, w, ©) dpr = Qu(®|w, 0)&(¢1| P, w, O).

Next, we consider “surfaces” S(®, ©) in W, , constructed as follows: For
any fixed O let D(6) be the [ — 1 dimensional domain of values of ¢;(E, 0),
i =23,---,l, for EeW,. A “surface’” S(®, 0) is the locus of points £
for which

17 #:«(E, ©) = ¢:, a constant, 1=23,---,1,
the set of constants being in D(8). Over every ‘“‘surface” we now define a
density p: Without loss of generality, and to simplify the notation, we shall
assume that the non-singular minor postulated in 4° contains the minor (8¢./9z ),
t=23,---,1;5=1,2,---,1 — 1, and denote by J(E, 8) its determinant.
For E on 8(®, 6) we define the density

(18) p(E|©) =p(E|0©)/|J(E )],

and consider ‘“‘surface’” integrals

(19) f F.(E, e) dxz d.’Dz.H e dx,, y
wS(2,0)
where
(20) F.(E, 6) = $i(E, 6)o(E | 0).
A “surface” integral (19) is to be distinguished from an ordinary multiple in-
tegral, in that the integrand is not merely a function of z;, z14a, -+, Za;

there may be several points E on the surface with the same values for these
coordinates, but different values for the integrand. The integral is to be
thought of as follows: The part wS(®, 0) of the ‘“‘surface” S(®, 0) is partitioned
into pieces AS, on each a point E is chosen, and the value of the integrand at E
is multiplied by the ‘“‘area’ of the projection (taken non-negative) of AS on the
Ty, Ti41, -, To-space. The “surface” integral is the limit of the sum of
such products as the norm of the partition approaches zero.

Denoting the integral (19) by I(s) for the moment, we may calculate that
for ® ¢ D(©)

I(s) = I(0)&6(¢1 | ®, w, O), I(0) = Q@ |w, O)P(w|0),

and hence we see that the right member of (16) is equal to the integral (19)
divided by P(w | ©). The desired relationship between the ordinary integrals
(4) and the “surface’” integrals (19) is thus
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@1) @@|w,0) = [ 78 0) ] dr/Plw]e).
w3 (®,0) i=l
The conditions (12), (14), (15) may now be written
(22) f F(E,0) [l dz; = o f F(E, 0)[ldz;, s=0,1,
woS(%$,0) =l 3($,0) 7=l
(28) [ m@elldz [ §Ee ld,
wpS(2,0) j=i wiS($,0) j=l

if & is in the domain D(0), else they are satisfied trivially. w, will be a type B
region if equations (22) are satisfied for almost all ® ¢ D(8), and if (23) is valid
for all w; satisfying (22).

We now hold 6 fixed in w and & fixed in D(8), so that S(®, 0) is fixed, and the
right members of equations (22) have constant values. The proof [5, p. 11]
of the lemma of Neyman and Pearson giving sufficient conditions that a region
maximize an integral, subject to integral side-conditions, is easily seen to be
valid for our ‘“surface” integrals, and a sufficient condition that w,S(®, 0)
have the desired property is then that it be defined by

(24’) d’?(E: e) > a + a1¢1(E7 e);

where ay , a, are independent of E on S(®, 6), and are such that equations (22)
are satisfied. Since © and ® are fixed, we may permit a; to be of the nature
a; = a,/®, 6),7 = 1, 2. Introducing functions k, < ks, k; = kP, 6), and
defining ao, a; from

ay = _k1k2, a =k + kz_,

the inequality (24) is satisfied if (6) is. Still holding © fixed, suppose that
k1, k2 can be determined for all & (hence almost all ) in D(6) so that for the
part woS(®, ) of S(®, 0), defined by (6), the equations (22) are satisfied. The
parts woS(®, 0) of “surfaces” then sweep out a “solid” we(0) in W, defined
by (6). If we can similarly determine k; and k. , and hence wy(8), for every 0
in w, and if furthermore wy(0) is independent of O, then it is the type B region
we seek.

The equations (22) have now served their main purpose, and we return to
their equivalents, (12) and (14). For wy(8) defined by (6)

P, ®|wo, 0) = plgs,® | W,0)/a if ¢ <k or ¢ >k,

and vanishes otherwise, and hence equations (12) and (14) are equivalent to (5).

