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Abstract

We provide convergence guarantees in Wasser-

stein distance for a variety of variance-reduction

methods: SAGA Langevin diffusion, SVRG

Langevin diffusion and control-variate under-

damped Langevin diffusion. We analyze these

methods under a uniform set of assumptions on

the log-posterior distribution, assuming it to be

smooth, strongly convex and Hessian Lipschitz.

This is achieved by a new proof technique com-

bining ideas from finite-sum optimization and the

analysis of sampling methods. Our sharp theoreti-

cal bounds allow us to identify regimes of interest

where each method performs better than the oth-

ers. Our theory is verified with experiments on

real-world and synthetic datasets.

1. Introduction

One of the major themes in machine learning is the use of

stochasticity to obtain procedures that are computational-

ly efficient and statistically calibrated. There are two very

different ways in which this theme has played out—one fre-

quentist and one Bayesian. On the frequentist side, gradient-

based optimization procedures are widely used to obtain

point estimates and point predictions, and stochasticity is

used to bring down the computational cost by replacing ex-

pensive full-gradient computations with unbiased stochastic-

gradient computations. On the Bayesian side, posterior

distributions provide information about uncertainty in esti-

mates and predictions, and stochasticity is used to represent

those distributions in the form of Monte Carlo (MC) sam-

ples. Despite the different conceptual frameworks, there

are overlapping methodological issues. In particular, Monte

Carlo sampling must move from an out-of-equilibrium con-

figuration towards the posterior distribution and must do

so quickly, and thus optimization ideas are relevant. Fre-

quentist inference often involves sampling and resampling,
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so that efficient approaches to Monte Carlo sampling are

relevant.

Variance control has been a particularly interesting point of

contact between the two frameworks. In particular, there

is a subtlety in the use of stochastic gradients for optimiza-

tion: Although the per-iteration cost is significantly lower

by using stochastic gradients; extra variance is introduced

into the sampling procedure at every step so that the to-

tal number of iterations is required to be larger. A natural

question is whether there is a theoretically-sound way to

manage this tradeoff. This question has been answered affir-

matively in a seminal line of research (Schmidt et al., 2017;

Shalev-Shwartz & Zhang, 2013; Johnson & Zhang, 2013) on

variance-controlled stochastic optimization. Theoretically

these methods enjoy the best of the gradient and stochas-

tic gradient worlds—they converge at the fast rate of full

gradient methods while making use of cheaply-computed

stochastic gradients.

A parallel line of research has ensued on the Bayesian

side in a Monte Carlo sampling framework. In particu-

lar, stochastic-gradient Markov chain Monte Carlo (SG-

MCMC) algorithms have been proposed in which approxi-

mations to Langevin diffusions make use of stochastic gradi-

ents instead of full gradients (Welling & Teh, 2011). There

have been a number of theoretical results that establish mix-

ing time bounds for such Langevin-based sampling methods

when the posterior distribution is well behaved (Dalalyan,

2017a; Durmus & Moulines, 2017; Cheng & Bartlett, 2017;

Dalalyan & Karagulyan, 2017). Such results have set the

stage for the investigation of variance control within the SG-

MCMC framework (Dubey et al., 2016; Durmus et al., 2016;

Bierkens et al., 2016; Baker et al., 2017; Nagapetyan et al.,

2017; Chen et al., 2017). Currently, however, the results of

these investigations are inconclusive. (Dubey et al., 2016)

obtain mixing time guarantees for SAGA Langevin diffu-

sion and SVRG Langevin diffusion (two particular variance-

reduced sampling methods) under the strong assumption

that the log-posterior has the norm of its gradients uniform-

ly bounded by a constant. Another approach that has been

explored involves calculating the mode of the log posterior

to construct a control variate for the gradient estimate (Bak-

er et al., 2017; Nagapetyan et al., 2017), an approach that

makes rather different assumptions. Indeed, the experimen-

tal results from these two lines of work are contradictory,
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reflecting the differences in assumptions.

In this work we aim to provide a unified perspective on

variance control for SG-MCMC. Critically, we identify two

regimes: we show that when the target accuracy is smal-

l, variance-reduction methods are effective, but when the

target accuracy is not small (a low-fidelity estimate of the

posterior suffices), stochastic gradient Langevin diffusion

(SGLD) performs better. These results are obtained via new

theoretical techniques for studying stochastic gradient MC

algorithms with variance reduction. We improve upon the

techniques used to analyze Langevin Diffusion (LD) and

SGLD (Dalalyan, 2017a; Dalalyan & Karagulyan, 2017;

Durmus & Moulines, 2017) to establish non-asymptotic

rates of convergence (in Wasserstein distance) for variance-

reduced methods. We also apply control-variate techniques

to underdamped Langevin MCMC (Cheng et al., 2017),

a second-order diffusion process (CV-ULD). Inspired by

proof techniques for variance-reduction methods for stochas-

tic optimization, we design a Lyapunov function to track

the progress of convergence and we thereby obtain better

bounds on the convergence rate. We make the relative-

ly weak assumption that the log posteriors are Lipschitz

smooth, strongly convex and Hessian Lipschitz—a relax-

ation of the strong assumption that the gradient of the log

posteriors are globally bounded.

