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The phenomenological relaxation times T, and T, measured in microwave transient experiments are
expressed in terms of specific molecular relaxation matrix elements. Conditions for this simple T,
T, description are also given. The system is described in terms of a kinetic equation for the density
matrix, which provides a unified treatment of the microwave transient behavior, spectral line shapes,
and double resonance phenomena. Spatial degeneracy of the states and m dependence of T, and T,
are discussed in detail. The recently developed semiclassical theory of molecular collisions is then

applied to obtain expressions for the relevant relaxation times.

I. INTRODUCTION

The rotational relaxation of molecules in the gaseous
state has been studied quite intensively recently, both
theoretically and experimentally (cf. reviews'™?). A
new approach developed recently in the infrared®® and
in the microwave regions’~!! is the observation of tran-
sient phenomena. Several authors®!! have employed
the electric field analogues of the Bloch equations of
NMR to analyze their results, and have introduced phe-
nomenological longitudinal (T;) and transverse (T;) re-
laxation times into the equations. They were able to
determine 7, and/or T, from the experiments. A de-
tailed and informative description of the phenomena has
been given by McGurk ef al,''®

In the present paper, these relaxation times are re-
lated to the detailed collisional processes which are
primarily responsible for the relaxation mechanism.

The translational motion of the absorbing (emitting)
molecule also gives rise to a Doppler effect which is
important only at higher frequencies or much lower
pressures. For the experiments described in the pres-
ent paper, this effect is very small and will be neglected.
A detailed treatment of Doppler broadening is given in
Refs. 12 and 13.

The kinetic equation for the density matrix of the
molecule of interest can be obtained from the Liouville
equation for the molecular system (as in Appendix A).
This equation is cast into a form, Eq. (2.1), whose ma-
trix representation is analogous to the Redfield theory
in NMR* and serves as the starting point for the analysis
in Sec. II. It contains a relaxation matrix, which in
turn is related to a certain combination of the scattering
matrix elements of the collision process [Appendix A
and Eq. (2.2)]. Description of collisional relaxation ef-
fects on atomic or molecular spectral line shapes by a
relaxation matrix formalism has also been discussed by
a number of investigators, *~® sometimes with an added
“classical path”®® approximation,

In Sec. III the equations are applied to a 2-level sys-
tem, i.e., a system such that the probing electromag-
netic field is near resonance to a transition between only
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two levels of the system. However, radiationless tran-
sitions via collisions are notf restricted to these two lev-
els coupled by the electromagnetic field, but are pos-
sible to and from all levels. For such systems, rela-
tions are obtained between 7, and the relaxation rate of
the diagonal density matrix elements, and between T,
and the relaxation rate of the off-diagonal elements of
the density matrix. The Feynman-Vernon-Hellwarth
representation® is employed and a set of equations anal-
ogous to the Bloch equations in NMR is obtained. To
exclude in the present paper the phenomenon of over-
lapping lines common in pressure broadening experi-
ments, only systems at low pressures are considered,
a situation which corresponds to that used in the actual
experiments.®=!!' The problem of spatial degeneracy is
then treated in detail in Sec. IV, and an expression for
the m-dependence of the observations is obtained there.
In Sec. V, the relations between the various T,’s and
T,’s measured in various types of transient experiments
and the various relaxation matrix elements derived in
Sec. IV are discussed. The experiments include those
of transient absorption, transient emission, and pulses.
In Sec. VI the application of semiclassical theory?*#
to the calculation of the collisional processes is de-
scribed. (The application thereby yields expressions
for the relaxation times T; and T; and for the m-de-
pendence of T,.)In Sec. VII, the assumptions involved
in the derivation of the T, T; description in Secs, II-IV
are summarized and a comparison with a study by Wang
et al. on molecular beam maser experiments®! is made.
Applications of the present paper involve the use of a
nonperturbative (semiclassical) method for calculating
the relaxation matrix elements; differences from the
previous work are the absence of added approximations
for these elements, and the detailed inclusion of spatial
degeneracy effects {Sec. IV).

The general line shape expression commonly used in
pressure broadening theory and an expression for de-
scribing double resonance experiments are derived from
the kinetic equation (2.1) in Appendices B and C, re-
spectively.
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1. THE RATE EQUATION AND SYMMETRY
PROPERTIES OF THE RELAXATION MATRIX

A system consisting of a single radiatively active
molecule immersed in a bath of perturbing molecules
is considered. Under the assumptions of the impact
theory, discussed in the first part of Appendix A, p‘®
satisfies the following equation of motion (7 is set equal
to unity throughout):

l% p(s)___[Hs +3C, p(s)] _iA.p(s)’ (2_1)
where H® is the Hamiltonian for the isolated active mole-
cule and iC describes the interaction of that molecule
with the electromagnetic field. Throughout this paper,
the electric field of the radiation is assumed to be plane
polarized along the z-direction, with a magnitude
& coswt. For dipole absorption, i then becomes
~ ué cosw?, where u is the z-component of the dipole
moment operator for the active molecule. A is the re-
laxation superoperator, with relaxation matrix elements
given by (2.2) (Appendix A), and is sometimes denoted
by - R in the literature (Redfield’s relaxation matrix),
The dot in (2.1) signifies that A is operating on p'®, As
an operator in a space in which p'*’ is a vector, the ma-
trix representation of A has twice as many indices as
does that of p**;

App = W/2m) 3 J dEbe‘L;[éf'fémﬁw
5 -

-Sf’b' ;fb(EF) Sr:b';(b(EI)] ’ (2- 2)

where the sums are over the quantum numbers of the or-
bital (I, m) and rotational-vibrational motion of the per-
turber; p, is the equilibrium distribution for the per-
turber and includes that for the relative translational
motion; S is the scattering matrix; E,=E; +E,, E,

=E; +E,, where E;, E, E, are the unperturbed energy
of the active molecule in state i, in state f, and of the
perturber in state b, respectively. The energy of the
perturber before collision is the same for both the spec-
troscopic states. N is the density of the perturbing gas.
As in Ref. 25, different letters or subscripts will be
assigned to the levels coupled by spectral transitions
(e.g., i—for j;—j,;) while collisional transitions be-
tween various levels will be denoted by primes (e.g.,
i—i' or j;—j;). The generalized Boltzmann equation
(2.1) has been discussed in some detail by Snider and
Sanctuary, ® who noted the relation to the fundamental
work of Fano?’: Fano’s{m) reduces to the —iA in (2.4)
in the impact approximation.

The following two properties follow from (2. 2), the
first directly and the second from unitarity of the S-ma-
trix:

*
Mg = Dgy popo (2.3)
;Am.'“:O. (2.4)

Physically, the diagonal element A, ,; is proportional
to the total rate of collisional transfer out of level ¢
while the elements Ay, ,, for i #i’ are proportional to
the negative of the rate of collisional transfer from
leveli to’. Thus, Eq. (2.4)is simply the statement

that a molecule that leaves state i must end up in some
state after a collision.

The types of intermolecular potentials involved are
real and it follows® that the S-matrix is symmetric,
Then it is found from (2. 2) that's+®
-Ei/kBT /hBT’ (2. 5)
where E,, E: are the energies of the active molecule in
states 7 and i', respectively, and %, is the Boltzmann
constant.

~E
DNy ii € =Ny e

Substituting (2. 4) into (2. 5) yields

Z; Ay o) =0, (2.6)

where p{}’ is the equilibrium Boltzmann distribution
function for the active molecule:
pii =exp(- E;/kaT)/}: exp(- E,/kg T). 2.7
]

Writing Eq. (2.1) in terms of the matrix representa-
tives, the equations of motion for the diagonal and off-
diagonal density matrix elements for a particular i ——f
line can be written as

)
i 57 PfY =0l +3, 0l - off’)

‘if; Agi g PEY (2.8)
. 8 .
i 5 P00l - 06 ) < o Ak, (2.9)

where wy; is E, - E,, and where the tensorial properties®
in Sec. IV have been anticipated in eliminating certain
terms [cf. Eqs. (4.17) and (4. 22) for a system in the ab-
sence of static fields and Eqs. (4.35)-(4.386) in the pres-
ence of those fields]. When two or more lines are
coupled by the electromagnetic field, the second term

in the RHS of (2.8) and the first term in the RHS of (2.9)
are replaced by 3, (304 ~ 0f3'3C) and Tu(3C;, 04

- piP%C,), respectively.

The case where transients are observed is the one
being principally investigated here. However, other ex-
periments can be interpreted from the steady-state solu-
tions of Egs. (2.1) or (2.8)—(2.9), an example of which
is the solution appropriate for spectral line shapes (Ap-
pendix B) and another example of which is that appro-
priate for modulated microwave double resonance ex-
periments (MMDR). In Appendix C it is shown that Eq.
(2.9) reduces to the same form as that used by Gordon®
to analyze the MMDR experiments.

