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ON THE THEORY OF THIN ELASTIC SHELLS*
BY

P. M. NAGHDI
University of Michigan

1. Introduction. The linear theory of thin elastic shells has received attention by
numerous authors who have employed a variety of approximations in their work.
Inasmuch as there is no difficulty in obtaining the stress differential equations of equi-
librium and expressions for the components of strain, consistent with the assumptions
for displacements, the works of these authors differ from one another essentially in the
formulation of appropriate stress strain relations. With a few exceptions, the approxi-
mations introduced have been within the framework of the classical shell theory where,
in addition to the smallness of (a) the thickness h in comparison with the least radius
of curvature of the middle surface R, i.e., h/R « 1, (b) strains and displacements so
that the quantities of second and higher order terms are neglected in comparison with
the first order terms, it is also assumed that (c) the component of stress normal to the
middle surface is small compared with other components of stress and it may, therefore,
be neglected in the stress strain relations, and (d) plane cross sections normal to the
undeformed middle surface remain normal to the deformed middle surface and suffer
no extension. The last assumption implies neglect of the transverse shear deformation.

Recent and notable contributions, where the effects of both transverse normal
stress and shear deformation have been accounted for, are by Hildebrand, E. Reissner
and Thomas [1], by Green and Zerna [2], and by E. Reissner [3] where references are
made to previous works. From a practical point of view, reference [3], which is restricted
to axisymmetric deformation of shells of revolution with elastically preferred directions
along the normals to the middle surface, i.e., sandwich shells, contains results which
represent some simplifications as compared with those given in [1] and [2].

The present paper is concerned with the formulation of suitable stress strain relations
and the appropriate boundary conditions in the theory of small deformation of thin
elastic isotropic shells of uniform thickness. The results, which include the effects of
transverse normal stress, transverse shear deformation, as well as rotary inertia (dis-
cussed separately in Sec. 4), are deduced by application of a recent variational theorem
due to E. Reissner [4]. Since for the most part the underlying derivation for the stress
strain relations is similar to that of reference [3], details of computation are omitted;
it is felt, however, that the presentation of the final results will serve a useful purpose.

2. The coordinate system, notation, and preliminaries. Let & and £2 be the co-
ordinates of a point on the middle surface of the shell and f be the distance measured
along the outward normal to the middle surface. Further, let n be the unit normal
vector at a point of the middle surface and ti and t2 (tx , t2 and n form a right-handed
system) be the unit tangent vectors to the &- and ^-curves, respectively. Then the
coordinate curves and £2 as lines of curvature (on the middle surface, f = 0) together
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with f, specify the position of a point in space. The square of linear element of this
triply orthogonal coordinate system may be shown to be

rfs2 = ^2 + d?, (2.1)

where R, and R2 are the principal radii of curvature of the middle surface. We note
here for future reference the formulas

d_
d{:

_d
di

W1 + r)] = {1+r) ft
; K1 + r)] = (1 + r)j£

(2.2)

which may be deduced from the well-known Mainardi-Codazzi relations.
The displacement vector U of a point in space will be conveniently written as

U = U, t» + U2t2 + Wn (2.3)

and the six components of strain in the curvilinear coordinate system , £2 , f, with
the aid of (2.2), (see Ref. [5], p. 51), are:

£» - H1+rJ J fe+* %+012 rJ'
_ dW

= fe(1+^)(1+i:r]i{5(1+i;r} (2-4)
+ fei1 + iX1 + r) Mfi(1+A) }'

= W1+£>] It + (* + r) h W1 + r) }'
= W1+r)] % + {1+r)^ M1 + r) }•
The normal components of stress will be denoted by <r,, <r2, and ac, while the shearing

stresses will be designated by t12 , rlf and r2f. The stress resultants Nt ,N2, N12 and N2l ;
the stress couples Ml , M2, M12 and M21 ; and the shear resultants F, and V2 are defind
in the conventional manner by the expressions of the type:
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/ + h

•h/
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\-h/2
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f*
J
(1+r) d!:>

(2.5)

etc.
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and these are related to the stress resultant and stress couple vectors by

Ni = iViti + N12t„ + T^n, N2 = iV^ti + N2t2 + V2n, ^ g-j

^^1 — MI2tl -^"1^2 1 IVE2 = M2ti iW2lt2 "

Before obtaining the appropriate stress strain relations, it is necessary to introduce
approximations for the displacements and stresses. For this purpose, we assume for the
displacements the form

Ui = «! + f|8i , U2 = u2 + , W = w + £w' + ifV', (2.7)

where Ui , u2 , and w are the components of displacements at the middle surface; (3t
and ft are the changes of slope of the normal to the middle surface; and w' and w" are
the contributions to the transverse normal strain.