As an example of our results, we are able to show that when

using a variance-reduction method Õ(N +
√
d/ǫ) steps are

required to obtain an accuracy of ǫ, versus the Õ(d/ǫ2)
iterations required for SGLD, where d is the dimension of

the data and N is the total number of samples. As we will

argue, results of this kind support our convention that when

the target accuracy ǫ is small, variance-reduction methods

outperform SGLD.

Main Contributions. We provide sharp convergence

guarantees for a variety of variance-reduction methods—

SAGA-LD, SVRG-LD, and CV-ULD under the same set

of realistic assumptions (see Sec. 4). This is achieved by

a new proof technique that yields bounds on Wasserstein

distance. Our bounds allow us to identify windows of in-

terest where each method performs better than the others

(see Fig. 1). The theory is verified with experiments on

real-world datasets. We also test the effects of breaking the

central limit theorem using synthetic data, and find that in

this regime variance-reduced methods fare far better than

SGLD (see Sec. 5).

2. Preliminaries

Throughout the paper we aim to make inference on a vector

of parameters θ ∈ R
d. The resulting posterior density is

p(θ|z) ∝ p(θ)
∏N

i=1 p(zi|θ). For brevity we write fi(θ) =
− log(p(zi|θ)), for i ∈ {1, . . . , N}, f0(x) = − log(p(θ))
and f(θ) = − log(p(θ|z)). Moving forward we state all

results in terms of general sum-decomposable functions f
(see Assumption (A1)), however it is useful to keep the

above example in mind as the main motivating example. We

let ‖v‖2 denote the Euclidean norm, for a vector v ∈ R
d.

For a matrix A we let ‖A‖ denote its spectral norm and let

‖A‖F denote its Frobenius norm.

Assumptions on f : We make the following assumptions

about the potential function f : Rd 7→ R.

(A1) Sum-decomposable: The function f is decomposable,

f(x) =
∑N

i=1 fi(x).

(A2) Smoothness: The functions fi are twice continuously-

differentiable on R
d and have Lipschitz-continuous

gradients; that is, there exist positive constants M̃ > 0
such that for all x, y ∈ R

d and for all i ∈ {1, . . . , N}
we have, ‖∇fi(x) − ∇fi(y)‖2 ≤ M̃‖x − y‖2. We

accordingly characterize the smoothness of f with the

parameter M := NM̃ .

(A3) Strong Convexity: f is m-strongly convex; that is,

there exists a constant m > 0 such that for all x, y ∈
R

d, f(y) ≥ f(x)+ 〈∇f(x), y−x〉+ m
2 ‖x−y‖22. We

also define the condition number κ := M/m.

(A4) Hessian Lipschitz: The function f is Hessian Lips-

chitz, i.e., there exists a constant L > 0 such that,

‖∇2f(x)−∇2f(y)‖ ≤ L‖x−y‖2 for every x, y ∈ R
d.

It is worth noting that M,m and L can all scale with N .

Wasserstein Distance: We define the Wasserstein distance

between a pair of probability measures (µ, ν) as follows:

W 2
2 (µ, ν) := inf

ζ∈Γ(µ,ν)

∫

‖x− y‖22dζ(x, y),

where Γ(µ, ν) denotes the set of joint distributions such that

the first set of coordinates has marginal µ and the second

set has marginal ν. (See Appendix ?? for more details).

Langevin Diffusion: The classical overdamped Langevin

diffusion is based on the following Itô Stochastic Differen-

tial Equation (SDE):

dxt = −∇f(xt)dt+
√
2dBt, (1)

where xt ∈ R
d and Bt represents standard Brownian motion

(see, e.g., Mörters & Peres, 2010). It can be shown that

under mild conditions like exp(−f(x)) ∈ L1 (absolutely

integrable) the invariant distribution of Eq. (1) is given by

p∗(x) ∝ exp(−f(x)). This fact motivates the Langevin

MCMC algorithm where given access to full gradients it is

possible to efficiently simulate the discretization,

dx̃t = −∇f(xk)dt+
√
2dBt, (2)

where the gradient is evaluated at a fixed point xk (the

previous iterate in the chain) and the SDE (2) is integrated

up to time δ (the step size) to obtain

xk+1 = xk − δ∇f(xk) +
√
2δξk,
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with ξk ∼ N(0, Id×d). (Welling & Teh, 2011) proposed

an alternative algorithm—Stochastic Gradient Langevin D-

iffusion (SGLD)—for sampling from sum-decomposable

functions where the chain is updated by integrating the SDE:

dx̃t = −gkdt+
√
2dBt, (3)

and where gk = N
n

∑

i∈S ∇fi(xk) is an unbiased estimate

of the gradient at xk. The attractive property of this algo-

rithm is that it is computationally tractable for large datasets

(when N is large). At a high level the variance reduction

schemes studied in this paper replace the simple gradient es-

timate in Eq. (3) (and other variants of Langevin MC) with

more sophisticated unbiased estimates with lower variance.