Hi. THE 2-LEVEL SYSTEM

The behavior of a 2-level system under radiative ex-
citation and radiationless relaxation can be conveniently
described by an equation analogous to the Bloch equation
in NMR. The concept was first introduced by Feynman,
Vernon, and Hellwarth® and has been used in the inter-
pretation of optical®® and microwave®!! transient phe-
nomena and of molecular beam maser experiments. 2
In most cases, phenomenological relaxation times T,
and T, are introduced.
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For a 2-level system, the dynamics are conveniently
described by the Feynman—-Vernon—-Hellwarth (FVH)

representation, ** where one defines® '"'** a vector
(),
v | | e +e')
r=|r, |=lilpf} - p¥) (3.1)

(s) (s)
Y3 Psr — Py

The energy of interaction of the active molecule with
radiation is

{3.2)

Consistent with the assumption of a 2-level system for
a transition i~ f, the only nonvanishing matrix ele-
ments of u are (;, and pg;.

3 =— ué coswt.

We consider first the case in the absence of collisions.

From Eq. (2.4) with the term A - p omitted, the equa-
tions of motion for the density matrix elements are

.8 ;
i 57 Pri =WsiPri ¥ My Scoswt(pyy — pyy) (3.3a)

9
i 57 Pi == (KigPps = Pigbiys) Scosw, (3.3b)

where the superscript (s) is omitted for brevity. These
equations can readily be converted into a vector equa-

tion for r 22,
d <
o Feaxr, (no collisions) (3.4)
where the components of & are given by
Ry == (lhyy + thy;) STOSWE (3.5a)
R, == ity = byy) Scoswt (3.5b)
Q3= wy;. (3.5¢)

With proper choice of the phase of the wavefunctions,
Ky can be made real and then & becomes

w; cosw?
Q= 0 , (3.6a)
Wy
where w, is defined as
wy = =28, (3.6b)

The effect of collisions alone is considered next. To
account for the relaxation of linear molecules such as
OCS, collisional transitions to levels other than those
coupled by the electromagnetic field (i.e., 7 and f)must
be taken into account. However, for the case of an iso-
lated line where the radiation field is near resonance to
a line i —f, the only important off-diagonal density ma-
trix elements are p;, and p,;. Hence from the kinetic
equation (2. 2), the rate of change of p due to collisional
relaxation is given by

-(';‘); Pn) =gy, 14Ppi + Dpi, i Pis 3.7
coll
and a similar expression obtains for p;;. Adding and
subtracting, one obtains

Theory of relaxation matrix

i)
(=7 =T+ 0,7 (3.8a)
<dt ! coll ’ 2
- (-d_t rz)coll == 6-Vl + F-TZ; (3 8b)
with ', and &, given by
T, =Re(Ay; sy Ay 54) (3.92)
6,=Im(As; s £ Ay 1)) . (3.9p)

We note that in (3.7) and (3. 8), the relaxation matrix
elements like A, ;; do not appear since they are zero by
symmetry considerations, an aspect discussed in Sec.
v,

The rate of relaxation for the diagonal density matrix
elements is similarly given from (2.9) by

8 ’
—(8—1‘ P{i) RETRTTUTR Y VST W 2»: A erPue (3.10)

coll
and a similar equation obtains for p;,. Here, the prime
over the summation implies that levels 7 and f are not
summed. Equation (2.6) now gives

t
Ay, i0f3 + Ay 5005 +§; Agi aPri’ =0 (3.11)
Since only levels i and f are disturbed by the electro-
magnetic field, for k#1i,f, p,, is approximately equal to
its equilibrium value p{Y’. When this approximation is

substituted into (3.10), and (3.11) is used, one finds

-'(5% Pii)cou =A4i,15 0000 = PI0) + Ay, g6 (0rs = 0f7") (3.12)
and a similar equation applies for p.
With the following definitions,
73= Psr = Dy (3.13)
"= of) -pl 6.19
Ya= DPsr ¥ Dis (3.15)
7 = pi +pf?P, (3.16)

one may deduce from (3.12) that

o)
-7 7
(df Yoorr == 35 Wgp, 1 = Aig a0 + i pp = Mg pg) 03 = 75%)

¥ Byp i = Byg 10 D gr = Daggp) g = 7E)
(3.17)

d
—(.c-it_ 7’4) =50 5 + Big pr = Dig 30 = Ngpy0) 073 = 78”)
coll
+3(Agg pg + Mgy g+ Dy i + Agp, 1) = 7D,
(3.18)
The coefficient of 7, in (3.17) can be written as a sum of
two terms,

Ay pp+ g 1) = gy 0+ Dy )] (3.19)

Using Eq. (2.2), the first term in (3.19) can be written
explicitly as
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N
Agpogs +Dgp 0= 57 ;debP(b)E; B = | Spor101° = 18100, 101%)

2% Z,,:de”p(b) [1 '; (lsfb'.fblz"'lsfb',{blz)]- ,

From the unitary property of the S-matrix, one has

E lsfb',kblz:l-
kb

Substituting (3.21) into (3.20), one obtains

N "
Dgpogr +Dgp0 =~ 50 Xb: J’dEbP(b); h;f | Seor |

(3.22)
Similarly, the second term in (3.18) can be written as

N
Aii,ii+Aii.ff='_Zdebp(b)Z Z lsib',kblz-
2r 3 b Rti,S ( )
3.23

Now, if the scattering dynamics at levels i and f are
not very different, the right hand sides of Egs. (3.22)
and (3. 23) will be approximately equal, whence the co-
efficient of v, in Eq. (3.17) is approximately zero, Then,
the relaxation equation for »; can be written as

d ) ©
-=7 =Llry - riP)
(dt 3 coll 3 3 s

where

(3.21)

(3.24)
E=3(05 50 = Ngp 0 v Mg g = Diagf) (3.25)

Combining Eqs. (3.4), (3.8), and (3.24), one obtains
the complete equation of motion for r:

—Z—;r=ﬂxr—1“-(r—r‘°’), (3.26)
where @ is given by Eq. (3.6), and r'” and T by
0
r® = 0 1, (3.27)
i
r, 5 0
r=| -5. I. 0|, (3.28)
0 0 ¢

with I',, 6, given by Eq. (3.9) and ¢ by Eq. (3.25),

Q1 in Eq. (3.26) is time-dependent, as in (3.6a). Fol-
lowing the usual practice in NMR, a transformation into
a rotating frame is made®:

r'=Clwd-r, (3.29)
where
coswt  sinw? 0
Clwf)= | ~sinwt coswt 0 (3.30)
0 0 1

In this rotating frame, the equation of motion is

(3.20)
f
!
i‘fiit QX1 -T' (¢~ 1), (3.31)
where
3w, (1 +cos2wt)
Q'=| -iw,sin2w? (3.32)
wﬁ - W
and
= Clw) T Clwd™. (3.33)

For microwave (or infrared) absorption at low pres-
sure, the rapidly varying terms cos2w? and sin2wt in
&’ can be neglected. Equation (3. 32) then becomes

%wl
a-l o (3.34)
Wey — W

In the absence of relaxation effect, I' vanishes and so
Eq. (3.31) indicates that r’ would precess as in Fig. 1
about axis 0A with constant angular velocity | Q']
=[ 1w} + (wy; - w)?) 172,

Similarly, when the rapidly varying terms of frequen-
cy 2w are ignored in I, one has

F%(F++F_) ) 0
= -5 T, +D) 0
0 0 ¢
(1/7, o o 0 5 0
= 0 1/T, 0l-} -5 0 0], (3.35)
|0 0 1i/1, 0 0 0

ROTATING
FRAME

FIG. 1. Geometric representation of the interaction of the
electromagnetic field § coswt with the two-level system in the
rotating frame. Tanf equals 3w/ {wy; —w). 0A lies in the
(r{, r%) plane.
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where the relaxation times T, and T, are given by (3. 36)
and (3.37) and 6 is given by (3. 38):

1/T,=3(I, +I.) =Re(Ay ;) (3.36)

V/Ty= 8= 58,00 = ypyi + Dygypr ~ Dii pg) (3.3M)

5=3(5,+06.)=ImA,, ., . (3.38)
Noting that

0 -6 0

5 0 O |-r'=esxr’, (3.39)

0 0 O

where e, is a unit vector along the 7;-axis of the rotat-
ing frame, Eq. (3.31) can be written finally as

/T, 0 0
dr'

Zt—=n”xr'— o 1/1, o0 ]|-r, (3.40)
0 0 1/7,

where
%wl

Q'=0"+e;6= 0 , (3.41)
wf"’w+6

& is given by (3.34), and & defined by Eq. (3.38) pro-
vides a shift in resonant frequency due to collisions.

P, and P; in Ref. 11 are related to the macroscopic
polarization P(¢) induced in the sample by

P(t)= (P, +iP;) e'“t + (P, - iP,) e™***, (3.42)

On the other hand, P(f) for a 2-level system can be cal-
culated from

)

P(t) =N, Tr pp(t) =Ny 07; + by 0if)

=Ny ;v =N, by, lr] coswt — v 5 sinw!)
(3.43)

where the real valuedness of y,; was used and N, is the
number of molecules present. Comparing Eqs. (3.42)
and (3.43), one can identify P, and P, with N, u ;7| and
3N, l;s7v,, respectively. Furthermore, AN in Ref, 11
corresponds to — N,7;. Thus, apart from the inclusion
of the shift 5, Eq. (3.40) is of the same form as the
phenomenological equations (46) proposed by McGurk
et al. '™ The general method of solution for the Bloch
equation by Laplace transform® is summaried there,
and the relation between P,, P,, AN, and the signals
measured in various transient experiments are discussed
in detail.