Introduction of (2.7) into (2.4) leads to the following expressions for the components
of strain:

(1+i)ti = £" + fx, + IfJir'

(1 + i;)42 = €° + f** + if2i:>

€f = w' + £u>",

(' + »)(' + " (' + £)<■■>' + r« + (»+ + r«. <2,8a>

(1 m f V 0 , £ fsw' £ duo" 1
I1 + ntfa -yii + alid^ + 2 liTJ'
(1 a. XV, _ 0 , ifdu/ , fdu^l
\ fl2/V2f 72f + a2 L 2 d{2 J'

0 — — (dUl 1 y* A- — 0 — — (4- 1 w
e' «1 a2 dy ~l~ R, ' *2 ~ a2 \d£2 + a, ~dfj + W2 '

0 = 1 fdu* _ Ui daA 0 = 1 (dui _ Wj flajN .
ai Wi a2 d£2/' a2 W2 «1 dU' (2.8b)

where

and

°__ldM>_Wi 0 _ lto u2 , a
7u a, % + ' 7sf ~ «2 % R2 +02 '

* - j_w' * , w
K1 ^1 T ^ j k 2 '

*1
«1

1_ /d0t 1 02 5ai\  1_ /d02 0j
*1 Ufi oij d£2)' "2 ~ oc2 \df2 «1 dfj' ^2,8c^

S = — (/i = — (Ml _
«i a2 d£2/' 2 a2 \d£2 <*1 d£\)'
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Guided by the stress differential equations of equilibrium and the expression of the
type (2.5), we write for the components of stress the following expressions which are
consistent with the approximation (2.7):

(, , jl\ n> i r
\ R,/ 1 h + h2/6 h/2 '

(

(2.9)

1 , ±) N> i r
+ Rj"2 h + h*/6 h/2 '

(1 _L Ji\ — N12 , -^12 r
\ RjTl2 h h2/G h/2 '

(>+-1 x [> - (wJ] - j W1 - iw) - iS']
+ "'41 + 2fe) - 3(sfe)']}'

(• + k)*" " 1 T [' ~ (ft/2) ] " 5 ~ 3(»«) ]

+ p-jr.fl + 2^) - 3(^)"]},

(>£(£>]>-fofl

where the functions S and T are as yet undetermined; q+ and q~, p\ and p7, and p*2 and
p\ are, respectively, the values <rt , , and r2f at the top and bottom surfaces of the
shell (f = ±/i/2); H+, H~, etc. denote

H+ = 1 + \

(2.10)

{rI + w) + 7 aa '

H = 1 ~ 2 {rI + r~) + T RJi2 '

H+1 ̂  1 + 2W,' Hi ^ 1 ~ 2R2'

H *- = 1 + 2^ ' H* = 1 ~ 2R[ '

and the coefficient c is introduced on the right-hand side of a{ for the purpose of dis-
tinguishing between the contributions of transverse shear deformation and normal
stress; otherwise, it should be regarded as unity.

It may be mentioned that the inclusion of w' and w" in W is closely associated with
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the functions S and T, respectively. In fact, as will be seen later, if in <rt , S and T are
set equal to zero, this will be consistent with approximating W ~ w.

By (2.5) and with the aid of r12 given in (2.9), the expressions for N2l and M2l may
be written as

£::} - [t*+^ 4K1+iHrX1+£) <«■ <-»
and the truth of the identity

^ (2.12)ill 1I2

can be directly verified from the expressions for the stress resultants and the stress
couples in (2.5).

Since h/R is assumed to be small in comparison with unity, in what follows only
terms up to and including f will be retained in the expansion of (1 + $/R)"- In particular,
use will be made of the approximate expressions of the type

L/211+iX1+r) kb+1A)]'
L/2 (* + rX1+r) f2dr-h [* + hk(k ~ i:)]-

(2.13)

3. Derivation of stress strain relations. In order to derive an approximate system
of stress strain relations consistent with (2.7) and (2.9), use will be made of a variational
theorem due to E. Reissner [4], Although we seek only the stress strain relations, the
Euler equations of the variational theorem yield the stress differential equations of
equilibrium as well as the required stress strain relations.