3. Variance Reduction Techniques

In the seminal work of (Schmidt et al., 2017) and (John-

son & Zhang, 2013), it was observed that the variance of

the unbiased estimate of the gradient used in Stochastic

Gradient Descent (SGD) when applied to optimizing sum-

decomposable strongly convex functions decreases to zero

only if the step-size also decays at a suitable rate. This

prevents the algorithm from converging at a linear rate, as

opposed to methods like batch gradient descent that use the

entire gradient at each step. They introduced and analyzed

different gradient estimates with lower variance. Subse-

quently these methods were also adapted to Monte Carlo

sampling by (Dubey et al., 2016; Nagapetyan et al., 2017;

Baker et al., 2017). These methods use information from

previous iterates and are no longer Markovian. In this sec-

tion we describe several variants of these methods.

3.1. SAGA Langevin MC

We present a sampling algorithm based on SAGA of (De-

fazio et al., 2014) which was developed as a modification of

SAG by (Schmidt et al., 2017). In SAGA, presented as Al-

gorithm 1, an approximation of the gradient of each function

fi is stored as {gik}Ni=1 and is iteratively updated in order

to build an estimate with reduced variance. At each step of

the algorithm, if the function fi is selected in the mini-batch

S, then the value of the gradient approximation is updated

by setting gik+1 = ∇fi(xk). Otherwise the gradient of fi is

approximated by the previous value gik. Overall we obtain

the following unbiased estimate of the gradient:

gk =

n
∑

i=1

gik +
N

n

∑

i∈S

(∇fi(xk)− gik). (4)

In Algorithm 1 we form this gradient estimate and plug

it into the classic Langevin MCMC method driven by the

SDE (3). Computationally this algorithm is efficient; es-

sentially it enjoys the oracle query complexity (number of

calls to the gradient oracle per iteration) of methods like

Algorithm 1 SAGA Langevin MCMC

Input: Gradient oracles {∇fi(·)}Ni=0, step size δ, batch

size n, initial point x0 ∈ R
d.

Initialize {gi0 = ∇fi(x0)}Ni=1.

for k = 1, . . . , T do

Draw S ⊂ {0, . . . , N} : |S| = n uniformly with

replacement

Sample ξk ∼ N(0, Id×d)
Update gk using (4)

Update xk+1 ← xk − δgk +
√
2δξk.

Update {gik}Ni=1: for i ∈ S set gik+1 = ∇fi(xk), for

i ∈ Sc, set gik+1 = gik
end for

Output: Iterates {xk}Tk=1.

SGLD but due to the reduced variance of the gradient esti-

mator it converges almost as quickly (in terms of number

of iterations) to the posterior distribution as methods such

as Langevin MCMC that use the complete gradient at every

step. We prove a novel non-asymptotic convergence result

in Wasserstein distance for Algorithm 1 in the next section

that formalizes this intuition.

The principal downside of this method is its memory re-

quirement. It is necessary to store the gradient estimator for

each individual fi, which essentially means that in the worst

case the memory complexity scales as O(Nd). However

in many interesting applications, including some of those

considered in the experiments in Sec. 5, the memory costs

scale only as O(N) since each function fi depends on a

linear function in x and therefore the gradient∇fi is just a

re-weighting of the single data point zi.

3.2. SVRG Langevin MC

Next we explore an algorithm based on the SVRG method

of Johnson & Zhang (2013) which takes its roots in work

of Greensmith et al. (2004). The main idea behind SVRG

is to build an auxiliary sequence x̃ where the full gradient

is calculated and used as a reference in building a gradient

estimate: ∇fi(x) − ∇fi(x̃) + ∇f(x̃). This estimate is

unbiased under the uniform choice of i. While using this

gradient estimate to optimize sum-decomposable functions,

the variance is small when x and x̃ are close to the optimum

as ∇f(x̃) is small and ‖∇fi(x)−∇fi(x̃)‖ is of the order

‖x − x̃‖2. We expect a similar behavior in the case of

Monte Carlo sampling and we thus use this gradient estimate

in Algorithm 2. Observe that crucially—unlike SAGA-

based algorithms—this method does not require a gradient

estimate of all of the individual fi, so its memory cost scales

as O(d). Algorithm 2 uses the unbiased gradient estimate

gk = g̃ +
N

n

∑

i∈S

[∇fi(xk)−∇fi(x̃)] , (5)
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Algorithm 2 SVRG Langevin MCMC

Input: Gradient oracles {∇fi(·)}Ni=0, step size δ, epoch

length τ , batch size n, initial point x0 ∈ R
d.

