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ABSTRACT 

Earlier computations on the work of separation of boundaries with 

adsorbed solute atmospheres are reconsidered in terms of reversible work 

cycles. Special attention is given to two limiting cases. These are the 

separation of a material interface under fully equilibrated conditions, 

for which the chemical potential of the adsorbed solute remains constant, 

and separation under constrained conditions for which the surface excess 

solute concentration remains constant (i.e., the same on the two newly 

created free surfaces as present initially on the unstressed interface). 

The results are consistent with the limiting cases treated before and 

include the extension to more general cases of solute interactions, 

including multi-component systems. The work terms are conveniently repre­

sented on diagrams of chemical potential versus surface excess solute 

concentration. A general separation process is then represented as a 

path in this diagram which begins on the adsorption isotherm for the un­

stressed interface and ends on the adsorption isotherm for the pair of 

newly created surfaces. 
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1. Introduct ion 

There are a number of embrittlement phenomena, such as temper 

embrittlement and hydrogen embrittlement in which solute absorption 

at a grain boundary or other interface is thought to degrade its cohesion 

and lead to intergranular separation. A limiting case, tractable for 

thermodynamic analysis, occurs when the separation is ideally brittle 

and involves no plastic flow. The analysis is also applicable to the 

situation first considered by Thomson where plastic flow occurs but where 

dislocations screen the crack tip from the remote stress field and the 

local crack tip region separates as in the limiting case. 
2 Seah first considered the differences between two types of 

boundary separation as influenced by solute adsorption: (i) quasi-

equilibrium separation with the chemical potential of solute maintained 

uniform throughout the system and, (ii) "rapid" separation in such a 

manner that the excess amount of solute initially residing in the boundary 

remains attached to the created free surfaces with no solute exchange 

taking place with bulk phases. 
3 However, Rice presented an analysis of the work terms in the two 

2 limits for the grain boundary case which suggests that details of Seah's 

analysis require modification. In particular, the Rice analysis disagrees 

with Seah's conclusion that adsorption has no effect on the work of separa­

tion in the fixed composition (rapid) limit, although both agree that the 

effect of adsorption on the work in this limit is less than for separation 

at the fixed potential (slow) limit. The problem has also been considered 
4 5 3 

by Asaro and by Hirth , Asaro extending Rice's work to interphase inter­

faces and Hirth discussing a number of irreversible phenomena which can 
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cause deviations in work from that predicted for the limiting case. 

In this presentation, we first discuss various mechanisms of inter­

face separation, together with the appropriate variables giving the work 
3 term. Rice's analytical result, expressed in terms of Helmholtz free 

energies related to stress displacement variables for an interface separat­

ing uniformly, is given in terms of a reversible work cycle in chemical 

potential-composition space. An alternate reversible work cycle is then 

presented for surface energy area variables. Finally, the results are 

extended to several cases of interface separation other than the two pre­

viously treated. 

2. Modes of Separation 

There are various modes of separation of an interface, amenable to 

calculation of surface energies for a hypothetical reversible path, three 

of which are illustrated in Fig. 1. These produce different stress (or 

local force), displacement curves as shown in Fig. 2. However, the surface 

energy, equal to the integral of the stress displacement curve from an 

unstressed equilibrium separation 6 to infinity, is the same for all 

three paths (assuming that all three correspond to one of the limiting 

composition states discussed above).. Mode a in Fig. 1 corresponds to 

clamping the two bulk phases rigidly and separating the boundary region, 

the path used by Rice , Asaro , and, in an atomic calculation, by Zaremba . 

The initial slope of the o-6 curve for case a , determined for the 

anharmonic case by a weighted average of phonon frequencies , is larger 

than the elastic constant corresponding to the tensile extension of the 

bicrystal in case b .' For case c , a crack is supposed to propagate 
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reversibly along the boundary. A given atom pair being separated undergoes 

a stress-displacement excursion which differs from the other cases because 

of the varying compliance to the left and surrounding the crack tip, 

although initially it would coincide with case b . 

For reversible separation, the work performed by the external device 

applying the stress a equals the free energy change in creating the 

surface. In all cases the work term performed by the external device, 

i.e., the negative of the work done by the system, in this reversible 

separation is 

w = od6 . (1) 
o 

(For a crack, case c , this is the "energy release" & in extending the 

crack). 

3. Thermodynamic Relations for Systems with Boundaries 

Before considering the analysis of interfacial separation we review 

briefly the thermodynamics of systems having one or more planar boundaries. 