The variational equation may be written as

5{III 17262 fff€f T"Tr" + ru7u + T2f72f — A]
v

•^1 + + /j")"1"2 d!~2 d$

- // [y.tn + p%m + «*m(i + ̂ X1 + w) <31a>
si

+ (p~iU~i + p~iU~2 + — 2^~)(l — ^

~~ t/ (<r"^n "t" T"'Ut + Tnj-H7)^! + = 0,

where

A = [(7? + c\ + O-2 — 2v(<T1<T2 + fiO-f + <r2<rf) + 2(1 + v)(t'2 + T?f + t\{•)]. (3.1b)

E is Young's modulus, v is Poisson's ratio, v denotes the volume, indicates that part
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of the surface where the surface loads p\ , p 2, q+, etc. are prescribed, and U\ , U\ , etc.
designate £/i(£i , £2 , h/2) and , —h/2) respectively.

In the last integral in (3.1a) which represents the energy associated with the edge
stresses, the subscripts n and t refer to the normal and tangential directions on the bound-
ary faces. The stress resultants and the stress couples Nn , Nn, , V„ , M„ , and Mnt due
to the edge stresses, are defined similar to those in (2.5); in addition, we note that Q„ =
j-8 Tnf (i + r/flor2#.

Substituting (2.8) and (2.9) into (3.1), the variational equation becomes

5 Iff + + M +1f It1 +
+ C\

+

+

+

[(If+5 V2X1 ~ Gfe))+I ^i1+! (^2)_ I )
I «-Hii -1 fe)+1 {j^)3)}w' +
(ir + wk + f 50 + (if + V2X1 + r/S)(T°+ f'5a)

[I t (x" (sfe)") - i W1" 2fe) - 3(vJ) + -}]
/, fto' . f dw"\ , 1 //n 1 Mr r \Y1 + r/flA

' \7ir a, aj, + 2a, df, / ^ "' 2i? \\ /i /i2/6 A/2/ VI + f/R,/

+ 2{(f" + + + (3-2)

+ 2(1 + >)[(" + jjfe) (J + [%') + * * ']}|«^ dZ

~ 5 If {^PlUl ^ (p2U2 m2^ _

+ \ (q+H+ + q-H~)w' + ~ (q+H+ - q~H~)w'df, d{2

- <£ jiVX + M*0n + N*u, + MnJ/J, + F>

+ QHw" + ^ p»u>' + m„w"ja, d£( = 0,

where
p„ = - p;#; ,

mn -1 [?;//; + P;ir„],
(3.3)
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the line integral is taken along the coordinate curves which form the boundary of the
middle surface, and the starred quantities are the edge resultants.

Integrating (3.2) with respect to f, and observing that

III + + ^i1 + i:)!1 + r) aiC"d*1

= JJ + M2lS2)ala2 d£i d%2 ,

then carrying out the variations using (2.2), (2.11), (2.12) and (2.13) whenever necessary,
integrating by parts, and making use of appropriate transformation relations, the follow-
ing equation is obtained:

[[ f *]J r3^^1) I dfciNzi) I \T da, jy. da2 (Vx \~111 r H ~%r++ N"w,~N,^+am\x+*11

- -W*+^+»- t - N- w,+ At,+»•)]
- +*£* - -(£ +1)+-<»*** - «""■']
- «>PtP + ̂ + g f - - "■»]
- + M„ ̂  - M, f| - «MV, - -)]} «, it,

+ // |+ SW,[,; + |- - i (v,(l - Aj- (i- - i)) - ,N,

+ m,{r[ ~ r) ~ ""M1 + ajg) ~ «)& t
i h + tt+(1 h . h \ . h -tj~( 1 i h . h

+ 2 q \ 5R2 + 12R\) + 2 q \ + 5R2 + 12J

+ w{';+Slr-^i-i]
+ 8:v„[t; + 41 - (i - i)) + s, ̂  (i - J-)

2(1 +
Eh

Mo
+ +fi, a {y^/12 (' 20 ft, (s, It,)) ■ h'/l2

+ N-G;-]t)-h(i(T5 + 75k)-ms <3-">
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, h + (2 _ _h_ , _2_ h*\ h _„_/2 , _h_ , 2_ \YI'
+ 2 9 U 6ft2 35 ftj/ 2 \5 6ft2 + 35 ft2//J.

