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A statistically adiabatic model for chemical reactions involving a tight or loose transition state in the exit
channel was used in Part I to obtain an integral equation for the individual reaction probabilities, i.e., for
the magnitude of the § matrix elements. In the present paper this integral equation is explicitly solved for
the general case of product orbital (/) and rotational (j) angular momenta constrained only by energy and
angular momentum conservation. The reaction probabilities are shown to be related to a contour integral
of a product of canonical partition functions. The theory includes an effect of the evolution of the bending
vibrations of the transition state into free rotations of the product molecules. The distribution of final
translational energy for the general (/,j) case is then obtained by averaging the reaction probabilities over
various quantum states of the product molecules. The results are compared with the special cases in the
literature for which (i) the transition state in the exit channel is loose (“phase space theory™), (ii) this case
but with /»j, and (iii) tight transition state theory with I3 j (Part I). The results are also compared with
experimental data obtained from the molecular beam reaction F+(CH,),C=CH,
—F(CH,),CCH,*—CH,+ FCH,C = CH,. The data and the theoretical results are now in better
agreement. In the treatment described here and in Part I a loose transition state in the entrance channel
was assumed. Expressions for the energy distribution are also given for the case when the entrance
channel transition state is tight. Finally, a statistically adiabatic S matrix, which is useful for reactions
proceeding through long-lived collision complexes having tight transition states, is described, and its
possible application to angular distributions and angular momentum polarization experiments is discussed.

I. INTRODUCTION

Various theoretical methods have been devised to cal-
culate the distribution of internal energy states of the
product molecules of molecular beam experiments. One
such method was that recently described by Safron
et al.! In this treatment an angular momentum dis-
tribution of the transient energetic molecules appro-
priate to the beam conditions plus RRKM theory? were
used to calculate the distribution of internal energy
states of the transition state. For the case of a loose
transition state in the exit channel no coupling of the
radial and internal coordinates exists, and therefore
the final state distribution of the transition state auto-
matically provided the distribution of internal states of
the products. The method has been applied to various
reactions, I3 including the following system®:

F +CIRC =CR'R"’ - CIFRC-CR'R’’ *,
CIFRC~-CR'R" *~Cl+FRC =CR'R"’,

(1.1)
(1.2)

where R, R’, and R”’ are alkyl groups. There is negli-
gible activation energy for the reverse step in Eq, (1. 2)
and so the activated complex is expected to be loose.
Exit channel effects are then absent, and the data agreed
well with the theoretical distributions.

In another interesting series of experiments the dis-
tribution of final translational energy of the products of
a similar reaction but involving methyl instead of Cl
elimination was measured®

F + CH,RC = CR'R"’ ~CH,FRC-CR'R’"*,

CH,FRC-CR'R’"* ~ CH, + FRC =CR'R"’.

(1.3)
(1.4)

Here, however, the experimental distribution was
shifted to higher values of translational energy than the

1636 The Journal of Chemical Physics, Vol. 87, No. 4, 15 August 1977

calculated one, (A figure describing the disagreement
is given later.) The results suggested, thereby, either
that exit channel effects distort the products’ transla-
tional energy distribution, or that the assumption of a
statistical distribufion is inapplicable, or both., For
example, when the exit channel transition state is tight,
some coupling of radial and internal coordinates must
occur, and this coupling distorts the final energy dis-
tribution. * '

One of the possible exit channel effects which can
occur is the following!: When the exit channel transi-
tion state is tight, it has bending vibrations which be-
come free rotations when the product molecules are
formed, Since bending vibrational energy levels are
more widely spaced than rotational levels, any “sta-
tistical adiabaticity” (i.e., any tendency to distribute
quantum numbers about the adiabatically determined
values for these bending vibrational-rotational de-
grees of freedom} would tend to shift the translational
energy distribution to higher energies and hence yield
better agreement with the experimental distribution.
This effect is more fully illustrated in Fig. 1. In addi-
tion to this statistical adiabaticity the theory presented
in Part I and here is a statistical theory, i.e,, energy
randomization is assumed in the collision complex.

It should be sfressed that energy randomization in the
collision complex plus statistical adiabaticity in the exit
channel region constitute merely one set of assumptions
which can be made. Other assumptions involving exit
channel interactions might also give agreement with ex-
periment. However, the main purpose of the present
paper is to explore the consequences of the first as-
sumption, without using adjustable parameters,
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FIG. 1. A plot of the potential energy hypersurface as a func-
tion of the reaction coordinate for the exit channel is shown.
EI=lz/21f; E; and E, denote the values of the translational
energy along the reaction coordinate at the transition state and
in the asymptotic produce region, respectively; Eyq4 is the
energy associated with the bending vibrations; E,, is the energy
associated with all other active degrees of freedom of the tran-
sition state; Eg., denotes the energy associated with the rota-
tional degrees of freedom of the product molecules that are
bending vibrations in the transition state; and E,, denotes the
vibrational energy plus the extra rotational energy not included
in E§. When the transition state is tight, Ep. <E Lnd. When the
transition state is loose, Ef+ E}:+ uf=E,. By conservation of
total energy one has Ef +EL+ B}y + E} +ul =E, + E,. +Eg. <E.

The present statistical theory differs from the usual
statistical theories for the case of a tight exit channel
transition state in including a coupling along the reac-
tion coordinate from the exit channel transition state
to the separated product species. Since the transition
state in the exit channel of Eq. (1.4) is tight, any theory
capable of predicting the energy distribution for Eq.