IV. SPATIAL DEGENERACY AND m-DEPENDENCE

The formalism in Sec. III applies to a 2-level system
of nonoverlapping lines. However, in actual cases, the
levels 7 and f may both be degenerate and one may won-
der whether the system could still be described by the
Bloch equations of Sec. I, since interference between
the degenerate levels may occur. This degeneracy sit-
uation is considered in this section, Furthermore, cer-
tain symmetry considerations involved in writing (2. 8)
and (2, 9) are given, Finally, we wish to obtain an ex-
pression for the m-dependence of T, and 7.

Throughout the rest of this paper, only rotational
transitions of a linear molecule will be considered.
Then the level i can be described by eigenvectors |j,m;),
where j; is the rotational angular momentum quantum
number and m,; is the magnetic quantum number which
describes the projection of the angular momentum along
a fixed axis in space. For plane polarized radiation, one
has the spectral transition selection rules Aj=j, - j,=+1,
Am=my;—m;=0. Inthe |jm) basis, the kinetic equation
(2. 1) yields for a particular j, —j, line,

g ‘a"t'P(]fmh Jimg)= weip(Gemy, jimy) -8 coswt[z Gigmg | g dim,) plGomy, jim)
My

- Z p(jgmy, jem ) (Gym| /J't,jimi{l -1 ;

and

2 e_t" p(]gmg, ]gm() = -8coswt Z [<]{mi l Hg ’]fms>p(]fms9 ]imi) "p(]imi: ]fm3)<]fmsl #‘|J£m4>]
ms

~1 Z Z: «jimisjimilAljlmh J;mfl» p(jfmf: ]f,mf,) ’

Igmy dfmg

where w,; denotes E(j,m;) — E(jym,) and so equals the
difference in energy between levels f and 7, and p( Jrmy,
jym,) denotes (jym,| p'®1j;m). In Eq. (4.1), the sums
over j; and j; are confined to j; =j;, j, and j{=j;, j;. In
the general case where two or more lines are excited by
the electromagnetic field, j; and j; in Eq. (4. 1) are to be
summed over all values and not merely over the above
two. Also, the second term on the RHS of Eq. (4.1) and

'Z:, Z:: <<jfmf7 ]lmi'A'jf'm;’ f!,mi'» p(jj'7nl” ji’ml') (4- 1)
7 M
4.2)

the first term on the RHS of Eq. (4. 2) are to be replaced
by

-6 coswt Z [<.7fmfl p-z[jrmr) P(jrmnj{mi)
Jymy

~p(jgmy, jom,) iom,| we|iom)]
and .
8 coswt Z Wagm, | polipm,) plipmy, jymy)

Iy
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- p(j{mh ]rmr) (]rmr‘ p’sljimi )] ’
respectively, where j,, m, are summed over all values,

In (4.1) and (4. 2), the relaxation matrix element is
written as ((j{mj, jymsI Alj;my, jymy)) instead of the
Ay, inSec, I In this notation, |jymy, j;m;)) is a
vector in the Liouville space, ®*?" which is a Hilbert
space of operators {a summary of Liouville space nota-
tion is given in Appendix A of Ref, 221)}:

ligmy, jomi D) = [igmy) Gom | 4.3)

Ben-Reuven® has considered in detail the symmetry
properties of the relaxation matrix based on rotational
invariance of the collision process and the isotropy of
the environment of the system. For a 2% -pole spectral
transition, one may construct the following Liouville
vector of tensorial character KQ(X, @ are inte-
gers)25.33,221:

ligges K= 2 (2K+1)1/2(_1)me,(jf s K)
my -Q

Mgy My —-my

x ijmfv jimg» . 4.4)

An identical relation obtains between {({jj;, KQ| and
{(44my, jym;|, which are the Hermitian conjugates of
Ijsis KQ) and |jpmy, j;m,)), respectively., A matrix ele-
ment {(jzj;; KQI Aljsj, ; K, dencted by Af..,;, can be
defined using the matrix elements

((j,’m;, ji'mil I A ijmf: Jam)

Ggmy, Gimi Al Gymy, jimd) =3 @K +1) (= 1Y%,
K,Q

In Eq. (4.8), only those values of K which satisfy |j, - j; |
=K=j,+j, and |j; ~j; IS K=<j; +j; simultaneously are
summed and @ is summed from - K to K. Because of
the properties of the 3-j symbols, 3 one has a selection
rule for the m’s:

4.9)

m —m,=m:—m;.
A. Case where static fields are absent

When no static field is present, the (2j, +1) m-sub-
levels for level i are degenerate. Using the Wigner-
Eckart theorem, *® if 7% is an irreducible tensorial
operator, then
jr K ) -

-Q ifs

(4.10)
where T{; is independent of @ and is termed the “reduced
matrix element.” Since p is the z-component of the di-
pole moment operator, it is of tensional character K=1,
@=0. Hence,

j
(Gym| T§ | 3¢ myy = (= 1)1 (m‘, -my

Ji it
my = my

1\ _
o)“‘f' (4.11)

where [1;, stands for the reduced dipole moment matrix
element defined by Eq. (4.10) with K equal to unity.

Gomy| w) G pmpd = (= 1Y (

if i KQ><ff s K),{
m;‘_m;_ my —-m; —Q Agrge gi -

and Eq. (4.4), and it has been shown that®¥
o313 K'Q I A igjs; KQY = AfuyesibxxBgqr s
where Af .. 4 is a “reduced” relaxation matrix element
independent of @. A summary of the derivation of Eq.
(4.5) is given at the end of Appendix A. Although not ex~
plicitly stated in (4.5), A is also parity invariant.?® For
example, the parity for dipole transition j; = j; is -1
while a spectral transition j, ~j; (if allowed) would be of
parity +1, Parity consideration requires that
{4gds! AlG;4,)) vanish,

4.5)

From (4.4) and an orthogonality relation for the 3-j
symbols, ¥

i1t4a i . , , . .
Z (2, +1) (h’ ]z, Js >(J1 Jz I3 )
35141 =ip) mg==4g my Mz Mgz fNMy Mz Mg

:6m1mi6m2mé ’ (4. 6)

one obtains
ljfmh Jimy »

<2 (= 1) (2K + 1)112(7} Ji
K,Q my =My

& Mg KO
4.7

and an identical relation between {{j;my, j;m,l and

(jsji» KQ!. Then, using Egs. (4.5) and (4.7), the relax-

ation matrix elements in the uncoupled basis can be ex-

pressed as

’

4.8)

It is convenient to expand the density matrix in an ir-
reducible tensorial basis whose matrix elements are
given by the following linear combinations® (cf. Refs.
13 and 15):

iy i K
(KQ) = 2K 11/2-1!'"'< )
Pri\(KQ m;,( +1)ME(~ 1Ys fmf —m, -@Q
x pljemy, jym;) . (4.12)

For dipole absorption, we have K=1, @ =0 and define Pr
by

Bri=pp(1, 043

:Z (- 1)If""(jf ji 1 )p(j,m,j,m) .

m -m 0O

(4.13)

Considering an absorption experiment, one now sets
in the kinetic equation (4,1) m; =m, =m for this case of
@=0. Because of the property of the 3-j symbol, only
the m, =m and m,=m terms in the sums of the second
term on the RHS of Eq. (4.1) are nonvanishing. Equa-
tion (4.1) then reads

.9 ,
i 57 PUigm, jym)
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=wy;p(igm,jm) - 8 coswt (om | 1| jm) [p(iym, jym)

— plgm, i) =i 2. 2,

»

me imy
X ({Ggm, jim |A | jpmg, 5im)) pligmy, imy).  (4.14)
Both sides of Eq. (4.14) are multiplied by
(- l)jf-m( Jr i 1)
m -m 0

and summed over m. One then obtains, using (4.5),
(4.7), (4.11), (4.13), and an orthogonality relation for
the 3-j symbols,#*

L9 _ - 1149 Ji Js 1)
i 57 Pri =wpiPpy ~ B8 COSWt;(" 1 m o—m O
x[p(Gim,j;m) = pliem, jom)] =i fZ; A prioBpose -
(4.15)

For the diagonal elements of the density matrix, Eq.
(4.2) gives

4 . i , , ,
rve p(jym,jm) =~ & coswt[(jym | u|ism) p(ism,jm)
- p(iym,jym) (jfml I-Llj;mﬂ

-i Z E ((j‘m,j,-mIA|j,m,,]',’- me)) p(jfmf:jf’mi”) .
ifmg dgmi
(4.16)
Summing both sides of (4.16) over m and dividing by
(2j, +1), Egs. (4.5), (4.7), (4.11), and (4.13) may be
used to obtain

. 8_ Scoswt — . - . -
l§7pa=z—ji‘:1‘“(“upn‘91f“ﬁ)-lzk:"?:,upk, 4.17)

where

P = Z P(j;m; j,m)/(2j, +1) =pn(0, 0)/\/ 2j;+1
g (4.18)
and

A% e = (27 + 1)/ @5, + DIV AL e (4.19)

The definition given in (4.12) and the following equation
were used:

(] ’ 0)=(—1)""‘(2j £1)1/2, (4.20)
m -m 0

Next we make the assumption that the p(j,m, j;m) and
pljsm, j;m) in the second term of (4.15) can be re-
placed by their average values p, and p; defined by
(4.18).% Noting that

jr Ji 1V _1
20 1

m\m -mO

(4.21)

one has
.9 _ — L/ =y
@5y Pri = WriPri = 5(P; = ;) By; coswt
~1 ZAfli,f‘i’—ﬁf'i’- (4.22)
P

The above approximation amounts to replacing

2
(7 o) LotGom, jim) = oligm, )
w\m —=m 0
by an average, %(5,- —-0¢). A similar assumption has
been made before.!’* Simple numerical tests support
this approximation.® This assumption is needed only
for absorption experiments performed in the absence of
static field, For absorption experiments performed in
the presence of static field (Sec. IVB) and for emission
experiments where no resonant external field is pres-
ent, the above assumption is not needed: In the case of
of the emission experiments both the second term on
the RHS of (4.15) and the first term on the RHS of (4.16)
are absent, and so the motion of diagonal density ma-
trix elements is uncoupled from that of the off-diagonal
ones.

