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On the theory of the katabatic slope wind 
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ABSTRACT 
The known Prandtl slope wind problem is considered for the case when the turbulent field in the 
surface layer is specified in accordance with Monin-Obukhov similarity theory. The solution of 
such a problem turns out to be a particular case of the solution for another more general problem 
published recently. On the basis of the former solution. simple analytical and graphical 
relationships have been obtained between external parameters of the problem. and those 
characteristics of the katabatic slope wind which seem to be most available from the 
observations. The paper strives to encourage the carrying out of special slope wind observations. 

1. Introduction 

The wind which sometimes develops over a 
heated or cooled mountain slope, when there are 
weak external pressure gradients, is known as  slope 
wind (SW). The cause of this phenomenon was 
discussed by Prandtl (1942). He formulated and 
solved the steady-state problem for a laminar SW 
over a warmed slope which was an infinite, 
thermally homogeneous, inclined plane. assuming 
that external wind was absent. Prandtl's model has 
been developed by other researchers. who have 
taken into account the influence of time deri 
vatives. the Coriolis force, curvature of the slope. 
and some other factors. Reviews of the SW theory 
can be found in papers by Defant (1951), Smith 
(10791 and in the author's monograph (Gutman. 
1072). 

The aforementioned researchers have shown that 
almost all the simplifying assumptions of Prandtl 
do  not make the problem less realistic. In  fact, it 
turns out that if the slope is not very gentle, 
time derivatives in the equations are negligible in 
comparison with other terms (the process is 
quasi-steady-state), and buoyancy forces dominate 
the Ccriolis force. Consequently, the Coriolis force 
does not play an important role. Prandtl's con- 
straint. concerning the shape of the slope. indicates 
that the solution should be applied only to vast 
plane parts of mountain slopes. It seems that 

Prandtl's most substantial constraint is the 
assumption of flow laminarity. since turbulence is 
the principal mechanism of energy transfer from 
the underlying surface into the atmosphere, in the 
problem considered. 

T o  the best of our knowledge, the papers dealing 
with this problem either have used too simplified a 
description of turbulence or. in using a more 
accurate model of turbulence, have been based on 
numerical methods. In the first case, the authors 
probably could not have counted on good agree- 
ment between theory and observation data. In  the 
second case they presented only some particular 
examples of computations. for which the authors 
probably did not hope to find corresponding 
observations. As a result. published papers contain 
almost n o  comparisons of theory and observation. 
Understandably. such a situation has obviously not 
favored the carrying out of special observations on 
SW. It is therefore, perhaps for this reason that the 
presence of experimental data on SW in the 
literature i s  very scanty. 

The recent paper by Gutman and Mclgarejo 
(1981) (hereafter denoted by G M )  deals with a 
somewhat different and more general problem. 
There. the authors were interested only in relation- 
ships between internal and external parameters of 
the boundary layer. Actually, by delving more 
deeply into this work, one can find the solution of 
the problem presently under consideration. It 
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should be noted that the paper employs a relatively 
reliable model of turbulence. enabling us to expect a 
tolerable agreement with observational data. 

The present paper is based on the results of GM. 
Our major objective is to obtain simple analytical 
and graphical relationships between the external 
parameters of the problem and those character- 
istics of SW which seem most accessible to 
observation. 

I t  is important to note that SW differs essentially 
in its structure. depending on whether the slope is 
heated or cooled, due to different stability condi- 
tions in the boundary layer. In the present paper we 
limit ourselves to the stable case, in which the slope 
surface is cooled and the wind direction is 
downslope (Katabatic wind). This case is, prob- 
ably, comparable to some types of night mountain 
winds or  glacier winds observed in nature. 

2. Thernodel 

Consider a mesoscale problem of a turbulent 
SW. occurring in a stable stratified atmosphere, at 
rest over a homogeneously cooled, slightly inclin- 
ed plane underlying surface. 

Then. according to Prandtl (1942) the problem 
can be described by the following ordinary 
equations: 

d du 
- K ,  - ~ pH' sin t,u ~ 0. 
dz dz 

d 
- K ,  (z + ,3 + yu sin v/ = 0. 
dz 

with the boundary conditions 

at z = zo. u 0. 8' ~ To < 0. (3) 

at z = CO, u 8' ~ 0. (4) 

where z is the coordinate. normal to the slope. 
oriented upwards (the s-axis is assumed to be 
oriented downwards along the slope), u is the wind 
component along the x-axis, 8' is the potential 
temperature deviation so that 8' = 8 - 0, ~ yz', 8 
is the potential temperature of air. y = const is the 
vertical gradient of potential temperature above the 
boundary layer. 0, = const is a mean value of the 
potential temperature. i' is the vertical coordinate. 
K ,  and K ,  are vertical eddy diffusion coefficients 
for momentum and heat. p =  const and zo = const 

are the buoyancy and the roughness parameters 
respectively. and finally. t,u is the angle of inclin- 
ation of the underlying surface to the horizontal. 