(1. 4) should include some dynamical coupling in the exit
channel, as does the theory presented in Part I and
here,

When the present exit channel effect problem was
treated in Part 1, an integral equation for the various
transition probabilities was obtained, Eq. (3. 3) of the
present paper. It was solved for the special cases of
I>jand j> 1, In the present paper we solve it without
imposing these angular momentum restrictions. At
first solution of Eq. (3. 3) by standard numerical meth-~
ods based on quadratures was attempted.® Since the
known function in the integrand increases rapidly with
increasing energy, namely, the density of states in-
creases rapidly with energy, unreliable (oscillating and
even negative) values for the relatively slowly varying
reaction probabilities were obtained. It was then real-
ized, at first numerically, that apart from a relative-
ly minor factor the integral was a product of two con-
volutions, a fact obscured by the complicated angular
momentum and energy constraints on the domain of
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integration. A suitable change of variables then demon-
strated this property analytically, and yielded a form
convenient for a straightforward solution by a combina-
tion of Laplace transform and numerical methods, The
correction for the neglected factor is found (Appendix C)
to be about only 0. 02% in the present system,

The numerical results of this theory are compared
with those for (1) loose transition state theory with full
angular momentum restrictions (“phase space theory”),’
(2) loose transition state theory with 7> 4, (3) tight
transition state theory with I>>j, * and (4) experiment’
for the following system:

CH, F

AN
F+  C=CH,~ CH,+ C=CH,. (1.5)

CH;, CH;,

The organization of the paper is as follows: In Sec.
II a glossary of notation is given. In Sec. III the gener-
al theoretical energy distributions are developed. Sec-
tion IV deals with a statistically adiabatic S matrix and
its application to angular distributions and rotational
polarization experiments. The paper concludes in Sec.
V with a discussion of a numerical example and the re-
sults, Appendix A deals with energy distributions for
the special case of > j. In Appendix B energy distribu-~
tions are derived when the entrance channel transition
state is tight.

1. GLOSSARY OF NOTATION

J, M Total rotational angular momentum guan-
tum number and its projection along a
spaced fixed axis

51 Orbital angular momentum quantum num-
ber of products and reactants, respec-
tively

Js Jo Total rotational angular momentum quan-
tum number of products and reactants,
respectively

E Total energy

(o Total reaction cross section

Rotational angular momentum quantum
number of product and reactant mole-
cule one (two)

Second angular momentum gquantum num-
ber of product and reactant molecule
one (two) needed to specify energy eigen-
values in case the molecules are non-
linear

Denotes the totality of vibrational quan-
tum numbers of the product and reac-
tant molecules, respectively

Denotes {ji, jz, k1, kz, v} and {j1o, jag, %105
kags U}, Trespectively.

Maximum of [ and l,, respectively {I.
=[21t(E, - u?)]V/? }

Smallest (largest) moment of inertia for
oblate (prolate) top product molecule
one and two

Largest (smallest) moment of inertia for
oblate (prolate) top product molecule

15 510(725 F20)

ky, kyo(Ra, Eao)

v, Vg

n, Ng
lm’ lOm

Iul; Iaz

Icly Icz
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one and two

Activation barrier with respect to product
and reactant state, respectively

Final and initial translational energy in
the center of mass system of coordi~
nates

Vibrational energy of product or reactant
molecules in a state with vibrational
quantum number v or v,, respectively

It =2, It = pgrl?, where u(y,) is the
reduced mass of products (reactants)
and where 7! (#}) is the approximate
classical turning point for the formation
of a complex in the exit (entrance) chan-
nel

Effective barrier in exit and entrance
channel, respectively, B,=uf+1%/21%
and B?g=u°*+lﬁ/213

The rotational energy of the product mole-
cules associated with the quantum state
Jik1daks

Moment of inertia associated with J in
the exit channel activated state

J2/2I}

The internal energy associated with quan-
tum state n

1/k,T, where kg is Boltzmann’s constant
and 7 is the temperature {°K)

ut+EY,

Total cross section when the initial state
is jgn, and the entrance channel acti-
vated complex is tight

Wavenumber in the entrance channel

The internal state to state cross section
from jonya, to jna at energy E

Reaction probability to form complex
from products in state JinlE«

Reaction probability to form complex
from reactants in state JjgngloE o

Minimum of J +j and [,

Reactant or product channel, respectively

Minimum of ! +J and j; +5,

Maximum of |J-1| and lj; —j,l

Heaviside step function

Vibrational—internal rotational density of
states of products at energy x

h(jc =ds) (G =35)

Functions depending on the symmetry of
product molecules one and two, If
molecule one is a symmetric top or
spherical top then H(k,) =1, whereas if
it is a linear molecule H(%k;) equals the
Dirac delta function 6(%;)

Partition function of all active degrees of
freedom of the exit channel transition
state

Partition function of all vibrational~inter-
nal rotational degrees of freedom of the
product molecules

Nonseparable “partition function” of the
external rotations of the product mole-
cules

dUE" jO"OE/ dE, Translational energy distribution per
unit energy

The S matrix for a transition from
Jotglo@JE to julaJE

JE
Sjnla'-jgnglgao

015 P2 Total partition function for product mole-
cule 1 and 2, respectively

Je Minimum of [, and [, +j

E} JE/2rt

Bt ut +E}

Qb @ @  I7py(x)exp(=Br)dx, 7 py(x) exp(= fr) dx,

and @,Q,, respectively

N }a Total number of guantum states in exit
channel transition state for a given val-
ue of J, E, and «

Total number of quantum states in the
entrance channel transition state for a
givenJ, E, and a,

Partition function of all active degrees of
freedom of the entrance channel transi-
tion state

Vibrational-rotational density of states
of the reactant (product) molecules at
energy x

Qo Vibrational-rotational partition function

of the reactant molecules, i.e.,
Iy po(x) exp(~ Bx) dx

F An operator denoting (s djy | ’}1 dkJy djs
X J._]]za diy H(ky) H(ky)

The normalized translational energy dis-
tribution function

[@T +1)/1¢, ) h(lom =)

Projection of j,, j,, and / along, say, the
initial relative velocity vector

Dirac delta function

Nd,

0
L,

po(¥) p(x)]

P(E,)

Po(J)
Wiy, Mz, W

6(x)

ill. GENERAL THEORY

In this section general expressions are given for the
reaction probabilities and energy distributions when
the entrance channel transition state is loose and the
exit channel transition state is tight. In Sec, IIIA the
general expression for the internal state to state cross
section is given, Section IIIB is concerned with the
derivation and solution of an integral equation for the
reaction probabilities. Finally, in Sec. IIIC a general
expression for the products’ energy distribution is de-
rived. In all formulas of this paper 7 =1.