Equation (2.9) can be written in the |jm) basis as

Z (jim,jym 'A , FuMay Tue)) Pw)(]'kmm Jumy) =0.
Ter (4.23)

However, for a rigid rotor, the Boltamann distribution
function p‘” (jm,, jiym,), which equals

exp(- E,,/k,,T)/Z (2], +1) exp(= E,/kp T),
k

is independent of m, and will be denoted by p). Summing
both sides of Eq. (4.23) over m, dividing throughout by

(2j; +1), and using Eqs. (4.5), (4.7), (4.19), and (4.20),
one obtains

Ek h?i,khp(;:O; 4.24)

where
py=exp(~ E,,/kBT)/Zk: (27, +1) exp(~ E,/ksT). (4.25)

Finally, i, can be chosen to be real, with suitable
choice of the phase of the wavefunctions.

As in Sec. III, only B;, P, Dy, and p;; may be taken
to be different from their equilibrium values in this
study of the ;- f line. Comparing Egs. (4.17), (4.19),
and (4.22), their counterparts for B, and G, and (4.24)
with Eqs. (3.3), (3.7), (3.10), and (3.11), one sees
that the former can be recast into a form which satis-
fies the Bloch equation (3,40). To this end we set

2 Ay; + D)
r=| 7, |=| A -Pyp) |, (4.26)
¥3 (-ﬁf"ﬁl)/‘/—g
where
A=[ (g +s +1)/(2+1) (25, + D] V2 @.27)
and
0
r®= 0 , (4.28)

RN HVE]

where p} is the Boltzmann distribution of the rotational
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level f, exclusive of the degeneracy factor, and is de-
fined by (4.25). When r is transformed into r’ in the ro-
tating frame as defined by Eqs. (3.29) and (3.30), r’
again satisfies the Bloch equation (3.40). Inthe present
case of absorption in the absence of external fields, w,
and § in Eq. (3.41) become

w; =20, 8AN3

o} =ImA}"ﬁ

(4.29)
(4.30)

and the relaxation times are given by [cf. Eqs. (3. 36)
and (3.37)]

1/T,=ReAf; 5

— 0 0 0 0
L/Ty= 3050 = Mg a0+ Mg pr = Minge) -

(4.31)
(4.32)

B. Case of static fields

When a static field is present, the interaction of the
molecule with the field will be assumed to be so small
that the rotational invariance of the collision process is
not affected, Expressions for the m-dependence of line-
widths have been developed in Ref. 15. For the case of
a strong static magnetic field when all m-states are well
separated and the experiment is performed at low enough
pressure that the lines are not overlapping as a result of
collision, all the coupling terms for which m; # m; can
be neglected in (4.1) and (4.2). Hence, the system can
then be approximated by a 2-level system and T, and T,
are given by Egs. (3.36) and (3.37).

The case of a static electric field is more complicated.
For linear molecules, the energy now depends only on
jand Im|, and the + m states are degenerate even in the
limit of a strong field. For the Am =x1 transition, be-
cause of the selection rule (4.9),

Kdimy, Geme 1A 15 (= my), G (= mp)))

vanishes and so the m; — m, and m; —~ — m, lines are not cou-

ples. Therefore, Eqs. (4.8), (3.36), and (3.37)arestill
applicable for calculating the relaxation times. How-

ever, for the Am =0 (m+ 0) transition, elements such
as {(j;m, jym |Alj; (= m), j;(-~m))) are nonzero and so
the (4;, m) — (js, m) and (j;, — m)— (j;, =m) lines are
coupled. However, one can define the following linear
combination of p to uncouple the kinetic equation'®;

puiidp)= pliym, jem) + p(jy (= m), jgl=m)), (4.33)
where the dependence of p, on m is suppressed in the
notation. A similar equation is introduced for p,(j,j,)
where f in (4. 33) is replaced by i. Using the Wigner—
Eckart theorem [Eq. (4.10)] and the selection rule
Jg~j;=1, one can show that

Gom | 1] ipmy=Gol=m) | ]G (=m)). 4. 34)

Then the equation of motion for the off-diagonal elements
of the density matrix is

8 g .
i 57 i1, 1) =0gpulpd ) = Gpm | ] )
x & coswt[p,(j;s) - pulisis)]

= 04,0 Grdi) =0y 1 0,Gudy)  (4.35)

and that for the diagonal elements is
9 . . , .
i Y] p*(]m) == 8coswt[(1,m | u 'me> P*(th)
- P, (j{jf)(jfm | [ ( j;Wl)]

= ixG, um(did) = i34 50, Gd,), (4.36)

where Xf; 11, Af i Mg, and Ag, , denote
(Ggm,jim|Alj gm,jom)) £ ((Gp(=m), j, (= m) | Aljm, j,m)),
{Ggm, gym|A]jim, jmd) £ (Gp(=m), 5, (= m) | A | jm, jom)),
(Gam, jom [Aljgm, jomd) £ (Gi(=m), ji(=m) [A[jpm, jm)),
and
(igm, jim|A]Gm, jim) 2 (= m)jy (= m) |A|jm, j;m)),
respectively, and are found to equal
O L S LA N S T P
X m -m O
(4.37)

. . K 2
x;i.”=;(2K+1)(]f Ji )[-11(-1)“]1\,{2,”,

moom o (4.38)
hti.fﬁ—Z(zKu)(’f Js K)(]f ir K)
¥ m —-m O/ -m O
x [Le (- 1)*]A% ., (4.39)
and
i Ji K\
)\fi,u=; (2K+1)(m —-m O) [li(—l)K]Af"”_
(4.40)

Equations (4. 35) and (4.36) show that p, and p, are de-
coupled. Since the induced dipole moment in this case
is given by

(D) =<j;m I “Ijﬂ”) P+(jijf) +(j,m | “|jfm>0+(jfj¢) ’ (4.41)

only the equations for p, are needed. Thus, from the
equation of motion for p, in (4, 35) and (4. 36) and from
a comparison with Sec. III, the system can still be de-
scribed by a Bloch equation, in which the relaxation
times are given by

1/T,=Re X}, (4.42)

1/T1=%(}‘;i,ii “R;f.u +X;f,ff_ Aiie) s (4.43)

where the A’s are given by (4. 37)~(4.40).

V. RELATIONS TO TRANSIENT EXPERIMENTS

Since a variety of transient methods are now avail-
able and different types of 7T{’s and T,’s are thercby
possible, the relation of the preceding equations to those
methods is considered in this section. In various tran-
sient experiments, a convenient method of switching the
molecular system on and off resonance is by a Stark
switching technique.® ™! It is important to identify
which relaxation times are measured in each case.
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A. Transient absorption

We consider first transient absorption experi-
ments. 11 A convenient procedure®? is to apply a
microwave field whose frequency is tuned to the zero
Stark-field transition frequency of the molecule and then
to apply a Stark field. When this Stark field is switched
off, the molecular system is thus brought into resonance
with the applied microwave field and on-resonance tran-
sient absorption occurs in the absence of the static field.
Hence, the T, and T, measured in this type of experi-
ment are given by (4. 31) and (4. 32), respectively. Off-
resonance absorption experiments performed with a sim-
ilar procedure gives the same T, and T\,. 1u

B. Transient emission

(i) For transient emission experiments, 5% 14 gne

may apply a microwave field in resonance with the m sub-
level transition M having the largest frequency shift in
the presence of a Stark field, either on the low or the
high frequency side of the zero-field frequency. When
the Stark field is switched off, this M transition is
switched out of resonance with microwave field and the
molecule emits radiation at the zero-field frequency.
The decay of the emitted signal can be determined from
the equation of motion of p(j,m, jym) for m =0 or from
that of p.(js,), defined by (4. 33), for m# 0. The relaxa-
tion times for these p’s depend on those for the

pri(K, OV s, since Eq. {4.12) can be inverted to give

pUigm, jim)=ZK:(2K+ Y3~ 1)"’-"'(3,,! —];n Ig) ps¢ (KO) .

