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Summary 
The main effect on a glacier of a change of climate is to change the 

rate of supply (accumulation) and removal (ablation) of ice. As a result 
the end of the glacier changes in position. The differential equations 
governing this phenomenon, derived in a previous paper, show that the 
effects of changes of accumulation and ablation are propagated down a 
glacier as kinematic waves. The  present paper examines the effect of 
diffusion of the waves, since diffusion can have a large effect on quantita- 
tive results. 

The validity of the basic assumptions is re-examined and particular 
attention is given to the proper choice of boundary conditions. A special 
model which shows a realistic amount of diffusion allows an explicit 
solution for the response to any variation in rate of accumulation, in 
terms of certain averages over past history. The responses to a step- 
function and to a pulse are found, and also the response to a harmonic 
variation of rate of accumulation as a function of frequency. The inverse 
problem of calculating the climatic changes from the variation of the 
position of the end of the glacier has a simple general solution for this 
model. An interesting asymmetry is then revealed between two in- 
ference problems: to calculate the current glacier behaviour requires a 
record of the climate extending back for many hundreds of years; but 
to calculate the current climate only requires a record of the glacier 
behaviour over the very recent past (say 10 yr). 

For an actual glacier the frequency response can be calculated by 
numerical methods. The usefulness of the special model considered in 
this paper is that it indicates the general nature of the results to be 
expected from numerical analysis. 

I. Introduction 

The response of a glacier to changes in climate may be studied theoretically 
by considering a glacier as a one-dimensional flow system. I n  the higher parts of 
a glacier the annual supply of new ice by snowfall exceeds the annual loss by 
melting and evaporation, while in the lower parts the reverse is true. On balance, 
therefore, new material enters the system at all points above the snow line; it 
flows downwards and is removed at all points below the snow line. When there 
is no more ice left to be removed, the glacier ends. 

The main effect of a change in climate is to change the rates of supply and 
removal of ice. If the glacier is not at the melting point throughout, a change of 
climate may also change the temperature of the ice; this is an effect not taken 
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into account in the present treatment, which is therefore only strictly applicable 
to temperate glaciers. Thus, the climate will here be specified by giving the rate 
of supply of ice to the glacier, the “rate of accumulation”, as a function of N, the 
distance down the glacier, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ,  the time. Specifically, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa(%, t )  is the thickness of ice 
added to the upper surface of the glacier per unit time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; it may be positive (accumula- 
tion) or negative (ablation). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA change in climate causes a change in the position 
of the end of the glacier, the snout, and this will be our main concern. There are 
two problems: ( I )  to find out how to calculate the response of a given glacier to 
a given change of climate, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) to find out whether it is possible, by observing 
the fluctuations of a glacier snout, to calculate the changes in climate which have 
caused them. 

In  a previous paper (Xye 1960), which will be referred to as I, the basic differ- 
ential equations which govern the response of a glacier to climate were derived. 
It was shown that the effects of changes in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa(x ,  t )  are transmitted down the glacier 
as kinematic waves which travel at 2 to 5 times the surface speed of the ice itself. 
It was also shown that these waves are subject to diffusion, whereby they tend to 
decrease in sharpness as they travel. The emphasis in I was on solutions obtained 
by ignoring the diffusion effect, and a broad understanding of the response of 
glaciers to climate was reached by that approximation. The order of magnitude 
of the diffusion to be expected in practice was estimated, in certain cases, on the 
basis of these diffusionless solutions. A short non-mathematical account is given 
in (Nye 1961). 

When diffusion is properly taken into account from the beginning, the mathe- 
matical problem is to solve a type of one-dimensional diffusion equation-the 
diffusivity being a function of position which goes to zero at each end of the range 
of x. -In the present paper (11) this problem is approached by considering a special 
model which has a realistic diffusivity, and for which there exist simple solutions 
in closed form. The  results for the chosen model can thus be studied in full 
detail-in particular the model gives simple explicit answers to problems ( I )  
and (2) posed above. 

The application of the present type of theory to an actual glacier, where the 
necessary parameters are given in numerical or graphical form, is taken up in a 
further paper (Nye 1963a) referred to as 111. Whereas the present paper deals 
with an infinitely wide glacier, 111 takes account of the finite and non-uniform 
cross-section of the glacier valley. In  this general case, where there is naturally 
no analytical solution in closed form, the result-in fact the frequency response- 
is ultimately expressed in purely numerical or graphical form for the particular 
glacier selected. The usefulness of the solutions for the special model in the 
present paper is that, being algebraic rather than numerical, they serve as a guide 
to the type of result to be expected from the numerical analysis. For instance, 
they throw light on the time scales likely to be encountered, and also on the nature 
of the general problems ( I )  and (2), by showing what length of historicat record 
of glacier behaviour is likely to be needed before inferences can be drawn about 
climatic trends-and, conversely, what length of climatic record suffices to  
determine current glacier behaviour. A brief account of some of the results of 
this paper and of I11 has been given in (Nye 1963b). 

2. The general differential equations 

We consider the same general model as in I ,  with the same notation. The 
glacier is represented by a sheet of ice which flows down a slope of non-uniform 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/7
/4

/4
3
1
/5

9
5
7
1
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



On the Theory of the Advance and Retreat of Glaciers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA43 3 

inclination zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(x) in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx direction, the sheet being of unlimited extent in the 
horizontal direction perpendicular to x. P(x) is supposed to be a slowly varying 
function of x. 

Suppose first that there is a steady rate of accumulation, so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt) ,  as 
already defined, is equal to ao(x), say. uo(x) will be some function which is positive 
in the upper parts of the glacier and negative in the lower parts. Corresponding 
to ~ ( x )  there will be a certain steady-state configuration of the glacier, and we 
shall take this as our datum state. We have not yet said precisely how x is to be 
measured, but we now specify that x is to be measured along the upper surface 
of this steady-state datum glacier. 

In general, the glacier will not be in the datum state. We define h(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  as the 
thickness of the glacier measured perpendicular to the x direction, and we define 
~ ( x ,  t )  as the inclination of the upper surface, being positive for a downhill slope 
in the .1: direction. The volume of ice, for unit breadth, passing in unit time 
through a given section perpendicular to the x direction is denoted by q(x, t )  and 
is called the “flow” or “discharge”. It is assumed that the ice is incompressible, 
which is a good approximation except in the upper layers of the firn region, and 
we therefore have a continuity equation 

iiq ah 

ax zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat 
- 4- - = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa(s, t ) ,  

where, to be strict, the accumulation rate a(x, t )  must be measured perpendicular 
to the x direction. 

The basic assumption about the mechanism of flow, made throughout this 
treatment, is that, at any given point x, q is a definite function of h and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu ;  thus 

This kinematic law is equivalent to putting q, at given x, a function of h and 
ahlax, since the slope of the bed /3 is itself a function of x only. As pointed out 
in I, the dependence on h gives rise to the main phenomenon, namely the propaga- 
tion of kinematic waves; the dependence on ahlax leads to diffusion of these 
waves; any dependence on a2hlax2 and higher derivatives would lead to higher- 
order forms of diffusion. By assuming (2) we are therefore confining attention 
to the effect of the first two terms of the Taylor expansion of h about the point x. 