A. An expression for the internal state cross section

When the energetic molecules need to be distin-
guished only by their total angular momentum J and
their total energy E in the center-of-mass system, the
internal state to state cross section for the ath chan-
nel of products using microscopic reversibility and the
statistical approximation can be written as*$

tom

Oy som0E =00 9 Pold) (e = [T =7 N

J=0

SN dfl( dl o
X Wint
( p ”) 1=17-41 e

where w‘,’,,, £ is the probability of forming an energized

3.1)
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molecule from the collision of the ath set of products
having a given j, », I, J, and E; [, is the maximum al-
lowed value of I, namely, the minimum of J+jand I,
where I, is [21 }(E, -« H)]1/2 for a tight transition state,
N%, inEq. (3.1)is the number of quantum states in the
activated complex for a given value of E, J, M, and a.
@ is deleted from all symbols in Eq. (3.1}, except for
Nf,a, for notational brevity. [Eq. (3.1) can also be de-
rived from the results of Sec. IV and standard quantum
mechanical expressions for the cross section.| When
the transition state in the entrance channel in Eq. (3.1)
is assumed to be loose and when /> j;, the distribution
function Py(J) of the total angular momentum of the

transition state is given by*
Py} =(2J+1)/1}

Oms

:0, J>l0m.

J<1

Oms

(3.2)

B. An integral equation for the reaction probabilities

Once the w7,z ’s in Eq. (3.1) are evaluated the in-
ternal state cross sections can be calculated. In order
to perform this task we assume microcanonical transi-
tion state theory7 (Eq. (3. 3)} and statistical adiabaticity
[Eaq. (3. D] nold. By assuming statistical adiabaticity
the translational energy of the products is utilized to
overcome statistically any barrier arising inthe reverse
reaction (1, 4) from the fact that the energy level spac-
ing of the bending vibrations of the transition state ex-
ceeds that of the free rotations of the products,

From microcanonical transition state theory, treat-
ing the product rotations and reaction coordinate classi-
cally, one obtains Eq. (3.3). This equation states that
the microcanonical-ensemble weighted integral of re-
action probabilities from the products of a given E, J,
and ¢ is equal to the total number of energy levels of
the transition state for a given E, J, and . A 2J+1
degeneracy is absent from both sides of Eq, (3. 3),

Equation (3. 3) below can be derived without assuming
an equilibrium or quasiequilibrium between products
and transition states, Infact, Eq. (3,3) is just the
microcanonical analog of Wigner’s formulation® of
transition state theory, but for the present system
rather than for bimolecular reactions

NTIu:Nta(E_u¥_ETJ)

2 0

dE, | dl g[p,,(E— Ey = Eg)h(jc=75)

i

Ep=0 1=0
I
xJ' w}’,,,Edj], (3.3)
24y
where one has the angular momentum restrictions
given by
je=min{l+j, ji+7},
j=max{|s-1], | -7} (3.4)

and where for notational simplicity the integral op-
erator Fis introduced and defined to be

ad i1 L 7

. 2
F= dj, dk, j’ szJ Ak, Hk,) H(k,).
fl=0 ’31=-Il jp=D Ron=§,

(3.5)

H(k,) and H(k,) are functions dependent on the sym-
metry of the product molecules. For the cases of sym-
metric top and spherical top molecules H(k,) = H{k,) =1,

whereas for a linear molecule H(k,)=0(k;) and H{k,)
= 0(k,), where 6(ky) is the Dirac delta function. Here j;

and j, are coupled to yield j, which is coupled to ! to
yield J,% i.e., a total angular momentum basis set is
considered, where the rotational-orbital quantum num-
bers are j;, ky, j2, ks, j, I, J, and M. On the other
hand, in the uncoupled representation the rotational-or-
bit quantum numbers are j;, m;, oy My, 1, my, Ry,
and k,, where Mis My and m,; are projections of j;,
js, and I, respectively, along, say, the initial relative
velocity vector, p,(E - E, — E;) inEq. (3. 3) is the vi-
brational—internal rotational density of states and is de-
fined to be zero when E - E, - E, is negative. Ej de-
notes rotational energy levels of the rigid product
molecules. For example, for oblate symmetric tops
the rotational energy levels are given by the following
expression o,

j2 i2 2 /1 1 R:[1 1
N k_L<Q__> ..z(___.)
Er a2, 2 \L, L) T2 \I I,/ 3.6)

where I, < L,and [, < Icg'

The assumption of statistical adiabaticity* described
earlier is introduced into Eq. (3.3) by making wj,,, a
function of the translational energy in excess of the ef-
fective barrier Bi, E,~ B}. To ensure, also, that E
exceeds u*+E¥, [as on the left hand side of Eq, (3. 3))
we introduce a step function #(E, + E, —u},). Thereby,

3.7

One can then immediately integrate over j in Eq. (3. 3),
and then interchange the order of the operator ¥ with
the E, and ! integrals

Wints = w7 (Ey — Bf)h(E,+E,,— ub—EL,),

t Vg BEr
NYJ(E-u —Eu)=sr[f dE,p(E — E, — Eg)

