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1. Introduction. Because of the difficulties inherent in the study of general mate-
rials with memory, there is a vast literature1 concerning mechanical models which
capture the essential interaction between dissipation and nonlinearity, but are suf-
ficiently simple to allow both the characterization of real materials and the mathe-
matical analysis of corresponding problems. In one space dimension, a large class of
models is based on single-integral laws of the form

rOO

a(t) = M(y(t))+ m(y{t), y(t - t) , r) dx, (1.1)
Jo

giving the stress a{t) at time t when the strain y(/I) is known at all past times
A < t.

While constitutive equations of single-integral type have also been proposed for
heat conduction, there is, to our knowledge, no general thermodynamical theory of
single-integral laws applicable to deforming bodies under varying temperature. Our
objective here is to develop such a theory.3

We consider a homogeneously deforming body under the influence of a spatially-
uniform temperature field.4 Then balance of energy takes the form5

e' = S ■ F' + r (1.2)
with e the internal energy, S the stress, F the deformation gradient, and r the heat
supply. To this list of functions we add the (absolute) temperature 6 and take, as
Received February 12, 1990.
'cf., e.g., [9] and the references cited therein.
2Cf., e.g., [1] and the references cited therein.
3 In this regard we are indebted to Coleman [2] for his general thermodynamical theory of materials with
fading memory. In fact, much of Coleman's theory applies to single-integral laws; however, because single-
integral laws have such restricted form, the corresponding set of thermodynamical restrictions is richer
than the set of restrictions originally derived by Coleman.
4Our results extend trivially to nonhomogeneous deformations; nonhomogeneous thermal fields are dis-
cussed at the end of the Introduction.
5There are many interpretations of the thermodynamic variables S and F that yield an energy balance
of the form (1.2). Usually S is the Piola-Kirchhoff stress (cf., e.g., [5] or [11]) and F the deformation
gradient, but any choice of these variables is admissible provided S ■ F' is the associated stress power.
For example, to model materials which exhibit nonlinear constitutive behavior at small strains, one might
identify S and F with the Cauchy stress and (infinitesimal) displacement gradient, respectively.
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constitutive equations for stress and internal energy, the single-integral laws
roo

S(0 = E(F(0, 6(t))+ / <j{F(t),e(t),F(t-T),6(t-T),T)dT, (1.3)
Jo

rOO

e(t) = E(F(t), 6(t)) + / e(F(t), d(t), F(/ - r), 6(t - r), r) dr.
Jo

Our main objective is to establish restrictions on these relations that are necessary
and sufficient for compatibility with the second law. For us, compatibility means the
existence of an entropy rj, in single-integral form

r OO

r1(t) = H(F(t),0(t))+ h(F(t),0(t),F(t-r),0(t-r),r)dr, (1.4)
Jo

such that the law of entropy growth

*>r/e (1.5)
holds in all processes. Here it is important to note that

we do not assume a priori that an entropy exists.

If we eliminate the heat supply between (1.2) and (1.5), we arrive at the inequality

e-SF'-dr]- <0, (1.6)

and are therefore led to the thermodynamical problem:
Problem (Tl). Find restrictions on the constitutive equations (1.3) that ensure the

existence of an entropy of the form (1.4) consistent with6 the inequality (1.6).
Suppose, for the moment, that we have an entropy (1.4) consistent with (1.6). If

we define a new variable co(t) through

u> = 6~le - r], (1-7)

then, by (1.3) and (1.4), co is given by a constitutive equation of single-integral form:
r OO

oj(t) = W(¥(t),0(t))+ w(F(t),0(t),F(t-T),0(t-T),T)dT. (1.8)
Jo

Further, because of (1.7) the inequality (1.6) reduces to

a)' — 0~'s • F' + 0~2e0' < 0. (1.9)

We will refer to co as a dissipation potential.
This new variable allows us to simplify the thermodynamical problem further. We

define f and g through

f=(F,0.), g = (0-1S, -0~2e). (1.10)

Then the constitutive equations (1.3) for stress and internal energy take the simple
f0rm r OO

g(t) = (f') = M(f(f)) + / m(f(/), f(t - t) , r)dr, (1.11)
Jo

6The term "consistent with" means: given an arbitrary prescription of F(f) and 6(t) for all t, the
corresponding functions S(f), e(t) , and rj(t), defined by (1.3) and (1.4), satisfy (1.6) for all t.
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where f' is the history of f up to time t defined by f'(r) = f(t - i), 0 < x < oo ,
and the inequality (1.9) reduces to the dissipation inequality

co<gf. (1.12)

Writing (1.8) in terms of the new independent variable f
roo

0)(t) = W(l(t))+ / w{f(t), f(t-x), x)dx,
Jo

it is then a simple matter to show that Problem (Tl) is equivalent to
Problem (T2). Find restrictions on the constitutive equation (1.11) that ensure the

existence of a dissipation potential of the form (1.13) consistent with the dissipation
inequality (1.12).