The remainder of the proof consists of deducing that k; , k. exist, and that the
associated. region w(0) is independent of @, for all 8 ¢ w, from the hypothesis
of our theorem that ki, k. exist for some ® = 6’. By 1°(c), 6’ lies on a line
segment L entirely in w, on which all but one of the nuisance parameters, say
0, , are constant. Let us vary © over L. Then 6,,6;, ---, 6, remain fixed
and 6, varies over an interval I. The equations (2) for j = 2 now become
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ordinary differential equations in which the independent variable is 6., the
dependent variables are ¢s, ¢z, -, ¢, and 65, 6;, - -+ , 6; are parameters.
A well known existence theorem assures us of the existence of particular solu-
tions u; and a non-singular (for all 6 in I) matrix (u,;) of complementary solu-
tions, 7, = 2, 3, - - -, [, such that the general solution is

4
¢ = w + 2 uci.
j=2

The u; are determined by initial conditions for the system (2) with j = 2, and
the u;; by sets of initial conditions for the corresponding complementary system.
Clearly, if these initial conditions are all chosen independent of E, then since
the coefficients of the differential equations are all independent of E, the solu-
tions u; and u,; enjoy the same property. On the other hand, the c; are in-
dependent of 6;. Hence

!

(25) S, 8) = (o) + L wi(B)e(B),  i=23, -1
=

The dependence of the ¢’s, w’s and ¢’s on the parameters 6,6;,---, 0 has

not been indicated, since these remain fixed throughout the present calculations.

Let 9D be the I — 1 dimensional domain of the values of ¢;(E) for E ¢ W,
and C: (cz,c¢s, -+ ,ci) be a point in 9D, and denote by S(C) the “surface”
ci(E) = ¢;. Denote the surface S(®, 6) defined in (17) by S(®, 6;), and the
domain D(8) of & by D(6). Then since | u;;| # 0, therefore for every 6, ¢ I,
every S(C) with C ¢ D is identical with some S(®, 6;) with & e D(6,), and vice
versa. From this we conclude for later reference: (A) the functions c;(E)
are constant on every S(®, 6,); (B) if 65, 67 are any two values in I, then for
every ® = & ¢ D(6;) there exists a & ¢ D(6;) such that S(&, 6;) is identical
with S(®", 6 ), and vice versa.

Now let us integrate with respect to 6, the equation

d log p(E|6,)/86; = o = us(6) + z; uai(02)c;(E).

l
log p(E|6;) = v(6) + ;2 v;(0:)ci(E) + f(B),

where v(8), v;(8:), f(E), and all new undefined symbols in the sequel have
obvious meanings. We get

(26) p(B18) = 5(6.7(E) exp| 2 u(6eB) .
Next we differentiate the equations (25) with respect to z:, and write the
result in matrix form,
(8¢:/0xr) = (ui;)(dc;/dxs), ,7=2,3,---,,k=1,2---,1 - 1.
Taking determinants, we have
27 J(E, 8:) = J1(62)Jo(E).
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Finally, we shall need to know the nature of the dependence of ¢, on 6; and E:
From (3),

!
3¢1/80, = A15(6:) + Bin(62)¢1 + Z; Biai(62) ¢z .
-
Substituting from (25), we get
1
3¢1/90; = Bin(02)¢1 + A(6) + Z; Bj(8:)c(E),
=

and integrating,

b2 - . .
&(E, 6;) = B(6,) l:f 4 + a-E2 BJ(E.)C](E) d¢ + Q(E)jl,

B®
where
2}
(28) B(®) = exp [ [ Bt dn]-
Thus
(29) 48,00 = A@) + 2 B0JefE) + B@d(E).

In equations (22) we now use the definitions (20), (18) for the integrands and
then substitute (26), (27), (29). As a result we obtain the equality of

[,4(02) + X Boa(E) + B<o2>g<E>]“ (e (E)
1
-exp [E 05(02)cf(E):| .
114

i=1 z;

fWoS(‘P,@z) |J1(02)J2(E)1 o=l

and « times the “surface” integral of the same integrand over S(®, 6;). Putting
first s = 0 and then s = 1, and employing the previous conclusion (A), we find
that the equations (22) are equivalent to

soy TEFENIB |} T day
(30) wo 202 1= )
—af G@I®NLE ) Lds,  s=0,1.
S(®,02) i=l
Again using the expression (29) for ¢, , and noting from (28) that B(6;) > 0,
we may write the inequality (6) in the form
(31) g(E) < KI(Q’ 02) a'nd g(E) > K2((I)) 02))