Ep=u

X WE, + E, —ut - E{,)

im
dlw’(E, - B B(szlJ)] p
120
(3.8)
where

B(jljzlJ) = h(]( "j)) (3( -j>) (3- 9)
and ¥ is given by Eq. (3.5). The practical limits of in-
tegration over E, and  in Eq. (3.8) are determined from
the condition that p, and w’ vanish when their arguments
are negative, i.e.,

E,<E-E, (%2 N+u'<E, (3. 10)

for the case of a tight transition state. This integration
domain over E, and  is given in Fig. 2, [For the case
of a loose transition state the separation distance »¥ in
the transition state, as weil as It and «f, would vary
with 7, yielding thereby a more complicated {but defi-
nite) maximum value of ! for each E,. |

To show that the right hand side of Eq. (3.8) is ap-
proximately a product of two convolutions it is conve-
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EEq

Z = constant

y =constant

L2/21%

FIG. 2. The shaded region is the integration domain. For a
given value of E,, I is integrated from 0 to [2If(E, -uhH]2 and
then E, is integrated from u* to E —E5. Dashed line: line of
constant z, z=E — Ep -—uf—y —1%/21f, Dotted line: line of con-
stant y, y=E —-E, —Ep. Change of variables: inthe integra-
tion domain, for a given value of y, z varies from z2=0 to

E —Ep—y—uf, and then y varies from y=0 to E — Ep —uf,

nient to transform the variables so as to exhibit explicit-
ly the vanishing of p,(x) and w”(x) when x<0, namely,
variables y and z are introduced:

y=E-E, - Eg,
(3.11)

z:Ep—BtsE,—zﬁ—(lz/ZI;).
The absolute value of the Jacobian of the transforma-
tion'! from (E,, 1) to (y, 2), i.e., |3(E,, 1)/8(y,2)1, is
1t/1. Since E- E,— E,=0and E,= B3, the domains in-
tegrated over (E,, ) and (v, 2) are as in Fig. 2:

E-y =E
NL(E-u‘-ELM*vU 2 o WE -ut - EL)

y=0
E-u'-ER-y
x f dzw’ (2) 17 B( jljzlJ)] ,
220
(3.12)
where, from Eq. (3.11),
1=[21}E - By —ut —y-2)] /2, (3.13)

The limits on y and z ensure that /2 will never be nega-
tive. One can now readily interchange the F operator
and the (y, 2) integrals, by first introducing the Heavi-
side step function %(I?) into Eq. (3.12) to ensure 12> 0,
One can then replace the limits as indicated below:
E-u L
N E-ut-sl)= [ avo e -l - )
=0
E-u*-y *
xf dzuw'(2)GUE~y—u' -2),

- (3. 14)
with
G (E-ut—y-2)=1 TSI 00 BGAD].  (3.15)

G’ in Eq. (3.15) is a function of E - u; —y—2z; h(I% en-
sures that E-u' -y -z - E, =0 and one integrates in
Eq. (3.15) over the variables in Ey, i.e., over jj;kk,.

Approximately, as shown in Appendix C, Eq. (3.14) can
be rewritten as

;
Nia(E—u?—E”)Ep:wJ*G", (3.16)
where the symbol * denotes a convolution. This con-

volution integral equation (3. 16) can be easily solved by
Laplace transformation. By multiplying both sides of
Eq. (3.16) by exp[-B(E - )], integrating E — u! from
0 to «, and applying the convolution theorem twice Eq.
(8. 186) is converted into (3.17):

%7 (3)= Q) a(8)/8 QBT (A), (3.17)
where
QL(B)= fo exp(—Bx)[dN?,a(x—EI_,)/dx]dx,
Qu(6)=f exp(~ Bx) p,(x) dx, (3.18)
0

w’(ﬁ){”exp(—sxmf(x)dx,
¢

G’(@) =f” exp(-Bx) G’ (x)dx.
0

Inversion of Eq. (3.17) yields an expression for w’(x).
By replacing x by E, - Bt one obtains

1 C+go0 _ ¥
=5 [ [Q1ul8)/B@ueIG @) expl(E, - #)]db,

(3.19)
where QL(B) is the vibrational—internal rotational par-
tition function of the active modes of the transition state
(at a temperature 7=1/k58 and at a total angular mo-
mentum o), @, is the vibrational—-internal rotational
partition function of all active modes of the product
molecules, and G7(8) defined by Eqs. (3.15) and (3. 18)
is a nonseparable rotational partition function. Equa-
tion (3.19) applies to symmetric tops, as well as to
spherical tops and linear molecules, The integral in
Eq. (3.19) denotes an integration along the line (¢ — i,
c+iw) in the complex plane, where ¢ is a positive con-
stant, The contour is closed in the left half or right
half part of the complex 3 plane depending on whether
E, - Bf is positive or negative, Methods to evaluate Eq.
(3.19) are given in Sec. V.

C. An expression for the energy distribution function
d"Ep,iﬂ n, e/dE,

The distribution of the final translational energy of
the products per unit energy in the range E, to E, +dE,
is defined by'?

dog,, jgos/ AEy = IZ" On, spoe N(E = Ep = Ep), (3.20)
where the sum over j is from | j; - j, | to j; +j;,. By as-

suming classical rotations and quantum mechanical vi-
brations one readily sees that Eq. (3. 20) is equivalent
to (3. 21):
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4
L=J4j
!m —/
1=j-J
£
J f=J-]
- h*hk
FIG. 3. Inthe domain of integration (shaded) for a given value

of j, I varies from 1j—j| tol,=minfl,,,J+j}, then j varies
from 1j, —js| to jy+j,. I, is always greater than [J—jl to
ensure angular momentum conservation, If one interchanges
the order of integration, for a given value of [, j varies from
j» to j¢, then! varies from 0 tol,. j.is always greater than
Jj» to ensure angular momentum conservation.

dO'Ep, jonOE/iEp = S[J’E‘Fo p,,(E,,)