We will refer to the constitutive equations (1.3) (or equivalently (1.11)) as dissi-
pative if there is a corresponding dissipation potential.

The general framework afforded by Problem (T2) has an added attraction: by
leaving as unspecified the dimension n of the space R" in which f and g have
values, we have an abstract theory applicable to pure mechanics (cf. Gurtin and Hrusa
[7]), to electromagnetic interactions, and to other situations of physical interest.

We proceed as follows. We begin by discussing the properties of single-integral
laws. We then study dissipative single-integral laws within the general framework
of Problem (T2). In particular, we completely solve (T2) and, in so doing, give
explicit formulas for the functions w and W that describe the dissipation potential
(1.13) corresponding to a dissipative single-integral law. It should be emphasized
that we require the dissipation potential to be of single-integral form, and this leads
to restrictions on M and m that are stronger than one would obtain for an enlarged
class of dissipation potentials. Indeed, there are single-integral laws that do not satisfy
our restrictions but that do have dissipation potentials; of course, such dissipation
potentials cannot be expressed in single-integral form.

When f(i) is close to a given constant state fQ for -oo < t < t, the general
single-integral law (1.11) has the asymptotic form

roo

g(0=^(fo) + G(0)/(/)+ / G'(t)/(t - x)dx + oiW/'W ),
Jo

/(r) = f(r)-f0,

with the supremum norm of the history /'. The function G is the relax-
ation function for (corresponding to fQ). Some of our main results concern this
function. We show that if is dissipative, then:7

(a) G(r) is symmetric at each x > 0;
(b) G'(t) is negative semi-definite at each t>0;
(c) G"(t) is positive semi-definite at each r > 0.

7The results (a)-(c) are consequences of the particular structure of single-integral laws. In fact, it is
clear from counterexamples of Shu and Onat [10] and Day [4] that the result (b) does not follow within
Coleman's [2] framework. Coleman [3] (cf. also Gurtin and Herrera [6]) is able to show only that G(0)
and G(oo) are symmetric and the G(0) - G(oo) is positive semi-definite.
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8We next discuss the consequences of dissipativity for two particular types of
single-integral laws: those with noninteractive memory in which the kernel in (1.11)
has the form m(f, p, t) = m(f, t) - m(p, t) , and those with relative memory in
which m(f, p, t) = m(f- p, t) . We show that the dissipation potentials for such
materials admit explicit representations which are both simple and transparent.

We close by giving the implications of our general results within the specific ther-
modynamical framework of Problem (Tl). Within that framework there are four
relaxation functions of physical interest: the stress-strain relaxation function ^(t) ,
the stress-temperature relaxation function s/ (r), the energy-strain relaxation func-
tion &(t) , and the energy-temperature relaxation function c(x). If the underlying
constant state has temperature 90 and vanishing residual stress, then the general
results (a)-(c) have the following consequences:

(i) The stress-strain relaxation function is symmetric:

5?(t) = ^(t)T for all t > 0.

(ii) The stress-temperature and energy-strain relaxation functions are related by

j/(t) =-0o^(t) for all t > 0.

(iii) The following definiteness conditions hold for all t > 0, all tensors L, and
all scalars A:

L ■ + 2Ls/'{t) ■ L - < 0,

L ■ &"(t)L + 2Aj/"(t) • L - dJ\t)A2 > 0.
'0"

V
In the presence of thermal gradients balance of energy (1.2) and growth of entropy

(1.5) contain the additional terms -Divq and -Div(q/0), respectively, on their
right-hand sides, with q the heat flux vector, and the inequality (1.6) is replaced by

e'-S-F'- 6rj' + d~lq V6 < 0. (1.14)

In this situation, constitutive equations are needed for the stress, the energy, and
the heat flux. Suppose that the constitutive equations for stress and energy remain
unchanged, and adjoin a law of heat conduction giving the heat flux at each time
when the histories, up to that time, of the deformation gradient, temperature, and
temperature gradient are known:

q(0 =<f(F', 9', V0'). (1.15)

Assume further that (1.15) has the property:

q(/) = 0 whenV0(J) = O. (116)

Cf. the Remark in Sec. 6.
9Navarro [8], working within a linear framework, postulates single-integral laws consistent with (i), (ii),
and a strict version of the second inequality in (iii), and then notes that these yield compatibility with
the thermodynamic inequality (1.6). Interestingly, Navarro's version of the thermodynamic restrictions
(i)-(iii) are important ingredients in his study of existence, uniqueness, and asymptotic stability for linear
thermoviscoelasticity.
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Then, since the temperature gradient does not enter the constitutive equations for
stress and internal energy, it is clear, at least formally, that if we restrict the entropy to
the class defined by (1.4), then our original problem (Tl) remains a valid framework
in which to investigate the thermodynamic compatibility of the constitutive equations
(1.3) for stress and energy. But now there is an additional problem, namely that of
finding suitable restrictions on the constitutive equation (1.15) for the heat flux. This
problem is beyond the scope of the present paper; we remark, however, that when
(1.15) has the simple form

q(O = Q(F(O,0(O,V0(O), (1.17)
then this supplementary problem is solved by requiring that Q be consistent with
the heat conduction inequality

Q(F, 9, V<9) • V0 < 0.
In a future paper we will discuss global existence of classical solutions for the

history-value problem in one space dimension corresponding to: balance laws for
momentum and energy; dissipative constitutive equations of the form (1.3); a law of
heat conduction of the form (1.17).