+ 5M2[k2+|--^ {•••}]

+ + a2(l - Q- - i-)) + 7°Q- - J-)
_2(i + .)_ n\ /_1__ Ml"

Eh U2/12\ 20 ft2 \Ri Rj) vfti ft2/J_

, „Tr f o , ft2 1 aw" 9 1 + v Tr J 8 2h2 (\ J_
+ <H ij^Tu + 4Qai ^ 2 £/l i[15 1057?2Ui ft2

+ W te (' - dk Q; ~ £))+1 p,(s ~ i,)}]

+to"[S(S+S)+cfeT+f5^+-^

+ ss[cw> - i {| c2s(^ + ^ Q. + ̂  + Jj)) - c2 A r(i_ + _L)

+c21 g+^+( i - |Q;+^)+|oQf+sk+^))
+ c21 g.H-(i +1 (J; + ̂ ) + |o Q2 + flk + mf)

( h2 _ / JiM _ /
+ "Cll0ft2 /i2/6 + 10ft. h2/6 V + 20ft?/ V +

+ {-c2 Yo s{r[ + r)

, T ( 8 2fe2 /I 1 1>
16 \105 ~r 315 Vft? "r ft,ft2 ^ ft^

fe2
20ft;

2h TTJ 6 fc/1 , l\ . ll^2 / 1 . 1 . l\\+ c 8 g+H (^35 15 + RJ + 630 [R2 + R^ + R2)) (3.4)
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+ c* i q-H'0b + ilQ; + i;) + ii>Q! + ftk + Ji))
( h „ , _h_„ h (2 . h* \ M,

"CV60fl2 1 + 60^ 2 4 \15 70jRj/ fc2/6

-J^ + tSS!)^)}]}-"-^^ (3'4)

- j> {(JV* - tfn)5un + {N* - N„,)Su, + (M* - Mn)8/3n

+ (.M * - Mnt) 801 + (F* - Vn)8w + ^ (F* - F,)«u>"k df, = 0,

where, in deducing the coefficients of S7V12 and SM12 , use has been made of an explicit
form of (2.11).

As the contents of every bracket of the surface integral in (3.4) must vanish, the
first five of the resulting equations are the stress differential equations of equilibrium
for a thin shell. The coefficients of 8w' and 8w" are also contributions to equilibrium,
while the remaining ten equations are the approximate stress strain relations containing
the effects of both transverse normal stress and shear deformation, as well as appropriate
expressions for the functions S and T. These functions, together with w' and w", given
by the last four brackets in the surface integral, when simplified read:

«' = (AT, + AQ + fh [|s + |(g+i7+ +

v + M2 , c [2 T , 9 , +„+ -Tr-C\
~ n/10 +Eh[jK+7{qHEh h2/\2

(3.5)
S = -iMi + Msj +

R1 \{2iOi\Ot2
[4 M + 4 (aiP2)]'

I= ~(f; + §)+ i [4(a2m0 + i(aim2)]'

which reduce to those given previously by E. Reissner for axisymmetric shells of revo-
lution. Equations (20') and (21) of Ref. [3] should read, respectively,

T 1 (Nt , Ne\ , 1 T2 T Mt + Me~]
h ~ ~2 U£ + Re) 511101 - Esh llh~ 12"f ¥ J-

In this connection, compare the expressions for <rf given by (2.9) of the present paper
and (18) of Ref. [3].

It is evident that the independent vanishing of each term of the line integral in
(3.4) furnishes the required boundary conditions along each edge of the shell; these are
either the stress or displacement boundary conditions. For example, we have for the
first term of the line integral either un = f/„(£n , £, , 0) prescribed, or Nn = N* , both
along £„ = constant. It is noteworthy that, in view of the assumed form of the dis-
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placements (2.7) and the stresses (2.9), the derived boundary conditions represent
some simplification compared with those given in Ref. [1].