The validity of equation ( 2 )  is frequently assumed tacitly in glaciological 
writings, but there is very little direct observational evidence one way or the 
other. Many instances have been reported where a glacier has diminished in 
thickness and at the same time has decreased in velocity, but this of co&e is far 
from establishing a functional relation between q, h and x. Striking evidence in 
favour of (2) has recently come from Nisqually Glacier (Meier and Johnson 1962), 
where a number of bulges have recently been seen to travel down the glacier. 
The bulges have caused a roughly sinusoidal variation of h at given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, of large 
amplitude, and there has been a corresponding sinusoidal variation of velocity, 
with a slight discrepancy that can be explained as an effect of a dependence of q 
on 01. However, one does not want to rely too heavily on one field example, and 
it is perhaps preferable to base the case for equation (2) on a combination of theory 
with the experimentally observed behaviour of ice under stress in the laboratory, 
as discussed in I. The experimental results give the law of flow, strain-rate of 

(shear stress)”, n N 3 or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Combining this with a simple model of the geometry 
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of flow (shear distortion in the ice on planes parallel to the bed, plus sliding at 
the ice-rock interface) gives equation (42) of I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

q = Fhn+2 sinnu + Ghm+l sinma, 

where F and G are function only of x, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 2: 2. More complicated geometries 
of flow could be considered, but (3) is a plausible first approximation. In fact 
we are only at this stage using the feature of (3) that q is a function of x, h and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, 
and there is no need to be more specific than this. In further justification of (2) 

it may be remarked that it is found to be of wide validity in the closely analogous 
problem of flood waves on long rivers (Lighthill and Whitham 19jj)*. 

None of this discussion on the validity of (2) properly applies to the extreme 
end of the glacier, the snout, and here the whole picture is much less clear. Tem- 

(3 1 

perate glaciers commonly have wedge-shaped 

\ 
\ 

snouts as indicated in Figure I ,  

FIG. I.-An increase of thickness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhl at the snout S of the datum glacier 
results i n  an advance 11. 

with a wedge angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 which is often from jo to 15', but which may be larger. 
The ice has a definite forward velocity right up to the extreme tip, and there is no 
obvious sign of any violent change in the flow pattern as the tip is approached. 
Melfing occurs, mainly at the upper surface, and a rough balance is maintained 
between forward motion and backward melting. The difference between the two 
gives the advance or retreat that we are concerned with. 

No adequate theory exists yet for the flow of the snout region of a glacier. 
The assumptions on which equation (3) is based certainly break down, and (3) 
predicts a forward velocity u = q/h which is zero at the extreme tip, thus con- 
tradicting observation (by this definition, u is the component in the x direction 
of the average velocity through the thickness). It is plausible to suppose that p 
in the snout region, at given x, is determined mainly by the values of h and a 
over a certain range of x. Thus the kinematic law (2) is probably not strictly 
true unless h and a are reinterpreted to refer to some average values over a range of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x, possibly a range of x extending over a distance of order h. (Note that, even in 

* There seem to be only two basic differences between rivers and glaciers so far as the application 
of kinematic wave theory is concerned. One is that the Reynolds Number in glacier flow is so small 
that dynamical (inertia) effects can always be safely ignored-for example, there are no dynamical 
waves on glaciers. The other is that the feeding of a river by tributaries normally causes a monotonic 
increase in q from the source to the sea or other outlet. In glaciers, on the other hand, q first in- 
creases, and then decreases to zero at the snout, because of ablation. It is this decrease which leads 
to the interesting instability in the ablation area discussed in I. Analogous instability effects would 
be expected in those rivers which, by excessive evaporation and run-off, end on land in deserts, or, 
in general, whenever the flow velocity decreases with x. 
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On the Theory of the Advance and Retreat of Glaciers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA43 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 
(3), h and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc( should really be interpreted in this way). From this point of view the 
assumption of (2) at the snout is likely to go badly wrong if c( changes very rapidly 
with x-say by a large amount in a distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN h. Since this does not happen in 
our solutions we shall assume from now on, as a reasonable simplification, that 
q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= q(h, a, x )  both at the snout and over the rest of the glacier. 

An example of a plausible function q in the neighbourhood of the snout would 
be 

where F is a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx only, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  Now q + o at the snout proportionally 
to y ,  the distance from the snout. Hence (4) is satisfied if cc remains finite and 
It -+ o proportionally toy.  The  velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu = q/h = F sinrcc, Thus the function (4) 
is consistent with the finite slope and finite velocity at the snout which is observed 
in the field. The  main difference between (4) and (3) is in the power of h, and one 
can imagine a smooth transition between them. Equations ( 3 )  and (4) are only 
given as examples of the general statement (2); in fact neither of them will be used 
explicitly in what follows, all the analysis being based on (2). 

Having discussed the validity of the kinematic law (2), we now continue by 
expressing the various quantities in terms of perturbations from the datum state, 
which was defined as the steady state resulting from the steady rate of accumulation 
ao(x). Thus for the actual rate of accumulation we write 

so that al(x, t )  is the perturbation. If the datum-state values of q, h, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu are 
qo(x), ho(x), ~ ( x )  and the perturbations are q1(x, t) ,  hl(x, t ) ,  W(X, t ) ,  equation (I)  
gives 

q = Fh sinrw, (4) 

a(& t )  = ao(x)+a1(x, t ) ,  

and 

We now restrict attention to the linearized theory in which the perturbations 
hl and cc1 are small. Then, in view of assumption (2 ) ,  we may write, for given x, 

q1 = COhl+DOKl, (7) 
where co(x) = (aq/ah)o and Do(x) = (aq/ac()o, the derivatives being evaluated 
at the datum values ho, NO. Thus co(x) specifies the dependence of q on h in the 
neighbourhood of the datum state; in fact, as we shall see in a moment, co(x) is 
the velocity of kinematic waves of small amplitude. Similarly Do(x) specifies the 
dependence of q on c( in the neighbourhood of the datum state; we shall see that 
&(x) plays the role of a diffusion coefficient for kinematic waves. 

Now, since cc1 = - ahl/ax, equation (7) can also be written as 

ql = cohl-Doahl/ax. (8) 

DO thus relates a concentration gradient, ahl/ax, to a flow, q1. (Note that (8) is 
only true when x is measured along the upper surface of the datum glacier. It 
would be possible to measure x along the glacier bed, or horizontally, provided 
that, in order to keep equation ( I )  valid, h and a were always measured perpendi- 
cularly to x. But in these cases a1 would not be simply - ahl/ax, and so equation 
(8) would have a slightly different form.) 

Equations (6) and (8) are the basic equations of the theory. A convenient, but 
not essential, simplification is to put al a function of t only, and we shall do this, 
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since it seems to represent a reasonable first approximation to the changes which 
actually occur in many glaciers. (In I11 the more general assumption zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= i ( t )X(x)  is made.) Then, differentiating (6) and (8) with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 
and t respectively, we can eliminate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhl to obtain the following equation for 41: 

In a non-linearized theory the same equation for q1 would result, except that 
the coefficients co and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADo would be functions of q1 as well as of x [I, equation (24)]. 

If, on the other hand, equation (8) is differentiated with respect to x, we can 
eliminate q1 between (6) and (8) to obtain the following equation for h l :  

where the primes denote differentiation with respect to x. 
Equation (9) is slightly simpler than equation (10). The coefficient of aql/iix 

and of iihllax may evidently be interpreted in each case as a kinematic wave 
velocity: co for waves of q1 and (CO-DO') for waves of hl-although when the DO 
term is present the paths of the kinematic waves are not, of course, true character- 
istics of the equations. The last term in each equation represents diffusion, the 
diffusion coefficient being DO in both equations. (10) contains an extra term, 
-co'hl, which has no counterpart in (9) and which leads to the instability effects 
discussed in I. We shall have occasion to use both equations (9) and (10) in what 
follows. 