We assume that t,u, a constant, is of the order of 
lo-' (-6O). that -To is of the order of 5-10"C 
and. moreover, that To is given and remains 
constant along the slope. We shall choose .a model 
of turbulence which describes the influence of the 
underlying surface on the adjacent atmospheric 
layer with the accuracy which is necessary for our 
aims. The second criterion in our choice of a 
turbulence model is the possibility of obtaining an 
analytical solution to the problem. 

Somewhat simplifying the formulation from GM 
we make use of the following interpolation formula: 

where z, = L / a  will be interpreted as a charac- 
teristic height of the surface layer, L = u : / K ~ ~ T ,  is 
Monin-Obukhov length. a i s  an empirical constant, 
K is the Karman constant, u, and T, are friction 
velocity and temperature, respectively. 

Obviously, eq. (5) in the surface layer corres- 
ponds to the Monin-Obukhov similarity theory. 
The fact that the underlying surface is slightly 
inclined does not violate the similarity laws. Unlike 
G M  we assume that K ,  is equal to K,, although in 
reality they differ slightly. The degree of accuracy 
of the problem under consideration allows us to 
neglect this slight difference. In the layers above the 
surface layer, eq. (5) is probably less associated 
with the theory. or with the actual distribution of 
K, and K,, with height. However. in the present 
problem this should not be of great importance, 
since perturbations of the meteorological fields are 
small in the upper part of the boundary layer. 
Furthermore, we note that u ,  and T, are un-  
known. and have to be found. Therefore, the 
following relationships should be satisfied 

" dz K \ d r  

The latter can be considered as a definition of u, 
and T,. Thus, the problem becomes a closed one. 
In conclusion. we note that, as known, y <  dO'/dr in 
the surface layer. In that part of the boundary layer 
where z > z s .  the term d(yK)/dr equals zero, 
because of the assumption K = const. Therefore, 
without bringing additional constraints into the 
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problem, one can neglect y in the brackets in eqs. 
( 2 )  and (6). 

3. Calculation formulae 

One can show that the problem ( l t ( 6 )  corre- 
sponds to case I1 from GM, where the solution was 
obtained in the following complex form: 

- 

iu + / -Po l  

4 Y  

This solution is valid, if 

(9) 

This inequality, as will be shown later, is indeed 
satisfied. 

The relationships between the internal 
parameters u* and T,  and the given external 
parameters of the problem are the following: 

2, 1 

1, a.4 
_ -  ._ - < I .  

1 ii = -  u* - * K(-T,,) fi - ( 1  + q2)A ’ 

T 

I n R , = = B + t ~ A + I n  

In eqs (7)4 10) we denoted 

where f is the Coriolis parameter and p is the 
stratification parameter. known from planetary 
boundary layer (PBL) theory. Furthermore. 

In this problem A,, ps and RA are analogous to the 
known characteristic height of the PBL 1 = mr, / f ,  
stratification parameter p and surface Rossby 
parameter Rb = G/fz,, respectively, where G is the 
geostrophic wind. The approximate presentation of 
A and B which figure in (7). (10) is the following: 

In GM it was shown that the functions A&) and 
B ( p J  have the same significance, that of the known 
universal functions A(p)  and B ( p ) ,  figured in many 
theoretical and experimental works on the PBL, 
and which differ from them only by their argument. 
We make use of this circumstance in order to 
specify the value of the parameter 4 which is 
important for further computations. Experimental 
researches concerning the PBL suggest different 
values for a i n  the range of 2 to 9.8 (Pruitt et al., 
1972: Businger el al.. 1971; Hicks, 1976: 
Zilitinkevich, 1970). We have not succeeded in 
finding values for a agreeing with SW obser- 
vations. Therefore we have chosen (I so that 
differences between the functions computed by the 
formulae (13) and the functions A(p),  B ( p )  ob- 
tained experimentally are a minimum. If one takes 
A ( p )  and B ( p )  suggested by Arya (1975), it 
becomes possible to set a z 7. The degree of 
accuracy of the problem suggests that it is not 
necessary to have a more accurately. The curves 
A (p,) and B(p, ) .  computed by ( 13) for a = 7 and 
A ( p ) ,  B ( p )  obtained from Arya‘s formulae are 
plotted in Fig. I .  As can be seen, theoretical (solid 
line) and experimental (dotted line) curves are 
rather close for the relatively large variation of the 
argument. The differences, which occur when the 
argument is small. can be explained by the fact that 
the turbulence model employed becomes less 
accurate when stratification is close to neutral. 