Initialize x̃← x0, g̃ ←∑N
i=1∇fi(x0)

for k = 1, . . . , T do

if k mod τ = 0 then

Option I: Sample ℓ ∼ unif(0, 1, . . . , τ − 1) and

Update x̃← xk−ℓ

Update xk ← x̃
Option II: Update x̃← xk

g̃ ←∑N
i=1∇fi(xk)

end if

Draw S ⊂ {0, . . . , N} : |S| = n uniformly with

replacement

Sample ξk ∼ N(0, Id×d)
Update gk using (5)

Update xk+1 ← xk − δg +
√
2δξk.

end for

Output: Iterates {xk}Tk=1.

which uses a mini-batch of size n. The downside of this

algorithm compared to SAGA however is that every few

steps (an epoch) the full gradient, ∇f(x̃), needs to be cal-

culated at x̃. This results in the query complexity of each

epoch beingO(N). Also SVRG has an extra parameter that

needs to be set—its hyperparameters are the epoch length

(τ ), the step size (δ) and the batch size (n), as opposed

to just the step size and batch size for Algorithm 1 which

makes it harder to tune. It also turns out that in practice,

SVRG seems to be consistently outperformed by SAGA and

control-variate techniques for sampling which is observed

both in previous work and in our experiments.

3.3. Control Variates with Underdamped Langevin MC

Another approach is to use control variates (Ripley, 2009) to

reduce the variance of stochastic gradients. This technique

has also been previously explored both theoretically and

experimentally by (Baker et al., 2017) and (Nagapetyan

et al., 2017). Similar to SAGA and SVRG the idea is to

build an unbiased estimate of the gradient g(x) at a point x:

g(x) = ∇f(x̂) +
∑

i∈S

[∇fi(x)−∇fi(x̂)] ,

where the set S is the mini-batch and x̂ is a fixed point

that is called the centering value. Observe that taking an

expectation over the choice of the set S yields ∇f(x). A

good centering value x̂ would ensure that this estimate also

has low variance; a natural choice in this regard is the global

minima of f , x∗. A motivating example is the case of a

Gaussian random variable where the mean of the distribution

and x∗ coincide.

A conclusion of previous work that applies control variate

Algorithm 3 CV Underdamped Langevin MCMC

Input: Gradient oracles {∇fi(·)}Ni=0, step size δ, s-

moothness M , batch size n.

Set x∗ ∈ argminx∈Rd f(x).
Set (x0, v0)← (x∗, 0)
for k = 1, . . . , T do

Draw a set S ⊂ {0, . . . N} of size n u.a.r.

Update ∇f̃(xk) using (8)

Sample (xk+1, vk+1) ∼ Zk+1(xk, vk) defined in (??)

end for

Output: Iterates {xk}Tk=1.

techniques to stochastic gradient Langevin MCMC is the

following—the variance of the gradient estimates can be

lowered to be of the order of the discretization error. Mo-

tivated by this, we apply these techniques to underdamped

Langevin MCMC where the underlying continuous time dif-

fusion process is given by the following second-order SDE:

dvt = −γvtdt− u∇f(xt)dt+
√
2dBt, (6)

dxt = vtdt,

where (xt, vt) ∈ R
d, Bt represents the standard Browni-

an motion and γ and u are constants. At a high level the

advantage of using a second-order MCMC method like un-

derdamped Langevin MCMC (Chen et al., 2014), or related

methods like Hamiltonian Monte Carlo (see, e.g, Neal

et al., 2011; Girolami & Calderhead, 2011), is that the dis-

cretization error is lower compared to overdamped Langevin

MCMC. However when stochastic gradients are used (see

(Chen et al., 2014; Ma et al., 2015) for implementation),

this advantage can be lost as the variance of the gradient

estimates dominates the total error. We thus apply control

variate techniques to this second-order method. This re-

duces the variance of the gradient estimates to be of the

order of the discretization error and enables us to recover

faster rates of convergence. The discretization of SDE (6)

(which we can simulate efficiently) is

dṽt = −γṽtdt− u∇f̃(xk)dt+
√
2dBt, (7)

dx̃t = ṽtdt,

with initial conditions xk, vk (the previous iterate of the

Markov Chain) and ∇f̃(xk) is the estimate of the gradi-

ent at xk, defined in (8). We integrate (7) for time δ (the

step size) to get our next iterate of the chain—xk+1, vk+1

for some k ∈ {1, . . . , T}. This MCMC procedure was in-

troduced and analyzed by (Cheng et al., 2017) where they

obtain that given access to full gradient oracles the chain

converges in T = Õ(
√
d/ǫ) steps (without Assumption

(A4)) as opposed to standard Langevin diffusion which takes

T = Õ(d/ǫ) steps (with Assumption (A4)). With noisy

gradients (variance σ2d), however, the mixing time of un-

derdamped Langevin MCMC again degrades to Õ(σ2d/ǫ2).
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In Algorithm 3 we use control variates to reduce variance

and are able to provably recover the fast mixing time guaran-

tee (T = Õ(
√
d/ǫ)) in Theorem 4.3. Algorithm 3 requires

a pre-processing step of calculating the (approximate) min-

imum of f as opposed to Algorithm 1,2; however since

f is strongly convex this pre-processing cost (using say

SAGA for optimizing f with stochastic gradients) is small

compared to the computational cost of the other steps.