3. Form of the functions co(x) and Do(x) 
In  order to set up a model for calculation we must now discuss what form the 

functions co(x) and Do(x), the wave velocity and the diffusion coefficient, might 
take in a typical glacier. It was shown in I that in most regions of a glacier 
co - 4~0, where uo is the datum-state velocity of the ice (defined as qo/ho). Ob- 
servation shows that the ice velocity in a glacier tends to be greatest in the middle 
regions and small near the head and snout. We therefore expect co(x) to show 
similar behaviour. 

Simple models of the glacier flow mechanism similarly lead to the result (I) 
that, Do - 340 cot NO. CQ, the slope of the upper surface, will show some variation 
with x,  which will be characteristic of the particular glacier, but, broadly speaking, 

~ we may expect Do(x) to be of similar form to qo(x). Since U O ( X )  is positive in the 
upper part of the glacier and negative in the lower part, qo(x), which equals 

uo dx, 
0 

is a maximum in the middle part. Do(x) thus tends to be small at the two ends 
and a maximum in the middle, like C O ( X ) .  

Now it turns out that the solution of the differential equations (9) and (IO), 

and indeed the whole problem of calculating the response of a glacier to climate, 
depends critically upon the behaviour of co(x) and Do(x) at the extreme snout, 
and we must consider this problem in detail. In  Figure I the full line shows the 
profile of the glacier in the datum state, the end S being the point x = L. T h e  
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On the Theory of the Advance and Retreat of Glaciers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA43 7 
forward velocity at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS is finite, as already explained zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; since we are here dealing with a 
steady state the forward velocity is exactly balanced by the ablation. If the thickness 
at S now increases by a small amount hl (non-steady state), the snout will advance 
a distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, which to the first order equals hl cosec 8; we have to take account of 
the change in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 only in the next approximation. Thus, our main task will be to 
calculate hl at S, because this is directly proportional to the advance of the actual 
glacier beyond the datum length. 

Let us now consider the value of cg at S, co(L). By definition, 

and, since ho(L) = 0, co(L) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuo(L). 
On the other hand, for Do(L) we have 

and hence Do(L) = o*. Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco(x) and Do(x) are both comparatively small near 
the end of the glacier, but co(L) is finite while Do(L) is zero. If we assume the 
form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) for q it follows that, as x + L,  DO + o proportionally to qo, that is pro- 
portionally to L - x. 

For the end point S, equation (8) becomes 

41 = CO(L)hl. (11) 

The validity of (11) may be questioned on the grounds that hl is much larger 
than ho near the snout. However, the condition for (11) to be valid is not that hi 
is much smaller than ho, but that hl is small enough for the q:h relation in the 
neighbourhood of ho( = 0) to be considered as linear, with slope co(L). hi can in 
fact be made as small as we like by choosing the perturbation a1 small enough. 
The fact that hl 

An increase in rate of accumulation will naturally cause non-zero values of 
q1 at S. Equation (11) shows that it is essential to keep co(L) non-zero, and not 
to approximate the small but finite velocity at the snout of the glacier by putting it 
zero. If we did, we should force hl, and the advance of the glacier, which is what 
we want to calculate, to be infinite. 

A similar distinction between the behaviour of co and DO may occur sometimes 
at the head of a glacier-namely that DO is strictly zero, but co is only approximately 
so-but it turns out that no difficulty results if both are taken to be zero. This 
accords with the intuitive notion that the details of.what is done at the extreme 
head of the glacier can hardly affect the glacier as a whole-since the feeding 
takes place down the whole length. 

ho near the snout is thus no reason for disbelieving (11). 

4. Boundary conditions 

T o  determine a solution to the differential equations, which are parabolic, 
boundary conditions at x = o and x = L and an initial condition must be imposed. 
The proper boundary condition to put on at x = L is not immediately obvious, 
since no particular physical restriction seems to be placed on the glacier at that 
place. This problem did not arise in I, since when diffusion is neglected the 

* Even if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq is assumed to depend on x, h, ah/&, Ph/ax2 and any number of higher derivatives, 
the argument that Do = o at S still holds. Moreover the higher-order diffusion coefficients which 
then appear also vanish at 5' in a similar way. 
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43 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. F. Nye 

differential equation for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhl or p1 is of first order, and so an initial condition and a 
condition at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= o are sufficient to fix the solution. 

T o  clarify the question consider first the simplest case a1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. If a1 is zero for a 
sufficiently long time the system may be expected to reach a steady state. Assume 
it has done so. Then, putting (3hllBt = o and a1 = o in (6) gives dqlldx = 0. 

Hence q1 = constant. It is physically reasonable to require q1 = o at x = 0. 

In this case q1 = o for all x. Equation (8) is then 

Dodh,/dx- coh1 = 0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(12) 

The equation has singularities at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = o and x = L, DO being zero at these end 
points. The solution that makes immediate physical sense is hl = o for all x, that 
is, the glacier is in the datum state. But there are also solutions with hl # 0, 

which must be looked at. Near x = L,  Do + o as L-x,  while co remains non- 
zero; hence the equation is sufficiently well represented near s = L by 

where y = L - x and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is a positive constant, which has the general solution 

hi = P-y-B, 

where B = co(L)/y and P is an arbitrary constant. Since B is positive, either 
P = 0, giving hl = 0, or the solution is unbounded at y = 0. Thus, there is a 
family of solutions of (12) ,  all except one of them (hl = 0) being unbounded at 
x = L. In  an unbounded solution, with hl positive, the positive q1 produced by 
the increase in thickne,ss (cohl) is just balanced by the negative q1 produced by the 
decrease in surface slope (DO dhl/dx)-and similarly if hl is negative. Physically this 
is quite acceptable; the only objection arises at x = L. Here an unbounded 
solution cannot be taken quite literally because hl is restricted to be small, but it 
does suggest that some corresponding physical solution exists. This is in fact a 
“cliff” solution, which will now be described. 

Consider afresh the form of the datum glacier itself, leaving aside for the 
moment any possible perturbations from it. At the lower end qo = 0. Now, 
since qo = uoho, there are two ways of achieving qo = 0 ;  either (I)  ho = 0, which 
gives the wedge-shaped snout of Figure I ,  or (2) ZQ = o with non-zero ho. This 
last represents a terminal cliff, which is a possibility not yet considered. The zero 
uo might be achieved by having the surface slope zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcc zero. Case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  corresponds to a 
whole family of datum profiles of different cliff height, while case ( I )  corresponds 
to a single datum profile only. The two types of snout profile can be obtained 
analytically (unpublished) but the possibility of their existence is fairly obvious 
without analysis. The important point for the present argument is that qo is the 
same at given ?c for all the members of the family-in other words, fixing qo(x) 
does not, in general, fix the datum profile. But the profile is fixed if the stipulation 
is added that the snout is wedge-shaped. 

It is natural, therefore, that in the perturbation theory a restriction of this 
same type is needed at x = L to fix the profile. We therefore assume that, if a 
glacier terminates as a wedge, it will normally continue to do so (as in Figure I)- 
basing the assumption on general field observation. Singularities of hl at x = L 
must then be ruled out and the solution to ( I  2) becomes unique. The boundary 
conditions thus suggested are: 

q 1 =  0 at x = 0 

hl not singular at s = L. 
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On the Theory of the Advance and Retreat of Glaciers 43 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 
Consider next the case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, a constant. Suppose, for example, that the 

glacier starts in the datum state under the steady rate of accumulation ao(x), and 
that the rate is suddenly increased by a uniform amount A. Thus, in the upper 
parts the rate of accumulation increases, and in the lower parts the rate of ablation 
decreases; there is a sudden permanent lowering of the snow-line. Eventually 
the glacier may be expected to reach a new steady state. T o  find this, put 
ah1/8t = o in ( 6 )  to give dqlldx = ,4 and hence 

41 = Ax, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(14) 

Dodhl/dbx - = - AX. (15) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y_v dhl/dY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4- CO(L)hl = AL 

if the boundary condition q1 = o at x = o is applied. Equation (8) is now 

Following the same procedure as before we represent the equation near x = L 
by 

and obtain the general solution 

Once more, all solutions except the one with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP = o give an infinite hl at 
= 0. The required solution near y = o is therefore the particular integral 

Let us note two facts about this solution near y = 0. First, it may be obtained 
direct from equation (IS) by setting the first term equal to zero. Second, the 
required solution is that one out of the family (16) which + o as A --f 0. We 
can in fact advantageously replace the boundary conditions (13) by the physical 
requirement that the solution should be the one which approaches zero as A + 0. 