A. General theory of single-integral laws.
2. Notation. Preliminary definitions. Throughout, n is a fixed positive integer and

^ is a simply-connected open subset of R".
Given a function g: % —> Rp , we write

dg(z) or <9zg(z) or dzg

for the derivative of g at z e ^. <9g(z) is a linear transformation from R" into
Rp ; as is customary, when p = 1 we will identify <9g(z) with an element of R" .

For functions g(z,, z2, z}, ... , zR) of many scalar or vector arguments, we write
gr(z,, z2, z3, ... , zR) for the partial derivative with respect to zr:

§r(zl ' z2 ' Z3 ' ' ' ' ' ZR) = dz 8(zi > z2 ' Z3 ' '' ' ' ZR)*

When g(/) is a function of time t, we write

*<o -
Let f: R —► Rp . Then the history of f up to time t is the function f' on [0, oo)

defined by
f'(r) = f(t - r), 0 < r < oo.

A tame history (with values in f/) is a function in C'([0, oo); ^) whose range and
whose derivative's range are contained in a compact set ^ c ^. A path (in H/) is a
C1 function f: R —► % with f' a tame history for each time t; that is, each / e R.

The integral equations of interest will have kernels m(f, p, r) that depend on a
time-like variable t 6 (0, oo); we will consistently use a prime to denote partial
dilferentiation with respect to r:

m'(f, p, t) = <9Tm(f, p, t) = m3(f, p, r).
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2The kernels will generally be smooth functions m(f, p, t) on % x (0, oo) subject
to certain restrictions regarding their integrability in t . Roughly speaking, for f, p
in any compact subset of % , m(f, p, r) will be dominated by an L1 function /(t) ,
m'(f, p, t) by a function /(t) with

/ e l\p, oo) forall/>>0,
(2.1)r OO

p l(x)dz^0 as/? —>0,
J D

so that m'(f, p, r) will be allowed to possess a nonintegrable singularity at t = 0.
To state these restrictions succinctly, we introduce the following terminology. Let

m: x (0, oo) —► . Then
(A) m is locally dominated if, given any compact set ?c there is a function

/ €L'(0,oo) such that
|m(f, p, r)| </(t)

for all f, p € W and r > 0 .
(B) m is weakly locally dominated if, given any compact set ^ c ^, there is a

function / on (0, oo), consistent with (2.1), such that

|m(f, p, r)| < /(t)

for all f, p, G ̂  and r > 0.
(C) m is an admissible kernel if m is continuous and weakly locally dominated,

and if the limit
r OO

/ m(f(f), f(t - t) , r)dr
J o+

exists for every path f and time t. Here we use the notation

J0+ pl° Jp
(D) m is balanced if

m(f, f, t) = 0 (2.2)
for all f e % and r > 0 .

Note that, for m of class C1 on x (0, oo): if m and m' are weakly locally
dominated, then

m(f, p,T)—>0 as x —► oo (2.3)

uniformly for (f, p) in compact sets of ; if m is balanced, then, for all f e ^
and t > 0,

mj(f, f, t) = -m2(f, f, r). (2.4)

3. Single-integral laws. In this paper we study constitutive equations

g(t)=Jt(t'), (3.1)

giving the value at each time t of an (l^-valued) thermodynamic variable g when
the path f is known. Here J? is an M^-valued function on the set of tame histories.
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We will refer to (3.1), or equivalently to itself, as an Revalued single-integral
law if there are functions

M eC\&;Rp), me c2(^2 x (0, oo); Rp)

with

such that10

m balanced, m, mt, m2 locally dominated,

m', m'2 weakly locally dominated,

r oo

(f') = M(f(0) + / m(f(0, f(r — r), x)dx (3.2)
Jo

for all paths f and times t. We call M the equilibrium response function, m the
kernel, and (M, m) the response pair for . For convenience, we will omit the
phrase " Revalued" when the particular value of the integer p is unimportant or
obvious from the context.

The next proposition, which is a trivial consequence of Lemma A3, shows one
reason for balancing the kernel.

Proposition 1. The response pair of a single-integral law is unique.

Let Af, with response pair (M, m), be a single-integral law. Then ZX# defined
on the set of tame histories by

r OO

= dM(f(f)) + / m. (f(f), f(/ - r), t) dx
Jo (3.3)

represents the derivative of with respect to the "present value" f(/) holding the
"past history" f(? - t) , r > 0, fixed; we will refer to ZX# as the instantaneous
derivative of . We can also define a (functional) derivative with respect to the
past history f(t - t) , t > 0. We will need this derivative only as it pertains to time
differentiation along a path, and for that reason we introduce the functional
defined by

r OO

')=/ m2{f(t),i{t-T),T)f{t-T)dx, (3.4)
./o

where f'(t-r) is the derivative of f evaluated at t-x . As an immediate consequence
of these definitions we have

Proposition 2 (chain rule). Let JK, with response pair (M, m), be a single-integral
law. Let f be a path and let g be defined on R through (3.1). Then g is differentiate
and

g(t) = D^(f')f(t) + S^(f') (3.5)
for all time t.