Jyriz

X 8(E - E, ~ Ep — E,) 'Ijoj,,.,o,,oE],

(3.21)
where E, is the energy in the vibrational degrees of
freedom and E, was written as E, + E,. From Egs. (3.1),
(3.2), and (3. 7), the properties of delta functions, and
by interchanging the order of integration over ! and j
(as described in Fig. 3) the final expression for the
energy distribution becomes

1
d0g , in OE/dEP =0 i [(2J+ 1)/<l(2)m Z Nia)}
J=0 o
}

'm
« EF[pv(E—E, ~E [ Tatnz-ut -,
1=0

J=ldy=dol

wJ(Ep - Bt) B(j1jzlJ)] ) (3. 22)

where the various symbols were defined in Sec. IIIB,

Calculations can be performed to determine the ener-
gy distribution from the formulas in this section for
either a loose or a tight transition state in the exit
channel, For the case of a tight exit channel transition
state N¥ is calculated from the geometry of the transi-
tion state and w’(E, B*) is determmed from Eq. (3.19).
By combining N7, and w’(E, B ) with Eq. (3.22) the
energy distribution doyg, !moE/dEh can be determined. On
the other hand, if the transmon state is loose, the

w”(E, - BY) is a unit step function R(E, ~ Bh instead of
Eq. (3.19), and N, is evaluated by replacing w},, With
h(E, - B’) in Eq. (3.3). The distribution of the final
translational energy per unit energy can then be cal-
culated from Eqs. (3.1), (3.2), and (3. 21).
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IV. STATISTICALLY ADIABATIC S MATRIX,
ANGULAR DISTRIBUTIONS, AND ROTATIONAL
POLARIZATION EXPERIMENTS

Since any physical observable can be calculated once
the S matrix elements are determined (i.e., once the
collision problem is solved), a parametrization of this
matrix within the framework of a statistically adiabatic
theory is desirable and is given in the present section
in terms of the reaction probabilities of Sec. Il and
Appendix B.

By applying Feshbach’s theory of resonance scatter-
ing and examining in detail the structure of the S matrix
it has been shown that!®

JE 2 _ aJ
|Sjnla-jon010a0 | =(1- wjnlE) 6}] f’nnoéllobomz()

aJ and f
+ Wintg w’o"o’OE, Ea Nios

where now ajnlJE or agjgnylJE refers to a state of the
products or the reactants. When it refers to the re-
actants, then w ,g;’ 1,0 18 the probability of forming the
complex from the reactants,

4.1)

In Eq. (4.1) the last term is the probability of forming
a complex initially w37, » multiplied by w?,,‘iE/EaNta,
the probability of its dlssociation to form a state ajnlJE.
Equation (4. 1) neglects the formation of any state
ajnlJE by a direct process, other than the initial state
agforelJE. [Such events could be included by suitably
generalizing Eq. (4.1), introducing thereby probabili-
ties for the direct process.] The first term on the
right side of Eq. (4.1) is zero unless ajnlJE is the
initial state, i.e., ayjmleJE, and then equals the prob-
ability of not forming a complex. The S matrix ele-
ments in Eq. (4. 1) satisfy the principle of microscopic
reversibility, The S matrix is also diagonal in J, E,
and M and, in the present case of absence of external
fields, independent of M since different values of M
can be obtained by rotating the coordinate system, an
operation which does not affect the collision dynamics.
1t is readily verified that the sum of the squares of the
S matrix elements given by Eq. (4.1) satisfy (4. 2):

Z [ Sjnlawjono oa l

nla

4.2)

The phase of the S matrix is treated by imposing the
random phase approximation, * i.e., by assuming the
interference among different partial waves for a given
J randomly cancel and by neglecting cross terms in
double sums over J’s (e.g., Ref. 15). Therefore,
with this choice of phase the S matrix is completely
determined since the magnitudes are given in Eq. (4. 1).

With the S matrix parametrized as above it is now
possible to calculate other properties besides the en-
ergy distribution of the product molecules for reactions
proceeding through tight transition states., For ex-
ample, the angular distribution or its moments can be
determined in the center-of-mass system of coordinates
(or in the laboratory system of coordinates if the proper
Jacobian of the transformation'® is considered) by com-
bining standard quantum mechanical expressions for the
differential cross section in terms of S matrix ele-
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ments!® with Eq. (4.1) and the random phase approxi-
mation, Also, the rotational polarization cross sec-
tion of the product molecules,? e.g., the cross section
for a given product angular momentum j, and its pro-
jection on any quantization axis, or its specific mo-
ments (as studied by Herschbach and co-workers!”) can
be determined again by applying standard quantum me-
chanical expressions for these cross sections in terms
of the S matrix elements (4.1), (The classical limit of
the squares of the Clebsch—Gordan coefficients and
Wigner rotation matrices that occur in the angular dis-
tributions can be determined from Ref, 18,) It should
be remarked that Eq. (4.1) applies to either loose or
tight transition states and the form of the transition
state determines the form of the reaction probabilities.

V. DISCUSSION AND NUMERICAL EXAMPLE

In the preceding sections the transition state in the
entrance channel was treated as loose. These results
can be extended to include the case of an entrance chan-
nel tight transition state and the resulting equations are
given in Appendix B. In the present section, instead,
the results of the previous sections and Appendix A are
applied to a numerical example, An experimental ex-
ample, where the entrance channel transition state is
loose and the exit channel transition state is tight, is
now available.® The data comes directly from the
beautiful molecular beam experiments of Y. T. Lee and
co-workers. The reaction considered is Eq. (1.5).