The role of the boundary conditions in this problem, as we shall see more clearly 
when time-dependent solutions are considered, is to prevent any h1 or q1 flowing 
or diffusing in from either end of the system. The system is then completely 
controlled by the forcing term A. 

The argument about boundary conditions has so far considered only the 
, steady-state solutions, but identical reasoning can be applied to the time-dependent 
solutions by taking Laplace transforms. * Consider, for example, the solutions of 
equation (9) for t > 0, with initial condition qI(x, 0) = 0, o < x < L. Taking the 
Laplace transform we have the ordinary differential equation 

hl = AL/co(L). 

where 

and 

q1(x, p )  = q1(x, t )  e-Pt dt, i 
0 

i i l(p) = 4 al(t) e-p t  dt. 

Suppose a particular integral of (17) has been found, namely Q ( x ,  p ) ,  which is such 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

+ o as 51 + 0. Then the general solution will be of the form 
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340 J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. Nye zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and B are arbitrary, and f1 and f i  are two linearly independent functions 
not involving 51. As 51 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ o the solution becomes the complementary function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

!?(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-4(p)f l(x, $1 + B(p)fdx, p) .  
Now, on physical grounds, the only acceptable solution of equation (9) with 
initial condition ql(x, 0) = o and a1 = o is ql(x, t )  = 0. The boundary conditions 
must be chosen so as to ensure this. Hence the only acceptable solution of (17) 
for 51 = o is q(x,p) = 0, and so A@) and B(p) must be taken zero. It follows 
from (IS) that the solution of (17) is Q(x,p) ,  and hence that the solution of (9) 
with the given initial condition is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(x, t ) ,  the inverse Laplace transform of Q(x, p) .  
In  other words, if a solution Q(x, t )  can be found which satisfies the given initial 
condition and which approaches zero as q ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+o,  we may be sure that it is the 
unique solution required*. A similar discussion can be given for equation (10) 

for h l .  
This argument shows clearly that, as noted above in relation to the steady state, 

the role of the boundary conditions is to prevent any h1 or q1 from flowing or 
diffusing in from either end. In this approach the only requirement we make of the 
boundary conditions is that they should enable us to find a solution with the 
required property--that it vanishes as a1 vanishes. The  boundary conditions 
found satisfactory from this point of view are the obvious one q1(0, t )  = 0, and 
the less obvious ones that hl and ql and their derivatives with respect to .Y should 
not approach infinity as x + L. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. The special model 

To. obtain an explicit solution of the equations a special model is now adopted 
in which the functions co(x) and Do(x) have simple polynomial forms (Figure 2) 

FIG. z-Wave velocity co and diffusion coefficient Do as functions of x, in 
the special case chosen for detailed study. 6 is exaggerated for clarity 

(0.50 instead of - 0.006). 

consistent with the considerations put forward in $ 3 :  

c&) = ?(I-  Y ) ,  
&(x) = q - s -  i), 

d 

d 

* If the initial condition is not q l ( x ,  0 )  = 0 ,  some extension of the reasoning is needed. One 
way is first to note that the argument given also applies when ar is a function of x as well as o f t  (in 
which case an additional term in am/& appears in (9)). Other initial conditions than ql(x,  0) = o 
can then be dealt with by adding on to ai (x, t )  at t = o a &function which is sharp with respect to t ,  
but which has the appropriate x variation to give the required initial function hl(x, 0). 
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On the Theory of the Advance and Retreat of Glaciers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA41’ 

where the glacier in the datum state runs from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= o to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI (J  - 6) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAci, 

which is a time, and E,  which is dimensionless, are constants, and S is a small 
dimensionless constant introduced to prevent co being zero at the end of the glacier. 
co in fact extrapolates to zero at a distance IS beyond the end of the datum glacier. 
Equations (19) and (20) constitute the special model referred to in $ I. 

It might be thought better to put DO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN x at the head of the glacier, rather than 
DO N x2, but the latter is in fact a better representation when the glacier width 
is finite (111). The point is not important because the precise form taken for 
&(x) at the head of the glacier is not expected to matter very much. 

I t  is convenient now to choose ci as a natural unit of time and I as a natural unit 
of length, so that in these units 

co(x) = x(1 -x), (21) 

Do(s) = E.T’( I - 6 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx), (22)  

and the datum glacier runs from x = o to x = I - 6. 
Numerical rialues of ci, E and 6. T o  assign a suitable numerical value to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG, 

and thus to fix a natural time scale for the problem, note that, from (IS),  

ci = Z/4comnx N I/16uomax. Thus for example, if 1 = 10 km and uomax = IOO m/yr, 
ci 2: 6yr .  

The small dimensionless number 6 may be estimated as follows. 

6 2: co(L)/4comax 21 ~o(L)/16uomax. 

Putting uo(L) = 10 m/yr, for example, and UOmax = IOO m/yr, as before, gives 
6 N 0.006. 

E may be estimated by considering the value of DO at x = +l, which is approxi- 
mately E12/8a. If we use the approximation Do 2: 340 cot CIO, we have 

where ho and cco are here the thickness and slope at x = 41. If, for example, 
ho = 250 m, CIO = 4 x  10-2,  with I = 10 km as before, we find E N 0.9. 

As a check that the numerical data used are consistent and reasonable note that 
hOcxO, which is proportional to the shear stress on the glacier bed, is 10 m, a common 
average figure. We can also note that to deal with the maximum discharge of 
uOrllaxhO requires an average ablation rate over a distance Ql of 5 m/yr, which is 
reasonable. The above figures are simply illustrative. No one glacier can be 
taken as typical of all, but very roughly we may conclude that the natural time 
unit ci - 10 yr, that 6 - 0.01 and E N I .  

6. Solution for a step function 

when a l ( t )  is a step function. As initial condition we have 
We are now in a position to solve the problem set in $ 4-the glacier response 

41 = h i  = o ( t  = 0 , o  6 x ,< 1-6) 

and thereafter 

a1 = A ( t  > 0). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/7
/4

/4
3
1
/5

9
5
7
1
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



442 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. Nye 

(i) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATheJinaZ steady state. We have already found that eventually zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ax. To 
find the eventual change in profile k ( x )  we have to solve (IS) ,  which now has 
the form 

dhl 

dzc 
EE'(I-6-x)+ -x(I-x)hl = -AX. (23 1 

From the discussion in 5 4 the value of hl at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE = I - 8 is found directly from the 
equation as A/S, the term in dhlldx being zero. 

If E = I the solution is readily found to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
hi = A(I +x/S). (24) 

If E = o the solution is hl = A/(I -E). Both solutions vanish with A as required. 
The solutions for other values of E may be found by numerical integration of (23) 
starting at x = I - S. To  start the integration the value of dhlldx at E = I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 
is needed, and this cannot be found directly from (23) since DO = o at this point. 
However, by differentiating (23) and assuming that d2hlldx2 remains finite it is 
found that at x = I - 8 

A 
- 

dhl 

dx  S{S+E(I-S))' 
The step-by-step integration then proceeds without difficulty and the result is 
shown in Figure 3 for various values of E. 