(6.1)
Now, it is clear from the analysis in Sec. IV that the
relaxation of p,,;(K0) is governed by A¥ [whose element
is defined by (4. 5)] and that there is no interference be-
tween different K’s. Hence, in principle, because of the
different K’s, more than one single T, could be required
to describe the relaxation of the emitted signal, apart
from the j= 0+ 1 case.’® However, experiments per-
formed thus far showed that only one T, suffices to fit the
data, 1™ indicating that the K dependence of T, is small
for the systems considered. Calculations on this point
are given in the following paper.®® Lines with Stark-
shifted frequencies smaller than that for the M one can-
not be examined this way due to the complication of the
phenomenon of fast passage, 11*°

(ii) Another procedure for transient emission involves
a saturation of the system at its zero-field frequency and
then a switching on of the Stark field to bring the system
to off-resonance., '® Apart from the case of j=0-1,%
more than one relaxation time would in principle be
needed since then all m transitions emit at their Stark-
field frequencies. However, once again, a single relax-
ation time T, might suffice when the m-dependence of
T, is small. Calculations®*® support this sufficiency for
OCS-Ar.

(iii) One way of avoiding a problem of possible colli-
sional mixing of degenerate levels in (i) and (ii) after the
Stark field has been removed would be the following:
Instead of turning off the Stark field completely as in
method (i), one could switch the Stark field to a lower

value where the different m transitions are still nonover-
lapping. Then the arguments of Sec, IV, B apply and a
single T, is sufficient to describe the relaxation. The
T, for m+ 0 is given by Eq. (4.42) and that for m =0 is
given by

1/T,=Re «]}0,]'&0 | A ijO, jio» ’
using Eq. (3. 36),

C. Pulse method

(5.2)

This method has not yet been used.

Another interesting example is the determination of
T, by pulse method, !'* At time f=0, the system is
brought into resonance with a microwave for a time ¢,
after which a near population inversion occurs and 7,
goes to zero (7 pulse). Then the system is switched off
resonance and allowed to emit for a time 7, Subsequent-
ly, the system is brought back into resonance with the
microwave again and observations are made. If S(¢') and
S(t'") are the signals detected at times #'(0 <¢'<1,)
and t''(¢"'=t"+t,+7), respectively, it has been shown
that the fractional change in signal, [S(#'")-8(")]/S(t"),
varies with 7 as exp(— 7/T,). '* If the 7 pulse is applied
in the presence of a Stark field in resonance with a par-
ticular m transition, and if the system is switched off
resonance by turning off the Stark field, only this par-
ticular m level emits and hence the Ty measured is giv-
en by Eq. (4.42) for m# 0 and by the following equation
for m=0 [Eq. (3.37) was used]:

1/T1=5({(40, 4,0 A|5;0, j,00) - €4,0,5,0|A 5,0, 5,0

+({4;0, 70| A [3,0, 5,00 - (4,0, j;0| A};0, 7,0)))
(5.3)
Thus, in principle, the 7 obtained by pulse method

[Eq. (4.42) or Eq. (5.3)] differs from that obtained by
transient absorption [Eq. (4.32)]. Also, in principle,
the T, measured from transient emission [method (iii),
Eq. (5.2)] is different from that measured from tran-
sient absorption [Eq. (4.31)]). One thus sees that differ-
ent experiments can give different relaxation times and
it is important to apply the appropriate equations for T,
or T, in making any detailed comparisons with the ex-
perimeéntal data.

VI. SEMICLASSICAL EXPRESSIONS FOR THE
RELAXATION MATRIX ELEMENTS

It has been shown in Sec, IV that to account for re-
laxation of various experiments, only the corresponding
reduced relaxation elements Af.,.,; of Eq. (4.5) need
to be calculated. It is convenient to define a2 complex-
valued cross section by

Afoo,i=NCvogsirg) (6.1)

For the case of a linear molecule perturbed by an in-
ert gas atom, an explicit expression is given in terms
of 6-j symbols by 10:221:22,37- [¢cf, Appendix A, Eq. (A30)
and following remarks]|

Of g™ 77 2,05 VI (20,41) 20, +1)

g

gy J; K\J, I K|, |
X{J} ir l}{j: S S AT
-8t Ty, (6.2)

D A RN
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v is relative velocity between the active molecule and
perturber, and

<U0’§'il'f,'> :‘(] 41rvadvp,,v0'f:,-:,ﬁ N (6. 3)
with
p, = (1/2nk s T) 2 o™ 4"/ 4B T (6.4)

being the Maxwell -Boltzmann distribution of relative
velocities over the initial equilibrium ensemble. Here,
ji({js) is the rotational quantum number of the absorbing
molecule in its initial (final) spectroscopic state; I(I’) is
the orbital angular momentum of relative motion before
(after) collision, and J,;, J; are the total angular momen-
tum quantum numbers for the angular momenta:

Ji=3i+l, Jp=j;+1. (6.5)

For microwave dipole absorption of a plane-polarized
radiation field, k=1, @=0.

Full quantum mechanical calculations would be feasi-
ble only for a system with relatively few orbital-rota-
tional states (e.g., H, perturbed®” by He). Fortunately,
recent advances in the semiclassical theory of molecu-
lar collisions utilizing classical trajectories?'? greatly
simplify the calculation of the S-matrix elements for
molecular systems with a large number of states, and
this method will be described here. The case of a lin-
ear molecule perturbed by an inert gas atom will be con-
sidered in detail. Employing the primitive semiclassi-
cal approximation (PSC) for the S-matrix element, 22

1 s - — -
S},'l',jl=2~11—-sz: \-18(]’, l’)/a(‘Iﬂ ‘II)l 12
o I

xexp{i[F,(j'I'JE, jIJE)+ 5(1+ '+ 1)1l}, (6.6)

where F, is a known phase integral over a trajectory
beginning at a given 4,7, j, [, J, and E, Fitz and Mar-
cus®"® derived the following expression for the cross
section of Eq. (6.2):

X = L 2rbdbS(b), 6.7
where
2r ;*‘; o n g an
S =87 800 - | a7/2) j] .o, 490/28)
i=1
XP;'.;@I"}’ b, v) (6.8)

FIG. 2, variables describ-
ing internal coordinates ;s
q;, and g, for the motion of
an atom and a rigid rotor.
The rotor axis lies along 0D
and the line of centers of the
collision partners lies along
0C, at any instant of time.
XYZ are space-fixed axes.

FIG. 3. Angles o, 8, and y
for rotating the precollision
dipole 0D into the postcolli-
sion dipole 0D’. The ON is
the same as the ON in Fig. 2,
and ON’ is the corresponding
quantity for the primed vari-
ables. 0N; is the line of in-
tersection of the rotational
plane before collision with
the one after. g;, §;» are
equal to g; — 2rv,f and qf
~2qv}t’, respectively,
where v; and v{ are the pre-
collisional and postcollision~
al rotational frequencies.

and the impact parameter b is given by
b=(1+3)/k.

In Eq 6.8), jis z(],+],), where ], =ji+ 3, ete.; [ is
l;+3%; J is the mean of J, and Iy 3+ J); P3G, J, b, 0)
is a probabilitylike complex number given by

(6.9)

Pi, i@, J,b,0) = |85'/0(@,/2m | 'DEs (a, 8,7) (6.10)
30D

and DX7 (aBy) is the complex conjugate of DX (aBy) which

is given by

Df(a, B, 7) =£KexP[i(q;’ Wit = g+ wal+ @r—q)]

X dfe, (a5 (8),

where £ is the angle between j and J, and £’ is the angle
between § and J. (The magnitudes of §, §’, and J are
3, 7', and J.) Here, the sum is over stationary points
(s.p.), i.e., points such that the classical trajectories
requ1red are those with initial angular momentum

=3(4, +7,) and final angular momentum }’ = A +]f)
D,,,,,(a, B, v) is a rotational matrix element defined by
Edmonds.*° (A description®® of the relation of a, B,
and vy to the physical rotations between the precollision
dipole and postcollision dipole is given in Fig. 3.) &’
equals j; - j; and § equals j, - j;.?* B is the angle of re-
orientation of the angular momentum vector due to col-
lision while o and y together describe the rotational
phase shift (Figs. 2 and 3),

(6.11)

From Eq. (4.31) and the spectral selection rule j, - j;
=1 for linear molecules, the cross section correspond-
ing to the T, process involves a D¥(qa, 8, ¥), with §'=5
=+1, From Eq. (4.32), the cross section correspond-
ing to T involves 6'=6=0. Since D (o, 8, v)=d(B), the
T, process is not affected by the rotational phase shifts.
For the case of Eq. (4.32) when the spectral transition
occurs in the absence of static fields, K equals zero and
neither rotational phase shift nor reorientation affects
the T, process.

In Eq. (6.10), it was assumed that any stationary
points are real, i.e., have real values of the initial
angles g, such that at the end of the trajectory, the angu-
lar momentum equals _] . There may be cases, however,
where although there are no real stationary points (clas-
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sically inaccessible case) the final angular momentum
may actually come so close to f’ that imaginary station-
ary phase points do contribute to the cross sections.
Then in analogy to the one-dimensional case, 22t n23¢
Dspe !8]'/321‘,]'1 in the above expressions is replaced by

2r|85'/8g;| 02 Al (p),

where § p*/% equals Im[A(F,) ~ A(FY)], 7. is the complex
stationary phase point, and Ai is the Airy function.
A(g,) behaves like the phase of an individual S-matrix
element, having the property

a8 /3g,=77 -7, 6.12)

where g} and 77 are the values of the angle and action
variables at the end of a trajectory.