A. Numerical parameters

The vibrational frequencies of the products of Eq.
(1. 5) can be found in Refs. 19 and 20. Most of the fre-
qguencies of the activated complex were chosen to be
identical to the product molecules for the purpose of this
calculation. The four bending vibrations were chosen
to be approximately 250 cm™ in order that the zero point
energy of the exit channel transition state was similar
to that of Ref. 3. The low frequency bending vibrations

were treated as classical for simplicity. The most
probable collision energy in the center of mass system

is 2,15 kecal/mole and the total energy for redistribution
among the active degrees of freedom of the product
molecules is 25. 0 keal/mole.? The value of xt, which
includes effects of differences of zero point energies of
product molecules and the exit channel transition state,
was taken to be 5.5 keal/mole.® The value of I was
determined from I = “r;z, where 1 is the reduced mass
of the final products and r’ the classical turning point
for complex formation, was taken to be 2 A.% The den-
sity of states and sum of states were calculated using
the semiempirical quantum mechanical expressions of
Whitten and Rabinovitch.®# The value of [, was ap-
proximated using a value of 7.3 A% for 0,.> The mo-
ments of inertia were taken to be® [, =53.9 and I,

=105, 3 amu A? for the 2- fluoropropene product of Eq.
(1.5) and f, =1. 82 and [, =3.63 amuA? for the methyl
radical.

Under the given experimental conditions it sufficed to
consider only a single reaction channel, , to re~
place Y, N}, by N’ o Allthe dog, ;. - /dE, vs E, plots

G. Worry and R. A. Marcus: Translational energy distributions

were normalized in E, space. The units on dog ;.. /
dE, are (kcal/mole)™ and the units for £, are kcal/mole,

Since NL is only weakly dependent on J, the sums
over J in Eq. (3.22) were made at only three values,
namely, J=5, 20, and 38.° To check this last approxi-
mation the normahzed dog, 4 /dE,, was evaluated as
a function of E, taking J= 50 then taking J=5 and 20, and
finally taking J=3,20, and 38. The peak height of the
normalized curves differed by less than 0., 5%, and the
full width at 1/4, 1/2, and 3/4 height was the same
within 1, 0% for the three different cases considered.
Therefore, it is reasonable to conclude that in the in-
terval (0, /,,) the J summand in Eq. (3. 22) is relatively
independent of .J for this example, and so the sum over
J becomes the summand at an average J multiplied by
(lom+1%. The I, +1 is independent of E, and so does
not affect a calculated normalized E, distribution.

Now, to further show that the approximation made in
Eq. (3.17) is valid, we choose J relatively small, e.g.,
J=5, and then Eq. (3.16) is an exact convolution inte-
gral equation. The w”ss are now solved by the Laplace
transform method and the energy distribution is cal-
culated from Eq. (3. 22) for this small J [i.e., the sum
in Eq. (3.22) is evaluated over one J since the J sum-~
mand is insensitive to J|. When this calculation was
performed [i.e., when EL was neglected in Eq. (3.16)]
we found the peak height and width for this energy dis-
tribution differed by less than 1. 0% of that computed by
the other more rigorous method.

B. Numerical methods

The single integrals were calculated by Simpson’s
rule. The multiple integrals were evaluated by using
a tenth degree Gauss—Legendre quadrature formula,?®
Since the integrands were smoothly varying and not
oscillatory, the accuracy of all numerically evaluated
integrals were three decimal places, judging from con-
vergence on adding extra points. @) , @, and G’ (B)

3751 7
300}

— 2251

(-9
u
T

150t

075

000
0

225

Ep (keal/mole)

FIG. 4. A plot of the normalized energy distribution vs E,.
The solid line is phase space theory, and the dashed line is
loose transition state theory whenl>>j.
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FIG. 5. A plot of the normalized energy distribution vs E,.
The solid line is general tight transition state theory, and the
dashed line is tight transition state theory when I >>j,

inEq, (3.18) were evaluated by numerically Laplace
transforming the Whitten—Rabinovitch sum of states for
@'., the Whitten-Rabinovitch density of states for Q2!
and G 7(x) [defined in Eq. (3.15)], respectively, using

a Gauss-Laguerre quadrature formula.?*# The nu-
merical function Qfm/ 8Q,G”(8) was tabulated for vari-
ous values of 8 and fit to a polynomial series 3 ;C;/8
using a least squares criterion. Typically, eight or
nine terms in the series were used to obtain an ac-
curate fit over the range of interest for 8. w? was then
obtained by inverse Laplace transforming the series

fit ,C,/B term by term, analytically. To check the
accuracy of the solution 20 different values of E ~u
were chosen for every integral equation solved and the
left hand side of Eq. (3.16) (calculated by the Whitten—-
Rabinovitch approximation) was compared to the right
hand side of Eq. (3. 16) (calculated by a numerical quad-
rature) for each of the 20 E —u¥’s. The average error
from all checks was found to be less than 2, 0%,

TABLE I.
distributions,

General tight transition state energy

E, (kcal/mole)

P(E,) (kcal/mole)™

5.52 0.0
6.20 0.0005
6.82 0. 00980
7.44 0.0316
8.06 0.0645
8.67 0,0974
9.30 0.1227
9. 92 0.1403
10.5 0.1500
11.2 0.1508
11.8 0.1450
12.4 0.1333
13.6 0.1012
14.9 0,0675
16.1 0.0400
17.4 0, 0206
18.6 0, 0097
19.8 0.0038
21.1 0.0013
22.3 0.0003

3% 1 T

225 .
@‘ 150 .

o7s}- .

0005 75 B

Ep (kcal/mole)
FIG. 6. A plot of the normalized energy distribution vs E,.
The solid line is phase space theory, the dashed line is general
tight transition theory, and the dotted line is the experimental
result of Ref, 3.