-- 

FIG. 3.-Steady-state profiles, h i :x ,  after a sudden uniform increase A 
in rate of accumulation. Natural units, I = I ,  u = I ,  are used, and 5 

is taken as 0.006. 

Remembering that a realistic value of E is about I ,  and comparing the curves 
for E = o and I ,  we see that the effect of diffusion on the final steady-state profile 
is very marked. On the other hand, whatever the value of E the value of hl at 
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On the Theory of the Advance and Retreat of Glaciers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA443 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI - 6 is always A/& so that the ultimate advance of the glacier is always 
(A/6) cosec 8, in natural units. (As a numerical illustration, if the change A is 
0.1 m/yr, with 6 = 0.006, 0 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20°, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo = 6 yr, the ultimate advance is 300 m.) 
Thus a diffusionless model correctly predicts the final distribution of the flow q(x) 
and the final advance of the glacier, but not the final profile of its surface. The 
previous paper (I) is misleading in implying that one can draw significant con- 
clusions about the final profile, as distinct from the final advance of the snout, 
without taking account of diffusion. 

(ii) Time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdependence. If we now examine the manner in which the new steady 
state is reached it turns out that simple solutions in closed form can be given for 
the cases E = o and E = I .  Other cases are much more difficult. 

Noticing that the ultimate steady-state solution for E = I is linear in x we 
look for a time-dependent solution for E = I of the form. 

hi = b o + b l x + b z ~ ~ +  . . ., 
where bo, b l .  . . are functions of t. Substituting into equation (10) with the 
coefficients (21) and (22), equating coefficients of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, and using the condition that 
the b’s are initially all zero, gives the closed solution 

(25) 

2 I 
- = I - e-t+ - + h l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a il 1-26 S(1-26) 

We note that hl vanishes with -4, and that therefore, from the discussion in $4 ,  
this solution is the only one that is physically acceptable (the physically unacceptable 
solutions would presumably not be of the form (25) even near x = 0, and so were 
excluded from the beginning). As t --f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco, (26) approaches (24) as expected. 

The corresponding solution for q1 can either be found by solving the original 
differential equation (9) in a similar way, or, more quickly, by substituting the 
solution for hl into equation (8): 

We note that q1 vanishes with A, as required. 
The  solution (26) for hl is remarkable in that it is linear in x at all times. At 

x = 0, hl approaches the new steady value A(= Ao) exponentially with time 
constant I ( =  o). The value of hl at x = 1-6, which is proportional to the 
advance of the glacier, is given by 

which is plotted in Figure 4a and 4b as the full curve labelled to + co. As t -+ 03, 

hl + A/& and thus the eventual thickening at x = I - 6 is I /a times greater (say 
160 times greater) than the thickening at x = 0, as could be seen already from the 
steady-state solution. But the most interesting feature of the equation for hl is 
the appearance of two time scales: in addition to the time constant I ,  there is the 
longer time constant 1/28. The part played by this long time constant may be 
seen by writing down the expression for ahl/at at x = I - 8, and then making the 
approximation 6 < I : 

( x  = 1-6). 
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444 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. F. Nye zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
150 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

h,/A 

100 

50 

0 

FIG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4(a).-Response hl at the datum position of the snout to a rectangular 
pulse of increased rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof accumulation is plotted against time t for 
various pulse-lengths t o  (see inset). The broken curve shows the 
response at the snout to a sudden increase in rate of accumulation when 
diffusion is ignored ( t o  -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00, Do = 0). Natural units, I = I ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu = I ,  

are used, and 6 is taken as 0.006. A scale of years is inserted at the top 
for illustration, taking u = 6 yr. 

FIG. 4(b).-The lower left corner of Fig. +(a) on a larger scale, showing 
curves for t o  = I to 5 .  
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On the Theory of the Advance and Retreat of Glaciers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA445 
Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAahl/at is initially A, it rapidly increases to nearly 2A, and then slowly 
decreases to zero, almost exponentially with time constant 1/26. Thus hi itself 
initially accelerates during the period while t is of order I (Figure 4b), but it then 
decelerates, and for t 9 I ,  hl approaches the value A/S virtually exponentially 
with time constant I /2S. The accelerating period is precisely the instability which 
was treated in I and which arises from the term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- ro’hl in equation (10). 

The long time constant I I28 represents a new phenomenon which only appears 
when diffusion is introduced. T o  see this we may compare our solution for 
E = I with the corresponding solution for E = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, which may be readily obtained 
by the method used in I, namely by integrating along the characteristics, which 
are the paths of the kinematic waves. The result is 

I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe-t 
(31) - 

hi 

A 
- -  

S(I - e-t) + e-t’ 

This equation, which is shown graphically in Figures 4a and b as a broken line, 
only involves the short time constant I .  As t + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco, hl approaches the same final 
value as before, namely A/8, and again there is an initial acceleration, followed by a 
deceleration. The difference is that, without diffusion ( E  = 0) the motion is 
substantially complete after a time of, say, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 natural units, whereas, with a 
definite amount of diffusion present ( E  = I )  the motion is still continuing after 
times of order 1/28, which are very much longer; with the numbers we have been 
using 1/28 is 500 yr. 

The difference introduced by diffusion is also brought out very clearly by 
examining the maximum rate of increase of hi at the snout. Without diffusion the 
maximum rate is approximately A/48, and since S is small the rate is large. On 
the other hand, with E = I the rate is never more than 2A, as we have seen. 
Qualitatively it was to be expected that diffusion would both prolong the advance 
of the glacier and reduce its maximum rate. What was not clear beforehand, 
but is revealed by this example, is the very large size of the effect. 

The origin of the long time constant can now be understood in the following 
way. When there is a sudden increase A in rate of accumulation, the eventual value 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp1 at the snout of the datum glacier is AL, by equation (14), where L is the 
length of the datum glacier; this is so whatever the detailed forms of co(x) and 
Do(x). The resulting thickening at the datum snout is then AL/co(L) by equation 
(11). The factor L/co(L) is the long time constant we are concerned with; it is 
the time taken to travel the length of the datum glacier at the constant speed 
co(L) = uo(L), and in the special model it is o/S. Now, just after the sudden 
increase A, hl grows at the rate A. If hl continued to grow at this rate it would 
reach its final value only after this long time L/co(L). In fact, when there is no 
diffusion hl grows much more quickly than this (Figures 4(a) and (b)) and the 
long time constant does not appear. But when diffusion is present it prevents such 
rapid growth, and so longer times are needed. In  the special model with E = I 

the maximum rate of growth of hl is about 2A, and the final value is therefore 
approached after a time of order +L/co(L). This equals o/2S, which is precisely 
the long time constant that appears in the exact solution. 

This long time constant for E = I has the practical significance that the 
glacier continues to respond to a climatic change for many hundreds of years 
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after it has happened-the glacier has a very long memory-in marked contrast 
to the result given by the diffusionless approximation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0). We may therefore 
ask whether the behaviour found for the case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE = I is exceptional. For values of 
E other than o and I the behaviour does not seem to be exactly describable in 
terms of one, two or any finite number of time constants. But the argument above 
suggests that, as diffusion increases, the response times will be longer, and that, 
since E = I is a realistic value, times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 0126 must be expected. The question would 
be further clarified if a solution could be found for a general value of E. Although 
no exact solution has been obtained, we can, following a suggestion by Dr. W. 
Chester, find a solution for a general value of E close to I ,  which exactly satisfies 
the differential equation and which approximately satisfies the initial condition. 
This solution (see Appendix) continues to show a time scale N 0126. Thus there 
is good reason for thinking that long response times of several hundred or a thousand 
years are involved in the reaction of a glacier to climatic change. The numerical 
calculation of the frequency response of South Cascade Glacier in I11 fully supports 
this conclusion. 