In Algorithm 3 the updates of the gradients are dictated by,

∇f̃(xk) = ∇f(x∗) +
N

n

∑

i∈S

[∇fi(xk)−∇fi(x∗)] . (8)

The random vector that we draw, Zk(xk, vk) ∈ R
2d, con-

ditioned on xk, vk, is a Gaussian vector with conditional

mean and variance that can be explicitly calculated in closed

form expression in terms of the algorithm parameters δ and

M . Its expression is presented in Appendix ??. Note that

Zk is a Gaussian vector and can be sampled in O(d) time.

4. Convergence results

In this section we provide convergence results of the al-

gorithms presented above, which improve upon the con-

vergence guarantees for SGLD. (Dalalyan & Karagulyan,

2017) show that for SGLD run for T iterations:

W2(p
(T ), p∗) ≤ exp (−δmT )W2(p

(0), p∗)

+
δLd

2m
+

11δM3/2
√
d

5m
+

σ
√
δd

2
√
m

, (9)

under assumptions (A2)-(A4) with access to stochastic gra-

dients with bounded variance – σ2d. The term involving

the variance – σ
√
δd/2

√
m dominates the others in many

interesting regimes. For sum-decomposable functions that

we are studying in this paper this is also the case as the vari-

ance of the gradient estimate usually scales linearly with N2.

Therefore the performance of SGLD sees a deterioration

when compared to the convergence guarantees of Langevin

Diffusion where σ = 0. To prove our convergence results

we follow the general framework established by (Dalalyan

& Karagulyan, 2017), with the noteworthy difference of

working with more sophisticated Lyapunov functions (for

Theorems 4.1 and 4.2) inspired by proof techniques in op-

timization theory. This contributes to strengthening the

connection between optimization and sampling methods

raised in previous work and may potentially be applied to

other sampling algorithms (we elaborate on these connec-

tions in more detail in Appendix ??). This comprehensive

proof technique also allows us to sharpen the convergence

guarantees obtained by (Dubey et al., 2016) on variance

reduction methods like SAGA and SVRG by allowing us

to present bounds in W2 and to drop the assumption on

requiring uniformly bounded gradients. In the theoretical

analysis that follows we assume that the algorithms use a

fixed step-size to simplify the statement of our results; simi-

lar results hold when we use a shrinking step-size. We now

present convergence guarantees for Algorithm 1.

Theorem 4.1. Let assumptions (A1)-(A4) hold. Let p(T ) be

the distribution of the iterate of Algorithm 1 after T steps.

If we set the step size to be δ < n
8MN and the batch size

n ≥ 9 then we have the guarantee:

W2(p
(T ), p∗) ≤ 5 exp

(

−mδ

4
T

)

W2(p
(0), p∗) +

2δLd

m

+
2δM3/2

√
d

m
+

24δM
√
dN√

mn
. (10)

For the sake of clarity, only results for small step-size δ are

presented however, it is worth noting that convergence guar-

antees hold for any δ ≤ 1
8M (see details in Appendix ??).

If we consider the regime where σ,M,L and m all scale

linearly with the number of samples N , then for SGLD the

dominating term is O(σ
√

δd/m). If the target accuracy is

ǫ, SGLD would require the step size to scale as O(ǫ2/d)
while for SAGA a step size of δ = O(ǫ/d) is sufficient. The

mixing time T for both methods is roughly proportional

to the inverse step-size; thus SAGA provably takes few-

er iterations while having almost the same computational

complexity per step as SGLD. Similar to the optimization

setting, theoretically SAGA Langevin diffusion recovers the

fast rate of Langevin diffusion while just using cheap gradi-

ent updates. Next we present our guarantees for Algorithm

2.

Theorem 4.2. Let assumptions (A1)-(A4) hold. Let p(T ) be

the distribution of the iterate of Algorithm 2 after T steps.

If we set δ < 1
8M , n ≥ 2, τ ≥ 8

mδ and run Option I then

for all T mod τ = 0 we have

W2(p
(T ), p∗) ≤ exp

(

−δmT

56

)

√
M√
m

W2(p
(0), p∗) +

2δLd

m

+
2δM3/2

√
d

m
+

64M3/2
√
δd

m
√
n

. (11)

If we set δ<
√
n

4τM and run Option II for T iterations then,

W2(p
(T ), p∗) ≤ exp

(

−δmT

4

)

W2(p
(0), p∗) +

√
2δLd

m

+
5δM3/2

√
d

m
+

9δMτ
√
d√

mn
. (12)

For Option I, if we study the same regime as before where

M,m and L are scaling linearly with N we find that the

discretization error is dominated by the term which is of

order O(
√

δNd/n). To achieve target accuracy of ǫ we

would need δ = O(ǫ2n/Nd). This is less impressive than

the guarantees of SAGA and essentially we only gain a
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constant factor as compared to the guarantees for SGLD.