These may consist of grain or phase boundaries or of free surfaces. For 

reversible alterations of state of a system, the combined statement of the 

first and second laws is 

dU = TdS + dw , (2) 
rev 

where dw is the reversible work. This may be written, for example, in 

an isothermal system under uniform pressure P , capable of receiving matter _ 
In order to connect to the fracture mechanics concept of work done on the 
system appearing at least in part as surface energy, the sign of work terms 
are defined opposite to the conventional chemical thermodynamics usage. 
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dn. of all its k constituents (i=l,2,...,k) from appropriate matter 

reservoirs with chemical potentials (Gibbs free energy per mole) y. , 

and capable of changing areas dA (a=l,2,...,3) of its 3 interfaces 

under surface tensions Y , 
a 

dw = -PdV + p.dn. + v dA + dw (3) 
rev I I 'a a v 

where V is volume of the system and dw represents the work of any 

external devices on changes in the system not already accounted for by the 

terms listed. The alterations of boundary areas A that we shall 

consider will be such that a change in A will always be considered 

to take place by adding atom sites to a surface rather than by the elastic 

stretching of bonds at existing sites. In this case the distinction between 

the surface "tension" (i.e., surface stress) and the surface "energy" can 

be disregarded and the terms y are consistently interpreted as surface 

energies, which we shall henceforth call them. In the absence of device 

work 

dU = TdS - PdV + y.dn. + y dA . (4) 
l l a a 

The system as it exists in any hydrostatically pressurized equilibrium state 

of temperature T , pressure P , potentials y. of the constituents and 

surface energies y can be regarded as having been created by adding 

matter to a system of initially vanishingly small size, under conditions for 

which these intensive variables are held fixed, so that by integration 
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U = TS - PV + y.n. + y A (5) 
1 l a a ^ ' 

and differentiation now yields the Gibbs-Duhem relation 

0 = -SdT + VdP - n.dy. - A dy . (6) 
l l a a 

With the neglect of surface terms for the moment, with j phases 
present, Eq. (6) applies for each so that there are k+2 variables (the 
y. , P and T ) and j constraints, giving the phase rule $ -■ k-j+2 
where 31 is the variance of the system. With surface terms considered, 
6 added variables are present but Eq. (6) also applies (in terms of 
surface excess quantities) to each of the 3 interfaces so that the 
phase rule remains unchanged. 

The applications which we consider are to isothermal processes, and 
in terms of the Helmholtz free energy F = U - TS , 

dF = dw = -SdT - PdV + y.dn. + y dA + dw . (7) 
rev l l a a 

Thus dF represents isothermal reversible work dw and the device r rev 
reversible work dw can be equated to dF when V , n. and A are 
fixed. Other potentials for which changes can be equated to device work 
under appropriate conditions are the Gibbs free energy G = F + PV , and 
ft = F - y.n. , A = F + P V - y n . In terms of these 

i i 1 1 

dG = VdP - SdT + y.dn. + Y dA + dw (8) 
l l a a 
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dft = -PdV - SdT - n . d y . + Y dA + dw (9) 
1 l a a J 

dA = VdP - SdT - n . d y , + ( y . d n . - y, dn, ) + y dA + dw . 1 1 ^ l l Hl l-* a ct 

(10) 

The extensive quantities F , V , n. can be divided into bulk 
quantities and surface excess quantities (F) , (V) , (n.) associated 
with each of the 3 boundaries, or into the surface excess quantities 
[F] = f , [V] , [n.l = r. normalized to unit area of boundary. This L Ja a L Ja l l a la ' 

can be done in the Gibbs sense of the total extensive quantity minus its 
amount residing in hypothetical bulk phases that are uniform up to a 

Q 

mathematical dividing surface, or in the Guggenheim sense of excesses 
over the average bulk amount in a boundary zone of finite but small thick­
ness. 

For any particular boundary of surface energy y and area A , 
Eqs. (4,5,6) take the form 

d(F) = -Pd(V) - (S)dT + y.d(n.) + YdA (11) 

(F) = -P(V) + y i(m) + YA (12) 

0 =-(S).dT + (V)dP - (n.)dy. - AdY . (13) 

The last two equations show that 

f = -P[V] + yiri + Y (14) 
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and that 

dY = d(f+P[V]-y.T.) =-[S]dT + [V]dP - T.dy. . (15) 

For an isothermal system, we note that when the dividing surface can 

be chosen so that [V] = 0 , or when the term [V]dP can be disregarded 

(see below), this last expression becomes the Gibbs adsorption equation 

Y = Y* J T.dy. . (16) 
* x ! 