where

(32) K,‘(‘I), 02) = [k,(i’, 0(1), 19) ——5(02) b lEz BJ(og)C](E)]/B(oe)
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It follows from our hypothesis that for 6, = 6, (the 6, coordinate of 6) and any
® e D(6;), functions x:(®, 6;) exist such that for the part woS(®, 6;) of S(@, 65),
defined by (31), equations (30) are satisfied. The region w,(9’) is “swept out”
by woS(®, 6;) as & ranges over D(8;). Now let 8" be any other 6 ¢ L, call its
8, coordinate 65 , let & be any & ¢ D(6;), and consider the possibility of finding
x:(®"', 67) such that on the part woS(®”, 65) of S(@”, 6;), defined by (31), equa-
tions (30) are satisfied. From the conclusion (B), S(®”, 8;) is identical with
S(@', 6;) for a suitably chosen @ ¢ D(6;). Hence if we take x:i(®", 6;) =
k:(®', 63), then woS(®"”, 62) becomes identical with weS(®’, 6;) where equations
(30) are already satisfied. Letting &’ range over D(6%), every woS(®", 6,) thus
determined becomes identical with some woS(®’, 6;), and vice versa, by (B).
Thus the region w,(6’) “swept out” is identical with wo(6"). This process
defines «;(®, @) for all 8 ¢ I and ® e D(6:), and hence determines k:(®, 6, %)
from (32). We now have functions k;(®, 6}, 8), k&1 < k., satisfying (5), and
corresponding regions wg(0) independent of 8, for all © e L. To conclude the
proof, we use 1°(c) to reach any point © in « from ©’ by a path consisting of a
finite number of segments like L on which only one of the nuisance parameters
varies. The definitions of k;(®, 6] , &) are continued along this path as above
and the region wy(0) is seen to be independent of 9 for all 6 in w.

The following theorem may be regarded as a generalization of one by Neyman
[6, p. 33] giving sufficient, conditions that a type A region be also of type A4, :

TaeoreM 2. Suppose the assumption 1°(b) holds for all © Q. Denote
¢(E, 60, 8) by ¢) and let R(S8) be the domain of values of @1, b9, e, for
EeW_and © ew. Then a sufficient condition that a region wo of type B, found
by application of theorem 1, be also of type By is that for all © eQ and all E e W

(33) p(Elolyd) = p(Ele(l)’o)g(¢gy¢g’ e )¢(l) 3 02 H 01;0);
where g(y1, Y2, -+, Y13 0 ; 61, 9) is a function such that 8%g/dy; > O for all
Yi, Y2, ,y1in B(¥) and 6 eQ — w.

For the w, satisfying the sufficient conditions of theorem 1, the conditions (a),
(b"), (e) of definition 2 are satisfied, and it remains only to verify the condition
(d"). The regions w: admitted for comparison in (d), as well as wo, must
satisfy the equations (22) since these are equivalent to the conditions (a), (c).
We recall that © = (6}, ®) in equations (22) and rewrite them in a notation
better adapted to our present considerations:

@0 [ (il p( |6, )/ J(E, 6, 9)|) T day
wos(w,ag.o) Ju=l

—af  ipE| 8,9/ JE 6,0} [ dz, s=0,1
S(@o,G‘l’. ) =1

where (I’O = (¢g ’ ¢g y T )¢(l)) GD(og ’ 0)
To express the condition (d) in a convenient way, we now ‘‘shred” the regions
wo , wy of (d) for every 6; by means of the same “surfaces” we have been using
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for 6, = 6] : For any win W, , 0 ¢Q, and ° ¢ D(6} , 9) we define a “surface”
integral

I(@°, w6, ®) =f

wS(@o.Og,d)

(p(E |6, 9)/|J(E, &, 9]} II dz;.

Then

P(w|6, 3) = f~--L(900)1<¢°,w|ol,a>d¢3d¢z o de,

and a sufficient condition for (d) is
(35) 1@, wo| 61, 8) = 1@, w | 6, 8)

for all © ¢Q and all ° e D(67 , 8).

Again applying the lemma of Neyman and Pearson to the integrands of the
“surface” integrals in (34) and (35), we find that a sufficient condition that our
region wy be of type B; is that there exist functions b;(@°, 6}, 6, 9), % = 1, 2,
such that

p(E|6:,9) > pE |6, N+ br(E, 61, 8)]
if and only if £ ew,. Employing (33), we may replace this inequality by
(36) g(ga, % 61; 6., 8) > bo + bigi .
Define by, by from
gk, @ 6 ; 01, 9) = by + biks, i=1,2,

where k; = k:(®’, 67, #). Since k; < k., these equations have unique solu-
tions by, bi. Now hold @°, 6, , ¢ all fixed (6 # 6)) and consider the graphs of
the members of (36) as functions of ¢; . From our definition of by, by, these
graphs intersect at &k, k2 . But by hypothesis, the graph of the left member is
everywhere concave up, and hence for k; < ¢; < kz, it lies below the linear
graph of the right member, and for ¢; < k; and ¢} > k», it lies above. That
is (36) is true if and only if K ew, .