For use in this Ai{p), A as a function of 7, (the initial
angle variable) is found by integrating the following ex-
pression®;

94/07,=(84/87,)(37}/27,) + (0A/2;)(971/97 )

= (77 -7"0q,/89,) + ' -1)(eq1/37), (6.13)

and ;7 as a function of g, is approximated by a parabola
near j'.f“ The complex root g, is obtained from the solu-
tion of jf(g,;) -4’ =0.

In calculating the cross section of T, for the classi-
cally inaccessible case, Df4(a, 8, ¥) can be approximated
by the value calculated on the real trajectory of closest
approach,

VIi. DISCUSSION

The longitudinal and transverse relaxation times T,
and T, have been related to various scafttering processes
and semiclassical expressions have been developed.

One thus sees how the phenomenological equations can
be systematically obtained from the molecular level with
the introduction of agb initio expressions for various re-
laxation parameters. It is appropriate at this point to
summarize the approximations used and the limitations

of categorizing the relaxation process by two simple re- '

laxation times.

The most important assumption is the impact approxi-
mation, which is described in Appendix A. Since the
experiments are generally performed at room tempera-
ture and low pressure with frequencies of the radiation
nearly resonant with that of the spectral line of interest,
this assumption is generally satisfied.

The second assumption involves that of employing a
single relaxation time T for the description of the decay
of the population difference towards its equilibrium val-
ue. From the discussion following Eq. (3.17), this as-
sumption is valid if the collision dynamics of the two
spectroscopic states is about the same, i.e., if Expres-
sions (3.22) and (3.23) are equated. If this condition is
not fulfilled, there is no reason to expect that a single
relaxation time 7, would be adequate to describe the re-
laxation of the population difference. Instead, one would
have to solve simultaneously the following four equations:
(3.8a), (3.8b), (3.17), and (3.18) (with the addition of
the effect of the radiation field).

Here,

In the case of particular experiments—absorption ex-
periments in the absence of a static field—the assump-
tion following (4.22) is made, an assumption which we
tested numerically. 3

The early part of the derivation in See. III [up to Eq.
(3.6)] parallels that given by Wang e/ al.?*® At that point
the latter authors introduced specific assumptions re-
garding the relaxation matrix elements to facilitate the
interpretation of their molecular beam maser experi-
mental results. For example, in applying their results
to the inversion doublet of ammonia in which both the
collision and the spectral transitions were confined to
the two levels of interest, they assumed that the colli-
sion dynamics for the two levels are nearly identical,
so that

i (7.1)
a#i,fand 8#i,f.

The symmetry and unitarity of the S-matrix then yielded
the following relations*®:
A =A (7. 2)

(7.3)

fis fi idsii

Npprai=Bagpr=Bgppr = Dppa = 2055

It follows from Eqgs. (3.36) and (3.37) that the value of
1/7, is then twice that of 1/7,. This result was in
agreement with the molecular beam maser experimental
data.®

Wang et al.?*® also discussed the relaxation of the lin-
ear molecule OCS where the microwave transition
j=1<2 was observed in the molecular beam maser ex-
periments, They assumed that (a) the system can be
approximated by a four-level collisional system, two
levels of which were coupled by the radiation field; (b)
the population of the j=1 state selected in the beam ex-
periment is much larger than that of the remainder; and
(c) all relaxation matrix elements had the same magni-
tude. These approximations are not used in the present
analysis, and in addition the analysis of the effect of
static fields is considered, and semiclassical expres-
sions for the relaxation matrix elements are given,

A comparison of Eq. (3.36) with Eq. (B13) in Appen-
dix B permits one to identify the 1/7, measured in tran-
sient experiments with the halfwidth of the correspond-
ing isolated line measured in low pressure steady-state
experiments. Such an equivalence has been recognized
and demonstrated experimentally. !

In a subsequent paper, 22» calculations of Ty and T; are
performed for systems consisting of OCS and various
collision partners. Comparison is made with available
experimental results in the presence and absence of
static fields.

APPENDIX A: DERIVATION OF EQS. (2.4) AND (2.5)
AND SYMMETRY CONSIDERATIONS

In this appendix, the derivation of a kinetic equation
is summarized for use in the text. In its initial part the
procedure follows one used by Snider to derive the Wald-
mann—Snider equation®® under the impact approximation,
but now including the presence of the radiation field.
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The physical system consists of a molecule designated
as molecule 1 which interacts with the probing radiation
field, and N -1 perturbing molecules which are radia-
tively inert. Boltzmann statistics are employed through-
out the discussion, The system may be described by a
density matrix p¥’ which satisfies the Liouville equation,

Z% P < [HW 150, o] (A1)

The N-particle Hamiltonian HY is assumed to be given
by

HYM =pgs(1)+ g [HY)+ V], (A2)

i_

where H*(1) is the Hamiltonian for the isolated active
molecule, H® is the Hamiltonian for a single perturber,
V4, is the interaction between the active molecule and
the perturber, and i is the interaction of molecule 1
with the electromagnetic field (hence it operates only on
the coordinates of molecule 1), Interaction between per-
turbers is neglected. The following reduced density
matrices are defined:

pl® = Tr e M0 (A3)
where the trace is taken over all the perturbers, and

p™(1,2, ..., m)=Trmlee®) @) (A4)
where the trace is taken over N - n perturbers. Simi-
larly, p®’(1,4) is defined:

p(Z)(l, Z'):Tr(z,.-..i-l,i+l...N)p(N), (A4')
and so

o =Trp®(1,4), (A3")

where Tr'*’ denotes the trace taken over the ith per-
turber. The following equations of motion (BBGKY hi-
erarchy) are obtained by taking suitable trace over Eq.
(A1):

.0 ,

ZE_Z p(8)=[H5(1)+ZC, p(s)]+ g TI‘(“[V”, p(Z)(l, 1)] (A5)
3

i3 pP(1,2) = [H* )+ H' @)+ Vg3, p®(1, 2)]

N
+ ;Tr(”[Vl,Jr sz, p(S)(ly 2’])]u (AG)

The form of Vy,; is the same for all perturbers and
hence (A5) can be simplified to

2
57 p ' =[H*(1)+3¢, 01+ W= 1) Tr®[ vy, p(1, 2)).

(A7)
Equations (A6) and (A7) are not closed equations and the
following assumptions are next introduced to convert
them into a soluble closed form:

(1). The impact approximation: (a) The perturbers
are statistically independent so that only binary colli-
sions between a perturber and the active molecules are
important, and (b) the time during collision is much
shorter than the time between collisions so that all col-
lisions are assumed complete;

(2). The Boltzmann propevty: The pair density ma-

trix p» (1, 2) factors outside the region of interaction,
i.e.,

p(Z)(1,2)=p(S)(1)pg (AS)

for most of the time when the absorber and perturbers

are not interacting, Here p, denotes Trp?’(1,2), the
singlet density matrix for a perturber. The weak cou-
pling approximation in (A8) has been discussed in detail
by Smith et al,*

Since the second term in the RHS of Eq. (A7) vanishes
when 1 and 2 are far apart, the p®’(1,2) in (A7) needs
to be calculated only during a collision, To this end,
Eq. (A8) is solved for the behavior of p®'(1, 2) only dur-
ing a binary collision. Thus, the sum over j in (A6)
can be neglected, giving

i 2p(1,2)= [0, 02, 2] +[ Vi, 921, 2)],  (89)

where

¥=HS+H*@)+5 . (A10)

Assumption (2) supplies the initial condition for (A7),

P(z) (1; 2)(t0) =p(3)(to) Pz(lo) , (All)

for ty—~ - in a “collisional sense,”i.e., where | f|is still
macroscopically small, Equation (A9), together with
initial condition (All), resembles the Schrddinger equa-
tion for a scattering problem. Under the approximations
of the impact theory, the formal theory of scattering is
then used to yield a solution for p*®* (1, 2)**:
p'P (1, 2) =Qp (¢ )ps (1) (A12)

where § is the Mgller operator.*! Substituting (A12) in-
to (A8), a closed equation for p‘® is obtained:

{s) =[Hs +3C, p(s) ] +Trt® (N~ 1)[ Vlz; Qp(s)ng'f].