This behavior may be explained as follows: at each epoch, a

constant decrease of the objective is needed in the classical

proof of SVRG when applied to optimization. When the

step-size is small, the epoch length is required to be large

that washes away the advantages of variance reduction.

For Option II, similar convergence guarantees as SAGA are

obtained, but worse by a factor of
√
n. In contrast to SAGA,

this result holds only for small step-size, with the constants

in Eq. (12) blowing up exponentially quickly for larger

step sizes (for more details see proof in Appendix ??). We

also find that experimentally SAGA routinely outperforms

SVRG both in terms of run-time and iteration complexity to

achieve a desired target accuracy. However, it is not clear

whether it is an artifact of our proof techniques that we could

not recover matching bounds as SAGA or if SVRG is less

suited to work with sampling methods. We now state our

results for the convergence guarantees of Algorithm 3.

Theorem 4.3. Let assumptions (A1)-(A3) hold. Let p(T ) be

the distribution of the iterate of Algorithm 3 after T steps s-

tarting with the initial distribution p(0)(x, v) = 1x=x∗ ·1v=0.

If we set the step size to be δ < 1/M and run Algorithm 3

then we have the guarantee that

W2(p
(T ), p∗) ≤ 4 exp

(

−mδT

2

)

W2(p
(0), p∗)

+
164δM2

√
d

m3/2
+

83M
√
d

m3/2
√
n
. (13)

We initialize the chain in Algorithm 3 with x∗, the global

minimizer of f as we already need to calculate it to build

the gradient estimate. Observe that Theorem 4.3 does not

guarantee the error drops to 0 when δ → 0 but is proportion-

al to the standard deviation of our gradient estimate. This

is in contrast to SAGA and SVRG based algorithms where

a more involved gradient estimate is used. The advantage

however of using this second order method is that we get to

a desired error level ǫ at a faster rate as the step size can be

chosen proportional to ǫ/
√
d, which is

√
d better than the

corresponding results of Theorem 4.1 and 4.2 and without

Assumption (A4) (Hessian Lipschitzness).

Note that by Lemma ?? we have the guarantee that

W2(p
(0), p∗) ≤ 2d/m; this motivates the choice of δ =

O
(

mǫ
√
m

M2
√
d

)

and, n = O
(

M2d
m3ǫ2

)

with T = Õ (1/(mδ))).

It is easy to check that under this choice of δ, n and T , The-

orem 4.3 guarantees that W2(p
(T ), p∗) ≤ ǫ. We note that

no attempt has been made to optimize the constants. To

interpret these results more carefully let us think of the case

when M,m both scale linearly with the number of samples

N . Here the number of steps T = Õ(
√

d/(ǫ2N)) and the

batch size is n = O(d/(Nǫ2)). If we compare it to previ-

ous results on control variate variance reduction techniques

applied to overdamped Langevin MCMC by (Baker et al.,

Table 1. Mixing time and (total) computational complexity com-

parison of Langevin sampling algorithms. All the entries are in

Big-O notation which hides constants and poly-logarithmic factors.

Note that the guarantees presented for ULD, SGULD, CV-LD and

CV-ULD are without the Hessian Lipschitz assumption, (A4).

ALGORITHM MIXING TIME COMPUTATION

LD κ2
√

d/(
√

Nǫ) κ2
√

dN/ǫ

ULD κ
5

2

√

d/(
√

Nǫ) κ
5

2

√

dN/ǫ

SGLD κ2d/(nǫ2) κ2d/ǫ2

SGULD κ2d/(nǫ2) κ2d/ǫ2

SAGA-LD κ
3

2

√

d/(nǫ) N+κ
3

2

√

d/ǫ
SVRG-LD (I) κ3d/(nǫ2) N+κ3d/ǫ2

SVRG-LD (II) κ
11

6

√

d/(N
2

3 ǫ) N+κ
5

3N
1

6

√

d/ǫ

CV-LD κ3d/(Nǫ2) N+κ6d2/(N2ǫ4)

CV-ULD κ
5

2

√

d/(
√

Nǫ) N+κ
11

2 d
3

2 /(N
3

2 ǫ3)

2017), the corresponding rates are T = Õ(d/(ǫ2N)) and

n = O(d/(Nǫ2)), essentially it is possible to get a quadrat-

ic improvement by using a second order method even in

the presence of noisy gradients. Note however that these

methods are not viable when the target accuracy ǫ is small

as the batch size n needs to grow as O(1/ǫ2).
Comparison of Methods. Here we compare the theoreti-

cal guarantees of Langevin MC (LD, Durmus & Moulines,

2016), Underdamped Langevin MC (ULD, Cheng et al.,

2017), SGLD (Dalalyan & Karagulyan, 2017), stochastic

gradient underdamped Langevin diffusion (SGULD, Cheng

et al., 2017), SAGA-LD (Algorithm 1), SVRG-LD (Algo-

rithm 2 with Option I and II), Control Variate Langevin

diffusion (CV-LD, Baker et al., 2017) and Control Variate

underdamped Langevin diffusion (CV-ULD, Algorithm 3).