In  order to calculate the internal parameters, it is 
convenient to make use of the non-dimensional 
internal parameters il, and 7,. which are intro- 
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Fig. f. Dependences of the universal functions A and B 
on ji or ,us based on experimental data ( I )  and on theory 
(2). 

duced by (10). Setting K = 0.4 and a = 7 and 
assigning tf different values from 1 to  4.2, we 
calculated z7*, r,, and RA for three values of v/ = 4 O ,  
8", 12". As a result, the curves, which are shown in 
Fig. 2, were constructed. The range of variation of 
RI, was chosen to  encompass the possible vari- 
ations of Rb in nature. The same computations 
made it possible t o  plot the curves tf versus InRk 
for the same values of y i n  Fig. 3, which allow us to 
calculate p and pS. using (1 1) and (12). if the 
external parameters of the problem are known. 
Having specified ps for the smallest values of and 
for the greatest values of v/ ,  we realize that ps 
cannot become significantly less than 1. This 
proves the validity of the inequality (1 3). 

Making use of the second line in eq. ( 5 ) ,  and the 
expression 

which is a consequence of eqs. (10)--(12), we can 
estimate the turbulent coefficient K .  With the help 
of Figs. 2 and 3, we find that K varies from values 
less than I m 2  s-I to a few square meters per 
second. The results of this estimation seems 
realistic. 

I I I I ' 1.02 
9 I0 It 12 13 14 InRb 

Fig. 2. Dependence of the non-dimensional internal 
parameters U; and on Rb for v / =  4", 8 O ,  1 2 O .  

1 6 6  In Rb 
9 10 I1 12 13 14 

Fig. 3.  Dependence of the non-dimensional parameter 
on Rb for w = 4 O ,  8'. 12". 
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Concerning the derivation of formulae for the 
vertical profiles of u and 8' we can consider u, and 
T, to be known. Partition of the real and imaginary 
parts in (12) and an elementary transformation, 
taking into account (lo), yields 

where 

z - z  CI 
5 = -4, L = arctan -. -" 

ZS2% C l  

The fact that we have obtained logarithmic profiles 
for wind and potential temperature is not surpris- 
ing. On the contrary, this could have been 
anticipated, since turbulent terms dominate in the 
surface layer equations of the SW as well as in 
those of the PBL. Hence, the slope inclination 
influences the meteorological fields in the surface 
layer by changing u, and T,. 

Making use of eqs. (1 5)-( 17) and the curves in 
Figs. 2 and 3, it is easy to calculate u and 8' as 
functions of z ,  for given RI, and 'y. 

With the help of eqs. (15) and (17), we obtain 
expressions for maximum wind height z,, and for 
the height z, at which wind has returned to zero: 

z ,  = Z S .  I 1 + can - 6)  *,I, 

z, = z , . I l  + ( n - & , f i , l .  
(18) 

The dependance of the non-dimensional para- 
meters f,,, = z,. ay/(-To) and I;  = z,ay/(--To) 
upon R and 'y, calculated with the help of (1 8), is 
presented in Fig. 4. 

Setting t = an - 5, in eq. ( 1  5) .  one can obtain an 
expression for the maximum wind velocity u,. The 
computations show that the dependance of the 
non-dimensional value J ,  = u, / ( - -To)  \/is7; on y 
is weak (relative variations of J ,  are less than 

1 

f i g .  4 .  Dependence of How parameters i, and F,,, on Rb 
for w =  4 O ,  8O, 1 2 O .  

10%). This permits construction of the following 
approximate formula: 

C,,, = 0.41 - 0.01 In RA. (19) 

It is worth mentioning that Prandtl (1942) noticed 
that, for both laminar as well as turbulent flow, the 
maximum SW should not depend on 'y. and he 
gave a physical explanation for this fact. 

It is known from observations (Defant, 1951) 
that the maximum SW does not exceed a few 
meters per second. Since /I :- 3 .  lo-' m s deg-l. y 
=- 3 .  deg m-I. we find that -To should be of 
the order of a few degrees. With the help of Fig. 4. 
one can conclude that SW observational data 
(Defant, 1951). correspond in general to the results 
of the theory presented in this paper ( z m  z 30 m, z, 
z 100 m). Unfortunately, we did not succeed in 
finding any experimental data for which we could 
have carried out concrete computations. 

It should be noted that according to eq. (15). the 
maximum wind velocity above the reversal point 
(which is directed upslope) is about of the 
maximum wind velocity in the main flow. which is 
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rather weak, as  we mentioned above. Therefore, it 
is hardly possible to  detect an opposite flow by 
observations; one can consider z, as  an upper 
boundary of the SW flow. From eq. (15) it is easy 
to  find the expression for the integrated down-slope 
flux of air: 

In conclusion, we would like to express our hope 
that this paper will encourage the carrying out of 
special experiments on SW. 

H 4. Acknowledgements 
[udz = - ( H  = -pCpKU,T , ) .  (20) 

P,Y sin v/ 
~ I I  

where H is the heat flux into the slope (this fact 
may be of some interest in itselfl. p is the air 
density, and c p  is the specific heat at constant 
pressure. 
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