The next result is crucial to our analysis.
10 2The assumption that m(f, p, t) be f for t > 0 is made to avoid repeated hypotheses. From a
physical viewpoint regularity away from r = 0 is of small importance. In this connection note that m is
not required to be continuous at t = 0; our definition allows for kernels with integrable singularities at
t = 0.
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Theorem 1. Let , with kernel m, be a single-integral law. Then m' is an admis-
sible kernel and /* oo

3Jt{f')= m'{f(t),f{t-x),x)dx (3.6)
J0+

for all paths f and times t.
Proof. Choose a path f and a time t. Then, by (3.4),

r OO

<L#(f') = / 4>{x)dx,
Jo

with

0(t) = m2(f(0, f(t - i), r)f'(* - t)

= m'(f(r), f{t - t) , t) - , f(Z - t) , r).

Moreover, by (2.3),
/OO -J r oo^m(f(?), fit - x) , t) dx = J m'(f(t) ,f(t - p), x)dx,

so that
rp r OO /*OC

<5^#(f')= / <(>(x)dx- m'(f(t), f(t-p), x)dx+ m (f(t), f(t-x), x) dx. (3.7)
70 Jp Jp

Since is locally dominated and f a C1 function, the first integral on the right
side of (3.7) approaches zero as p | 0. Further, for all sufficiently small p > 0, say
p € (0, pQ), f(/ - p) lies in a closed ball ^ in ^ centered at f(<). Thus, since m'
is balanced (as m is balanced) and m, weakly locally dominated, there is a function
/, consistent with (2.1), such that

lm'(f(0, f(t - p), t)| < l(x)\f(t - p) - f(/)| for 0 < p < pQ and x > 0.

Consequently, as f is C1 , the second integral on the right side of (3.7) also ap-
proaches zero as p j 0. Thus the third integral on the right side of (3.7) has a limit
as p | 0, and (3.6) is valid. □

Lemma 1. Let W, with kernel w , be a scalar-valued single-integral law. Then a
necessary and sufficient condition that

aar(f') < o (3.8)
for all paths f and times t is that

w < 0. (3.9)

Granted (3.9),
w>0\ wl,w2,w[,w 2 are balanced; (3.10)

and
p i—* vo(f, p, t) has a minimum at p = f, (3 11)
p w'(f, p, t) has a maximum at p = f,

for all f e % and x > 0 .
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Proof. Sufficiency is an immediate consequence of (3.6). To prove necessity, as-
sume that (3.8) holds for all paths. Then, since w and (hence) w' is balanced,
Theorem 1 and steps analogous to those used to prove Lemma A2 yield (3.9).

Assume (3.9) holds. Integrating this inequality from r to oo using (2.3) yields
w > 0. Since w and w' are balanced, this inequality and (3.9) yield (3.11). Finally,
(2.4) (for w and w') and (3.11) imply that w{, w2, w[, and w'2 are balanced. □

4. Dissipative single-integral laws. Consider the R"-valued11 single-integral law

g(r) = ̂ r(f'). (4.i)
By a dissipation potential for we mean a scalar-valued single-integral law W with
the following property: given any path f, the functions g and w on 1 defined by
(4.1) and

co(t) = ar(f') (4.2)
satisfy the dissipation inequality

co'< g f'. (4.3)
If has a dissipation potential, we will call dissipative.

Theorem 2. Let and W be single-integral laws with J? R"-valued and W
12scalar-valued. Then the following are equivalent:

(a) W is a dissipation potential for J? ;
(b) for every path f and time t,

= DW{f'), SW{ f')<0; (4.4)

(c) the response pairs (M, m) and (W, w) for J? and W satisfy

M = d W, m = wx, w < 0. (4.5)

Proof. By (4.1), (4.2), (4.3), and the chain-rule (3.5) (for W), (a) holds if and
only if

{DW (f') - f')} ■ f(t) + 6W( f') < 0 (4.6)
for every path f and time t. Trivially, (4.4) implies (4.6). On the other hand,
assume that (4.6) holds. Choose a path f and a time t. If we apply (4.6) to the
sequence {fn} of Lemma A4, and let n —* oo , we find, using (3.3) (for J? and W)
and (3.4) (for W) in conjunction with the properties of the kernels m and w , that
(4.6) holds with f (t) replaced by an arbitrary vector ael"; this implies (4.4). Thus
(a) and (b) are equivalent.