(A13)
Equilibrium for the translational states of the absorber
and for those of the perturber is assumed, and so p‘*
and p, are both diagonal in the translational states of
those molecules. Thus, p' and the translational part
of H® commute. The trace (denoted by Tr{?) of (A13) is
next taken over the translational states of the absorber.
The last term of (A13) now involves a Tr{” Tr'®. One
may now transform the translational basis functions in
this TrTr'® to those involving the velocity of the cen-
ter of mass of molecules 1 and 2, and to those involving
their relative velocity. Since the operators Vy, and &
are diagonal in the total translational momentum of the
absorber plus perturber pair, one may integrate in this
trace over the translational states of the center of mass
of the absorber and perturber. One then obtains an
equation identieal with (A13), but now p'* and H'® de-
note the singlet density matrix and Hamiltonian of the
internal states of the absorber and Tr'® denotes a trace
over the internal states of the perturber and over the
translational states of relative translational motion of
the absorber and the perturber,

Yo

Since it is convenient to describe the effect of collis-
ion by a relaxation matrix A defined by
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8
i _é_t_ p(s) =[Hs+§(3’ p(s)] —iA- p(s) , (A14)
the following matrix element of the last term of the mod-
ified (A13) must be evaluated:

(flTr(Z) [ Vlza Q p(S)ngf] l 7/> 3

where |7), |f)can be chosen?? to be eigenstates of the
internal state Hamiltonian H S with energy eigenvalues
E;, E,. It will be assumed that JC does not affect the
collision dynamics.?? Let the eigenstates of H? (for a
single perturber) be la), 1b),... with energy eigenval-
ues E,, E,, etc. The eigenvectors are assumed to have
the normalization

('’ |ia) = 6,40 6,40 8 (Eyy — Eyrge) (A15)
where E,, stands for E; +E,, etc. Thereby, the “sums”
in Egs. (A20), (A23), and (A25) below include an inte-
gral over the energies E;,, etc. The commutator can
be expressed as

{s)

(f'a’ | [Vie QP("s)PzQ'r] I i'v’) =; (fla’ | t lfa)Pﬂ'Pa (a f
a

+2

ifa

However, in the impact approximation, only complete
collisions are considered, and this means that only on-

the-energy-shell {-matrix elements are involved. Thus
Eyy~Ejope SEj'a"Ef'a'Eo (AZU

and

)= ZWiG(Eia—Eil b')'
{A22)

lim< ! !
<0t \Ej,~E;y —i€  Epp—Epye + 1€
Hence,

f’ [ Tr[Vy,, 2p% 0,0 4"

=2 (F'd | [Vig, 2090, | i)
al

:;;pa pf’ (s a’ (t| fay (a'i" | ai) - (i'a’ |t]ia) *
x{af |a'f)+2ni6(Eyg—Epp)f a'|t]fa)
x(#'a"|tlia)*]. (A23)

Comparing (A23) with the definition of the matrix ele-

ments,

()] :2\ _ {s)
(f']A-ps Iz )—;Af'i'.ﬁpﬂs s (A24)

it is clear that

~iByeie g =Np Z pol{f'a’|t|fa) {a’i’| ai}

(a1t lsar Gal e [8mpip (

Theory of relaxation matrix

[ Viz, QP(S)DZ Q'] =v QDmpz -0 P(S)Pz o Vi
:tp(s)pa ot _Qp(s)patf
:tp(s)pz —p(s)pgtT'i-fp(S)pszG t
—G1p*p,tt, (A16)
where the t-matrix and the Green’s function G are de-
fined by *!

t=V,R, G(E)=lim ————— (A17)
A

ot E~X +7 €

and the Mgller operator can be expressed in terms of
¢t and G by

Q=1+G(E)?, (A18)
where I is the identity operator,

The distribution of perturbers among the eigenstates
of H® can be considered to be stationary, " i.e.,

(alp2|p)=pafaln) .
Thus, from (A16),

(A19)

'Y =2 o) pus {a’ | @) (ia | £1]i"0")
ia

1 1
Eia "E‘lbl ~1€ B Efa —Eflal +i€

)] (A20)

~(i'a’|t|ia)* {af|a'f’) + 276 (E;, — E; rq0)
x (f'a’|t|fay (i'a’ |t]ia)* ], (A25)

where N, is defined by N -1 and equals the number of
perturbers present. (N, is termed N in the text,) Equa-
tion (A25) is the same as Eq. (30) of Ben-Reuven, %
apart from a notational difference: Our ~iA is his A.

It is noted that each of the elements {f'a’l t| fa),
(i’a’I tl ia) contains products of two wavefunctions in the
volume V and hence is of order V"%, 3,(f'a’l t|fa)
x{i'a’| | ia)* is of order V! also, because 3, implies a
phase space integration, yielding a factor V. Thus, the
term with bracket in the RHS of (A25) is of order V%
Since the eigenstates |ia), etc., are normalized to 8-
functions, N, is interpreted as the density of the perturb-

ing gas. Employing the relation between the S- and T -
matrices,
Sivatia=0i10 000 —2mii’a’|t]ia) (A26)

(A25) can be converted into the following convenient
form:

Dpogops
N,
= '2lﬂ ZI deapa(bf’IGi’tﬁa’a —sf 'a'.fasi*'a’,la) ’ (A27)
aa
where now, the sum is interpreted as over all relevant
quantum numbers for the perturber (Im8, below), and

the “sum” over the energy is written explicitly as an in-
tegral. p, denotes the equilibrium distribution function
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for the perturber and includes as one factor the Max-
well-Boltzmann distribution function for the relative ve-
locity v,

(u/2nksT) % exp(- uv®/2ksT) ,

and as another the distribution function for the internal
states g of the perturber; « denotes g and the two orbital
quantum numbers, [ and m.

It is useful to sketch how Eq. (A27) can be transformed
to the relevant equation of Ref. 22(1), namely Eqgs. (5.1)
and (5, 2) of the present paper. One introduces for |a)
the vector | klm) with the normalization

(a'|a)=r1"m'| kIm) = 6(Ey — Ey2)5 1116 s (A28)

(i.e., for purpose of brevity and notation in this discus-
sion we omit, as in Ref. 22(1), | 8)). The p,in (A19)
was defined via

<a,‘p2‘b>=pa'<a" b>=pa’6a‘b5(Ea'_Eb) . (AZQ)

Since p, equals exp(— H% kyT)/Z, where Z is
Trexp(—H®/kyT), one obtains exp(-#%/2uk,T)/Z for p;.

Z equals 3, (ki exp(- H®/kpT)IKk), i.e., 3 exp(k®/2uksT).
Using the relation®!

Y= [ " /@)

one finds (ukpT/271)*/? for Z. The resulting value for
Pa, i.€., for p,., proves to be the same as Eq. (B13)
of Ref. 22(1). We shall call it p(g).

Equation (A27) can be rewritten in terms of the basis
set (A28) as

Apego g

N
:E;T— j‘ dEk p(k ; j/jf mfmf Ji’iémimiol'lam'm

1'm*

= Cigmf, U'm’|S | jgmy, tm) (Gim, U'm' | S| jymy, Im)*] .

_ (A30)
Introducing such relations as dE, = d(®%/2u)=kdk/u

= wodv, p(k)=(21/u)p,, where p, denotes (p/2rk;T)*/?
X exp(~ u1?/2k,T), one finds that

(1/2n) [ dE, p(R)(- -+)

becomes

|

Is
LG K, G Ky K@= D [(2J,+1)(2Ji+1)(2Ks+1)(2xb+1)]1fas il

iy

where the expression in braces is a 9-j symbol.*

fw ar’p,do(n/B)(...) .
)]

Using the relations such as (4. 4) and the related argu-
ments in the latter half of Appendix B of Ref, 22(1), one
then obtains the desired equations, Eqs. (5.1) and (5. 2).

In the rest of Appendix A, the symmetry properties of
A due to rotational invariance are summarized. This
discussion follows that of Ref, 27(a) and is included be-
cause of the importance of this property and in order to
make the present paper relatively self-contained.

In Fano’s notation, ' the LHS of Eq. (A15) can be writ-
ten as

[ Viz, 200207 ]=m(0) . (p*p) (A31)
and the present A is related to m(0) by
—iA=TI‘2 pam(O) - (A32)

From the RHS of Eq. (A16), one sees that m(0) is
composed of combinations of t-matrices and hence is
diagonal inJ; and J, the total angular momenta of thetwo
spectroscopic states, Thus, it is also diagonal in K,
which is defined by

K=J,-J;, (A33)
where

Ji=§i+L

J=ip+ly, (A34)

and whose eigenvector in Liouville space is given by*
[ G Tl Gty )

On the other hand, one has the following scheme to
obtain K which would bring out the tensorial character
of the spectral transition:

; KQ) .

K=K;+K,, (A35)
where
Ko=Jr -1
Ky=1-1;, (A36)
with eigenvectors in Liouville space given by
|Girdd Ke, (LI Ky KQ))
These two coupling schemes are related by®*
L Jp
Iy (Gl dp, [GL) LTS K@), (A37)
K, K, K

In general, m(0) is not diagonal in K, and K,. However, only the matrix elements of A are needed, and so only a
thermal average over the bath variables is needed. In an isotropic environment in which p, is spherically symmetric,
taking a trace over the perturber coordinates involves only the K,=0 subspace. Hence K, equals K and the required

eigenvectors are given by

| Grdt K, I1)0; K= 2, (= D¥#*Ir 8 [(27,+1) (2J¢+1)]“2(Zl+1)'”2{;]f i
i

Irdy

I;}l(J'fl)J;[(J}l)JJ':KQ», (A38)

Jr
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where the relation®

Jr by Jdy

- + .+ * J J K
Je b Jip=(=1)7 "K‘Swia"s'({jf Js
K, 0 K

s

has been used.