7. Solution for varying rate of accumulation 

(i) General solution 
We now derive a solution analogous to (26) and (27) for the case where a1 

is an arbitrary function of t. co and DO are supposed given by equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(21) and 
(22) with E = I. We choose the origin of t arbitrarily and assume that at t = - T, 
where T is as large as we like (7' > o), the glacier was in the datum state with 
a1 = 0, hl = o and ahl/at = 0. The real initial condition would, of course, be 
different from this, in general, but we argue that the very remote past can have 
no effect on the current behaviour of the glacier, and that we are therefore entitled 
to assume any initial condition that is convenient. 

We look for a solution of equation (10) of the form (25), and proceed exactly 
as for a1 constant. Substituting (25) into the differential equation and equating 
coefficients of x gives for the constant term 

bo = a1(t)-bo, 
and hence, using the initial condition, 

bo = e-t a1(7)e7 dr. s -T 

The coefficients of x give an equation for b l ,  61 and bo whose solution is 

again using the initial condition. Integrating by parts this becomes 

The coefficients of x2 give the equation 
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On the Theory of the Advance and Retreat of Glaciers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA447 
of which the solution satisfying the initial condition is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. It then follows in a 
similar way that b~ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbq = . . . = 0. 

Now define two time averages of a1 as follows: 

Since T is as large as we please, we may put e-T equal to zero and obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
zl = S al e - ( t - T )  d7 and zl = 28 a1 e-"(t-T) dT. 

-T s (32) 
-T 

Thus, if we imagine ourselves situated at time t ,  51 is an average of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 over the 
recent part (time scale I ) ,  while zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ1 is an average of a1 extending into the more 
distant past (time scale 1/26). They may be called the short-time and the long-time 
averages, respectively*. 

With this notation the solution may be written 

The increase in thickness at the datum position of the snout zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x = I - 6) is then 

I 1-8 = 

1-28 S(1-28) 
hl( t )  = - ___ 51s. ___ a1 , (34) 

or, since 8 < I, simply 

hl(t) 2: -&+S-la'1. (35) 
Multiplied by cosec 8, these expressions give the advance of the, glacier. 

Differentiating equation (34) with respect to t gives for the rate of increase of 
thickness at the datum snout, which is proportional to the rate of advance of the 
glacier, 

1 -  2(I- 8) 
hl = a1+ ~ al -  ___ a1 

1-26 1-28 

or simply, 

hl 2: a1+&-2a1.  (37) 

The physical meaning of equation (35) is that, if 51 and a"1 are of comparable 
magnitude, the position of the snout is very largely determined by Z1 alone. This 
is a very reasonable result, for the position of the snout is the outcome of conditions 
extending over a long period of time. On the other hand, equation (37) tells us that 
the rate of advance is approximately proportional to (a1 - &) + (51 - E l )  ; that is, 
proportional to the departures of a1 and 51 from the long-time average El .  Thus in 
this respect the long-time average sets the datum from which the changes should 
be measured. 

The a1 term in equation (37) represents the direct effect of decreased ablation 
in thickening the snout, while 61 and 21 represent the effect of past changes in a1 

* An analogue would be a damped galvanometer, with zero inertia, subject to a force ai( t ) .  The 
response would be ai(t) if the relaxation time was I ,  and Z ( t )  for relaxation time 1/28. 
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transmitted from higher up the glacier. The role of the three terms may be clearly 
seen in the example already treated, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 was zero up to a certain time, and 
constant, say zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, thereafter. Just after the discontinuity, Zl and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZI are both zero, 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&, by (37), is simply equal to A. After a short time Z1 is still effectivelyzero, but& 
approaches the value A. Thus, from (37), hl approaches 2-4. This is the accelerating 
period already discussed. After this time a'l begins to increase significantly, and 
finally Z1 -+ A. Thus, after long times al, 51 and Z1 all approach A, and hl becomes 
zero. The glacier is then in its new steady state, and, from equation (35), the final 
hl is effectively A/S. 

(ii)? Effect of a pulse of a1 

Equations (34) and (36) may be applied to study the response of the glacier 
snout to a temporary deterioration or improvement in climate, as distinct from 
the permanent change discussed in tj 6. Let the glacier be in a steady state and 
suppose that a rectangular pulse of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 is then applied: from t = o to t = to ,  a1 = A, 
and a1 is zero at all other times (Figure 4(a)). From t = o to t = to the solution 
will be given simply by equation (28). T o  find the solution for t > to we use 
equations (34) and (36). From equations (32), and are calculated as 

51 = Ae-t(et0- I ) ,  Zi1 = Ae-2St(e26tt.- I )  ( t>  to). (38) 

Then equation (34) gives, for the datum snout, 

An examination of this equation, which is shown graphically in Figures 4(a) 
and (b), shows that when the pulse ends, at t = to ,  hl at the datum snout may either 
continue to rise or may fall immediately. For small to, hl continues to rise a little 
after t = to, it reaches a maximum, and eventually falls to zero exponentially 
with time constant 1/28; on the other hand, for large to, hl falls immediately the 
pulse ends. There is thus a range of t o  for which a flood maximum occurs at the 
datum snout after the pulse is over. T o  find the time of arrival of this maximum, 
say t 7 t*, put hl = o in (36). Since a1 = o when the maximum occurs, 

51 = 2(1 -S)&. 

Then, using equations (38), we find for t*, 

When t o  < I, and S < I, this gives 

t* N - In48 

as the delay time for the flood maximum after a short pulse. (This is also the time 
taken for a kinematic wave of velocity CO-DO' to travel from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = 6 to the snout. 
Note that, since hl is linear in x at all times, the term Doa2hl/ax2 in equation (10) 

vanishes for all x and t. The equation is then effectively of first order and the 
solution is propagated along the characteristics dx/dt = CO-DO'.) The flood 
maximum after a short pulse thus occurs after a delay of a few multiples of the 
natural time unit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. For larger values of to, t* - to decreases (that is, the maximum 
occurs sooner after the end of the pulse) until, when t o  2i - (1/28) In 2, t* = to. 

t This section may be omitted without loss of continuity. 
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For longer pulses than this the maximum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhl is attained at the end of the pulse 
itself. 

The height of the flood maximum at the datum snout is obtained by eliminating 
a'l between (34) and (40) to give 

hmax zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 51/28 

= (~/26)e-t*(eto- I )  (42) 

from (38). For moderate values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto ,  that is, values small compared with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6-1, 

equation (41) is essentially 
46t. 

e-t* = ~ 

eta- I ' 
and hence hlmax is given by 

hlmax = 2Ato = zw (to < S-'), (43 1 
where w is the total thickness of additional accumulation due to the pulse. As a 
numerical illustration of this very simple result, suppose 6 = 0.006 as before, and 
that the natural time unit ts = 6 yr; then the duration 6-1 is 1000 yr. Thus, if the 
rate of ablation at the snout changes from 10 m./yr to 9 m./yr for 20 yr, w = 20 m 
and hlmax = 40 m. If 6, the angle at the snout, is ZOO, the advance of the glacier 
is hlmax cosec 6 = 120 m. 