5. Appendix on the moment problem. Kasily applied criteria [8] are avail-
able for the moment problem of assumption 5°(a). The moment problem 5°(b)
is much more difficult, however, because the function to be determined by its
moments is not of constant sign. Below we offer a proof that the solutions of
both problems 5°(a) and 5°(b) are unique in the important case where p(E | ©)
is a multivariate normal p.df. and ¢1, ¢, ---,¢; are polynomials in z;,
T2, -+, %, of degree = 2 and not necessarily homogeneous. Since 6 is held
fixed, we will not indicate dependence on 8, nor will the dependence of various
functions on s be indicated, since s = 0 or else 1 throughout.

Let wi, w, be any two regions, a; = P(w;) 0, for which the moments of
Q.(@ | wy) and Q(® | w.) are the same. To prove the equality (almost every-
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where) of these two functions it suffices to prove that their Fourier transforms
are identical [7, theorem 61]. Suppressing the customary multiple of v/27, the
Fourier transform of Q.(® | w,) is

+0 +0
Ti(t) = f_.o o f_.a et ? Qu(® | wy) dgy - - - den,

where t is the vector (5,8, --- , %) and t-® = typy + --+ + £, From (4)
we get

+o0 “+400 .
v = [ [ etnten, @ w,) dou dn - diy
= (el | w)

- a% fw o GE)p(E) dW.
A device of Cramér and Wold [8] for reducing the dimensionality of the
problem now suggests itself. Let z be a scalar variable and consider ¥;(z |t) =
¥ j(zt) for fixed t as a function of z. Obviously if for every fixed t, 1(z |t) =
¥2(z | t), then ¥y(t) = Wo(t), and we are through. We propose to prove the
former equality by showing first that ¥ ;is an analytic function of z for all real z
and secondly that the coefficients of the power series for ¥; and ¢, in powers of 2
are equal. Holding t fiked now, § = t-® is a polynomial of degree < 2, and

1 izt , 3
(37) Yiz|t) = &-'f o1 p dW.
i dwj
By our assumption of normality,

p=Cexp|:— Zla,,y,y.,], Yo = Tx ™ M,

Xy ye=

where the matrix (a,) is positive definite. To prove the analyticity of ¥;
for any real z = 2z, let 2 = 2, + ¢, and restrict ¢ to real values. Substitute
in (37)

i m—1 ¢ - q . m
e’” = QZ(:) (zzf!) + (zfrf!) fm(g'g)’

where |fn({£) | = 1. Then

m—1 ¢ \q X
o+ £10 = 2 B [ gutgip aw 4 R, 2),
=0 §* &G Yu;

where

R = B[ gty (corem g2 p aw,
m!a,- wj
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and all integrands are absolutely integrable over W. Let o be the sphere of
unit radius with center at (u1, p2, * -+ , u.) in W and write

-l ]

Call the two terms of the right member R} and R; » ,
Rim = Rim + Rim.

(Binl s B2 jengiipaw.

m!a,- )

Let M = max | ¢|, M; = max |¢1 |, for E es. Then
| B | < MLYET [0 aw < by ba 1 /mt.
m! a; Pl
Hence R;m — 0 for all real ¢ as m — .

(Rl s B[ jemgiipaw.

m! ai

- R
Let r = (Z yf) , and M, , M; be the sums of the absolute values of the coeffi-
Kk=1

cients of the polynomials ¢1 , §, respectively, when expanded in powers of y, .
Then for Ee W — o, |¢]| < Ma?, |&| £ Mg’ p < C exp (—\), where
M > 0 is the smallest characteristic root of (a,). Hence

lR;’ml < CM,| Ms¢ lmf pmt M g
W—a

m! oy
Integrating over spherical shells concentric with o, dW = Mg"'dr, and

CM2M4|M3§'|mf°°r2m+n+1.e—m dr < CM2M4|Ma§'|"'fQ.
1 )

"
in| =
‘R”"l - m!a,' m!a,-

If we evaluate the last integral in terms of a Gamma function and employ
Stirling’s formula we easily find that for M3 |¢| < A, R;n — 0. The con-
vergence of R to zero for real ¢, | £ | < \/M;, is sufficient to insure the analy-
ticity of ¢;.

Now let z0 = 0. Then the coeficient of ¢* in the power series for ¢, is

'd
[ (tr+ -+ + tio) oip dW,

q!a,- g

a linear combination (the same for j = 1, 2) of the ¢g-th order moments of
Q.(® | w)), and hence corresponding coefficients for ¢, and ¢, are equal.
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