C. The results

In Fig. 4 the results from phase space theory [i.e.,
Egs. (3.1)~(3.3) and (3.21) with wJ,,; =A(E, - B})]
are compared to the results of loose fransition state
theory when 7> j {i.e., Bq. (A1)). The analogous re-
sults for the tight transition state case are given in
Fig. 5 [i.e., Egs. (3.19) and (3. 22) for the general
case and Eqs. (Al) and (A5) for the I>>j case], and
some tabulation is given in Table I. In Fig. 6 the re-
sults from phase space theory and tight transition state
theory with full angular momentum restrictions are
compared with experiment. A decrease in the barrier
Ut in the exit channel by 1.4 kcal/mole for the > j case
in Fig. 5 roughly caused a shift of the entire curve to
the left, by 1.4 kcal/mole.

It is clear that the addition of exit channel dynamical
effects in the present form for methyl elimination re-
actions reduces the discrepancy between the statistical
and experimental distribution., Other more dynamical
theories may, of course, give somewhat similar results
but any theory should include some discussion of the
dynamical evolution of bending vibrations of the exit
channel transition state into other degrees of freedom
of the products, and may include the interactions of the
translational motion with the other internal degrees of
freedom in this exit channel. In contrast, all of these
interactions vanish when the exit channel transition
state is loose.
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APPENDIX A. LOOSE AND TIGHT TRANSITION
STATE THEORY WHEN / >

In this Appendix the results of previously derived
equations are listed for convenience.* They also follow
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from the general equations of Sec. III, as is shown be-
low by assuming 7> j,

The loose transition state distribution can be ob-
tained by assuming /> j for a phase space distribution
or by using RRKM theory with full angular momentum
restrictions, The result for the distribution is*

dO'Ep. JgnoE /dE,

E-E
-0, f
=0

where p; and p, refer to the individual vibrational-ro-
tational density of states of each of the product mole-
cules, Rigorously, p, and p, are sums of delta func-
tions centered at each energy level; however, a good
approximation is obtained by using the semiempirical
quantum mechanical relations of Whitten and Rabino-
vitch, The Jin Nﬁa can be taken to be an average J if
one wishes, since Nf,a is usually weakly dependent on
J. A(E,) is unity when I,,>I,, and equals (I,/l,,)? when
lm = ZOm'

ppl(u)pz(E—E,—u)A(Ep)du/Z Nia, (A1)

It is instructive to show that Eq. (Al) follows from
Eq. (3.22) when I>»j. From Egs. (3.1), (3.2), and
(8. 21) it is found that

d0g,, jpngE /dE,=0,F p,(E - E, — Eg)

xfjj“jz dj zk: [ @7+ 1)/13,"(2“: ~t, )_l

R S =

><h(l<—|J—j|)(l<"|J‘j|)], (42)

where w 3,5 = H(E, — B?) for a loose transition state, &
is defined by Eq. (3.5), the sum over J has been ex-
tended to J. =min{ly,, I, +j} without changing the value
of dog,, s n z/dE,, and the various other symbols were
defined in Sec. III. If it is assumed that /> j, then

J<g min{lm’ ZOM}’ IJ—] ng-j’ Z<EJ +j; and (l< - |J".7[)
= 27, Upon introducing these approximations into Eq.
(A2), integrating over j, and recalling that

iy
f 2jdj = 4j, 72,
PR

7
§(2J+ 1)/12, ; v %A(E,)/; ~t

(where the J in Nia is an average J) and

E-EP
f py (1) po(E — E, —w) du= 5147, j, 0,(E - E, ~ Eg)},

u=0

Eq. (A2) reduces to (A1), the desired result.

The distribution of translational energy for product
molecules that proceed through a tight exit channel
transition state is the same as Eq. (Al) except now
A,(E,) replaces A(E,), where!

2 .
A(E) =(1/13,) fz wi(E,-BYYar: (1,1,
J7a
N (A3)
1 m
:(l/lﬁm)f w? (B, =BV ?  (1,<lop)
7220

and where*

CHi o

w’(EP-B;)——l— f

721 Je

@} ./8Q expl A(E, - BN ap,

o', =[Nt Waexo(-prdr, Q=@ (a4)
0

@=[ pexp(-padr, Q=] pa(x)exp(~prdx.

QT,‘, defined in Eq., (A4) is the vibrational-rotational
partition function of all the active modes of the transi-
tion state, excluding the 2J +1 degeneracy which is ab-
sent from both sides of Eq. (3.3), and @ defined in Eq.
(A4) is the vibrational—rotational partition function of
all active modes of the product molecules.

If one assumes much cancellation in QTM/Q apart
from the rotation of the products that appear as low
frequency bending vibrations of the transition state,
Eq. (A4) can be evaluated. By treating these bending
vibrations classically we obtained the following from
Egs. (A3)and (A4)*:

AUE) =AY /64) (12720 (L, /lonP {1 = (1 =[Ipn/1, PP}
(lm >l(]m)’ (A 5)
AJE,) = (A1 /64) 12 /21 (L, /1o Ly <Ipm)-

The A and A* in Eq. (A5)are numerical constants which
depend on the structure of the transition state and of the
separated product molecules.

The distribution of final translational energy for the
product molecules having an exit channel tight transi-
tion state with !> j can be obtained by numerically
evaluating Eq. (A1) noting that A(E,) in Eq. (Al) is now
to be replaced by A,(E,) defined in Eq. (A5).