9 As noted by Cahn , however, Eq. (15) cannot be directly applied without 

taking into account the number of bulk phases and the phase rule. For 

example, with two components and two phases, two variables are fixed once 

the two free variables temperature T and y„ are fixed, so that under 

isothermal conditions Eq. (15) would assume the form 

dY = [V]OP/9y2)Tdy2 - 1^ (3y1/3y2)Tdy2 - r ^ . (17) 

9 This result is equivalent to Eq. (21) of Cahn and indicates that y1 and 

P are automatically fixed once T and y_ are fixed. Thus it is not 

meaningful, for example, to consider variations of Y with P for constant 

T and y_ . Hence, if the Gibbs adsorption equation is written as 

dY = -Tdy , where v-v7 , the precise meaning to be given to r must be 

consistent with the coefficient of dy_ in (17), at least if the surface 

is not to be regarded as being constrained from equilibrium with the adjoining 

bulk phases. 
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Also of interest are the surface excess free energies (G) = Ag , 

(ft) = Aw , (A) = AX , inter-related by 

g = f + P[V] = a) + P[V] + y.r. 

X + yjiy Y + ViTi . (18) 

We note that the potentials g , f , w , and X are dependent on choice 
7 9 * 

of dividing surface ' since r. and [V] are so dependent.* 

Equations (4-6) and (11-17) refer to alterations of equilibrium states 

brought about by variations of the quantities P , y. and T (with T 

fixed for eqs. (16) and (17)). In the following applications we are con­

cerned with processes involving device work to separate a grain boundary 

into a pair of free surfaces. Consider a closed system consisting initially 

of a solid containing a grain boundary and surrounding vapor, all within 

a chamber fitted with a piston to supply a pressure P . If the grain 

boundary is separated into free surfaces b.y device work under constant 

pressure P , in such a manner that y. remains uniform among all parts 

of the system which exchange mass with one another, 

dw = -PdV + dw (19) 
rey •* 

and 

AF = -PAV + w , or AG = AF + PAV = w . (20) 

Here the A's denote changes in state and w is the necessary device work. 

However, as shown subsequently, changes in these quantities can be identified 
with changes in thermodynamic state functions, and thus are unique. 
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But AG is independent of path and can equally be calculated by the 

reversible work of the surface energy terms in progressively diminishing 

grain boundary area A, and increasing free surface area A under. 

constant pressure, so that 

dw = ­PdV + Y dA + YidA, 
rev s s b b 

= ­PdV + (YS ­ Yb/2)dAs (21) 

since ■=­ A + A, = constant = A (the initial grain boundary area) Hence 

AF = -PAV + (2Y - Y j A ° r AG = AF + PAV = (2Y - Y J A , 
s b o s b o 

(22) 

so that for a unit area A the device work is 
o 

w = 2Yg ­ Yb • (23) 

This result applies directly for the one limiting case of fully equili­

brated separation at constant potentials. As shown in Section 5, it 

represents only one portion of the total device work associated with 

separation under constrained equilibrium conditions of no exchange of 

matter with bulk phases. 

In the application to the separation processes of Fig. 1, in order 

to avoid carrying the factor 2 throughout, we set Y = Yh
 a

°d 

r = r, for the initial boundary, whereas for the pair of free surfaces 

created by separation, y = 2Y and r = 2r where, as is conventional, 
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Y and r pertain to a single free surface. Moreover, we consider 

the above thermodynamic relations to apply for three classes of systems. 

One is the totally equilibrated system. A second is a constrained equi­

librium situation where the surface is constrained not to equilibrate 

with one or more of the bulk phases with which it is in contact.^As a 

physical example essentially corresponding to such a situation, we can 

imagine a gas (oxygen) equilibrated with a metal (copper) at low tempera­

ture where local equilibrium with the vapor is rapidly attained but where 

equilibrium with the bulk is a slow diffusion controlled process. The 

third situation is one where partial equilibration of a surface species 

has occurred so that its chemical potential is intermediate between an 

initial value and the value equilibrated with the bulk phase. This 

situation has been considered by Defay and Prigogine , who describe the 

departure of the chemical potentials from the equilibrated values in terms 

of so-called cross chemical potentials. In connection with these appli­

cations, there are obvious questions of relaxation times for degrees of 

equilibration which are beyond the scope of the present work. Some of 

these considerations as well as some irreversible effects, are presented 

elsewhere. 