We always consider the scenario where M,m and L are s-

caling linearly with N and where N ≫ d (tall-data regime).

We note that the memory cost of all these algorithms except

SAGA-LD isO(nd); for SAGA-LD the worst-case memory

cost scales as O(Nd). Next we compare the mixing time

(T ), i.e., the number of steps needed to provably have error

less than ǫ measured in W2 and the computational complex-

ity, which is the mixing time T times the query complexity

per iteration. In the comparison below we focus on the de-

pendence of the mixing time and computational complexity

on the dimension d, number of samples N , condition num-

ber κ, and the target accuracy ǫ. The mini-batch size has no

effect on the computational complexity of SGLD, SGULD

and SAGA-LD; while for SVRG-LD, CV-LD and CV-ULD

the mini-batch size is chosen to optimize the upper bound.

As illustrated in Fig. 1 we see qualitative differences in

behaviors of variance reduced algorithms compared to S-

GLD. To calculate higher order statistics or computing

confidence intervals for uncertainty quantification, it is im-

perative to calculate the posterior with high accuracy. In
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𝜀
SGLDLD

Runtime
SAGA-LD CV-LD

Figure 1. Different Regimes: The x-axis represents the target accu-

racy ǫ and the y-axis represents the predicted run-time T (number

of queries to the gradient oracle) of different algorithms.

the regime where the desired accuracy ǫ < O(
√

d/N),
total computation cost (runtime) of SGLD starts to grow

larger than O(N) at rate O(
√
d/ǫ2) whereas runtime of

variance reduced methods is lower. For SAGA-LD run-

time is O(N) up until when ǫ = O(
√
d/N) after which

it grows at a rate O(
√
d/ǫ). CV-ULD also has runtime

of O(N) up until the point where ǫ = O(
√
d/N5/6) af-

ter which it starts to grow as O(d3/2/(N3/2ǫ3)). When

O(
√
d/N5/6) ≤ ǫ < O(

√
d/
√
N) our bounds predict both

SAGA-LD and CV-ULD to have comparative performance

(O(N)) and in some scenarios one might outperform the

other. For higher accuracy our results predict SAGA-LD

performs better than CV-ULD. Note that Option II of SVRG

performs also well in this regime of small ǫ but not as well

as SAGA-LD or CV-ULD.

At the other end of the spectrum for most classical statistical

problems accuracy of ǫ = O(
√

d/N) is sufficient and less

than a single pass over the data is enough. In this regime

when ǫ > O(
√

d/N) and we are looking to find a crude

solution quickly, our bounds predict that SGLD is the fastest

method. Other variance reduction methods need at least a

single pass over the data to initialize.

Our sharp theoretical bounds allow us to classify and ac-

curately identify regimes where the different variance re-

duction algorithms are efficient; bridging the gap between

experimentally observed phenomenon and theoretical guar-

antees of previous works. Also noteworthy is that here we

compare the algorithms only in the tall-data regime which

grossly simplifies our results in Sec. 4, many other interest-

ing regimes could be considered, for example the fat-data

regime where d ≈ N , but we omit this discussion here.

5. Experiments

In this section we explore the performance of SG-MCMC

with variance reduction through experiments. As with most

inference tasks on large datasets, we aim to infer model

parameters for prediction. For this reason, the focus is in

our experiements is the reduction of bias in our predictions

through variance reduction algorithms. This is quantified by

the log probability of the held-out dataset under the trained

model. It is worth noting that this metric only reflects perfor-

mance of the mean estimate and does not fully characterize

the convergence of the distributions as our theoretical results

do. We compare SAGA-LD, SVRG-LD (with Option II),

CV-LD, CV-ULD with SGLD as the baseline method.

5.1. Bayesian Logistic Regression

We demonstrate results from sampling a Bayesian logistic

regression model. We consider an N × d design matrix

X comprised of N samples each with d covariates and

a binary response variable y ∈ {0, 1}N (Gelman et al.,

2004). If we denote the logistic link function by s(·), a

Bayesian logistic regression model of the binary response

with likelihood P (yi = 1) = s(βTXi) is obtained by

introducing regression coefficients β ∈ R
d with a Gaussian

prior β ∼ N (0, αI), where α = 1 in the experiments. We

make use of three datasets available at the UCI machine

learning repository describing various connections between

real valued attributes and categorical dependent variables.

We use part of the datasets to obtain a mean estimate of

the parameters and hold out the rest to test their likelihood

under the estimated models. Sizes of the datasets being used

in Bayesian estimation are 100, 600, and 1e5, respectively.