If the effect of normal stress is neglected and only that of transverse shear deformation
is retained, the approximate stress strain relations simplify somewhat. This is achieved
by putting equal to zero the coefficient c in the stress strain relations and is consistent
with the approximation W — w in (2.7). Neglecting second order corrections in h/R in
comparison with first order corrections, then, following a lengthy algebraic manipulation
and using Cramer's rule, the resulting stress strain relations which satisfy the identity
(2.12) become

*• - rh [« + - £ Gr - £)"]■
N• - [(,; + ~ 12 Q: ~

If,, - + rS + g (£ - £)(* -«,)],

x„ - + ̂  + § Q; - wM - "•).
m, - o[<«, + »,) - (i - £).;],

M, - b[(„ + „0 - (£ - £),;],

Af„ - if-' d[(s, + « + (i - £),;],

" S-' 4(s' + w + (£ - e)4
F' -1 G"t If - (I - "■)]+1 ["■+ 7 p(i ~ £)]•
F- ' !'Gh[kw, - (I - *■)] +1[m-+ "i"'(if, ~£)]-

where G is shear modulus and D = Eh3/12(1 — v2)
The effect of normal stress, if included in the stress strain relations, will result in the

following expressions for iVj , M, , and :

(3.6)

iVi = r?7 [(e°+ wS) -h(~k~ £)Ki]
, f V h2 \ I ( I , V \, , N , «!+«! , «!+"l
+ rr^Ti2L2\B; + fl;A", + "-) + —~~ R\ R2

+ r=i;i(9+ + <r)}•
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, = z>[(„ + - (i -

(f , v \ , , i /«; + «; ,; + «:V
Is; + mh + ••' + s \—rT + "rT"/.

,6 v h2 . + ,
+ 5r^i2(9 "9

(3.7)

F- = I Hi S - (I - A)] +1 h + t - s:).
+ {~i - v io oil l^1 + v^Kl + *2^ ~ (rI~ r)^1 3)

~ r=~; ((1 + Kk + ir)(e? + e2) +1 e?(i; + £) +Ie*Q;+ £//j
3/t2 j>2 d , +

~ 50 (1 - v)Eh dfi ~
and analogous expressions for N2, M2, and V2, where the coefficient c is taken as unity.
The expressions for iVI2 , N2l , M12 , and M21 remain unaltered, as given by (3.6).

It may be noted that, except for the shear resultants V1 and V2 and their effects on
Kj and k2 , the stress strain relations (3.7) are similar in form to those commonly known
as Love's second approximation. Equations (3.6), on the other hand, appear to contain
the necessary corrections (due to the effect of transverse shear deformation) to Love's
first approximation.

4. Note on the effect of rotatory inertia. In the classical treatment of vibration
of elastic shells and plates, in addition to the effect of normal stress and transverse shear
deformation, the effect of rotatory inertia is also neglected. To include the latter in the
results of the preceding section, the volume integral in (3.1a) should be modified in that
the negative of kinetic energy

2P m+m+m (4.1)

where p is the mass density and t denotes time, should be added to the integrand. Conse-
quently, the surface integral in (3.4) is modified as follows:

To each of the five coefficients of 5ui , Su2, Sw , S(3l , and 5/32, in the surface integral
(3.4), should be added the following expressions, respectively:

dui : — ph

8u2 : — ph

(\ 4. h' \ 4. (± 4. *!£ll
V ^ 12RJtJ df 12 Vfi, Rj dt2 J
(i 4- h" ) ^ . £ (1. , ±\
V ^ 12RJtJ dt2 12 VBi RJ dt2 J

J (i i d2W , h2 ( 1 , 1 \
P A 12R1rJ dt2 + 12 VRi + Rj

ay
(4.2)

1 1 I 3 h2 \aV'l
+ 24 \ + 20 RtfJ dt2 J"1"2 '
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«fc: ->f2LU fl,/ dt2 +\+ 20 RiR2) dt2 ia,CC2 '

to . _ £ 17 J_ , ±\ dju* , /, , A
' 9 12 LVKi + fla/ d<2 + V+ 20 fl.ftj d/2 J"1"2 "

Also, the coefficients of Sw' and Sw" in the surface integral (3.4) are modified, re-
spectively, by addition of the expressions

Sw' : +p

Sw+p

17 J_ , _l\ d^w ( _3_ h2 \ 5V
12 LVffi RJ dt2 + \ + 20 RJtJ dt2'

,3h2(±,±) d2w"l
+ 40 \Rt + Rj dt2 J'

*1 [7i a. A JL.)^ . 1(1 i i)
24 LV 20 RtRJ dt2 + 20 U, + RJ dt2'

4
(4.3)

+ ^(i+£i£r)^40 V ' 28 R1RJ dt

It is interesting to note that when W ~ w and for the case of a flat plate where
/?! = R2 = , the expressions (4.2) simplify considerably.
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