4. Analysis in Terms of Stress-Separation Distance Variables 

Before applying the formalism of the last section, based on classical 

approaches to processes of surface creation in terms of surface energy-area 
3 variables, we digress to explain the formulation by Rice in terms of 

stress-separation distance variables. Rice treated the surface itself as 
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an independent thermodynamic system, decoupled from the adjoining bulk 
phases, and having a state characterized by T , the separation 6 
(as in Fig. la, with 6=6 corresponding to a coherent, unstressed grain 
interface and 6=°° to a pair of fully separates surfaces), and the 
surface concentration r of an adsorbed species, writing (for T constant) 
the Gibbs relation 

df = dw = od6 + ydr (24) 
rev v ' 

where a is the stress tending to open the interface and y is the 
equilibrating potential corresponding to r and the opening separation 6 

At first sight this approach is not obviously reconcilable with a 
theory based on rigorously defined surface excess quantities for a surface 
in equilibrium (full or constrained) with adjoining bulk phases. For 
example, in the initial and final states Eq. (24) reduces to df = ydr 
since a=0 , and this may be contrasted with Eq. (15) which shows that in 
general for either such state 

df = -Pd[V] + Ujdfj + ydr (25) 

(here u=v~ , T=r_ and a binary system, in which 1 denotes the major 
constituent of the bulk solid phases is being considered). Moreover, it 
cannot be expected that a dividing surface can be chosen so that r = 0 
and [V] = 0 , specifically both before and after separation. It is, however, 
possible to interpret Rice's formulation as corresponding to a choice of 
dividing surface for which ri = 0 , with neglect of the. -Pd[V] work term, 
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which is expected to be negligible in typical circumstances compared 

to the ad6 work term, since the cohesive strength will generally be very 

much greater than P . In fact, Rice's formulation tacitly assumed that 

P=0 , that is, that no stress acted on the interface before and after 

separation. We will show in the next section that the principal results 

of Rice's formulation can be duplicated exactly by reference to appropriate 

cycles analyzed in terms of surface energy-area variables. Nevertheless, 

this formulation, in which thermodynamic properties are ascribed to 

partially separated interfaces (6 < 6 < <*>) would seem to have great 

utility for discussing kinetic processes during actual separations, which 

will in general correspond to neither of the limiting cases that we treat. 

We consider the boundary separation process shown in Fig. 3a and 

represented in y,r space in Fig. 4. The system is imagined to be initially 

in complete equilibrium, A , (for which \i=\i and r=r ) and to be 
o o 

separated reversibly at constant T in one of two ways. One is path I 

(A to B, Fig. 3a), separation at constant y . The other is path III (A to 

C, Fig. 3a), separation in such a manner that the excess amount residing 

on the created unit areas of free surface equals the amount initially 

residing on the boundary, i.e., 

21^ = r£ = r . (26) 
s b o 

Schematically, the system is shown as blocked from access to a matter 

reservoir in Fig. 3 for path III, but open to it for path I. For path III, 

constrained equilibrium is assumed in which there is no exchange between 

surface and bulk phases but in which the solute is imagined to distribute 
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evenly between the two created surfaces and to equilibrate to a surface 
state which would be in equilibrium with a reduced chemical potential y„ 
In this case the y coordinate in Fig. 4 corresponds to y for the 
progressively separating interface, and this value of y differs from y 
in the bulk phase as noted in Fig. 3a. The arrows in Fig. 3a represent 
the reversible work ad6 performed by the external device in separating 
the interface. 

For path III the reversible work w is given by setting r=r 
(constant), and hence Eq. (24) integrates to 

fCO 

W = o(6,r )d6 = f(»,rj­f ( 6 ,r ) = 2f
C ­ f* (27) 

5 ° ° o o
y s b ' 

o 

Here the notations a(6,r) , f(6,r) indicate the dependence on state 
variables 6,r ; f(6 ,r ) = f? (the boundary free energy in state A); 

C 
f(°°,r ) = 2f (the free energy of the pair of free surfaces in state C). 
Since f = y + \iT , Eq. (18), when the P[V] terms are neglected, becomes 

w = 2Y^ ­ YJ ♦ rQ(yc­yo) . (28) 

3 
For path I, Rice introduced the Legendre transform to = f­yT (see 

Eq. 18), so that (24) becomes 

dw = d(f­yT) = od6 ­ Tdy . (.29) 
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Note further that because of the neglect of the P[V] term, W=Y and 

hence the reversible work w of separation with \i = \i (constant) is 

w = | o-(6,yQ)d6 = Y K U 0 ) - Y(6o,yQ) = 2Y® - Y£ (30) 
6 o 

where now the notations a(6,y) , Y(6,y) denote a dependence on the state 

variables 6 ,\i . 