Performance is measured by the log probability of the held-

out dataset under the trained model. We first find the optimal

log held-out probability attainable by all the currently meth-

ods being tested. We then try to obtain levels of log held-out

probability increasingly closer to the optimal one with the

other methods. We record number of passes through data

that are required for each method to achieve the desired log

held-out probability (averaged over 30 trials) for compar-

ison in Fig. 2. The batch size is always n = 10, this is

to explore whether the overall computational cost for SG-

MCMC methods can grow sub-linearly with the overall size

of the dataset N . A grid search is performed for the optimal

hyperparameters in each algorithm, including an optimal

scheduling plan of decreasing stepsizes. For CV-LD, we

first use a stochastic gradient descent with SAGA variance

reduction method to find the approximate mode x∗; we then

calculate the full data gradient at x∗ and initialize here.

From the experiments, we recover the three regimes dis-

played in Fig. 1 with different data size N and accuracy

level with error ǫ. When N is large, SGLD performs best

for big ǫ (c.f. left of PIMA and SUSY). When N is small,

CV-LD/ULD is the fastest for relatively big ǫ (c.f. left of

Heart). When N and ǫ are both small so that many passes

through data are required, SAGA-LD is the most efficien-

t method (c.f. right of Heart and PIMA). It is also clear

from Fig. 2 that although CV-LD/ULD methods initially

converges fast, there is a non-decreasing error (with the

constant mini-batch size) even after the algorithm converges

(corresponding to the last term in Eq. (13)). Because CV-LD

and CV-ULD both converge fast and have the same non-

decreasing error, their performance curves overlap. Con-
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Figure 2. Number of passes through the datasets versus log held-out probability on test datasets.

vergence of SVRG-LD is slower than SAGA-LD, because

the control variable for the stochastic gradient is only updat-

ed every epoch. This attribute combined with the need to

compute the full gradient periodically makes it less efficient

and costlier than SAGA-LD. We also see that number of

passes through the dataset required for SG-MCMC methods

(with and without variance reduction) is decreasing with the

dataset size N . Close observation shows that although the

overall computational cost is not constant with growing N ,

it is sublinear.

5.2. Breaking CLT: Synthetic Log Normal Data

Many works using SG-MCMC assume that the data in the

mini-batches follow the central limit theorem (CLT) such

that the stochastic gradient noise is Gaussian. But as ex-

plained by (Bardenet et al., 2017), if the dataset follows a

long-tailed distribution, size of the mini-batch needed for

CLT to take effect may exceed that of the entire dataset. We

study the effects of breaking this CLT assumption on the

behavior of SGLD and its variance reduction variants.

We use synthetic data generated from a log normal distribu-

tion: fX(x) = 1/(xσ
√
2π) · exp(−(lnx−µ)2/(2σ2)) and

sample the parameters µ and σ according to the likelihood

p(x|µ, σ) = ∏N
i=1 fX(xi). It is worth noting that this target

distribution not only breaks the CLT for a wide range of

mini-batch sizes, but also violates assumptions (A2)-(A4).

To see whether each method can perform well when the

CLT assumption is violated, we still let mini-batch size to

be 10 and grid search for the optimal hyperparameters for

each method. We use mean squared error (MSE) as the

convergence criteria and take LD as the baseline method.

From the experimental results, we see that SGLD does not

converge to the target distribution. This is because most

of the mini-batches only contain data close to the mode

of the log normal distribution. Information about the tail

is hard to capture with stochastic gradient. It can be seen

that SAGA-LD and SVRG-LD are performing well because

history information is recorded in the gradient so that data in

the tail distribution is accounted for. Similar to the previous

experiments, CV-LD converges fastest at first, but retains
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Figure 3. Number of passes through the datasets versus log mean

square error (MSE).

a finite error. For LD, it converges to the same accuracy

as SAGA-LD and SVRG-LD after 104 number of passes

through data. The variance reduction methods which uses

long term memory may be especially suited to this scenario,

where data in the mini-batches violates the CLT assumption.

It is also worth noting that the computation complexity

for this problem is higher than our previous experiments.

Number of passes through the entire dataset is on the order

of 102 ∼ 103 to reach convergence even for SAGA-LD

and SVRG-LD. It would be interesting to see whether non-

uniform subsampling of the dataset (Schmidt et al., 2015)

can accelerate the convergence of SG-MCMC even more.

6. Conclusions

In this paper, we derived new theoretical results for variance-

reduced stochastic gradient MC. Our theory allows us to ac-

curately classify two major regimes. When a low-accuracy

solution is desired and less than one pass on the data is suf-

ficient, SGLD should be preferred. When high accuracy is

needed, variance-reduced methods are much more powerful.

There are a number of further directions worth pursuing.

It would be of interest to connect sampling with advances

in finite-sum optimization, specifically advances in accel-

erated gradient descent (Lin et al., 2015) or single-pass

methods (Lei & Jordan, 2017). Finally the development of a

theory of lower bounds for sampling would be an essential

counterpart to this work.
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