Hence, from Eqgs. (A31) and (A38),

}/[(zz +1) (2K +1)]V 2

(A39)

i K'Q | A ljggs s K@) =i Z Ugds VK, Q110 K'Q | m(0) | (i} K, (I17)0; KQ)) pa(B)

=i 2 ps(B) Z (= 1?7 B T E Y (974 1) (20 + 1)V 2[(24, + 1) (2J, + 1) (27 +1)

s
l I

i’

x (27 +1)]V20 77 J* K}{Jf:
.71 l 'l'

where the eigenstates of the perturber is written as

| B1>. The isotropy of the environment implies that the
matrix elements of p; depend on g only. The last factor
of Eq, (A40) gives the following Kronecker deltas by ro-

tational invariance: 6,,,f 6,‘ 7} Oxr+0gg-. Hence, the re-

sult of Eq. (4.5) is achieved.

APPENDIX B: DERIVATION OF THE LINE SHAPE
EXPRESSION

In this appendix, the line shapes expression commonly
used in line-broadening theories»®# is derived from
the Kinetic equation (2,1). In contrast with the correla-
tion function method, *%+¥ the derivation shows the
problem involved in applying the kinetic equation method
to the case of overlapping lines.

In steady-state absorption experiments, the quantity
measured is the absorption coefficient o which is re-
lated to the molecular susceptibility x of the radiatively
active molecule by the equation®® [cf. Refs, 46 and 10(b)]

a= (47 Nw/c)Imy , (B1)

where w and ¢ are the frequency and group velocity of
the radiation, respectively, and Imyx denotes the imag-
inary part of x. The susceptibility, on the other hand,
has been defined in terms of the macroscopic dipole
moment P(t) [given by Eq. (3.43)] which is induced by
the radiation field 8 coswt by*® [cf. Refs, 46 and 10(b)]

P(f)=N,Re(x§e™*¥) . (B2)

When P(t) is found from p(¢) and (3.43), Eqs. (B1) and
(B2) yield a.

To obtain the steady-state solution to Eq. (2.1), one
sets

P ()=Ae“t L AT 1 B | (B3)

where B is a Hermitian operator. Then p® (¢) is Her-
mitian also. From Eqs. (3.43), (B2), and (B3), one
finds

X=2TrpA/8 (B4)

and

’l‘,}«(j;l’)ef/ i) K'Q (1m0 (DI LG, KQ)
(A40)

TruB=0. (B5)

Hence, the value of A is required. Substituting Eq. (B3)
into Eq. (2.1) and ignoring terms varying in time as
exp(x 2iwf), one obtains

=3 (w=-Lo+iA)*. [B, u]8 B6)
and
( "'ZA) B- 2{[“‘,

From Eq. (B6), since A (and A") is of the order u8,
the second term of Eq. (B7) is order (u8)?. Under usual
conditions for microwave absorption experiments, terms
of second order in (1 &) can be neglected. Thus, B must
satisfy

(Lg~iA)+ B=0, (B8)

From Egs. (Bl), (B4), and (B6), one obtains the fol-
lowing expressions for the absorption coefficient:

a(w) =47N,(w/) Im Tr{p(w = Ly +iA) - [B, p}t}. (B9)

A solution for B which satisfies Eqs. (B4) and (B8) is
the Boltzmann distribution exp(- BH®)/Tr exp(- BH®),
where g equals 1/k,T. [See Egs. (2.6) and (2.7) and
note in (B4) that this p° commutes with H°.] If one in-
troduces the approximation

[“-: A? }8 0. (B7)

W W, (B10)
then the matrix element [ B, ]y becomes
(B, “']ﬂ = [p(o), “-]fi
= = o
=y (1 - ), (B11)

Substituting Eqs. (B11l) into Eq. (B9), one obtains the
familiar line shape expression':

a(w) = 47N, (w/c)(1 - ) Im Tr{ p(w = Ly+iA) - p@pl.

’ (B12)
While the last step, from Eq. (B11) to Eq. (B12), is
quite justifiable for the case where the i —f and f—{ lines
do not overlap, one sees from (B10) that if they do over-
lap, one has w;;~ w=~wy (and so w=0). However, this
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approximation of ;,~ wy has already appeared earlier,
where two overlapping lines are treated in the impact
approximation. Since the kinetic equation (2.1) uses the
impact approximation at the onset, it is not surprising
that a similar approximation recurs later. For this rea-
son, the derivation of Eq. (B12) via the conventional
correlation function approach!'?*2" which introduces the
impact approximation at a later stage is more satisfy-
ing.

A much lengthier derivation in which the states i, f,
etc., are taken to be*? instantaneous eigenstates of H®
+JC instead of H*® can be given. One replaces p in Eq.
(2.1) by D+ j(#), where D is p - p(#) and p(¢) is the in-
stantaneous Boltzmann distribution appropriate to H*
+3C (cf. Ref. 45). One can then show that A. 5=0, in-
stead of A+ p@=0. One ultimately then obtains Eq.
(B12), but with a milder assumption than (B10) and (B11),
namely one that only replaces [1 — exp(~ Buw; )]/ w;; by
[1 - exp(- fw)l/w.

If Eq. (B12) is applied to an isolated line i~f, in
which, at the same time, the negative resonance term
and the coupling between p,; and all other py,.’s, in-
cluding p;,, are neglected (the latter neglect corresponds
to omitting terms such as A, ,), one obtains

alw) =4nN,(w/c)1 - )| py |20

XIm(w =~ wgy +ilg, ;)7 (B13)

The same result can also be obtained directly from Eq.
(2.8), by setting p, = Ay exp(-iwt) [instead of Eq. (B3)],
and hence p; ;= A} exp(iwt), replacing the diagonal ele-
ments of p by their equilibrium values, equating the co-
efficient of exp(-iw?) in (2.8) to zero, and evaluating
Ag. This method of setting pj equal to Ay exp(-iw?) is
used next in Appendix C to obtain the MMDR equation.

APPENDIX C: APPLICATION OF EQS. (2.8) AND
(2.9) TO DOUBLE RESONANCE EXPERIMENTS

In a double resonance experiment, a sample of gas at
low pressure is irradiated simultaneously with two fields,
a high power field, E,cosw,t, the “pump field” in reso-
nance with a transition i« f, and a weak field E_ cosw,t
called the “signal field,” in resonance with another
transition ¢’ f’. The transfer of population from the
pumped levels ¢, f by inelastic collision to signal levels
!, ' is observed by comparing the absorption with the
pump on and off. In modulated microwave double reso-
nance spectroscopy (MMDR), * the pump field is modu~
lated on and off at a frequency of about 100 KC/sec and
the signal field is monitored at the modulation frequency,
The modulation frequency is low enough so that steady
state solutions may be used in the analysis (period of
modulation is typically 10 usec, typical relaxation time
is of the order £0.1 psec).

We consider first the signal levels ¢/, f’. Since the
experiment is performed at low pressure, the phenom-
enon of overlapping lines does not occur and the line
i'+f' (as well as {&f) can be treated as an isolated line.
Following the remarks made at the end of Appendix B,
one sets pif}. = A, exp(- iw,#), and the steady state so-
lution is found from Eq. (2.8),

piie =) = piti Mo B2 (w5~ wpp) +iBprye pio], (C1)

where the relation
(C2)

has been used and only the resonant part is retained in
Eq. (C1). The absorption of the signal field, being pro-
portional to the imaginary part of p}f}., is thus propor-
tional to the population difference pji} — pff).. Hence,
only the equation of motion for the diagonal density ma-

trix element, i,e., Eq. (2.9), is required,

Hpogr == hpo o By COSwet = = o i E (95t + 71%5%)

We consider next the half of the modulation period
when the pump field is on. For the pump levels, i, f
(assuming the pump field is exactly at resonance), (C1)
gives

pfi’ = upEyetert (pg3 ~ pi)/ 21y,

where y=ReA, . is the linewidth for the line i f.
Substituting (C3) into (2.9), neglecting terms rapidly
varying with time and ignoring the disturbance of the
signal field on the populations of the levels i/, 7', one
has

(C3)

.9 , .
Za_t Datf) == };) = Pif)) l “ﬂEp‘a/ZW‘ 1’;A¢i.kkpl(zi)
or
8
kY, P:f) =~ (6mypi + Oy 5045 +Zk: Tin Our)s (C4)
where
Tir™= Aii.kk

Sy =~ Bmys= | L Ey|*/Awyys -
A,z denotes 2y and is the full width at half maximum
of the line i of under nonsaturation conditions. Simi-
larly,

9
a7 P == (Orgr05? + Smp 017 + Zk OR8> (©5)

where
Ompp=0myy =~ Ompy == Omyz.

For other levels other than i, f, the relaxation is given
by
3 ..
a—tpi(S)z_;ﬂjkpl(::): J*i, f. (Cs)
Putting (C4), (C5), and (C6) in matrix form and iden-
tifying p{5’ with »;, one obtains the rate equation (21) of
Ref. 32(a):

dn/dt=- (m+6m)-n. (cn

During the half period when the pump field is off, the
population changes according to [Eq. (2.9) with the first
term on the RHS omitted]

dan/dt=-m-n. (C8)

Equations (C7) and (C8) are the starting point of Gordon’s
analysis of MMDR experiments,
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