Comparing this last result with Eq. (28), the differences in works 

for the two paths is 

w - w = 2Y|? - 2YJ - rQ(yc - yQ) 
fyc L T(y)dy - r (y -y ) 0 L O 

c [r(y)-rQ]dy 
0 0 
^B 

a [y(r)-yQ]dr . (31) 
o 

Here, in the second step we have used the Gibbs adsorption relation, 

Eq. (16), in the form dY = -Tdy , and have integrated by parts to put 
3 the final expression in the form given by Rice ; the term r stands for 

2r and r(y)[=2T (y)] denotes the adsorption isotherm for the pair of 

separated surfaces, whereas y(T) represents the same isotherm in inverted 

form. 

As remarked, Rice's formulation tacitly assumed that P=0 before 

and after separation. This is not consistent with the concept of a surface 

layer being in equilibrium with a bulk phase, say in the form of a vapor or 



-15-

other fluid adjoining a solid surface. The approach can be modified by 

defining a as the stress acting in addition to the pressure, so that 

o-P is the total tensile stress on the interface and writing 

df = dw = -Pd[V] + od6 + ydr (32) 
rev l J 

in place of Eq. (24). This mode of writing the reversible work expression 

envisions that a bulk fluid phase of pressure P may be assumed to fill the 

opening gap at some separation 6=&* before a has fallen to zero; [V]=6 

for 6 < 6* , so that the work expression is consistently (o-P)d[V] , 

but the work of P and o decouple once the bulk phase emerges in the gap. 

Equation (32) reduces exactly to (25) in the cases of the coherent grain 

boundary and fully separated surfaces, under pressure P , if the interface 

is chosen so that r =0 . Further, based on (32) as a starting point the 

foregoing analysis applies for separations at constant P , without approxi­

mations involving the neglect of the P[V] term, if f is replaced by 

g(=f+P[V]) in Eqs. (27) and (29) and w by <o+P[V] = Y in Eq. (29). 

Equations (28) and (30), and hence (31), are then exact. 

We observe now, and will apply in section 6, the observation that for 

isothermal processes consisting of the opening or rejoining of interfaces 

at constant P , possibly accompanied by adsorption or desorption, the 

reversible work term dw = dg[=d(f+P[V])] , which incorporates the 

-Pd[V] work term in the usual way for constant pressure systems, consists of 

the device work dw(=ad6) and the work ydr of matter addition: 

dw = dg = d(f+P[V]) = ad6 + ydr = dw + ydr . 
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Hence if we consider a process which separates the interface, the total 

reversible work Aw = Ag is independent of path (say, in 6,r space) 

and depends only on the initial and final states. But the separate terms 

Aw = /ad6 and /ydr are path dependent. That is, the work of separation, 

Aw , is not a state function in general but depends on the path followed 

during separation. It will prove convenient to represent these paths in 

y,r space as in Fig. 4 and Fig. 6, to follow. 

For any cycle which restores the initial state of the system 

0 dg = 0 , and hence Eq. (33) requires that 

r 
0 dw = ( 
J J 

r f 
) ad6 = - 0 

. 

5. Analysis in Terms of Surface Energy-Area Variables 

We show here that working within the classical framework of surface 

energy-area variables (section 3), for surfaces in equilibrium (full or 

constrained) with adjoining bulk phases, one can construct reversible work 

cycles which identically reproduce the results of Eqs. (28), (30) and (31). 

This provides an alternate derivation of Rice's results and provides a 

fuller understanding of essential assumptions in a more realistic setting 

than for the somewhat nonphysical example illustrated in Fig. 3a. The 

separation processes considered are shown in Figs. 3b to d, and the separated 

surfaces are always assumed to be equilibrated with the vapor phase. 

For the process in Fig. 3b, the surfaces are also equilibrated with the 

bulk phase. However, for processes in Fig. 3c and 3d, as for that of Fig. 3a, 

the surfaces are constrained not to equilibrate with the bulk solid phase. 
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For simplicity we treat the case where component 1 has essentially zero 

concentration in the vapor phase. A concrete example would be adsorption 

of oxygen on a separating copper interface. Then, fixing T and P , 

y and y_ are fixed by the phase rule. However, both paths I and III 

can be accomplished at constant P since transport of component 2 between 

vapor and surface does not change the vapor composition (or y_ ). Thus, 

the appropriate reversible work cycles at constant P and T can be per­

formed in terms of the familiar Gibbs free energy. [For the more general 

case where components 1 and 2 both appear in the fluid (vapor or liquid) 

phase, a reversible work calculation can still be performed in terms of 

the A function. In this case, P and T are again fixed, fixing y 

and y_ according to the phase rule. However, the system of Fig. 3 is 

attached by a membrane, semipermeable to component 1, to a matter reservoir 

at chemical potential y1 . Then transport of component 2 between surface 

and vapor can still be accomplished while maintaining constant y.. and 

y_ by means of more flow of component 1.] 