If to is comparable with 6-1 the flood maximum occurs relatively very soon 
after the end of the pulse, for we have seen that the interval is always shorter than 
- ln46. Hence the flood maximum in these cases is only slightly greater than 
the height attained at the end of the pulse itself. 

In the absence of diffusion ( E  = 0) it may be shown that the corresponding 
formula to (43) for very short pulses ( t o  I )  is himax = w/46. Thus diffusion, 
with E = I ,  has the effect of reducing the flood height by a factor of order 1/86, 
say 20, for very short pulses. For very long pulses, however, diffusion makes no 
difference to the thickness attained, for hl -+ A/6 with or without diffusion. 

The pulse does not have to be rectangular for equation (43) to hold, for, by 
superposition of rectangular pulses, one can see that the equation will be true for 
any pulse whose duration is small compared with 6-1. Another way of seeing this 
is to write (42) in terms of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ1 by using (40) : 

hlmax = Z1( I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6) jS .  

Now we know from the analysis of rectangular pulses that the flood maximum will 
occur fairly soon after the pulse itself, that is, the factor exp - 2 8 ( t - ~ )  in the 
definition (32) of Z1 is essentially I .  Hence 

hlmax = 2( I - S) a1 d7 N 2w 

-T 

where w = a1 dr. 
-T 

An interesting result follows if we make the duration of the pulse vanishingly 
small. Suppose a1 is a %function such that 

a1 dr = w. s 
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There is then an instantaneous increase of thickness for all x of amount zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw .  Equa- 
tion (43) shows that the subsequent development of this perturbation brings zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhl 
at the datum snout to a maximum value of 2w before it diminishes to zero. Thus, 
an initially uniform perturbation of thickness is just doubled at the datum snout- 
in contrast to the diffusionless case where it grows by a factor 1/46, say 40. The  
whipcrack simile of paper I, although qualitatively still correct, is less appropriate 
than it seemed at first. 

The factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz in equation (43) is a consequence of the special model we are 
using. The same factor appeared in equation (29), from which we deduced 
that the maximum rate of advance after a sudden permanent change, A, was twice 
the initial rate of advance. In  real glaciers we may suppose that the maximum 
response to a pulse which is short compared with 6-1 ( N I ooo yr) will be approxi- 
mately given by (43), and will be independent of the precise shape of the pulse, 
the correct factor being - z. 

The conclusions about pulses of greatest practical importance may thus be 
summarized as follows : 

(a) for a pulse which is short compared with about i ooo yr, but of any shape, 
the maximum increase in thickness at the datum position of the snout is roughly 
twice the total thickness of additional accumulation (or total deficiency of ablation). 
Thus the effectiveness of a rectangular pulse of given strength in producing 
an advance of the glacier increases at first almost in proportion to its duration, 
the proportionality breaking down for to N I ooo yr. 

(b) the flood maximum due to a rectangular pulse occurs after a delay of a 
few natural time units if the pulse is very short. For longer pulses the maximum 
occurs sooner after the end of the pulse, or at the end of the pulse itself. 

(c) if is only for pulses which last for long times (,- 1000 yr) that the very 
large advances of the glacier, with hl - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA/S, can occur. 

(d) there is a limit (hl = A/S) to the advance that can be caused by a pulse of 
given strength, however long it lasts. 

(iii) Frequency response 

calculate the response for a harmonic variation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal, putting 
Aqalternative way of examining the connexion between al( t )  and hl(x, t )  is to 

al = Aetwt ,  

where A is a real constant. This could be one Fourier component of the actual 
variation al( t )  that occurs. The response of the glacier is readily found by using 
equation (33) as 

hl(x, t )  = H(x)eiwt, 

where the complex response amplitude H(x)  is given by 

H = A(2(x + 6) + iw)( I + iw)-1(26 + iw)-l. 

At the datum position of the snout, x = I -6, 

H = A ( 2 + i w ) ( 1  + i ~ ) - ~ ( 2 6 + i w ) - l ,  

or, if H = lH]e-i$, so that 4 is the phase lag of H on A, 

4+ w2 w(2 + 26 + w2) 

4s - &(I - 2 s )  ’ 

(44) 

(45) 
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On the Theory of the Advance and Retreat of Glaciers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA451 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< + < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT .  1H1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand + are shown in Figure 5 plotted against the period T = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZT/W,  

on a logarithmic scale, taking 6 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0-006. For periods less than about 0.5 time 
units, say less than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 yr, the phase lag is effectively 90°, and the amplitude 

FIG. s.-Response of the snout to a harmonic variation of accumulation 
rate. The amplitude ]HI and phase lag 4 of hi are plotted against the 
period 7 on a logarithmic scale. Natural units, 1 = I ,  u = I ,  are used, 
and 6 is taken as 0.006. The illustrative scale of years at the top is for 

= 6 y r .  

lHI = T A ~ / z T ,  which is comparatively small. This range includes the winter- 
summer changes, where the maximum thickness naturally occurs a quarter-period 
after the maximum rate of accumulation. For longer periods 4 increases to a 
maximum of tan-l(-q/z) = 109' at 7 = .rr1/2 = 4.4; it remains above 90' 
until 7 N ~ 6 - a  = 40, and then decreases very slowly to zero. Meanwhile IH] 
increases to approach A/6 = 167A at large 7, as one would expect. Notice that 
it is only for periods of several thousand years or more that the very large responses 
with /HI - A/S can occur, in agreement with the similar result for rectangular 
pulses, If the time unit CT = 6 yr, the curve for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 shows that, for all periods less 
than I ooo yr, the phase lag is within the range 90° & ZOO. 

The numerical problem of calculating the frequency response of an actual 
glacier from field data is considered in 111; it is found that the curves computed 
for South Cascade Glacier are in fact very similar in general form to those of 
Figure 5 .  

7. The inverse problem-calculation of climate from variations of the 

Equation (34) gives the variation in thickness at the datum snout hl(t) which 
results from an arbitrary variation of rate of accumulation al(t). We now wish to 
find the inverse relation, to express al(t) in terms of hi(t) at the datum snout. 

Differentiating (34) with respect to t gives (36). A further differentation 

snout 

gives 
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452 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. F. Nye zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
El zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand may now be eliminated between (34), (36) and (46) to give 

61 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 212.1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi;, + ( I  + 26)hl+ 2 ~ ~ 1  = j ( t ) ,  say, 
which is a differential equation for al( t )  whose solution with initial condition 
a1 = o at t = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,  is 

t 

al(t) = e-zt j” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeZy(7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdT. 

-T 

Substituting for f( T) and integrating by parts, 

a1 = h~-(I-28)hl+(I-8) l ; l ,  

where we have put h 1  = hl = o at t = - T, and where h1 is defined by 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h l / e z T d T  = j h l e z T d T  

-T -T 

or, since T is very large, 

(47) 

hl is thus an average of hl over the recent past with a time scale of i. Since 6 < I ,  

equation (47) may be written approximately 

12.1 2: h1-h1+K1. (49) 

Thus al(t) is expressed in terms of hl(t) at the datum snout in a remarkably 
simple way. The term hl represents the immediate effect of al, which is to increase 
hl at the rate 12.1. The terms in hl and h1 show that, in order to deduce al(t) from 
hl(t), we need to know also the current value of hl and its average over the recent 
past. Notice, however, that equation (47) contains no long-time average of hl, hl 
say, with time scale of order 6-1. T o  deduce hl(t) or hl(t) from al(t) it& necessary 
to know Z1, but to deduce q ( t )  from hl(t) it is not necessary to know El. In other 
words, knowledge of the behaviour of hl at a time - 6-1 in the past is not necessary 
for a calculation of the value of a1 now. This unsymmetrical relationship between 
a1 and hl is perhaps the most interesting result of the paper. I t  is made crudely 
understandable if we remember that hl is the result of a type of integration of a1 
over past time. Therefore, correspondingly, 12.1 must be a type of time derivative 
of hl. Now to And the time derivative of a function at time t we only need to know 
the function in the immediate neighbourhood of t-on the other hand, to find the 
integral of a function up to time t we need to know the whole function back to - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco. 
Hence it is not surprising that the distant past of 12.1 (which is “integrated”) enters 
the problem, while the distant past of hl (which is “differentiated”) does not. 
The point is of considerable practical importance for the following reason. 