Assume that (b) is satisfied. Because of Lemma 1, (4.4) implies (4.5)3. Thus
(3.10) holds and wl is balanced. Since m is also balanced, (4.4), (3.2), (3.3) applied
to W, and Lemma A3 yield the remainder of (4.5). Thus (b) implies (c). The
converse is obvious, since (4.5), (3.3) applied to W, and Lemma 1 imply (4.4). □

We are now in a position to give conditions which ensure that a single-integral law
be dissipative.

1'it is essential that J! be R"-valued, so that m(t) and f(r) belong to the same space.
12The equivalence of (a) and (b) is due to Coleman [2],
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Theorem 3 (existence of a dissipation potential). Let , with response pair
(M, m), be an R"-valued single-integral law. Then a necessary and sufficient condi-
tion that be dissipative is that

<9M and m, are symmetric (4.7)

and, for all f, pe^ and i > 0,

fj pf m'(a, p, t) • da < 0 (4.8)

((4.7) insures path-independence of the integral). Granted (4.7) and (4.8), the
dissipation potential W for is unique up to an additive constant; in fact, the
kernel w for W is (unique and) given by

U p, t) = f
J n

w(f, p, t) = / m(a, p, t) • da (4.9)
p

for all f, p € % and t > 0; the equilibrium response function W for W is any
solution of d W = M .

Proof. Let W, with response pair (W, w), be a dissipation potential for .£ .
Then (4.5) holds and (4.7) is satisfied. Further, by (4.5)2 and the fact that w is
balanced, w and m are related through (4.9). Thus

w'(f, p, t) = f m'(a, p, t) • da (4.10)
J p

for all f, pe^ and T>0,and (4.5)3 implies (4.8).
Conversely, assume that (4.7) and (4.8) are satisfied. Define w on % x (0, oo)

through (4.9), and let W be any solution of dW = M ((4.7) ensures that w and
W are well defined, although W is obviously not unique). Then w is balanced. In
fact, it is not difficult to verify that {W, w) is the response pair of a single-integral
law W. Trivially, the first two relations in (4.5) are satisfied. Further, (4.9) implies
(4.10), and, in view of (4.8), this implies (4.5)3. Thus W is a dissipation potential
for .

The last assertion of the theorem is immediate. □
In view of (3.3) and (4.7), Theorem 3 has the following

Corollary. Let be a dissipative Revalued single-integral law. Then, for every
path f and time t,

F') is symmetric. (4.11)

5. Convexity and symmetry of the relaxation function. Of crucial importance is the
behavior of an Revalued single-integral law

g(t)=Jt(f') (5.1)

when the path f is close to a given point f0 of ^. Here the term "close" is in the
sense of the supremum norm || ■ , so that

Hf'~foHoo is SmalL (5-2)
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(We use the symbol f0 both for the point of ^ and for the constant history with
value f0.)

Let (M, m) denote the response pair for JK . Then the Frechet derivative of
at fQ is the linear functional defined by

rOOroc

DJT( f0)h(0)+/ m2(f0,f0,r)h(T)rfT
Jo

for every tame history h. We define a function G, with domain [0, oo) and
codomain the space of linear transformations from R" into itself, through

G'(T) = m2(f0,f0> t), G(0) = Z)..#(f0). (5.3)

Then, letting /(t) denote the perturbation

/(t) = f(t)-f0,

the relation (5.1) has the asymptotic form
roc

g(f) = J? (f0) + G(0)/ (t) + / G'(T)/(t-T)dT + o(\\/'\\J. (5.4)
Jo

We will refer to G as the relaxation function for (corresponding to f0).

Theorem 4 (properties of the relaxation function). Let G be the relaxation function
for an Revalued single-integral law df with C3 kernel. If J( is dissipative, then

(a) G(t) is symmetric at each t > 0;
(b) G'(t) is negative semi-definite at each x > 0;
(c) G"(t) is positive semi-definite at each r > 0.

Proof. By (4.7) and (2.4), m2(f0, f0, t) is symmetric, and (a) follows from (4.11)
and (5.3). Let w be the kernel of a dissipation potential for Jf. Then (4.9) and
the assumed smoothness of m imply that w is C3. Since w satisfies (3.11),

w7Jfn, fn, t) is positive semi-definite,
7 (5.5)

w22(f0, f0, t) is negative semi-definite.

Further, since w2 is balanced, (2.4) (for w2) and (4.5)2 imply that

*^2(f0 ' ^0 ' — ̂ 12^0 ' ^0 ' ^ = — ̂22^0 ' ^0 ' '

in view of (5.3) and (5.5), this yields (b) and (c). □
Note that, by (2.4) and (5.3),

G(oo) = <9M(f0),

and so G is generally not integrable on (0, 00). Note also that, by (b), G(0) -G(oo)
is positive semi-definite.

6. Noninteractive memory. Relative memory. An important class of single-integral
laws are those for which instantaneous changes are independent of the past history.
Precisely, a single-integral law J? has noninteractive memory if, given any two paths
f, g and any time t,

f(0 = 8(0 implies £t#(f') - Zt#(g'). (6.1)
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The following definition helps to describe such laws. Let m: f/1 x (0, oo) -+ Rp
?be C and balanced. Then m splits if m,2(f, p, t) = 0 for all f, p e ^ and x > 0.