Separation at constant chemical potential is represented by the process 

in Fig. 3b. The process is isothermal and, since bulk equilibrium with the 

vapor phase is maintained, also occurs at constant pressure. The system is 

also closed so n. is constant and the appropriate reversible work term for 

this process is provided by AG as analyzed in Eqs. (19) to (23) and hence 

for unit area we have from Eq. (23): 

w = AG = 2Yg - 2Y^ . (35) 
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As illustrated in Fig. 3b, PdV work is performed by the weight 

sustaining the pressure P , but this work does not contribute to the 

reversible work which must be performed by the external device in the 

process. 

For process III, the actual separation is represented by the passage 

from steps A' to C in Fig. 3c. The bulk phase and interface are supposed 

to have been pre-equilibrated, A , at constant chemical potential . y 

but now to be initially in a "low temperature" environment, A' , of 

chemical potential y_ . Separation at constant pressure P then proceeds 

with external work performed as indicated by the arrows. For this process 

at constant P., T , and n. , the appropriate reversible work term is 

again G . However, AG cannot be calculated directly for this process in 

which there is a discontinuous change in chemical potential accompanying 

the rapid separation. Instead, since AG is path independent, the process 

A'-C in Fig. 3c can be replaced by the hypothetical reversible path in 

Fig. 3d with the sequence: (i) Compress the vapor from P_ to P . As 

shown by the arrow, device work is required to compress the system and can 

be envisioned as reversibly adding the small weight to the system as shown: 

as in the previous case, however, PdV work done by the initial large weight 

in the compression does not contribute to the needed device work. With 

n moles of vapor present and v (P) the molar volume of the vapor, the 

device work is 

nc 
P r o 

vdP = n_(y -y_) (36) 
p C o C 
C 

since dy = vdP . (ii) The boundary is removed, D , at constant chemical 
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potential y with work ~Y, . The number of moles in the vapor increases 
by r in this step. (iii) The vapor phase is expanded, E , to P_ with 
device work 

P 
(nC + V p

 vdP = ("C + V ^C - "o> ' (37) 

o 
C (iv) New surfaces are created at chemical potential yr with work 2Y 

Thus, the total reversible work is 

w = AG = Ag = 2YJ - Y £ + ro(.yc - U{)) • (38) 

Thus, the results for w and w are identical to Eqs. (28) and (30) 
Another perspective of the problem is presented in Fig. 5, where 

y and r for matter on the surfaces are given as in Fig. 4, but where an 
additional axis, the chemical potential in the vapor phase, y , is added. 
It is apparent that states A and A' differ with respect to reversible work. 
Since the net reversible work for the closed cycle is zero, the cycle in 
Fig. 5 shows that 

WI + WII ' WIII + WIV = w " w + WII + WIV = ° (39) 

or 

w - w = -Cw + wIV) . (40) 

The work for path IV is the expansion work of Eq. (36). The work in path II 
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is that of expanding from P to Pr with the moles in the vapor vary­

ing from n„ - An to n„ . But An is just the amount r-r , since 

the moles appearing on the surface as absorbate have disappeared from 

the vapor. Thus, 

-Cwn + wIV), = 
Po 

ncdy 
L o 

C [nc - (r-rQ)]dy . (41) 
y, 

Together, Eqs. (40) and (41) again give the result of Eq. (31). Note that 

the integral giving the difference in work terms w-w is represented by 

the simple cyclic integral 0 rdy in Fig. 4, despite the fact that the 
J 

actual cycle, Fig. 5, is more complex. 
2 We are now in a position to review Seah's analysis of separation at 

C A constant r . He correctly remarks that 2r = r, = r for such a process. 
J s b o r 

But he assumes that the appropriate device work term in this case is 
C A w = 2Y - Yh • Instead, the correct result, Eq. (28), differs from what 

Seah assumed by the term r (v~-v ) . Thus, Seah's evaluation of w is 
o C o 

equivalent to ignoring the r term in (28) or (31). In particular, his 

demonstration for the dilute concentration case that w is independent 

of r is not supported by the present analysis. The key differences with 

the work of Seah are revealed in Figs. 3c and 3d. While no VdP or rdy 

work is obvious in Fig. 3c, the reversible cycle of Fig. 3d shows that in 

addition to the surface work terms considered by Seah, the external device 

must perform VdP work in the "fast, low temperature" process. Alternatively, 

in terms of Fig. 5, if one simply computed the net reversible work for 

path II in Fig. 5, restoring the moles y„ back to the original state, 
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one would reproduce Seah's result. Only when path IV is included in the 
analysis is Eq. (31) obtained. 