The data normally available are the positions of the snout of a glacier over 
some limited period of time. If historical records are used, this period may be 
300 years in a very favourable case, but 50 or IOO years is a more common figure. 
The function hl(t) at the datum snout may then be deduced (with an arbitrary 
zero). 61 will also be deducible over the whole period, but excluding an interval 
of duration N 4, say 3 yr, at the beginning. Then, by using (49), al(t) would be 
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On the Theory of the Advance and Retreat of Glaciers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA453 
deducible over the same period as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh1. We have seen that 1/26 may be about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA500 yr. 
If a time average of hl over periods of this magnitude appeared in equation (49) 
it would be impossible to use historical records of the variations of glaciers to 
deduce zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- climate. From this point of view the fact that equation (49) does not contain 
hl is crucial. 

The same point may be expressed in another way. Suppose a l ( t )  were known 
from time t = o onwards. In order to solve equation (10) the initial function 
hl(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) would also have to be known. But suppose it was not known, and was 
replaced by a false initial condition, hl(x, 0) = 0, for example. The difference 
between the true and the false initial condition would cause a transient lasting for 
a time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 1/26, and therefore during this time the solution would not be correct. 
Consequently, in order to calculate hl at the present time from the record of al(t),  
without knowing an initial condition, the record must go back into the past at 
least a time N 1/26. 

On the other hand, to proceed the other way round, and to try to go from a 
knowledge of hl(t) at the snout to the function al(t) which has caused it, is an 
entirely different type of problem; there seems to be no simple general way of seeing 
how far back into the past the record of hl must go before the present value of a1 
can be calculated. However, the answer to this question given by the special 
model is quite specific, namely a time of order of a natural unit. 

8. Further developments 

How to extend these results to the general case, where co(x) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADo(x) do 
not have the special forms we have assigned them but are given graphically, is 
discussed in detail in 111, but a few remarks on the problem may be made here. 

In view of the simplicity of the results for the special model in terms of time 
averages into the past, like h1, 51 and Zl, it is natural to search for a similar result 
in the general case. But, because no finite set of time constants generally exists, 
no progress on these lines has been possible. The more fruitful approach has 
been to devise a general method of calculating the frequency response curve. 
This is done for low frequencies by finding series expansions of H/A and of A / H  
in powers of iw. For the datum snout of the special model the expansions are 
readily obtained from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(45) as 

H/A = S-l-~S--2(1+~)iw+~S-3(1+6+262)(iw)2- . . . 

A/H = 6+(1+6)(&b)+(1-6){(+iw)2-(&iw)3+(+iw)4- . . .} 

(W < 229, 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(w  < 2). 

Since we are dealing with the single Fourier component a1 = A exp iwt, the two 
series may also be written, after multiplying by exp iwt, as 

hl = 6-lal -+6-2( I + 6)d l+ aS-3( I + 6 + 262) i i l -  . . . (W < 28), (50) 

and 

a1 = s ~ 1 + + ( 1 + 6 ) ~ ~ + ( 1 - 6 ) ( ~ ~ 1 - ~ ~ 1 +  . . .) (w < 2), ( 5 1 )  

or, since 6 < I ,  
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These expansions are valid when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhl and a1 are single Fourier components, but, 
since the equations are linear, we can add the solutions for different zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw .  If then the 
actual function al( t )  is first filtered to remove all Fourier components with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 28, 
(52) will hold for the filtered function. Similarly (53) holds for a function hl(t) 
filtered to remove all frequencies w > 2. Equation (52) could thus be used to some 
extent for inferring hl(t) from al(t),  whereas (53) is appropriate for the reverse 
problem. The great difference in the radii of convergence (in terms of w )  of the 
two series is yet another manifestation of the asymmetry between these two problems 
encountered earlier. It means that in practice a series of type (52) is virtually 
useless, whereas one like (53) is useful. The two analogous series computed in I11 
for South Cascade Glacier show exactly the same asymmetry. 

As a check of consistency equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(51)  may be obtained directly from (47), 
for, by repeated integration by parts of (48), hl( t )  may be expressed in terms of 
hl, hl, Z& . . . all evaluated at t :  

- 
hl = hl-$hl+$hl- . . . . 

Substituting this into (47) leads at once to ( 5  I) .  

The second and third terms of (53) may be combined if we write 
... 

a l ( t )  Shl(t)+&hl(t+&)-&hl(t)+ . . . . 
Thus, if the datum state is such that 8hl(t) is small, and if& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( t )  etc. can be neglected, 
turning points of hl, that is maximum advances and retreats of the glacier, will 
occur half a time unit after zeros of al. Further development of this type of 
argument is given in 111. 

Once the frequency response curve for a glacier is known there still remains 
the questien of the most efficient numerical methods to use in applying it to a 
record of ll(t), or hl(t), but discussion of this is best carried out in the context of an 
actual record. 
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On the Theory of the Advance and Retreat of Glaciers 

Appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
To show the appearance of a long time constant when E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA455 

We use equation (9), and first make the substitution 

q*=q1-As 

to give 

If we put q* = X(x)+(t), the variables separate to give 

+ = A$ i.e. +(t) = eAt 

Dox" - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC O X '  - AX = 0, 

where h is a constant. The  ordinary differential equation (54) is solved by putting 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(54) 

X(x)  = x"(1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+px), ( 5 5 )  
where n andp  are constants. Substituting into equation (54), with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco and Do given 
by equations (21) and (22), and equating coefficients of xn+2, we find 

n =  - I  or n =  E-1 or p = o .  

If n = - I ,  X -+ c41 at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = 0, and we discard this possibility. 
Equating coefficients of xn gives 

X = E( I  -S)n(n- I ) - n ,  

and hence, for n = E-1, h = A1 say, where 

hl = - I + S ( I - E - ~ )  2: I for 8 < I. 
Equating coefficients of xnf l  and putting n = E-1 gives p = - I/( I - 28). Thus a 
solution is 

The  alternative p = o gives, from the coefficient of xnfl ,  n = o or n = r + E-1. 
The  case n = o gives a finite value of X (and therefore of q1) at x = 0, and we 
therefore discard it. The case n = I + E-1 gives, from equation (56) ,  X = hz say, 
where 

Xz = -(1+E-1)6, 

and hence the solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(58)  q* = xl+l/EeAzt. 

When E = I ,  A2 = - 28, and thus hl and ha correspond respectively to the 
short and long time constants previously found. The linear combination of 
solutions (57) and (58) which corresponds to the solution for E = I already 
found, equation (27), is, changing the variable back to q1, 

At t = 0, ql/A = x-xl /E,  and so the initial condition q1(x, 0) = o is only satisfied 
if E = I .  Thus, if E is close but not equal to I ,  equation (59) is an exact solution 
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of the differential equation for an initial condition which differs only slightly 
from 41 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. The salient point is that the solution still contains a Iong time 
constant of order 1/28. We therefore conclude that a time scale of this order is not 
an exception which only appears when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE = I ,  but that it has a general significance. 
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