It is interesting to show that the tight transition with
1>-7 is a special case of the general tight fransition
state theory defined in Eq. (3.19). By comparing Eq.
(3.19) with (A4) we must establish the foliowing rela-
tion in order to show that Eq. (A4) follows from (3.19):

Q= gix?[exmeI,) QB G (B)]. (A6)
The exp(BEf,) results in Eq. (A6) since Qia inEq. (A4)
is different from Q7% in Eq. (3.18). The various sym-
bols in Eq. (A6) were defined in Sec. II. Applying the
convolution theorem to Eq. (A6) leads to

Q=8limexp(8E] ) £(1x67*p,),
>3
£(1) = I/Br

where £ means Laplace transformation and * denotes a
convolution. From Egs. (3.3), (3.16), and (A6) one
can show upon interchanging a j and ! integral as de-
scribed in Fig., 3 that

(A7)

E

@ =B8limexp(BE f;)i’aU
1»j

Ep=ﬂ

Jy+dy ' I¢ P
xf djh(l<—[J—jl)I wE, - Bhdl|, &8)
1=t 1,5 Isl J=41

N dE, 5 (p{E - E,—~ Eg) ]

where the various symbols are defined in Sec. III. By
interchanging the order of the limiting process and the
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Laplace transform we find le=J+j, |J—j1=J -4, A(l,
—\J-jn=1, B}, =s%/21* =E%, and therefore Eq. (A8)
becomes

Q=Bexp(ar2/2rh f

E-ut=0

L

B (E-uh

E
xd(E-u*)f *dE,p(E—E,)h(E,—Bf,), @A9)
Ep=u
since
P(E - E,) = 544, j» p.,(E - E, ~ Eg)]. (A10)

Evaluating the inner integral in Eq. (A9) gives

Q=pexpBE}) [ . expl-B(E-uM N(E~BY)d(E -uh)

E-u¥=0

=ﬁfm§ exp[-B(E BE)]N(E-Bt)d(E—BE):Q,
E-B;:o

(A11)
where

' E-Bt
N(E-B})= j-o p(x)dx,

Bt=E§+ut
and where N(y)=0 for y<O0 since p(y)=0 for y<0.
Therefore, tight transition state theory with I>>j as
defined in Eq. (A4) follows from general tight transition
state theory [Eq. (3.19)] when one assumes > j.

APPENDIX B. TIGHT TRANSITION STATE THEORY
FOR THE ENTRANCE CHANNEL

In this section equations are derived for dog,, ,0,,0,;/ dE,
when both exit and entrance channels proceed through
tight aetivated states., When the data become available
the results of this section should be directly applicable.
For simplicity the special case of [;> j, and I>j is only
considered.

The probability that a reacting pair prepared in state
(agfy 1o Ly E) reacts is given by

+d
e (27 + 1) ;

= —_— Bl
RO~ E e yreramy Rk T R

where w{OIO"OE is the probability that a pair of reactants
prepared in the state (a,j, 7yl JE) react to produce a
state of a given J and E. If one multiplies both sides of
Eq. (B1) by (27, +1), sums over I, from 0 to «, and,
finally, interchanges the order of the (J, I;) sum we find

'“'"0

DY

J=0 10=| J-Iol

[(27 +1)/(2j, +1)]

x w{o,o,,oE/%Z:; (@0 +1) wy 405 (B2)

From Eq. (B2) the distribution of total angular momen-

tum is found to be

J+dg »
(2J+1)
P, = —_—w 2l,+ 1) w .
O(J) 10=|J'-j0| (2]°+ 1) IOJO'IOE ?ﬂ] ( 0 lo fgngE
(B3)
By using the standard relation®
00 syng = (T/R2) 20 2o+ 1)1y, 40 m0x (B4)

1,=0

Eq. (B3) is written as

J+dg
Pyd)=[r/oy, , R3@ig+ 1] D

J
(2J+1)w,3,0,,0E .
L=t S =1gl

(B5)

The reaction probabilities in Eq. (B5) can be obtained
by using microcanonical transition state theory together
with the statistical adiabatic assumption, Since the de-
tails of the calculations are similar to those given in
Part I for the exit channel, we merely give the final re-
sults for I > j, [see for example the derivation of Egs.
(6.6)—(6.9) in Part I]:

J o of
WigsongE =W (Epo‘on)

1 ceio

e J;_N (Q%o/BQo)exD[B(E,—B‘{z)] g

(B6)

®

Q%hy= [ [an' o/ ax)expl - palax

&= fo Po(x) exp(— Bx) dx,

NLO is the number of quantum states in the entrance
channel activated complex for a given J, M, E, and

ag, and py(x) is the vibrational-rotational density of
states of the reactants., The other symbols are defined
in the glossary of notation.

To calculate energy distributions one combines Egs.
(B5) and (B6) with Eqs, (3.1), (3.19), and (3.21).

APPENDIX C. DERIVATION OF EQS. (3.16)-(3.17)

In this appendix we show that the error made in ob-
taining Eq, (3.16) [and hence (3.17)] from (3.14) is
negligible for the present system,

One multiplies both sides of Eq. (3.14) by exp[~8(E
- u*)] and, by integrating E — ' from 0 to o, finds

$ e R arp ot
tB)/B L unELd(E ut) expl- B(E ~u "]

E-u; E-u*-y
Xf dyp.,(y)f Zw ()G (E~u —y- 2).
¥=0 20

(C1)
The Q}_(8) in Eq. (C1) is defined in (3.18). By addition
and subtraction Eq. (C1) is written as (C2):
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o Ewuf

exp[~B(E - u ¥)] A(E -t f

2£=0

@ha(8)/8 =J'

E-u?=0
£¥

0 E-ut=0

£=0 ¢

Equation (3, 17) follows from (C2) by application of the
convolution theorem if the second integral on the right
hand side of Eq. (C2) is neglected.

To test this approximation we make some rough
analytical calculations of the first and second integral
in Eq. (C2) and show that the second integral is small
for the system of interest, namely, Eq. (1.5). The er-
ror analysis will be performed in such a way as to ob-
tain an upper bound on the error, It was found numeri-
cally that w”(2) and G’ (E - «} — y — 2) varied at least as
Cz% and Cy(E-ut -y 2%, respectively, where C, and
C, are constants. The p, in the first term on the right
hand side of Eq. (C2) is, on the average, greater than
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