For the closed cycle of (40), if one substitutes Eqs. (35), (38) and 
(41) for the various work terms, one obtains 

2Y - 2Y s s 
Mo 

T dy (42) 

in agreement with the Gibbs relation (16). The Gibbs adsorption relation 
(42) and the analogous relation for changes of y , can be combined with 

3 the previous expressions for w and w to give Rice's equations 

w = (w) r = 0 - j [2rs(y)-rb(y)]dy 
(43) 

w - (w) r = Q [yb(D-ys(r/2)]dr 
o 

wh ere ( w) r = 0
 = ^2y

s~yb^T=0 = ^2gs~gb^r=0 P e r t a i n s to separation in the 
absence of the solute, and where r = r (y) and r, = r, (y) , or 

s s b b J ' 
y = y (r ) and y = y, (I\ ) , represent adsorption isotherms for the free 

3 surface and unstressed grain boundary, respectively. Rice derived these 
equations as consequences of reciprocity relations based on Eq. (24). For 
example, the latter follows by writing (3a/3r). = (3y/36)r and integrating 
first from 6 (T) to » on 6 , and then from 0 to T on r . o 

In application of the expressions derived for w to practical cases 
of separation at fixed composition, it is well to remember that there is a 
tacit assumption of local equilibrium within the adsorbed layer during 
separation. This implies some atomic mobility over distances comparable to 
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the layer thickness, and such mobility requirements may not always be met for 

fracture on practical time scales. An unresolved question is, then, that of 

by how much the work of separation at a completely "frozen" composition differs 

from w . 

6. General Separation Paths and Work Cycles 

We have considered two special separation paths: constant r(w=w), and 

constant y (w=w) . More generally, and with reference to Fig. 6, we can 

regard separation as a transition from a state r ,y along the adsorption 

isotherm for the coherent, unstressed interface to a state T ,yp along the 

isotherm for free surface adsorption and can determine a general work term 

w . With the assumption that there is local equilibrium within the adsorbed 

layer during separation, the separation process can be represented as a path 

in r,y space as shown. 

The actual details of the path are governed by the kinetics of 

matter transport by diffusion to the separating interface. The details 

differ for the different modes of separation illustrated in Fig. 1, and 

in the crack case there is the possibility of transport from the surrounding 

environment. Nevertheless, stressing the grain boundary generally should 

tend to lower the potential there and induce a flow of matter to the 

separating interface. Hence, the typical case is dy < 0 and dr > 0 

during separation, as for the path OF shown in Fig. 6. 

We show here that our principal results can be obtained in a concise 

way by application of the cycle result of Eq. (34), which follows directly 
f f 

j 
from the expression for dg in Eq. (33) . Noting that (pydr = - (prdy for 

any cycle, Eq. (34) may be rewritten as 

dw = (Drdy . (44) 
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For example, application of this expression to the path OCBO in Fig. 6 
(i.e., separate at constant r (=r ) on OC , adsorb onto the free 
surfaces to restore y to y on CB , close the surfaces at constant 

o 
y (=y ), on BO ) leads to 

o 

0C 0B JQCBO 
/■y 

0 [F(y) - rjdy (45) 
p
c 

which gives Eq. (31), where r(y) [=2T (y)] is the equation of the 
adsorption isotherm CB . The integral is just the area OCBO , and 
hence w > w 

Let w be the work on path OF in Fig. 6. Then Eq. (44) shows 
that 

W
0C " W0F = 'P rdp 

OCFO 
(46) 

W
O F " W

O R
 = T1 rdvJ 

0F °
B T

0FBO 

Both integrals correspond to areas (the first to OCFO and the second to 
OFBO) in the y,r plane, and since these are both positive for locations 
of state F between B and C , we conclude that 

V
 > V > W

0B • (47) 

Thus the two limiting cases of separation at constant r and at constant u 

have works which bracket that in the typical process where dy < 0 and 

dr > 0 during separation. Further, the fact that the integrals in Eq. (46) 
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can be interpreted as areas shows clearly that w is necessarily path 

dependent, and not determined solely by the initial and final states. 