In view of (2.2) (and the connectivity properties of W xf/), each such m admits
the representation

m(f, p, r) = m(f, t)-m(p, t); (6.2)
to ensure that m be uniquely determined by m, we require the normalization

m(f0,r) = 0 (6.3)

for all t > 0, where f0 is a prescribed point of %. When m is the kernel of a
single-integral law, we will call m the essential kernel of J? .

Proposition 3. A single-integral law has noninteractive memory if and only if its
kernel splits.

Proof. Let J? have noninteractive memory. If we apply (6.1) to an arbitrary
path f and to the constant path g with value i(t), and use (3.3), we are lead to the
conclusion that the kernel m of / satisfies

roo
{m,(f(?), f(t - r), r) - m,(f(r), f(t), r)}dz = 0

o
for all paths f and times t; in view of Lemma A2, this yields m,(f, p, r) =
m,(f, f, t) for all f, p E ^ and t > 0, so that nij2 — 0 and m splits.

The converse assertion is immediate. □
Consider now an Revalued single-integral law

g(t) = *(f')

with noninteractive memory. Let M denote the equilibrium response function and
m the essential kernel (we write m in place of m), so that

r OO

= M(f(0) +
/ o

for all paths f and times t. If

9M(f) and m,(f, t) are symmetric (6.5)

for all f € % and t > 0 , then there are unique scalar-valued functions W: % —► R
and 4*: % x (0, oo) —► R such that

M(f) = a^(f), m(f, T) = V,(f, r),
W(f0) = y(f0,r) = 0

for all f e ^ and t > 0 . In this case we call W and ¥ the integrals of M and m.
A fairly simple consequence of Theorem 3 is

Theorem 5. Let JK be an Revalued single-integral law with noninteractive mem-
ory. Let M and m, respectively, denote the equilibrium response function and the
essential kernel of . Then necessary and sufficient that J? have a dissipation
potential W is that (6.5) hold and the integral T of m have

f i—* ¥'(f, t) concave on % (6.7)

r OO

/ {m(f(0, t) - m(f(r - t), T)}dx (6.4)
Jo
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for all t > 0. Granted these conditions:
(i) the equilibrium response function for W is the integral W of M;

(ii) the kernel w for W is given by

w(f, p, t) = ¥(f, t) - ^(p, t) - m(p, t) • (f- p) (6.8)
for all f, p € % and x > 0;

(iii) for each x > 0,

f i—* *F(f, r) is convex on %. (6.9)

We now discuss a different type of memory. Let Af, with response pair (m, M),
be a single-integral law, and let

Hi = {f- p: f, p 6 ^}.
Then JK has relative memory if there is a function m, called the essential kernel of

, such that
m(f, p, t) = m(f- p, t) , m(0,i) = 0

for all f, p € y and t > 0. In this case, writing m in place of m, m has %?x(0, oo)
as domain, and

r OO

= M(f(f)) + / m(f(0 - f(t — t) , t) dx
Jo

for all paths f and times t.
If is Revalued with

<9M(f) and m^r, r) symmetric (6.10)

for all f € ^, r e %, and x > 0, then there are functions W: % —► R and
w: & x (0, oo) —► R, with w unique, such that

M(f) = 3H/(f), m(r, t) = io,(r, t), u;(0,t) = 0

for all f e % , re^, and r > 0. In this case we call W and w integrals of M
and m.

Theorem 6. Let JK be an Revalued single-integral law with relative memory. Let
M and m, respectively, denote the equilibrium response function and the essential
kernel of Jf . Then necessary and sufficient that Jf have a dissipation potential W
is that (6.10) hold and the integral w of m satisfy

w'(r, x) < 0

for all re^ and x > 0. Granted these conditions, the dissipation potential W for
necessarily has relative memory, and the equilibrium response function for W

is an integral W of M; the essential kernel for W is w ; and w > 0.

The proof of this theorem can safely be omitted.
Remark. Within our original framework, with S the Piola-Kirchhoff stress and

F the deformation gradient, noninteractive memory and relative memory in the con-
stitutive equation for stress are generally ruled out by material frame-indifference.
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However, there are three-dimensional frame-indifferent relations of single-integral
type that have noninteractive memory for longitudinal motions. For example, letting
B and Cr, respectively, denote the left Cauchy-Green strain and the relative right
Cauchy-Green strain,13 the constitutive equation

rOC

T(0=/ J(B(0,Cr(f-r, t), r)dr
Jo

for the Cauchy stress T has this property when

J(B, Cr, r) = a(i)[J0(B) + Jj (BCr)] (J0 , Jj isotropic).

Similarly, the choice

J(B, Cr, r) = q(t)[J0(B) + J,(Cr)] (J0>Ji isotropic)

yields relative memory in simple shear.