Finally, we observe that as y -*■ -<*> , r ­*■ 0 and I\ ­*■ 0 , i.e., 

both adsorption isotherms approach the y axis in this limit. In the 

limit without adsorption, 

w = w = (w)r=Q where (w)r=() = (2gs­gb)r=0 = (2Ys­Yb)r=Q . 

(48) 

Now consider the cycle consisting of separating the interface at y (OB 

in Fig. 6) with work w , desorbing the free surfaces along the isotherm 

to y = ­°° , rejoining the surfaces to a grain boundary at ' y = ­<*> , with 

work ­(w) , and adsorbing along the grain boundary isotherm to potential 

y . In this case Eq. (44) gives 

ry 
w ­ (w)r=Q = [2rs(y) ­ Tb(y)]dy (49) 

3 
which is Rice's equation for the effect of adsorption on the work of sepa­
ration at constant y , alternately re­derived here as Eq. (43). The comple­
mentary equation, for separation at constant r , is readily derived by 
consideration of a similar cycle that starts along OC and is 

w ­ (w)r=o = " [
V

r ) ~ ^ s(
r
/
2
)]

d r • (
5
°) 

o 
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7. Three-Component System 

In the temper embrittlement case there is evidence for coupled solute 

effects of a three-component type with two dilute solute concentrations. 

The preceding analysis can be extended to the three-component case as 

illustrated in Fig. 7. As shown there, it is now necessary to retain sub­

scripts to distinguish the dilute components 2 and 3. 

Proceeding as before, we find for step I, separation at constant 

chemical potential 

w = 2Y B (51) 

In order to compute the reversible work terms for step II, the process is 

separated into two stages, a change of y_ at constant y followed by 

a change of y at constant y_ giving 

Aw = w-w = -| (r2 - r 2) y dy2 <r3 " r3> C d»3 • 
^3 M3 

(52) 

From Eqs. (51) to (52), the result for the "rapid" separation stage I is then 

ry2 
w = 2Y S - Yb 0 F2 dv2 

(53) 

w + 
y-

0 (F2 " r 2 ) dp2 + 
»2 P3 

cv 
0 Cr3 " rS> C d»3 
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By analogy with the cases treated for the binary case in the preceding 

section, and with the above expressions as a guide, equivalent expressions 
4 can be developed for the three-component case. Indeed, Asaro has extended 

the Rice formulation to multi-component adsorption in a manner consistent 

with the above result. 

8. Summary 

A reversible work analysis in terms of surface energy-area variables 
3 reproduces Rice's result for the work of separation of interfaces at 

constant chemical potential of the components or at constant excess solute 

concentration at the interface. The work terms can be conveniently repre­

sented on graphs of solute potential versus concentration. In terms of 

these developments, one can express the work of separation for arbitrary 

paths of excess solute chemical potential versus excess solute concentration 

for binary or for multi-component systems. 

These results provide a basis for determining the work of separation 
4 from data on solute adsorption obtained either from experiment or by 

statistical thermodynamical prediction. The resulting alterations of the 

work of separation may be decisive for the question of brittle versus ductile 
3 response of a grain boundary , and should also be relevant to the kinetics 

of crack growth in cases of solute embrittlement, at least for cases in which 

the crack tip remains atomistically sharp, even if screened by dislocation 

fields . The extent to which the assumptions of the model apply to separation 

at low temperature remain to be explored quantitatively. For example, the 

relaxation time for local equilibrium to be attained on the surface in the 

"rapid" separation case is not known. 
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F i g u r e C a p t i o n s 

Fig. 1. Modes of boundary separation. 

Fig. 2 Stress-displacement curves corresponding to the processes of 

Fig. 1. 

Fig. 3 Schematic representation of system in states A, B, C and inter­

mediate states. For (A) the interface is imagined to have contact 

with (B) or to be blocked from (C) a matter reservoir. 

Fig. 4 Work cycle representation of boundary separation process in 

y-T space. 

Fig. 5 Work cycle representation of Fig. 4 with chemical potential 

of vapor coordinate added. 

Fig. 6 General separation path, from state 0 along adsorption isotherm 

for initial grain boundary to state F along adsorption isotherm 

for separated surfaces. 

Fig. 7 Work cycle for interface separation in three-component system. 
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Figure 2 
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Figure 5 
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Figure 7 