B. Thermoviscoelastic materials of single-integral type.

7. Notation. We now apply the abstract theory to thermoviscoelastic materials of
single-integral type. The underlying "physical space" is Rp with p = 1, 2 , or 3. We
use the term "tensor" as a synonym for "linear transformation from Rp into itself,"
and write Lin for the space of all tensors. We follow the terminology of Sec. 2 with
n = p + 1 and

^ a simply-connected open subset of Lin x(0, oo).

Let J? be a linear transformation from Lin xK into itself. Then S? has "com-
ponents" L, A, B, a (with A, B e Lin, a € R, L: Lin -*■ Lin a linear transfor-
mation) such that, for all (H, h) e Lin xR,

Jzf(H , h) = (LH + Ah , B ■ H + ah);

it is convenient to arrange these components as an array
L A
B a

Note that £? is symmetric if and only if L = LT and A = B . Note also that, given
a smooth map (F, 9) ^ jT(F, 9) = (G(F, 9), g(F, 9)) from % into Lin xR, the
derivative d& corresponds to an array

AG dt>G
deS.

8. Thermodynamic restrictions. A thermoviscoelastic material of single-integral type
2

is defined by two single-integral laws: an R -valued law

S(r)=^(F',0') (8.1)
for the stress, and a scalar-valued law

e(t) = r(F', 9') (8.2)

13Cf. [11], Sec. 23.
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for the internal energy. We write (£, a) and (O, <p), respectively, for the response
pairs of 5? and IP , so that

roo

S(f) = E(F(0 , 0(0) + / a(F(0 , 0(0, F(t - t) , 6(t -T),z)dz,
J°roo (8.3)

e(t) = O(F(0 , 0(0) + / 0(F(?), 0(f), F(f - t) , 9(t - r), x) dr.
Jo

The instantaneous derivative D<5"(F', 0') then has "components"
r OO

Df^(F' , e') = S,(F(f), 0(0) + / <x,(F(0, 0(0 , F(f - t), 6(t -r),r)dr,
% (8-4)

DeS"(F', 0') = Z2(F(0, 0(0) + / «i2(F(0 , 0(t), F(f - t), 0(f — x), x) dx,
Jo

which represent instantaneous derivatives with respect to the current values of F and
0 , respectively; similar interpretations apply to Z>fI?(F', 6') and Dg^(¥', Q1). The
functions

c(¥', 6') = Dgg(¥', d'), E(F(, 0') = Df5"(¥', 0r),

A(¥l, e') = De^(¥', el) (8.5)

represent the instantaneous specific heat, the instantaneous elasticity, and the instan-
taneous stress-temperature modulus.

An entropy for the material is a single-integral law with the property that:
given any path (F, 0), the functions

S(f)=^(F',0'), e(t) = g(¥t,d'), rj(t)=^(¥',9l)

are consistent with the inequality

e' -S ¥' - 6t]' <0 (8.6)
for all time; if an entropy exists, the material is compatible with thermodynamics.

It is clear from the introduction that the material is compatible with thermody-
namics if and only if the R"-valued single-integral law JK defined by

0') = (0-'(O^(F', e'), -0~2(O<T(F', 0')), (8.7)
is dissipative (cf. (1.10)). Thus, in view of Theorem 3, a necessary and sufficient
condition for such compatibility is that

E,(F, 0) = Lj(F, 0)T , E(F, 0) - 0L2(F, 0) = 0,(F, 0),

ffj(F, 0, P, 0, t) = <t,(F, 0, P, 0, r)T,
<r(F, 0, P, 0, x) - 0<t2(F, 0,P,i?,t) = 0|(F,0,P,i?,t), (8.8)

(F,0)
{q_1ct5(R, a, P, 0, x) ■ dR - q_2^5(R, a, P, 0, x)daj < 0,

(P,i?)

for all (F, 0), (P, t?) 6 ^ and x > 0, the integral being along any path in 1/ from
(P, 0) to (F, 0). While the restrictions (8.8) are not in themselves illuminating, they

i
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do represent requirements that must be verified to ensure that a particular model (of
single-integral type) be compatible with thermodynamics.

To avoid repeated assumptions, we henceforth assume that (8.8) are satisfied.
Then as a consequence of (4.11), (8.7), and (8.5),

E(F', 6') = E(F', d')T ,
, e') = ̂ (f', e') - d(t)a(f', 0').

This latter result has an important consequence. Consider a path (F, 0) and let
S(t) and e(t) be the corresponding stress and internal energy as defined by (8.1) and
(8.2). Then, in view of (3.5) (applied to If) and (8.5),

e(t) = c(f', e')O-(t) + {s(o - 0(/)A(f', e')} ■ fxo + <yr(F', 0')■
this relation is an essential ingredient in the derivation of the partial differential
equation describing balance of energy.

9. Relaxation functions. We assume there is a temperature 0O at which the refer-
ence configuration is both stress-free and devoid of internal energy (the latter involves
no loss in generality, as the internal energy may be adjusted by an additive constant
without affecting the theory). Thus, since the undeformed body corresponds to a
deformation gradient F = 1,

^(l,0o) = O, <£(1, 0O) = 0. (9.1)

We assume further that the kernels a and (j> are C .
There are four relevant relaxation functions: the stress-strain relaxation function

2? , the stress-temperature relaxation function sf , the energy-strain relaxation function
2), and the energy-temperature relaxation function o; these functions are defined
through the relations

5?'(t) = ff3(l, > 1' 9o > T)' ^(°) = ' eo)'
s/\T) - «r4(i, e0,1, e0, r), st (0) = Dg&ii, e0),
2\x) = 03( 1, e0,1, e0, t), &(0) = z)Fr(i, e0),
c\r) = 04(1, 00, 1, 0O , r), ^(0) = £>flr(l, 0O).

If we consider a path (F, 6) which is close to (1, dQ), then, writing

H = F - 1

(for the displacement gradient) the constitutive equations (8.1) and (8.2) have the
following asymptotic form at each time t:

poo roo

S(/) = ^(0)H(?) + / - r)dz+ J^{0)d(t) + s/\r)d(t - t) + o(S),
70 -/o

rOO

e(t) = 3f(0) ■ H(/) + / ^'(t) ■ H(f - t)*/t +*(0)0(0
Jo

r OO

+ / e'(x)9{t - t) + o(<5),
Jo
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with
^ = l|F,-l||oo + ||0'-eo||oo.

If G is the relaxation function corresponding to the single-integral law (8.7), then,
in view (9.1) and the remarks of Sec. 7, for each t > 0, the array of components of
0oG(r) is

3?(t) ^(t)

and we have the following direct consequences of Theorem 4:
(i) The stress-strain relaxation function is symmetric:

S?(t) =S?(t)t for all t > 0.

(ii) The stress-temperature and energy-strain relaxation functions are related by

3S(x) = -0oj/(t) for all t > 0.

(iii) The following definiteness conditions hold for all t > 0, L e Lin, and lei:

L • ̂ '(t)L + ■ L - B^\x)a < 0,
L • S? "(t)L + 2A#"(t) ■ L - t)A2 > 0.

Appendix. Some useful lemmas.

Lemma Al. Suppose that m: x (0, oo) — Kp is an admissible kernel. Let c: M —►
^ be piecewise constant with a finite set 2! of discontinuities. Then there is a
sequence {fn} of paths such that, given any time t $3!,

rOO rOO

lim / m(f„(t), f (t - t), t) dx = / m(c(/), c(? - r), t) c/t.
n—>0° io+ io+

(Al)

Proof. There is a sequence {fn} of paths such that, for all sufficiently large «
(say « > JV0), if we consider the intervals {d - n~l, d + n~x), d e3>, then in - c
outside these intervals, while there is a fixed compact set K c % that contains the
ranges of all of the fn . Call the union of these intervals Bn . Choose t 2 . Then
there exists a pQ > 0 such that [t - p0, /] lies outside of Bn for all n > N0] for
p e (0, p0),

fJ D
?)dT

rP0cp o r°°
= m(c(t),c(t-x),x)dx + m{fn(t),fn(t-x),x)dx. (A2)

J P J P0

Since m is an admissible kernel, if we let p j 0, the first integral on the right
converges; on the other hand, if we let «-»oo, the second integral converges to the
analogous integral of m(c(t), c(t - x), x). □

Lemma A2. Let m: x (0, oo) —► be an admissible kernel and suppose that
roc rOC

/ m(f(?), f(t - t) , t) dx = / , i(t), x) dx (A3)
Jo+ Jo+



84 M. E. GURTIN and W. J. HRUSA

for all paths f and times t. Then

m(f, p, t) = m(f, f, t) (A4)

for all f, p e and r > 0.
Proof. Choose f0, p € and t0, h > 0. By Lemma Al, we may apply (A3) at

t = 0 with f: R —► ^ defined by
f p, A e [-?n - h, -?nl,*W = , ' 0 oJ (A5)
[ fQ, otherv 

the result is
otherwise;

I {m(f0, p, t) - m(f0, f0, t)} dt = 0,

and this clearly yields the validity of (A4). □

Lemma A3. Let M, N: % —► Rp , m, n: I/2 x (0, oo) —► M.p with m, n continuous,
balanced, and locally dominated. Assume that

roo rOO

M{f{t)) + / m(f(0, f(* - t) , r) dr = N(f(0) + / n(f(/), f(/ - r), r) dr (A6)
Jo Jo

for all paths f and times t. Then

M = N, m = n.

Proof. Since
m and n are balanced, (A7)

an arbitrary constant path in (A6) yields M = N; and this result, (A7), and Lemma
A2 applied to m - n implies m = n . □

The proof of the next lemma can safely be omitted.

Lemma A4. Let f be a path, t a time, and aeR". Then there is a sequence {fn}
of paths such that

fn —> f as « —> oo uniformly on (-oo, t),

fn —> f as n —> oo pointwise on (-oo, t),
|fj is bounded on (-oo, t), uniformly in n ,

and such that, for each n ,

f„(0 = f(0» W = a.
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